Properties

Label 3724.2.a.o.1.4
Level $3724$
Weight $2$
Character 3724.1
Self dual yes
Analytic conductor $29.736$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3724,2,Mod(1,3724)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3724, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3724.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3724 = 2^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3724.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.7362897127\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 4x^{6} + 24x^{5} + x^{4} - 40x^{3} + 6x^{2} + 16x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.923026\) of defining polynomial
Character \(\chi\) \(=\) 3724.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.923026 q^{3} +0.765692 q^{5} -2.14802 q^{9} +0.119073 q^{11} -5.50031 q^{13} -0.706754 q^{15} +5.35523 q^{17} +1.00000 q^{19} +2.47375 q^{23} -4.41372 q^{25} +4.75176 q^{27} +10.0997 q^{29} -0.967066 q^{31} -0.109907 q^{33} +5.66670 q^{37} +5.07693 q^{39} -0.467311 q^{41} +1.66934 q^{43} -1.64472 q^{45} -10.1965 q^{47} -4.94302 q^{51} -9.58561 q^{53} +0.0911731 q^{55} -0.923026 q^{57} -14.0439 q^{59} -15.1285 q^{61} -4.21154 q^{65} -10.0927 q^{67} -2.28334 q^{69} +14.6510 q^{71} -0.289408 q^{73} +4.07398 q^{75} -16.2973 q^{79} +2.05807 q^{81} +8.67026 q^{83} +4.10046 q^{85} -9.32230 q^{87} +1.64821 q^{89} +0.892628 q^{93} +0.765692 q^{95} -5.16198 q^{97} -0.255771 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 8 q^{11} - 8 q^{17} + 8 q^{19} + 4 q^{23} + 4 q^{25} - 16 q^{27} - 4 q^{29} - 24 q^{31} + 12 q^{33} + 12 q^{37} + 4 q^{39} - 20 q^{41} + 12 q^{43} - 24 q^{45} - 24 q^{47} + 12 q^{51} + 4 q^{53}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.923026 −0.532909 −0.266455 0.963847i \(-0.585852\pi\)
−0.266455 + 0.963847i \(0.585852\pi\)
\(4\) 0 0
\(5\) 0.765692 0.342428 0.171214 0.985234i \(-0.445231\pi\)
0.171214 + 0.985234i \(0.445231\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.14802 −0.716007
\(10\) 0 0
\(11\) 0.119073 0.0359018 0.0179509 0.999839i \(-0.494286\pi\)
0.0179509 + 0.999839i \(0.494286\pi\)
\(12\) 0 0
\(13\) −5.50031 −1.52551 −0.762755 0.646687i \(-0.776154\pi\)
−0.762755 + 0.646687i \(0.776154\pi\)
\(14\) 0 0
\(15\) −0.706754 −0.182483
\(16\) 0 0
\(17\) 5.35523 1.29883 0.649417 0.760433i \(-0.275013\pi\)
0.649417 + 0.760433i \(0.275013\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.47375 0.515813 0.257906 0.966170i \(-0.416967\pi\)
0.257906 + 0.966170i \(0.416967\pi\)
\(24\) 0 0
\(25\) −4.41372 −0.882743
\(26\) 0 0
\(27\) 4.75176 0.914477
\(28\) 0 0
\(29\) 10.0997 1.87547 0.937734 0.347353i \(-0.112920\pi\)
0.937734 + 0.347353i \(0.112920\pi\)
\(30\) 0 0
\(31\) −0.967066 −0.173690 −0.0868451 0.996222i \(-0.527679\pi\)
−0.0868451 + 0.996222i \(0.527679\pi\)
\(32\) 0 0
\(33\) −0.109907 −0.0191324
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.66670 0.931599 0.465800 0.884890i \(-0.345767\pi\)
0.465800 + 0.884890i \(0.345767\pi\)
\(38\) 0 0
\(39\) 5.07693 0.812959
\(40\) 0 0
\(41\) −0.467311 −0.0729817 −0.0364909 0.999334i \(-0.511618\pi\)
−0.0364909 + 0.999334i \(0.511618\pi\)
\(42\) 0 0
\(43\) 1.66934 0.254573 0.127286 0.991866i \(-0.459373\pi\)
0.127286 + 0.991866i \(0.459373\pi\)
\(44\) 0 0
\(45\) −1.64472 −0.245181
\(46\) 0 0
\(47\) −10.1965 −1.48731 −0.743653 0.668566i \(-0.766908\pi\)
−0.743653 + 0.668566i \(0.766908\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −4.94302 −0.692161
\(52\) 0 0
\(53\) −9.58561 −1.31669 −0.658343 0.752718i \(-0.728742\pi\)
−0.658343 + 0.752718i \(0.728742\pi\)
\(54\) 0 0
\(55\) 0.0911731 0.0122938
\(56\) 0 0
\(57\) −0.923026 −0.122258
\(58\) 0 0
\(59\) −14.0439 −1.82837 −0.914183 0.405301i \(-0.867167\pi\)
−0.914183 + 0.405301i \(0.867167\pi\)
\(60\) 0 0
\(61\) −15.1285 −1.93701 −0.968504 0.248999i \(-0.919898\pi\)
−0.968504 + 0.248999i \(0.919898\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.21154 −0.522378
\(66\) 0 0
\(67\) −10.0927 −1.23302 −0.616512 0.787346i \(-0.711455\pi\)
−0.616512 + 0.787346i \(0.711455\pi\)
\(68\) 0 0
\(69\) −2.28334 −0.274881
\(70\) 0 0
\(71\) 14.6510 1.73876 0.869379 0.494146i \(-0.164519\pi\)
0.869379 + 0.494146i \(0.164519\pi\)
\(72\) 0 0
\(73\) −0.289408 −0.0338727 −0.0169363 0.999857i \(-0.505391\pi\)
−0.0169363 + 0.999857i \(0.505391\pi\)
\(74\) 0 0
\(75\) 4.07398 0.470422
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −16.2973 −1.83359 −0.916795 0.399359i \(-0.869233\pi\)
−0.916795 + 0.399359i \(0.869233\pi\)
\(80\) 0 0
\(81\) 2.05807 0.228674
\(82\) 0 0
\(83\) 8.67026 0.951685 0.475843 0.879530i \(-0.342143\pi\)
0.475843 + 0.879530i \(0.342143\pi\)
\(84\) 0 0
\(85\) 4.10046 0.444757
\(86\) 0 0
\(87\) −9.32230 −0.999455
\(88\) 0 0
\(89\) 1.64821 0.174710 0.0873550 0.996177i \(-0.472159\pi\)
0.0873550 + 0.996177i \(0.472159\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0.892628 0.0925612
\(94\) 0 0
\(95\) 0.765692 0.0785584
\(96\) 0 0
\(97\) −5.16198 −0.524119 −0.262060 0.965052i \(-0.584402\pi\)
−0.262060 + 0.965052i \(0.584402\pi\)
\(98\) 0 0
\(99\) −0.255771 −0.0257060
\(100\) 0 0
\(101\) −4.12868 −0.410819 −0.205410 0.978676i \(-0.565853\pi\)
−0.205410 + 0.978676i \(0.565853\pi\)
\(102\) 0 0
\(103\) −0.956458 −0.0942426 −0.0471213 0.998889i \(-0.515005\pi\)
−0.0471213 + 0.998889i \(0.515005\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.9095 1.15133 0.575666 0.817685i \(-0.304743\pi\)
0.575666 + 0.817685i \(0.304743\pi\)
\(108\) 0 0
\(109\) 11.9985 1.14924 0.574622 0.818419i \(-0.305149\pi\)
0.574622 + 0.818419i \(0.305149\pi\)
\(110\) 0 0
\(111\) −5.23051 −0.496458
\(112\) 0 0
\(113\) −2.83195 −0.266408 −0.133204 0.991089i \(-0.542526\pi\)
−0.133204 + 0.991089i \(0.542526\pi\)
\(114\) 0 0
\(115\) 1.89413 0.176629
\(116\) 0 0
\(117\) 11.8148 1.09228
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.9858 −0.998711
\(122\) 0 0
\(123\) 0.431340 0.0388927
\(124\) 0 0
\(125\) −7.20801 −0.644704
\(126\) 0 0
\(127\) 1.41907 0.125922 0.0629609 0.998016i \(-0.479946\pi\)
0.0629609 + 0.998016i \(0.479946\pi\)
\(128\) 0 0
\(129\) −1.54085 −0.135664
\(130\) 0 0
\(131\) −6.75319 −0.590029 −0.295014 0.955493i \(-0.595324\pi\)
−0.295014 + 0.955493i \(0.595324\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 3.63839 0.313142
\(136\) 0 0
\(137\) −2.69392 −0.230157 −0.115079 0.993356i \(-0.536712\pi\)
−0.115079 + 0.993356i \(0.536712\pi\)
\(138\) 0 0
\(139\) −21.8339 −1.85192 −0.925962 0.377616i \(-0.876744\pi\)
−0.925962 + 0.377616i \(0.876744\pi\)
\(140\) 0 0
\(141\) 9.41159 0.792599
\(142\) 0 0
\(143\) −0.654937 −0.0547686
\(144\) 0 0
\(145\) 7.73327 0.642213
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.4268 1.01804 0.509021 0.860754i \(-0.330007\pi\)
0.509021 + 0.860754i \(0.330007\pi\)
\(150\) 0 0
\(151\) −15.9677 −1.29943 −0.649716 0.760177i \(-0.725112\pi\)
−0.649716 + 0.760177i \(0.725112\pi\)
\(152\) 0 0
\(153\) −11.5032 −0.929975
\(154\) 0 0
\(155\) −0.740475 −0.0594764
\(156\) 0 0
\(157\) −17.0680 −1.36217 −0.681086 0.732204i \(-0.738492\pi\)
−0.681086 + 0.732204i \(0.738492\pi\)
\(158\) 0 0
\(159\) 8.84777 0.701674
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −18.8648 −1.47761 −0.738803 0.673921i \(-0.764609\pi\)
−0.738803 + 0.673921i \(0.764609\pi\)
\(164\) 0 0
\(165\) −0.0841552 −0.00655147
\(166\) 0 0
\(167\) −12.7010 −0.982829 −0.491415 0.870926i \(-0.663520\pi\)
−0.491415 + 0.870926i \(0.663520\pi\)
\(168\) 0 0
\(169\) 17.2534 1.32718
\(170\) 0 0
\(171\) −2.14802 −0.164263
\(172\) 0 0
\(173\) −18.2103 −1.38450 −0.692251 0.721657i \(-0.743381\pi\)
−0.692251 + 0.721657i \(0.743381\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 12.9629 0.974354
\(178\) 0 0
\(179\) 19.6574 1.46926 0.734632 0.678466i \(-0.237355\pi\)
0.734632 + 0.678466i \(0.237355\pi\)
\(180\) 0 0
\(181\) 19.4592 1.44639 0.723194 0.690645i \(-0.242673\pi\)
0.723194 + 0.690645i \(0.242673\pi\)
\(182\) 0 0
\(183\) 13.9640 1.03225
\(184\) 0 0
\(185\) 4.33895 0.319006
\(186\) 0 0
\(187\) 0.637662 0.0466305
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.2086 −0.811027 −0.405513 0.914089i \(-0.632907\pi\)
−0.405513 + 0.914089i \(0.632907\pi\)
\(192\) 0 0
\(193\) −14.5231 −1.04539 −0.522696 0.852519i \(-0.675074\pi\)
−0.522696 + 0.852519i \(0.675074\pi\)
\(194\) 0 0
\(195\) 3.88737 0.278380
\(196\) 0 0
\(197\) 25.3899 1.80895 0.904477 0.426523i \(-0.140262\pi\)
0.904477 + 0.426523i \(0.140262\pi\)
\(198\) 0 0
\(199\) −14.8633 −1.05363 −0.526814 0.849980i \(-0.676614\pi\)
−0.526814 + 0.849980i \(0.676614\pi\)
\(200\) 0 0
\(201\) 9.31586 0.657090
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −0.357817 −0.0249910
\(206\) 0 0
\(207\) −5.31367 −0.369326
\(208\) 0 0
\(209\) 0.119073 0.00823644
\(210\) 0 0
\(211\) −8.04839 −0.554074 −0.277037 0.960859i \(-0.589352\pi\)
−0.277037 + 0.960859i \(0.589352\pi\)
\(212\) 0 0
\(213\) −13.5233 −0.926600
\(214\) 0 0
\(215\) 1.27820 0.0871728
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0.267131 0.0180511
\(220\) 0 0
\(221\) −29.4554 −1.98138
\(222\) 0 0
\(223\) 13.4292 0.899285 0.449642 0.893209i \(-0.351551\pi\)
0.449642 + 0.893209i \(0.351551\pi\)
\(224\) 0 0
\(225\) 9.48076 0.632051
\(226\) 0 0
\(227\) −1.38109 −0.0916659 −0.0458330 0.998949i \(-0.514594\pi\)
−0.0458330 + 0.998949i \(0.514594\pi\)
\(228\) 0 0
\(229\) 13.2347 0.874572 0.437286 0.899323i \(-0.355940\pi\)
0.437286 + 0.899323i \(0.355940\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.27126 −0.0832831 −0.0416416 0.999133i \(-0.513259\pi\)
−0.0416416 + 0.999133i \(0.513259\pi\)
\(234\) 0 0
\(235\) −7.80735 −0.509295
\(236\) 0 0
\(237\) 15.0428 0.977137
\(238\) 0 0
\(239\) −11.6876 −0.756007 −0.378003 0.925804i \(-0.623389\pi\)
−0.378003 + 0.925804i \(0.623389\pi\)
\(240\) 0 0
\(241\) 7.32444 0.471809 0.235904 0.971776i \(-0.424195\pi\)
0.235904 + 0.971776i \(0.424195\pi\)
\(242\) 0 0
\(243\) −16.1549 −1.03634
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.50031 −0.349976
\(248\) 0 0
\(249\) −8.00288 −0.507162
\(250\) 0 0
\(251\) −30.1929 −1.90576 −0.952880 0.303346i \(-0.901896\pi\)
−0.952880 + 0.303346i \(0.901896\pi\)
\(252\) 0 0
\(253\) 0.294556 0.0185186
\(254\) 0 0
\(255\) −3.78483 −0.237015
\(256\) 0 0
\(257\) 19.2097 1.19827 0.599135 0.800648i \(-0.295511\pi\)
0.599135 + 0.800648i \(0.295511\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −21.6944 −1.34285
\(262\) 0 0
\(263\) 3.74697 0.231048 0.115524 0.993305i \(-0.463145\pi\)
0.115524 + 0.993305i \(0.463145\pi\)
\(264\) 0 0
\(265\) −7.33963 −0.450870
\(266\) 0 0
\(267\) −1.52134 −0.0931046
\(268\) 0 0
\(269\) −7.64294 −0.465998 −0.232999 0.972477i \(-0.574854\pi\)
−0.232999 + 0.972477i \(0.574854\pi\)
\(270\) 0 0
\(271\) −12.8107 −0.778195 −0.389098 0.921196i \(-0.627213\pi\)
−0.389098 + 0.921196i \(0.627213\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.525553 −0.0316921
\(276\) 0 0
\(277\) 16.7793 1.00817 0.504085 0.863654i \(-0.331830\pi\)
0.504085 + 0.863654i \(0.331830\pi\)
\(278\) 0 0
\(279\) 2.07728 0.124364
\(280\) 0 0
\(281\) −25.8940 −1.54471 −0.772354 0.635193i \(-0.780921\pi\)
−0.772354 + 0.635193i \(0.780921\pi\)
\(282\) 0 0
\(283\) −25.0440 −1.48871 −0.744356 0.667783i \(-0.767243\pi\)
−0.744356 + 0.667783i \(0.767243\pi\)
\(284\) 0 0
\(285\) −0.706754 −0.0418645
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 11.6785 0.686970
\(290\) 0 0
\(291\) 4.76464 0.279308
\(292\) 0 0
\(293\) −2.93743 −0.171607 −0.0858033 0.996312i \(-0.527346\pi\)
−0.0858033 + 0.996312i \(0.527346\pi\)
\(294\) 0 0
\(295\) −10.7533 −0.626084
\(296\) 0 0
\(297\) 0.565805 0.0328314
\(298\) 0 0
\(299\) −13.6064 −0.786878
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 3.81088 0.218930
\(304\) 0 0
\(305\) −11.5838 −0.663286
\(306\) 0 0
\(307\) 7.86843 0.449075 0.224537 0.974465i \(-0.427913\pi\)
0.224537 + 0.974465i \(0.427913\pi\)
\(308\) 0 0
\(309\) 0.882836 0.0502228
\(310\) 0 0
\(311\) 10.0594 0.570418 0.285209 0.958465i \(-0.407937\pi\)
0.285209 + 0.958465i \(0.407937\pi\)
\(312\) 0 0
\(313\) 22.7851 1.28789 0.643946 0.765071i \(-0.277296\pi\)
0.643946 + 0.765071i \(0.277296\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.25396 0.238926 0.119463 0.992839i \(-0.461883\pi\)
0.119463 + 0.992839i \(0.461883\pi\)
\(318\) 0 0
\(319\) 1.20260 0.0673327
\(320\) 0 0
\(321\) −10.9928 −0.613556
\(322\) 0 0
\(323\) 5.35523 0.297973
\(324\) 0 0
\(325\) 24.2768 1.34663
\(326\) 0 0
\(327\) −11.0749 −0.612443
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −18.8705 −1.03721 −0.518607 0.855013i \(-0.673549\pi\)
−0.518607 + 0.855013i \(0.673549\pi\)
\(332\) 0 0
\(333\) −12.1722 −0.667032
\(334\) 0 0
\(335\) −7.72793 −0.422222
\(336\) 0 0
\(337\) 2.29350 0.124935 0.0624673 0.998047i \(-0.480103\pi\)
0.0624673 + 0.998047i \(0.480103\pi\)
\(338\) 0 0
\(339\) 2.61397 0.141971
\(340\) 0 0
\(341\) −0.115151 −0.00623579
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.74833 −0.0941271
\(346\) 0 0
\(347\) −10.3828 −0.557380 −0.278690 0.960381i \(-0.589900\pi\)
−0.278690 + 0.960381i \(0.589900\pi\)
\(348\) 0 0
\(349\) 3.38565 0.181230 0.0906149 0.995886i \(-0.471117\pi\)
0.0906149 + 0.995886i \(0.471117\pi\)
\(350\) 0 0
\(351\) −26.1361 −1.39504
\(352\) 0 0
\(353\) −17.1858 −0.914710 −0.457355 0.889284i \(-0.651203\pi\)
−0.457355 + 0.889284i \(0.651203\pi\)
\(354\) 0 0
\(355\) 11.2182 0.595399
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −19.8989 −1.05022 −0.525111 0.851034i \(-0.675976\pi\)
−0.525111 + 0.851034i \(0.675976\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 10.1402 0.532223
\(364\) 0 0
\(365\) −0.221598 −0.0115990
\(366\) 0 0
\(367\) −12.5795 −0.656647 −0.328324 0.944565i \(-0.606484\pi\)
−0.328324 + 0.944565i \(0.606484\pi\)
\(368\) 0 0
\(369\) 1.00379 0.0522555
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −2.99804 −0.155232 −0.0776162 0.996983i \(-0.524731\pi\)
−0.0776162 + 0.996983i \(0.524731\pi\)
\(374\) 0 0
\(375\) 6.65318 0.343569
\(376\) 0 0
\(377\) −55.5515 −2.86105
\(378\) 0 0
\(379\) 31.1950 1.60238 0.801191 0.598409i \(-0.204200\pi\)
0.801191 + 0.598409i \(0.204200\pi\)
\(380\) 0 0
\(381\) −1.30984 −0.0671050
\(382\) 0 0
\(383\) −1.13421 −0.0579555 −0.0289777 0.999580i \(-0.509225\pi\)
−0.0289777 + 0.999580i \(0.509225\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.58579 −0.182276
\(388\) 0 0
\(389\) 4.12774 0.209285 0.104642 0.994510i \(-0.466630\pi\)
0.104642 + 0.994510i \(0.466630\pi\)
\(390\) 0 0
\(391\) 13.2475 0.669955
\(392\) 0 0
\(393\) 6.23337 0.314432
\(394\) 0 0
\(395\) −12.4787 −0.627872
\(396\) 0 0
\(397\) 29.1663 1.46382 0.731908 0.681404i \(-0.238630\pi\)
0.731908 + 0.681404i \(0.238630\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.74370 0.0870764 0.0435382 0.999052i \(-0.486137\pi\)
0.0435382 + 0.999052i \(0.486137\pi\)
\(402\) 0 0
\(403\) 5.31916 0.264966
\(404\) 0 0
\(405\) 1.57585 0.0783045
\(406\) 0 0
\(407\) 0.674750 0.0334461
\(408\) 0 0
\(409\) 10.4484 0.516640 0.258320 0.966059i \(-0.416831\pi\)
0.258320 + 0.966059i \(0.416831\pi\)
\(410\) 0 0
\(411\) 2.48656 0.122653
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 6.63876 0.325884
\(416\) 0 0
\(417\) 20.1532 0.986908
\(418\) 0 0
\(419\) 9.62283 0.470106 0.235053 0.971983i \(-0.424474\pi\)
0.235053 + 0.971983i \(0.424474\pi\)
\(420\) 0 0
\(421\) 27.1271 1.32209 0.661046 0.750346i \(-0.270113\pi\)
0.661046 + 0.750346i \(0.270113\pi\)
\(422\) 0 0
\(423\) 21.9022 1.06492
\(424\) 0 0
\(425\) −23.6365 −1.14654
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0.604524 0.0291867
\(430\) 0 0
\(431\) 2.20460 0.106192 0.0530960 0.998589i \(-0.483091\pi\)
0.0530960 + 0.998589i \(0.483091\pi\)
\(432\) 0 0
\(433\) 19.6906 0.946270 0.473135 0.880990i \(-0.343122\pi\)
0.473135 + 0.880990i \(0.343122\pi\)
\(434\) 0 0
\(435\) −7.13801 −0.342241
\(436\) 0 0
\(437\) 2.47375 0.118336
\(438\) 0 0
\(439\) −26.2182 −1.25133 −0.625663 0.780093i \(-0.715172\pi\)
−0.625663 + 0.780093i \(0.715172\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.03641 −0.239287 −0.119644 0.992817i \(-0.538175\pi\)
−0.119644 + 0.992817i \(0.538175\pi\)
\(444\) 0 0
\(445\) 1.26202 0.0598256
\(446\) 0 0
\(447\) −11.4703 −0.542524
\(448\) 0 0
\(449\) −18.9966 −0.896503 −0.448252 0.893907i \(-0.647953\pi\)
−0.448252 + 0.893907i \(0.647953\pi\)
\(450\) 0 0
\(451\) −0.0556440 −0.00262018
\(452\) 0 0
\(453\) 14.7386 0.692479
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 21.2517 0.994111 0.497056 0.867719i \(-0.334414\pi\)
0.497056 + 0.867719i \(0.334414\pi\)
\(458\) 0 0
\(459\) 25.4468 1.18775
\(460\) 0 0
\(461\) 9.98621 0.465104 0.232552 0.972584i \(-0.425292\pi\)
0.232552 + 0.972584i \(0.425292\pi\)
\(462\) 0 0
\(463\) −22.7254 −1.05614 −0.528069 0.849201i \(-0.677084\pi\)
−0.528069 + 0.849201i \(0.677084\pi\)
\(464\) 0 0
\(465\) 0.683478 0.0316955
\(466\) 0 0
\(467\) −25.8641 −1.19685 −0.598424 0.801179i \(-0.704206\pi\)
−0.598424 + 0.801179i \(0.704206\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 15.7542 0.725914
\(472\) 0 0
\(473\) 0.198773 0.00913961
\(474\) 0 0
\(475\) −4.41372 −0.202515
\(476\) 0 0
\(477\) 20.5901 0.942757
\(478\) 0 0
\(479\) 10.8037 0.493632 0.246816 0.969062i \(-0.420616\pi\)
0.246816 + 0.969062i \(0.420616\pi\)
\(480\) 0 0
\(481\) −31.1686 −1.42116
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.95249 −0.179473
\(486\) 0 0
\(487\) 25.4905 1.15508 0.577542 0.816361i \(-0.304012\pi\)
0.577542 + 0.816361i \(0.304012\pi\)
\(488\) 0 0
\(489\) 17.4127 0.787431
\(490\) 0 0
\(491\) −25.9732 −1.17215 −0.586077 0.810255i \(-0.699328\pi\)
−0.586077 + 0.810255i \(0.699328\pi\)
\(492\) 0 0
\(493\) 54.0863 2.43592
\(494\) 0 0
\(495\) −0.195842 −0.00880244
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 30.3627 1.35922 0.679610 0.733574i \(-0.262149\pi\)
0.679610 + 0.733574i \(0.262149\pi\)
\(500\) 0 0
\(501\) 11.7233 0.523759
\(502\) 0 0
\(503\) −16.6196 −0.741031 −0.370515 0.928826i \(-0.620819\pi\)
−0.370515 + 0.928826i \(0.620819\pi\)
\(504\) 0 0
\(505\) −3.16130 −0.140676
\(506\) 0 0
\(507\) −15.9253 −0.707268
\(508\) 0 0
\(509\) 25.9516 1.15028 0.575142 0.818054i \(-0.304947\pi\)
0.575142 + 0.818054i \(0.304947\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.75176 0.209795
\(514\) 0 0
\(515\) −0.732353 −0.0322713
\(516\) 0 0
\(517\) −1.21412 −0.0533969
\(518\) 0 0
\(519\) 16.8086 0.737814
\(520\) 0 0
\(521\) 16.0064 0.701255 0.350628 0.936515i \(-0.385968\pi\)
0.350628 + 0.936515i \(0.385968\pi\)
\(522\) 0 0
\(523\) 12.9789 0.567526 0.283763 0.958894i \(-0.408417\pi\)
0.283763 + 0.958894i \(0.408417\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.17886 −0.225595
\(528\) 0 0
\(529\) −16.8806 −0.733937
\(530\) 0 0
\(531\) 30.1667 1.30912
\(532\) 0 0
\(533\) 2.57035 0.111334
\(534\) 0 0
\(535\) 9.11900 0.394249
\(536\) 0 0
\(537\) −18.1443 −0.782985
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −45.0955 −1.93880 −0.969402 0.245477i \(-0.921055\pi\)
−0.969402 + 0.245477i \(0.921055\pi\)
\(542\) 0 0
\(543\) −17.9613 −0.770794
\(544\) 0 0
\(545\) 9.18714 0.393534
\(546\) 0 0
\(547\) −22.6028 −0.966427 −0.483214 0.875502i \(-0.660531\pi\)
−0.483214 + 0.875502i \(0.660531\pi\)
\(548\) 0 0
\(549\) 32.4964 1.38691
\(550\) 0 0
\(551\) 10.0997 0.430262
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.00496 −0.170001
\(556\) 0 0
\(557\) −5.17022 −0.219069 −0.109535 0.993983i \(-0.534936\pi\)
−0.109535 + 0.993983i \(0.534936\pi\)
\(558\) 0 0
\(559\) −9.18190 −0.388353
\(560\) 0 0
\(561\) −0.588579 −0.0248498
\(562\) 0 0
\(563\) 3.05312 0.128674 0.0643368 0.997928i \(-0.479507\pi\)
0.0643368 + 0.997928i \(0.479507\pi\)
\(564\) 0 0
\(565\) −2.16840 −0.0912255
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 30.5344 1.28007 0.640035 0.768346i \(-0.278920\pi\)
0.640035 + 0.768346i \(0.278920\pi\)
\(570\) 0 0
\(571\) 25.1860 1.05400 0.527002 0.849864i \(-0.323316\pi\)
0.527002 + 0.849864i \(0.323316\pi\)
\(572\) 0 0
\(573\) 10.3458 0.432204
\(574\) 0 0
\(575\) −10.9184 −0.455330
\(576\) 0 0
\(577\) −27.0127 −1.12455 −0.562277 0.826949i \(-0.690075\pi\)
−0.562277 + 0.826949i \(0.690075\pi\)
\(578\) 0 0
\(579\) 13.4052 0.557100
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.14139 −0.0472714
\(584\) 0 0
\(585\) 9.04649 0.374026
\(586\) 0 0
\(587\) 0.197187 0.00813879 0.00406940 0.999992i \(-0.498705\pi\)
0.00406940 + 0.999992i \(0.498705\pi\)
\(588\) 0 0
\(589\) −0.967066 −0.0398473
\(590\) 0 0
\(591\) −23.4355 −0.964008
\(592\) 0 0
\(593\) 31.3399 1.28698 0.643488 0.765456i \(-0.277486\pi\)
0.643488 + 0.765456i \(0.277486\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 13.7192 0.561489
\(598\) 0 0
\(599\) −25.6476 −1.04793 −0.523967 0.851739i \(-0.675548\pi\)
−0.523967 + 0.851739i \(0.675548\pi\)
\(600\) 0 0
\(601\) 9.63125 0.392867 0.196433 0.980517i \(-0.437064\pi\)
0.196433 + 0.980517i \(0.437064\pi\)
\(602\) 0 0
\(603\) 21.6794 0.882854
\(604\) 0 0
\(605\) −8.41176 −0.341987
\(606\) 0 0
\(607\) −40.6672 −1.65063 −0.825315 0.564673i \(-0.809002\pi\)
−0.825315 + 0.564673i \(0.809002\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 56.0836 2.26890
\(612\) 0 0
\(613\) −26.2934 −1.06198 −0.530990 0.847378i \(-0.678180\pi\)
−0.530990 + 0.847378i \(0.678180\pi\)
\(614\) 0 0
\(615\) 0.330274 0.0133179
\(616\) 0 0
\(617\) −34.1210 −1.37366 −0.686830 0.726818i \(-0.740998\pi\)
−0.686830 + 0.726818i \(0.740998\pi\)
\(618\) 0 0
\(619\) 5.26389 0.211574 0.105787 0.994389i \(-0.466264\pi\)
0.105787 + 0.994389i \(0.466264\pi\)
\(620\) 0 0
\(621\) 11.7547 0.471699
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 16.5495 0.661978
\(626\) 0 0
\(627\) −0.109907 −0.00438928
\(628\) 0 0
\(629\) 30.3465 1.20999
\(630\) 0 0
\(631\) 2.76371 0.110022 0.0550108 0.998486i \(-0.482481\pi\)
0.0550108 + 0.998486i \(0.482481\pi\)
\(632\) 0 0
\(633\) 7.42887 0.295271
\(634\) 0 0
\(635\) 1.08657 0.0431192
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −31.4707 −1.24496
\(640\) 0 0
\(641\) −23.9787 −0.947102 −0.473551 0.880766i \(-0.657028\pi\)
−0.473551 + 0.880766i \(0.657028\pi\)
\(642\) 0 0
\(643\) 44.5701 1.75767 0.878837 0.477122i \(-0.158320\pi\)
0.878837 + 0.477122i \(0.158320\pi\)
\(644\) 0 0
\(645\) −1.17982 −0.0464552
\(646\) 0 0
\(647\) 12.9229 0.508050 0.254025 0.967198i \(-0.418245\pi\)
0.254025 + 0.967198i \(0.418245\pi\)
\(648\) 0 0
\(649\) −1.67225 −0.0656416
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.0803 0.864068 0.432034 0.901857i \(-0.357796\pi\)
0.432034 + 0.901857i \(0.357796\pi\)
\(654\) 0 0
\(655\) −5.17087 −0.202042
\(656\) 0 0
\(657\) 0.621655 0.0242531
\(658\) 0 0
\(659\) 9.29365 0.362029 0.181015 0.983480i \(-0.442062\pi\)
0.181015 + 0.983480i \(0.442062\pi\)
\(660\) 0 0
\(661\) −9.74697 −0.379113 −0.189557 0.981870i \(-0.560705\pi\)
−0.189557 + 0.981870i \(0.560705\pi\)
\(662\) 0 0
\(663\) 27.1881 1.05590
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 24.9842 0.967390
\(668\) 0 0
\(669\) −12.3955 −0.479237
\(670\) 0 0
\(671\) −1.80139 −0.0695420
\(672\) 0 0
\(673\) −25.3321 −0.976481 −0.488241 0.872709i \(-0.662361\pi\)
−0.488241 + 0.872709i \(0.662361\pi\)
\(674\) 0 0
\(675\) −20.9729 −0.807248
\(676\) 0 0
\(677\) −2.32926 −0.0895206 −0.0447603 0.998998i \(-0.514252\pi\)
−0.0447603 + 0.998998i \(0.514252\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.27478 0.0488496
\(682\) 0 0
\(683\) 29.1505 1.11541 0.557706 0.830039i \(-0.311682\pi\)
0.557706 + 0.830039i \(0.311682\pi\)
\(684\) 0 0
\(685\) −2.06272 −0.0788123
\(686\) 0 0
\(687\) −12.2160 −0.466068
\(688\) 0 0
\(689\) 52.7238 2.00862
\(690\) 0 0
\(691\) −42.6192 −1.62131 −0.810656 0.585523i \(-0.800889\pi\)
−0.810656 + 0.585523i \(0.800889\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −16.7180 −0.634151
\(696\) 0 0
\(697\) −2.50256 −0.0947912
\(698\) 0 0
\(699\) 1.17341 0.0443824
\(700\) 0 0
\(701\) −45.6821 −1.72539 −0.862695 0.505725i \(-0.831225\pi\)
−0.862695 + 0.505725i \(0.831225\pi\)
\(702\) 0 0
\(703\) 5.66670 0.213724
\(704\) 0 0
\(705\) 7.20639 0.271408
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −30.8071 −1.15699 −0.578493 0.815687i \(-0.696359\pi\)
−0.578493 + 0.815687i \(0.696359\pi\)
\(710\) 0 0
\(711\) 35.0070 1.31286
\(712\) 0 0
\(713\) −2.39228 −0.0895916
\(714\) 0 0
\(715\) −0.501480 −0.0187543
\(716\) 0 0
\(717\) 10.7879 0.402883
\(718\) 0 0
\(719\) 3.87006 0.144329 0.0721645 0.997393i \(-0.477009\pi\)
0.0721645 + 0.997393i \(0.477009\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −6.76065 −0.251431
\(724\) 0 0
\(725\) −44.5772 −1.65556
\(726\) 0 0
\(727\) 9.25902 0.343398 0.171699 0.985149i \(-0.445074\pi\)
0.171699 + 0.985149i \(0.445074\pi\)
\(728\) 0 0
\(729\) 8.73722 0.323601
\(730\) 0 0
\(731\) 8.93972 0.330648
\(732\) 0 0
\(733\) 38.4175 1.41898 0.709491 0.704714i \(-0.248925\pi\)
0.709491 + 0.704714i \(0.248925\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.20177 −0.0442677
\(738\) 0 0
\(739\) 19.5447 0.718965 0.359482 0.933152i \(-0.382953\pi\)
0.359482 + 0.933152i \(0.382953\pi\)
\(740\) 0 0
\(741\) 5.07693 0.186506
\(742\) 0 0
\(743\) 24.1543 0.886136 0.443068 0.896488i \(-0.353890\pi\)
0.443068 + 0.896488i \(0.353890\pi\)
\(744\) 0 0
\(745\) 9.51510 0.348606
\(746\) 0 0
\(747\) −18.6239 −0.681414
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −13.3795 −0.488223 −0.244112 0.969747i \(-0.578496\pi\)
−0.244112 + 0.969747i \(0.578496\pi\)
\(752\) 0 0
\(753\) 27.8689 1.01560
\(754\) 0 0
\(755\) −12.2263 −0.444962
\(756\) 0 0
\(757\) −16.3578 −0.594535 −0.297267 0.954794i \(-0.596075\pi\)
−0.297267 + 0.954794i \(0.596075\pi\)
\(758\) 0 0
\(759\) −0.271883 −0.00986874
\(760\) 0 0
\(761\) 2.49687 0.0905116 0.0452558 0.998975i \(-0.485590\pi\)
0.0452558 + 0.998975i \(0.485590\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −8.80788 −0.318449
\(766\) 0 0
\(767\) 77.2460 2.78919
\(768\) 0 0
\(769\) −7.39362 −0.266621 −0.133310 0.991074i \(-0.542561\pi\)
−0.133310 + 0.991074i \(0.542561\pi\)
\(770\) 0 0
\(771\) −17.7311 −0.638570
\(772\) 0 0
\(773\) 28.4954 1.02491 0.512455 0.858714i \(-0.328736\pi\)
0.512455 + 0.858714i \(0.328736\pi\)
\(774\) 0 0
\(775\) 4.26836 0.153324
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.467311 −0.0167432
\(780\) 0 0
\(781\) 1.74454 0.0624245
\(782\) 0 0
\(783\) 47.9914 1.71507
\(784\) 0 0
\(785\) −13.0688 −0.466446
\(786\) 0 0
\(787\) 25.0290 0.892186 0.446093 0.894987i \(-0.352815\pi\)
0.446093 + 0.894987i \(0.352815\pi\)
\(788\) 0 0
\(789\) −3.45855 −0.123128
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 83.2114 2.95493
\(794\) 0 0
\(795\) 6.77467 0.240273
\(796\) 0 0
\(797\) 34.3723 1.21753 0.608764 0.793352i \(-0.291666\pi\)
0.608764 + 0.793352i \(0.291666\pi\)
\(798\) 0 0
\(799\) −54.6043 −1.93176
\(800\) 0 0
\(801\) −3.54039 −0.125094
\(802\) 0 0
\(803\) −0.0344606 −0.00121609
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 7.05464 0.248335
\(808\) 0 0
\(809\) 25.4630 0.895233 0.447616 0.894226i \(-0.352273\pi\)
0.447616 + 0.894226i \(0.352273\pi\)
\(810\) 0 0
\(811\) 17.1159 0.601021 0.300511 0.953778i \(-0.402843\pi\)
0.300511 + 0.953778i \(0.402843\pi\)
\(812\) 0 0
\(813\) 11.8246 0.414708
\(814\) 0 0
\(815\) −14.4447 −0.505974
\(816\) 0 0
\(817\) 1.66934 0.0584030
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.4155 0.991709 0.495854 0.868406i \(-0.334855\pi\)
0.495854 + 0.868406i \(0.334855\pi\)
\(822\) 0 0
\(823\) 50.8663 1.77309 0.886544 0.462644i \(-0.153099\pi\)
0.886544 + 0.462644i \(0.153099\pi\)
\(824\) 0 0
\(825\) 0.485100 0.0168890
\(826\) 0 0
\(827\) −26.0730 −0.906647 −0.453323 0.891346i \(-0.649762\pi\)
−0.453323 + 0.891346i \(0.649762\pi\)
\(828\) 0 0
\(829\) −9.68048 −0.336217 −0.168108 0.985769i \(-0.553766\pi\)
−0.168108 + 0.985769i \(0.553766\pi\)
\(830\) 0 0
\(831\) −15.4877 −0.537263
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −9.72503 −0.336548
\(836\) 0 0
\(837\) −4.59527 −0.158836
\(838\) 0 0
\(839\) −26.6744 −0.920902 −0.460451 0.887685i \(-0.652312\pi\)
−0.460451 + 0.887685i \(0.652312\pi\)
\(840\) 0 0
\(841\) 73.0041 2.51738
\(842\) 0 0
\(843\) 23.9009 0.823189
\(844\) 0 0
\(845\) 13.2108 0.454465
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 23.1163 0.793349
\(850\) 0 0
\(851\) 14.0180 0.480531
\(852\) 0 0
\(853\) −21.1426 −0.723908 −0.361954 0.932196i \(-0.617890\pi\)
−0.361954 + 0.932196i \(0.617890\pi\)
\(854\) 0 0
\(855\) −1.64472 −0.0562484
\(856\) 0 0
\(857\) 17.3680 0.593280 0.296640 0.954989i \(-0.404134\pi\)
0.296640 + 0.954989i \(0.404134\pi\)
\(858\) 0 0
\(859\) 27.5373 0.939561 0.469781 0.882783i \(-0.344333\pi\)
0.469781 + 0.882783i \(0.344333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 47.8743 1.62966 0.814830 0.579700i \(-0.196830\pi\)
0.814830 + 0.579700i \(0.196830\pi\)
\(864\) 0 0
\(865\) −13.9435 −0.474092
\(866\) 0 0
\(867\) −10.7795 −0.366093
\(868\) 0 0
\(869\) −1.94056 −0.0658291
\(870\) 0 0
\(871\) 55.5131 1.88099
\(872\) 0 0
\(873\) 11.0880 0.375273
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −32.3823 −1.09347 −0.546736 0.837305i \(-0.684130\pi\)
−0.546736 + 0.837305i \(0.684130\pi\)
\(878\) 0 0
\(879\) 2.71133 0.0914508
\(880\) 0 0
\(881\) −19.7003 −0.663720 −0.331860 0.943329i \(-0.607676\pi\)
−0.331860 + 0.943329i \(0.607676\pi\)
\(882\) 0 0
\(883\) 6.65506 0.223960 0.111980 0.993710i \(-0.464281\pi\)
0.111980 + 0.993710i \(0.464281\pi\)
\(884\) 0 0
\(885\) 9.92562 0.333646
\(886\) 0 0
\(887\) −23.9760 −0.805035 −0.402518 0.915412i \(-0.631865\pi\)
−0.402518 + 0.915412i \(0.631865\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0.245060 0.00820982
\(892\) 0 0
\(893\) −10.1965 −0.341211
\(894\) 0 0
\(895\) 15.0515 0.503117
\(896\) 0 0
\(897\) 12.5591 0.419335
\(898\) 0 0
\(899\) −9.76709 −0.325751
\(900\) 0 0
\(901\) −51.3332 −1.71016
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 14.8997 0.495284
\(906\) 0 0
\(907\) 47.5318 1.57827 0.789133 0.614222i \(-0.210530\pi\)
0.789133 + 0.614222i \(0.210530\pi\)
\(908\) 0 0
\(909\) 8.86850 0.294150
\(910\) 0 0
\(911\) −3.12922 −0.103676 −0.0518379 0.998656i \(-0.516508\pi\)
−0.0518379 + 0.998656i \(0.516508\pi\)
\(912\) 0 0
\(913\) 1.03239 0.0341672
\(914\) 0 0
\(915\) 10.6921 0.353471
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.84381 0.0608217 0.0304109 0.999537i \(-0.490318\pi\)
0.0304109 + 0.999537i \(0.490318\pi\)
\(920\) 0 0
\(921\) −7.26276 −0.239316
\(922\) 0 0
\(923\) −80.5852 −2.65249
\(924\) 0 0
\(925\) −25.0112 −0.822363
\(926\) 0 0
\(927\) 2.05449 0.0674784
\(928\) 0 0
\(929\) −39.6561 −1.30107 −0.650537 0.759474i \(-0.725456\pi\)
−0.650537 + 0.759474i \(0.725456\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −9.28511 −0.303981
\(934\) 0 0
\(935\) 0.488253 0.0159676
\(936\) 0 0
\(937\) 37.7052 1.23178 0.615888 0.787834i \(-0.288797\pi\)
0.615888 + 0.787834i \(0.288797\pi\)
\(938\) 0 0
\(939\) −21.0313 −0.686329
\(940\) 0 0
\(941\) −32.6930 −1.06576 −0.532881 0.846190i \(-0.678891\pi\)
−0.532881 + 0.846190i \(0.678891\pi\)
\(942\) 0 0
\(943\) −1.15601 −0.0376449
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −32.6213 −1.06005 −0.530024 0.847982i \(-0.677817\pi\)
−0.530024 + 0.847982i \(0.677817\pi\)
\(948\) 0 0
\(949\) 1.59183 0.0516731
\(950\) 0 0
\(951\) −3.92652 −0.127326
\(952\) 0 0
\(953\) −29.4299 −0.953329 −0.476665 0.879085i \(-0.658154\pi\)
−0.476665 + 0.879085i \(0.658154\pi\)
\(954\) 0 0
\(955\) −8.58235 −0.277718
\(956\) 0 0
\(957\) −1.11003 −0.0358822
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −30.0648 −0.969832
\(962\) 0 0
\(963\) −25.5818 −0.824363
\(964\) 0 0
\(965\) −11.1202 −0.357972
\(966\) 0 0
\(967\) 46.8694 1.50722 0.753610 0.657322i \(-0.228311\pi\)
0.753610 + 0.657322i \(0.228311\pi\)
\(968\) 0 0
\(969\) −4.94302 −0.158793
\(970\) 0 0
\(971\) −20.4120 −0.655052 −0.327526 0.944842i \(-0.606215\pi\)
−0.327526 + 0.944842i \(0.606215\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −22.4081 −0.717634
\(976\) 0 0
\(977\) −28.7020 −0.918258 −0.459129 0.888370i \(-0.651838\pi\)
−0.459129 + 0.888370i \(0.651838\pi\)
\(978\) 0 0
\(979\) 0.196257 0.00627240
\(980\) 0 0
\(981\) −25.7730 −0.822868
\(982\) 0 0
\(983\) 8.79170 0.280412 0.140206 0.990122i \(-0.455224\pi\)
0.140206 + 0.990122i \(0.455224\pi\)
\(984\) 0 0
\(985\) 19.4408 0.619436
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.12954 0.131312
\(990\) 0 0
\(991\) −9.59881 −0.304916 −0.152458 0.988310i \(-0.548719\pi\)
−0.152458 + 0.988310i \(0.548719\pi\)
\(992\) 0 0
\(993\) 17.4179 0.552741
\(994\) 0 0
\(995\) −11.3807 −0.360792
\(996\) 0 0
\(997\) 13.9770 0.442656 0.221328 0.975199i \(-0.428961\pi\)
0.221328 + 0.975199i \(0.428961\pi\)
\(998\) 0 0
\(999\) 26.9268 0.851926
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3724.2.a.o.1.4 8
7.6 odd 2 3724.2.a.p.1.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3724.2.a.o.1.4 8 1.1 even 1 trivial
3724.2.a.p.1.5 yes 8 7.6 odd 2