Properties

Label 3750.2.a.f.1.2
Level 37503750
Weight 22
Character 3750.1
Self dual yes
Analytic conductor 29.94429.944
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3750,2,Mod(1,3750)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3750, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3750.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3750=2354 3750 = 2 \cdot 3 \cdot 5^{4}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3750.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 29.943900758029.9439007580
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ10)+\Q(\zeta_{10})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 150)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 1.618031.61803 of defining polynomial
Character χ\chi == 3750.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000q21.00000q3+1.00000q41.00000q6+2.61803q7+1.00000q8+1.00000q9+3.61803q111.00000q126.47214q13+2.61803q14+1.00000q16+1.23607q17+1.00000q185.70820q192.61803q21+3.61803q22+4.47214q231.00000q246.47214q261.00000q27+2.61803q28+8.47214q29+6.61803q31+1.00000q323.61803q33+1.23607q34+1.00000q36+8.00000q375.70820q38+6.47214q39+5.70820q412.61803q427.70820q43+3.61803q44+4.47214q46+1.70820q471.00000q480.145898q491.23607q516.47214q522.09017q531.00000q54+2.61803q56+5.70820q57+8.47214q583.61803q59+2.76393q61+6.61803q62+2.61803q63+1.00000q643.61803q661.52786q67+1.23607q684.47214q69+5.52786q71+1.00000q72+3.52786q73+8.00000q745.70820q76+9.47214q77+6.47214q785.61803q79+1.00000q81+5.70820q82+2.14590q832.61803q847.70820q868.47214q87+3.61803q88+3.52786q8916.9443q91+4.47214q926.61803q93+1.70820q941.00000q963.38197q970.145898q98+3.61803q99+O(q100)q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} +2.61803 q^{7} +1.00000 q^{8} +1.00000 q^{9} +3.61803 q^{11} -1.00000 q^{12} -6.47214 q^{13} +2.61803 q^{14} +1.00000 q^{16} +1.23607 q^{17} +1.00000 q^{18} -5.70820 q^{19} -2.61803 q^{21} +3.61803 q^{22} +4.47214 q^{23} -1.00000 q^{24} -6.47214 q^{26} -1.00000 q^{27} +2.61803 q^{28} +8.47214 q^{29} +6.61803 q^{31} +1.00000 q^{32} -3.61803 q^{33} +1.23607 q^{34} +1.00000 q^{36} +8.00000 q^{37} -5.70820 q^{38} +6.47214 q^{39} +5.70820 q^{41} -2.61803 q^{42} -7.70820 q^{43} +3.61803 q^{44} +4.47214 q^{46} +1.70820 q^{47} -1.00000 q^{48} -0.145898 q^{49} -1.23607 q^{51} -6.47214 q^{52} -2.09017 q^{53} -1.00000 q^{54} +2.61803 q^{56} +5.70820 q^{57} +8.47214 q^{58} -3.61803 q^{59} +2.76393 q^{61} +6.61803 q^{62} +2.61803 q^{63} +1.00000 q^{64} -3.61803 q^{66} -1.52786 q^{67} +1.23607 q^{68} -4.47214 q^{69} +5.52786 q^{71} +1.00000 q^{72} +3.52786 q^{73} +8.00000 q^{74} -5.70820 q^{76} +9.47214 q^{77} +6.47214 q^{78} -5.61803 q^{79} +1.00000 q^{81} +5.70820 q^{82} +2.14590 q^{83} -2.61803 q^{84} -7.70820 q^{86} -8.47214 q^{87} +3.61803 q^{88} +3.52786 q^{89} -16.9443 q^{91} +4.47214 q^{92} -6.61803 q^{93} +1.70820 q^{94} -1.00000 q^{96} -3.38197 q^{97} -0.145898 q^{98} +3.61803 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q22q3+2q42q6+3q7+2q8+2q9+5q112q124q13+3q14+2q162q17+2q18+2q193q21+5q222q244q26++5q99+O(q100) 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{6} + 3 q^{7} + 2 q^{8} + 2 q^{9} + 5 q^{11} - 2 q^{12} - 4 q^{13} + 3 q^{14} + 2 q^{16} - 2 q^{17} + 2 q^{18} + 2 q^{19} - 3 q^{21} + 5 q^{22} - 2 q^{24} - 4 q^{26}+ \cdots + 5 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000 0.707107
33 −1.00000 −0.577350
44 1.00000 0.500000
55 0 0
66 −1.00000 −0.408248
77 2.61803 0.989524 0.494762 0.869029i 0.335255π-0.335255\pi
0.494762 + 0.869029i 0.335255π0.335255\pi
88 1.00000 0.353553
99 1.00000 0.333333
1010 0 0
1111 3.61803 1.09088 0.545439 0.838150i 0.316363π-0.316363\pi
0.545439 + 0.838150i 0.316363π0.316363\pi
1212 −1.00000 −0.288675
1313 −6.47214 −1.79505 −0.897524 0.440966i 0.854636π-0.854636\pi
−0.897524 + 0.440966i 0.854636π0.854636\pi
1414 2.61803 0.699699
1515 0 0
1616 1.00000 0.250000
1717 1.23607 0.299791 0.149895 0.988702i 0.452106π-0.452106\pi
0.149895 + 0.988702i 0.452106π0.452106\pi
1818 1.00000 0.235702
1919 −5.70820 −1.30955 −0.654776 0.755823i 0.727237π-0.727237\pi
−0.654776 + 0.755823i 0.727237π0.727237\pi
2020 0 0
2121 −2.61803 −0.571302
2222 3.61803 0.771367
2323 4.47214 0.932505 0.466252 0.884652i 0.345604π-0.345604\pi
0.466252 + 0.884652i 0.345604π0.345604\pi
2424 −1.00000 −0.204124
2525 0 0
2626 −6.47214 −1.26929
2727 −1.00000 −0.192450
2828 2.61803 0.494762
2929 8.47214 1.57324 0.786618 0.617440i 0.211830π-0.211830\pi
0.786618 + 0.617440i 0.211830π0.211830\pi
3030 0 0
3131 6.61803 1.18863 0.594317 0.804231i 0.297422π-0.297422\pi
0.594317 + 0.804231i 0.297422π0.297422\pi
3232 1.00000 0.176777
3333 −3.61803 −0.629819
3434 1.23607 0.211984
3535 0 0
3636 1.00000 0.166667
3737 8.00000 1.31519 0.657596 0.753371i 0.271573π-0.271573\pi
0.657596 + 0.753371i 0.271573π0.271573\pi
3838 −5.70820 −0.925993
3939 6.47214 1.03637
4040 0 0
4141 5.70820 0.891472 0.445736 0.895165i 0.352942π-0.352942\pi
0.445736 + 0.895165i 0.352942π0.352942\pi
4242 −2.61803 −0.403971
4343 −7.70820 −1.17549 −0.587745 0.809046i 0.699984π-0.699984\pi
−0.587745 + 0.809046i 0.699984π0.699984\pi
4444 3.61803 0.545439
4545 0 0
4646 4.47214 0.659380
4747 1.70820 0.249167 0.124584 0.992209i 0.460241π-0.460241\pi
0.124584 + 0.992209i 0.460241π0.460241\pi
4848 −1.00000 −0.144338
4949 −0.145898 −0.0208426
5050 0 0
5151 −1.23607 −0.173084
5252 −6.47214 −0.897524
5353 −2.09017 −0.287107 −0.143553 0.989643i 0.545853π-0.545853\pi
−0.143553 + 0.989643i 0.545853π0.545853\pi
5454 −1.00000 −0.136083
5555 0 0
5656 2.61803 0.349850
5757 5.70820 0.756070
5858 8.47214 1.11245
5959 −3.61803 −0.471028 −0.235514 0.971871i 0.575677π-0.575677\pi
−0.235514 + 0.971871i 0.575677π0.575677\pi
6060 0 0
6161 2.76393 0.353885 0.176943 0.984221i 0.443379π-0.443379\pi
0.176943 + 0.984221i 0.443379π0.443379\pi
6262 6.61803 0.840491
6363 2.61803 0.329841
6464 1.00000 0.125000
6565 0 0
6666 −3.61803 −0.445349
6767 −1.52786 −0.186658 −0.0933292 0.995635i 0.529751π-0.529751\pi
−0.0933292 + 0.995635i 0.529751π0.529751\pi
6868 1.23607 0.149895
6969 −4.47214 −0.538382
7070 0 0
7171 5.52786 0.656037 0.328018 0.944671i 0.393619π-0.393619\pi
0.328018 + 0.944671i 0.393619π0.393619\pi
7272 1.00000 0.117851
7373 3.52786 0.412905 0.206453 0.978457i 0.433808π-0.433808\pi
0.206453 + 0.978457i 0.433808π0.433808\pi
7474 8.00000 0.929981
7575 0 0
7676 −5.70820 −0.654776
7777 9.47214 1.07945
7878 6.47214 0.732825
7979 −5.61803 −0.632078 −0.316039 0.948746i 0.602353π-0.602353\pi
−0.316039 + 0.948746i 0.602353π0.602353\pi
8080 0 0
8181 1.00000 0.111111
8282 5.70820 0.630366
8383 2.14590 0.235543 0.117771 0.993041i 0.462425π-0.462425\pi
0.117771 + 0.993041i 0.462425π0.462425\pi
8484 −2.61803 −0.285651
8585 0 0
8686 −7.70820 −0.831197
8787 −8.47214 −0.908308
8888 3.61803 0.385684
8989 3.52786 0.373953 0.186976 0.982364i 0.440131π-0.440131\pi
0.186976 + 0.982364i 0.440131π0.440131\pi
9090 0 0
9191 −16.9443 −1.77624
9292 4.47214 0.466252
9393 −6.61803 −0.686258
9494 1.70820 0.176188
9595 0 0
9696 −1.00000 −0.102062
9797 −3.38197 −0.343387 −0.171693 0.985150i 0.554924π-0.554924\pi
−0.171693 + 0.985150i 0.554924π0.554924\pi
9898 −0.145898 −0.0147379
9999 3.61803 0.363626
100100 0 0
101101 4.38197 0.436022 0.218011 0.975946i 0.430043π-0.430043\pi
0.218011 + 0.975946i 0.430043π0.430043\pi
102102 −1.23607 −0.122389
103103 14.3262 1.41161 0.705803 0.708408i 0.250586π-0.250586\pi
0.705803 + 0.708408i 0.250586π0.250586\pi
104104 −6.47214 −0.634645
105105 0 0
106106 −2.09017 −0.203015
107107 −11.6180 −1.12316 −0.561579 0.827423i 0.689806π-0.689806\pi
−0.561579 + 0.827423i 0.689806π0.689806\pi
108108 −1.00000 −0.0962250
109109 17.2361 1.65092 0.825458 0.564464i 0.190917π-0.190917\pi
0.825458 + 0.564464i 0.190917π0.190917\pi
110110 0 0
111111 −8.00000 −0.759326
112112 2.61803 0.247381
113113 −19.2361 −1.80958 −0.904789 0.425861i 0.859971π-0.859971\pi
−0.904789 + 0.425861i 0.859971π0.859971\pi
114114 5.70820 0.534622
115115 0 0
116116 8.47214 0.786618
117117 −6.47214 −0.598349
118118 −3.61803 −0.333067
119119 3.23607 0.296650
120120 0 0
121121 2.09017 0.190015
122122 2.76393 0.250235
123123 −5.70820 −0.514691
124124 6.61803 0.594317
125125 0 0
126126 2.61803 0.233233
127127 13.6180 1.20841 0.604203 0.796831i 0.293492π-0.293492\pi
0.604203 + 0.796831i 0.293492π0.293492\pi
128128 1.00000 0.0883883
129129 7.70820 0.678670
130130 0 0
131131 −17.8885 −1.56293 −0.781465 0.623949i 0.785527π-0.785527\pi
−0.781465 + 0.623949i 0.785527π0.785527\pi
132132 −3.61803 −0.314909
133133 −14.9443 −1.29583
134134 −1.52786 −0.131987
135135 0 0
136136 1.23607 0.105992
137137 −12.1803 −1.04064 −0.520318 0.853972i 0.674187π-0.674187\pi
−0.520318 + 0.853972i 0.674187π0.674187\pi
138138 −4.47214 −0.380693
139139 10.4721 0.888235 0.444117 0.895969i 0.353517π-0.353517\pi
0.444117 + 0.895969i 0.353517π0.353517\pi
140140 0 0
141141 −1.70820 −0.143857
142142 5.52786 0.463888
143143 −23.4164 −1.95818
144144 1.00000 0.0833333
145145 0 0
146146 3.52786 0.291968
147147 0.145898 0.0120335
148148 8.00000 0.657596
149149 22.0902 1.80970 0.904849 0.425733i 0.139984π-0.139984\pi
0.904849 + 0.425733i 0.139984π0.139984\pi
150150 0 0
151151 18.3262 1.49137 0.745684 0.666300i 0.232123π-0.232123\pi
0.745684 + 0.666300i 0.232123π0.232123\pi
152152 −5.70820 −0.462996
153153 1.23607 0.0999302
154154 9.47214 0.763286
155155 0 0
156156 6.47214 0.518186
157157 8.65248 0.690543 0.345271 0.938503i 0.387787π-0.387787\pi
0.345271 + 0.938503i 0.387787π0.387787\pi
158158 −5.61803 −0.446947
159159 2.09017 0.165761
160160 0 0
161161 11.7082 0.922736
162162 1.00000 0.0785674
163163 −0.472136 −0.0369805 −0.0184903 0.999829i 0.505886π-0.505886\pi
−0.0184903 + 0.999829i 0.505886π0.505886\pi
164164 5.70820 0.445736
165165 0 0
166166 2.14590 0.166554
167167 11.7082 0.906008 0.453004 0.891508i 0.350352π-0.350352\pi
0.453004 + 0.891508i 0.350352π0.350352\pi
168168 −2.61803 −0.201986
169169 28.8885 2.22220
170170 0 0
171171 −5.70820 −0.436517
172172 −7.70820 −0.587745
173173 5.09017 0.386998 0.193499 0.981100i 0.438016π-0.438016\pi
0.193499 + 0.981100i 0.438016π0.438016\pi
174174 −8.47214 −0.642271
175175 0 0
176176 3.61803 0.272720
177177 3.61803 0.271948
178178 3.52786 0.264425
179179 9.85410 0.736530 0.368265 0.929721i 0.379952π-0.379952\pi
0.368265 + 0.929721i 0.379952π0.379952\pi
180180 0 0
181181 −6.65248 −0.494475 −0.247237 0.968955i 0.579523π-0.579523\pi
−0.247237 + 0.968955i 0.579523π0.579523\pi
182182 −16.9443 −1.25599
183183 −2.76393 −0.204316
184184 4.47214 0.329690
185185 0 0
186186 −6.61803 −0.485258
187187 4.47214 0.327035
188188 1.70820 0.124584
189189 −2.61803 −0.190434
190190 0 0
191191 4.29180 0.310543 0.155272 0.987872i 0.450375π-0.450375\pi
0.155272 + 0.987872i 0.450375π0.450375\pi
192192 −1.00000 −0.0721688
193193 17.8541 1.28517 0.642583 0.766216i 0.277863π-0.277863\pi
0.642583 + 0.766216i 0.277863π0.277863\pi
194194 −3.38197 −0.242811
195195 0 0
196196 −0.145898 −0.0104213
197197 −17.0902 −1.21762 −0.608812 0.793314i 0.708354π-0.708354\pi
−0.608812 + 0.793314i 0.708354π0.708354\pi
198198 3.61803 0.257122
199199 19.5066 1.38278 0.691392 0.722480i 0.256998π-0.256998\pi
0.691392 + 0.722480i 0.256998π0.256998\pi
200200 0 0
201201 1.52786 0.107767
202202 4.38197 0.308314
203203 22.1803 1.55675
204204 −1.23607 −0.0865421
205205 0 0
206206 14.3262 0.998156
207207 4.47214 0.310835
208208 −6.47214 −0.448762
209209 −20.6525 −1.42856
210210 0 0
211211 −3.41641 −0.235195 −0.117598 0.993061i 0.537519π-0.537519\pi
−0.117598 + 0.993061i 0.537519π0.537519\pi
212212 −2.09017 −0.143553
213213 −5.52786 −0.378763
214214 −11.6180 −0.794192
215215 0 0
216216 −1.00000 −0.0680414
217217 17.3262 1.17618
218218 17.2361 1.16737
219219 −3.52786 −0.238391
220220 0 0
221221 −8.00000 −0.538138
222222 −8.00000 −0.536925
223223 −8.09017 −0.541758 −0.270879 0.962613i 0.587314π-0.587314\pi
−0.270879 + 0.962613i 0.587314π0.587314\pi
224224 2.61803 0.174925
225225 0 0
226226 −19.2361 −1.27956
227227 −22.2705 −1.47815 −0.739073 0.673626i 0.764736π-0.764736\pi
−0.739073 + 0.673626i 0.764736π0.764736\pi
228228 5.70820 0.378035
229229 −5.52786 −0.365292 −0.182646 0.983179i 0.558466π-0.558466\pi
−0.182646 + 0.983179i 0.558466π0.558466\pi
230230 0 0
231231 −9.47214 −0.623221
232232 8.47214 0.556223
233233 18.6525 1.22196 0.610982 0.791644i 0.290775π-0.290775\pi
0.610982 + 0.791644i 0.290775π0.290775\pi
234234 −6.47214 −0.423097
235235 0 0
236236 −3.61803 −0.235514
237237 5.61803 0.364931
238238 3.23607 0.209763
239239 12.2918 0.795090 0.397545 0.917583i 0.369862π-0.369862\pi
0.397545 + 0.917583i 0.369862π0.369862\pi
240240 0 0
241241 9.56231 0.615962 0.307981 0.951392i 0.400347π-0.400347\pi
0.307981 + 0.951392i 0.400347π0.400347\pi
242242 2.09017 0.134361
243243 −1.00000 −0.0641500
244244 2.76393 0.176943
245245 0 0
246246 −5.70820 −0.363942
247247 36.9443 2.35071
248248 6.61803 0.420246
249249 −2.14590 −0.135991
250250 0 0
251251 13.5623 0.856045 0.428023 0.903768i 0.359210π-0.359210\pi
0.428023 + 0.903768i 0.359210π0.359210\pi
252252 2.61803 0.164921
253253 16.1803 1.01725
254254 13.6180 0.854471
255255 0 0
256256 1.00000 0.0625000
257257 −22.0000 −1.37232 −0.686161 0.727450i 0.740706π-0.740706\pi
−0.686161 + 0.727450i 0.740706π0.740706\pi
258258 7.70820 0.479892
259259 20.9443 1.30141
260260 0 0
261261 8.47214 0.524412
262262 −17.8885 −1.10516
263263 −11.7082 −0.721959 −0.360979 0.932574i 0.617558π-0.617558\pi
−0.360979 + 0.932574i 0.617558π0.617558\pi
264264 −3.61803 −0.222675
265265 0 0
266266 −14.9443 −0.916292
267267 −3.52786 −0.215902
268268 −1.52786 −0.0933292
269269 −9.09017 −0.554237 −0.277119 0.960836i 0.589380π-0.589380\pi
−0.277119 + 0.960836i 0.589380π0.589380\pi
270270 0 0
271271 −18.0344 −1.09551 −0.547757 0.836637i 0.684518π-0.684518\pi
−0.547757 + 0.836637i 0.684518π0.684518\pi
272272 1.23607 0.0749476
273273 16.9443 1.02551
274274 −12.1803 −0.735841
275275 0 0
276276 −4.47214 −0.269191
277277 16.9443 1.01808 0.509041 0.860742i 0.330000π-0.330000\pi
0.509041 + 0.860742i 0.330000π0.330000\pi
278278 10.4721 0.628077
279279 6.61803 0.396211
280280 0 0
281281 5.88854 0.351281 0.175641 0.984454i 0.443800π-0.443800\pi
0.175641 + 0.984454i 0.443800π0.443800\pi
282282 −1.70820 −0.101722
283283 4.58359 0.272466 0.136233 0.990677i 0.456500π-0.456500\pi
0.136233 + 0.990677i 0.456500π0.456500\pi
284284 5.52786 0.328018
285285 0 0
286286 −23.4164 −1.38464
287287 14.9443 0.882132
288288 1.00000 0.0589256
289289 −15.4721 −0.910126
290290 0 0
291291 3.38197 0.198254
292292 3.52786 0.206453
293293 −22.0902 −1.29052 −0.645261 0.763962i 0.723251π-0.723251\pi
−0.645261 + 0.763962i 0.723251π0.723251\pi
294294 0.145898 0.00850895
295295 0 0
296296 8.00000 0.464991
297297 −3.61803 −0.209940
298298 22.0902 1.27965
299299 −28.9443 −1.67389
300300 0 0
301301 −20.1803 −1.16318
302302 18.3262 1.05456
303303 −4.38197 −0.251737
304304 −5.70820 −0.327388
305305 0 0
306306 1.23607 0.0706613
307307 10.0000 0.570730 0.285365 0.958419i 0.407885π-0.407885\pi
0.285365 + 0.958419i 0.407885π0.407885\pi
308308 9.47214 0.539725
309309 −14.3262 −0.814991
310310 0 0
311311 −1.05573 −0.0598648 −0.0299324 0.999552i 0.509529π-0.509529\pi
−0.0299324 + 0.999552i 0.509529π0.509529\pi
312312 6.47214 0.366413
313313 −16.2705 −0.919664 −0.459832 0.888006i 0.652090π-0.652090\pi
−0.459832 + 0.888006i 0.652090π0.652090\pi
314314 8.65248 0.488287
315315 0 0
316316 −5.61803 −0.316039
317317 −20.5623 −1.15489 −0.577447 0.816428i 0.695951π-0.695951\pi
−0.577447 + 0.816428i 0.695951π0.695951\pi
318318 2.09017 0.117211
319319 30.6525 1.71621
320320 0 0
321321 11.6180 0.648455
322322 11.7082 0.652473
323323 −7.05573 −0.392591
324324 1.00000 0.0555556
325325 0 0
326326 −0.472136 −0.0261492
327327 −17.2361 −0.953157
328328 5.70820 0.315183
329329 4.47214 0.246557
330330 0 0
331331 −18.0000 −0.989369 −0.494685 0.869072i 0.664716π-0.664716\pi
−0.494685 + 0.869072i 0.664716π0.664716\pi
332332 2.14590 0.117771
333333 8.00000 0.438397
334334 11.7082 0.640644
335335 0 0
336336 −2.61803 −0.142825
337337 0.909830 0.0495616 0.0247808 0.999693i 0.492111π-0.492111\pi
0.0247808 + 0.999693i 0.492111π0.492111\pi
338338 28.8885 1.57133
339339 19.2361 1.04476
340340 0 0
341341 23.9443 1.29666
342342 −5.70820 −0.308664
343343 −18.7082 −1.01015
344344 −7.70820 −0.415599
345345 0 0
346346 5.09017 0.273649
347347 20.5623 1.10384 0.551921 0.833896i 0.313895π-0.313895\pi
0.551921 + 0.833896i 0.313895π0.313895\pi
348348 −8.47214 −0.454154
349349 −27.8885 −1.49284 −0.746420 0.665475i 0.768229π-0.768229\pi
−0.746420 + 0.665475i 0.768229π0.768229\pi
350350 0 0
351351 6.47214 0.345457
352352 3.61803 0.192842
353353 −13.2361 −0.704485 −0.352242 0.935909i 0.614581π-0.614581\pi
−0.352242 + 0.935909i 0.614581π0.614581\pi
354354 3.61803 0.192296
355355 0 0
356356 3.52786 0.186976
357357 −3.23607 −0.171271
358358 9.85410 0.520805
359359 22.1803 1.17063 0.585317 0.810805i 0.300970π-0.300970\pi
0.585317 + 0.810805i 0.300970π0.300970\pi
360360 0 0
361361 13.5836 0.714926
362362 −6.65248 −0.349646
363363 −2.09017 −0.109705
364364 −16.9443 −0.888121
365365 0 0
366366 −2.76393 −0.144473
367367 −30.6180 −1.59825 −0.799124 0.601166i 0.794703π-0.794703\pi
−0.799124 + 0.601166i 0.794703π0.794703\pi
368368 4.47214 0.233126
369369 5.70820 0.297157
370370 0 0
371371 −5.47214 −0.284099
372372 −6.61803 −0.343129
373373 −11.5279 −0.596890 −0.298445 0.954427i 0.596468π-0.596468\pi
−0.298445 + 0.954427i 0.596468π0.596468\pi
374374 4.47214 0.231249
375375 0 0
376376 1.70820 0.0880939
377377 −54.8328 −2.82403
378378 −2.61803 −0.134657
379379 −20.1803 −1.03659 −0.518297 0.855201i 0.673434π-0.673434\pi
−0.518297 + 0.855201i 0.673434π0.673434\pi
380380 0 0
381381 −13.6180 −0.697673
382382 4.29180 0.219587
383383 −20.0000 −1.02195 −0.510976 0.859595i 0.670716π-0.670716\pi
−0.510976 + 0.859595i 0.670716π0.670716\pi
384384 −1.00000 −0.0510310
385385 0 0
386386 17.8541 0.908750
387387 −7.70820 −0.391830
388388 −3.38197 −0.171693
389389 −12.3820 −0.627791 −0.313895 0.949458i 0.601634π-0.601634\pi
−0.313895 + 0.949458i 0.601634π0.601634\pi
390390 0 0
391391 5.52786 0.279556
392392 −0.145898 −0.00736896
393393 17.8885 0.902358
394394 −17.0902 −0.860990
395395 0 0
396396 3.61803 0.181813
397397 −30.7639 −1.54400 −0.771999 0.635624i 0.780743π-0.780743\pi
−0.771999 + 0.635624i 0.780743π0.780743\pi
398398 19.5066 0.977776
399399 14.9443 0.748149
400400 0 0
401401 25.7082 1.28381 0.641903 0.766786i 0.278145π-0.278145\pi
0.641903 + 0.766786i 0.278145π0.278145\pi
402402 1.52786 0.0762029
403403 −42.8328 −2.13365
404404 4.38197 0.218011
405405 0 0
406406 22.1803 1.10079
407407 28.9443 1.43471
408408 −1.23607 −0.0611945
409409 5.79837 0.286711 0.143356 0.989671i 0.454211π-0.454211\pi
0.143356 + 0.989671i 0.454211π0.454211\pi
410410 0 0
411411 12.1803 0.600812
412412 14.3262 0.705803
413413 −9.47214 −0.466093
414414 4.47214 0.219793
415415 0 0
416416 −6.47214 −0.317323
417417 −10.4721 −0.512823
418418 −20.6525 −1.01015
419419 −3.09017 −0.150965 −0.0754823 0.997147i 0.524050π-0.524050\pi
−0.0754823 + 0.997147i 0.524050π0.524050\pi
420420 0 0
421421 −22.7639 −1.10945 −0.554723 0.832035i 0.687176π-0.687176\pi
−0.554723 + 0.832035i 0.687176π0.687176\pi
422422 −3.41641 −0.166308
423423 1.70820 0.0830557
424424 −2.09017 −0.101508
425425 0 0
426426 −5.52786 −0.267826
427427 7.23607 0.350178
428428 −11.6180 −0.561579
429429 23.4164 1.13055
430430 0 0
431431 16.8328 0.810808 0.405404 0.914138i 0.367131π-0.367131\pi
0.405404 + 0.914138i 0.367131π0.367131\pi
432432 −1.00000 −0.0481125
433433 15.5066 0.745199 0.372599 0.927992i 0.378467π-0.378467\pi
0.372599 + 0.927992i 0.378467π0.378467\pi
434434 17.3262 0.831686
435435 0 0
436436 17.2361 0.825458
437437 −25.5279 −1.22116
438438 −3.52786 −0.168568
439439 −23.5066 −1.12191 −0.560954 0.827847i 0.689566π-0.689566\pi
−0.560954 + 0.827847i 0.689566π0.689566\pi
440440 0 0
441441 −0.145898 −0.00694753
442442 −8.00000 −0.380521
443443 16.6180 0.789547 0.394773 0.918779i 0.370823π-0.370823\pi
0.394773 + 0.918779i 0.370823π0.370823\pi
444444 −8.00000 −0.379663
445445 0 0
446446 −8.09017 −0.383081
447447 −22.0902 −1.04483
448448 2.61803 0.123690
449449 −27.7082 −1.30763 −0.653815 0.756654i 0.726833π-0.726833\pi
−0.653815 + 0.756654i 0.726833π0.726833\pi
450450 0 0
451451 20.6525 0.972487
452452 −19.2361 −0.904789
453453 −18.3262 −0.861042
454454 −22.2705 −1.04521
455455 0 0
456456 5.70820 0.267311
457457 −4.09017 −0.191330 −0.0956650 0.995414i 0.530498π-0.530498\pi
−0.0956650 + 0.995414i 0.530498π0.530498\pi
458458 −5.52786 −0.258300
459459 −1.23607 −0.0576947
460460 0 0
461461 7.56231 0.352212 0.176106 0.984371i 0.443650π-0.443650\pi
0.176106 + 0.984371i 0.443650π0.443650\pi
462462 −9.47214 −0.440684
463463 −22.8328 −1.06113 −0.530565 0.847644i 0.678020π-0.678020\pi
−0.530565 + 0.847644i 0.678020π0.678020\pi
464464 8.47214 0.393309
465465 0 0
466466 18.6525 0.864059
467467 10.6738 0.493923 0.246961 0.969025i 0.420568π-0.420568\pi
0.246961 + 0.969025i 0.420568π0.420568\pi
468468 −6.47214 −0.299175
469469 −4.00000 −0.184703
470470 0 0
471471 −8.65248 −0.398685
472472 −3.61803 −0.166534
473473 −27.8885 −1.28232
474474 5.61803 0.258045
475475 0 0
476476 3.23607 0.148325
477477 −2.09017 −0.0957023
478478 12.2918 0.562214
479479 −29.1246 −1.33074 −0.665369 0.746515i 0.731726π-0.731726\pi
−0.665369 + 0.746515i 0.731726π0.731726\pi
480480 0 0
481481 −51.7771 −2.36083
482482 9.56231 0.435551
483483 −11.7082 −0.532742
484484 2.09017 0.0950077
485485 0 0
486486 −1.00000 −0.0453609
487487 17.7984 0.806521 0.403261 0.915085i 0.367877π-0.367877\pi
0.403261 + 0.915085i 0.367877π0.367877\pi
488488 2.76393 0.125117
489489 0.472136 0.0213507
490490 0 0
491491 −25.2705 −1.14044 −0.570221 0.821491i 0.693142π-0.693142\pi
−0.570221 + 0.821491i 0.693142π0.693142\pi
492492 −5.70820 −0.257346
493493 10.4721 0.471641
494494 36.9443 1.66220
495495 0 0
496496 6.61803 0.297158
497497 14.4721 0.649164
498498 −2.14590 −0.0961600
499499 35.5967 1.59353 0.796765 0.604290i 0.206543π-0.206543\pi
0.796765 + 0.604290i 0.206543π0.206543\pi
500500 0 0
501501 −11.7082 −0.523084
502502 13.5623 0.605315
503503 23.8885 1.06514 0.532569 0.846387i 0.321227π-0.321227\pi
0.532569 + 0.846387i 0.321227π0.321227\pi
504504 2.61803 0.116617
505505 0 0
506506 16.1803 0.719304
507507 −28.8885 −1.28299
508508 13.6180 0.604203
509509 −17.5066 −0.775965 −0.387983 0.921667i 0.626828π-0.626828\pi
−0.387983 + 0.921667i 0.626828π0.626828\pi
510510 0 0
511511 9.23607 0.408580
512512 1.00000 0.0441942
513513 5.70820 0.252023
514514 −22.0000 −0.970378
515515 0 0
516516 7.70820 0.339335
517517 6.18034 0.271811
518518 20.9443 0.920238
519519 −5.09017 −0.223434
520520 0 0
521521 14.1803 0.621252 0.310626 0.950532i 0.399461π-0.399461\pi
0.310626 + 0.950532i 0.399461π0.399461\pi
522522 8.47214 0.370815
523523 11.0557 0.483433 0.241717 0.970347i 0.422290π-0.422290\pi
0.241717 + 0.970347i 0.422290π0.422290\pi
524524 −17.8885 −0.781465
525525 0 0
526526 −11.7082 −0.510502
527527 8.18034 0.356341
528528 −3.61803 −0.157455
529529 −3.00000 −0.130435
530530 0 0
531531 −3.61803 −0.157009
532532 −14.9443 −0.647916
533533 −36.9443 −1.60023
534534 −3.52786 −0.152666
535535 0 0
536536 −1.52786 −0.0659937
537537 −9.85410 −0.425236
538538 −9.09017 −0.391905
539539 −0.527864 −0.0227367
540540 0 0
541541 −26.1803 −1.12558 −0.562790 0.826600i 0.690272π-0.690272\pi
−0.562790 + 0.826600i 0.690272π0.690272\pi
542542 −18.0344 −0.774646
543543 6.65248 0.285485
544544 1.23607 0.0529960
545545 0 0
546546 16.9443 0.725148
547547 9.70820 0.415093 0.207546 0.978225i 0.433452π-0.433452\pi
0.207546 + 0.978225i 0.433452π0.433452\pi
548548 −12.1803 −0.520318
549549 2.76393 0.117962
550550 0 0
551551 −48.3607 −2.06023
552552 −4.47214 −0.190347
553553 −14.7082 −0.625456
554554 16.9443 0.719893
555555 0 0
556556 10.4721 0.444117
557557 −18.3262 −0.776508 −0.388254 0.921552i 0.626922π-0.626922\pi
−0.388254 + 0.921552i 0.626922π0.626922\pi
558558 6.61803 0.280164
559559 49.8885 2.11006
560560 0 0
561561 −4.47214 −0.188814
562562 5.88854 0.248393
563563 21.2705 0.896445 0.448223 0.893922i 0.352057π-0.352057\pi
0.448223 + 0.893922i 0.352057π0.352057\pi
564564 −1.70820 −0.0719284
565565 0 0
566566 4.58359 0.192663
567567 2.61803 0.109947
568568 5.52786 0.231944
569569 −27.7771 −1.16448 −0.582238 0.813018i 0.697823π-0.697823\pi
−0.582238 + 0.813018i 0.697823π0.697823\pi
570570 0 0
571571 7.88854 0.330125 0.165063 0.986283i 0.447217π-0.447217\pi
0.165063 + 0.986283i 0.447217π0.447217\pi
572572 −23.4164 −0.979089
573573 −4.29180 −0.179292
574574 14.9443 0.623762
575575 0 0
576576 1.00000 0.0416667
577577 8.97871 0.373789 0.186894 0.982380i 0.440158π-0.440158\pi
0.186894 + 0.982380i 0.440158π0.440158\pi
578578 −15.4721 −0.643556
579579 −17.8541 −0.741991
580580 0 0
581581 5.61803 0.233075
582582 3.38197 0.140187
583583 −7.56231 −0.313199
584584 3.52786 0.145984
585585 0 0
586586 −22.0902 −0.912537
587587 −0.965558 −0.0398528 −0.0199264 0.999801i 0.506343π-0.506343\pi
−0.0199264 + 0.999801i 0.506343π0.506343\pi
588588 0.145898 0.00601673
589589 −37.7771 −1.55658
590590 0 0
591591 17.0902 0.702996
592592 8.00000 0.328798
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 −3.61803 −0.148450
595595 0 0
596596 22.0902 0.904849
597597 −19.5066 −0.798351
598598 −28.9443 −1.18362
599599 0.472136 0.0192910 0.00964548 0.999953i 0.496930π-0.496930\pi
0.00964548 + 0.999953i 0.496930π0.496930\pi
600600 0 0
601601 −7.72949 −0.315292 −0.157646 0.987496i 0.550391π-0.550391\pi
−0.157646 + 0.987496i 0.550391π0.550391\pi
602602 −20.1803 −0.822489
603603 −1.52786 −0.0622194
604604 18.3262 0.745684
605605 0 0
606606 −4.38197 −0.178005
607607 6.56231 0.266356 0.133178 0.991092i 0.457482π-0.457482\pi
0.133178 + 0.991092i 0.457482π0.457482\pi
608608 −5.70820 −0.231498
609609 −22.1803 −0.898793
610610 0 0
611611 −11.0557 −0.447267
612612 1.23607 0.0499651
613613 48.2492 1.94877 0.974384 0.224891i 0.0722027π-0.0722027\pi
0.974384 + 0.224891i 0.0722027π0.0722027\pi
614614 10.0000 0.403567
615615 0 0
616616 9.47214 0.381643
617617 2.11146 0.0850040 0.0425020 0.999096i 0.486467π-0.486467\pi
0.0425020 + 0.999096i 0.486467π0.486467\pi
618618 −14.3262 −0.576286
619619 −9.41641 −0.378477 −0.189239 0.981931i 0.560602π-0.560602\pi
−0.189239 + 0.981931i 0.560602π0.560602\pi
620620 0 0
621621 −4.47214 −0.179461
622622 −1.05573 −0.0423308
623623 9.23607 0.370035
624624 6.47214 0.259093
625625 0 0
626626 −16.2705 −0.650300
627627 20.6525 0.824780
628628 8.65248 0.345271
629629 9.88854 0.394282
630630 0 0
631631 46.4721 1.85003 0.925013 0.379935i 0.124054π-0.124054\pi
0.925013 + 0.379935i 0.124054π0.124054\pi
632632 −5.61803 −0.223473
633633 3.41641 0.135790
634634 −20.5623 −0.816633
635635 0 0
636636 2.09017 0.0828806
637637 0.944272 0.0374134
638638 30.6525 1.21354
639639 5.52786 0.218679
640640 0 0
641641 −13.8197 −0.545844 −0.272922 0.962036i 0.587990π-0.587990\pi
−0.272922 + 0.962036i 0.587990π0.587990\pi
642642 11.6180 0.458527
643643 21.8885 0.863200 0.431600 0.902065i 0.357949π-0.357949\pi
0.431600 + 0.902065i 0.357949π0.357949\pi
644644 11.7082 0.461368
645645 0 0
646646 −7.05573 −0.277604
647647 −22.9443 −0.902032 −0.451016 0.892516i 0.648938π-0.648938\pi
−0.451016 + 0.892516i 0.648938π0.648938\pi
648648 1.00000 0.0392837
649649 −13.0902 −0.513834
650650 0 0
651651 −17.3262 −0.679069
652652 −0.472136 −0.0184903
653653 −3.85410 −0.150823 −0.0754113 0.997153i 0.524027π-0.524027\pi
−0.0754113 + 0.997153i 0.524027π0.524027\pi
654654 −17.2361 −0.673984
655655 0 0
656656 5.70820 0.222868
657657 3.52786 0.137635
658658 4.47214 0.174342
659659 −20.6180 −0.803165 −0.401582 0.915823i 0.631540π-0.631540\pi
−0.401582 + 0.915823i 0.631540π0.631540\pi
660660 0 0
661661 −30.4721 −1.18523 −0.592614 0.805486i 0.701904π-0.701904\pi
−0.592614 + 0.805486i 0.701904π0.701904\pi
662662 −18.0000 −0.699590
663663 8.00000 0.310694
664664 2.14590 0.0832770
665665 0 0
666666 8.00000 0.309994
667667 37.8885 1.46705
668668 11.7082 0.453004
669669 8.09017 0.312784
670670 0 0
671671 10.0000 0.386046
672672 −2.61803 −0.100993
673673 −31.4508 −1.21234 −0.606171 0.795335i 0.707295π-0.707295\pi
−0.606171 + 0.795335i 0.707295π0.707295\pi
674674 0.909830 0.0350453
675675 0 0
676676 28.8885 1.11110
677677 29.0902 1.11803 0.559013 0.829159i 0.311180π-0.311180\pi
0.559013 + 0.829159i 0.311180π0.311180\pi
678678 19.2361 0.738757
679679 −8.85410 −0.339789
680680 0 0
681681 22.2705 0.853408
682682 23.9443 0.916874
683683 33.5066 1.28209 0.641047 0.767502i 0.278500π-0.278500\pi
0.641047 + 0.767502i 0.278500π0.278500\pi
684684 −5.70820 −0.218259
685685 0 0
686686 −18.7082 −0.714283
687687 5.52786 0.210901
688688 −7.70820 −0.293873
689689 13.5279 0.515371
690690 0 0
691691 11.2361 0.427440 0.213720 0.976895i 0.431442π-0.431442\pi
0.213720 + 0.976895i 0.431442π0.431442\pi
692692 5.09017 0.193499
693693 9.47214 0.359817
694694 20.5623 0.780534
695695 0 0
696696 −8.47214 −0.321135
697697 7.05573 0.267255
698698 −27.8885 −1.05560
699699 −18.6525 −0.705501
700700 0 0
701701 40.8328 1.54223 0.771117 0.636693i 0.219698π-0.219698\pi
0.771117 + 0.636693i 0.219698π0.219698\pi
702702 6.47214 0.244275
703703 −45.6656 −1.72231
704704 3.61803 0.136360
705705 0 0
706706 −13.2361 −0.498146
707707 11.4721 0.431454
708708 3.61803 0.135974
709709 −43.7082 −1.64150 −0.820748 0.571290i 0.806443π-0.806443\pi
−0.820748 + 0.571290i 0.806443π0.806443\pi
710710 0 0
711711 −5.61803 −0.210693
712712 3.52786 0.132212
713713 29.5967 1.10841
714714 −3.23607 −0.121107
715715 0 0
716716 9.85410 0.368265
717717 −12.2918 −0.459046
718718 22.1803 0.827763
719719 −16.5836 −0.618464 −0.309232 0.950987i 0.600072π-0.600072\pi
−0.309232 + 0.950987i 0.600072π0.600072\pi
720720 0 0
721721 37.5066 1.39682
722722 13.5836 0.505529
723723 −9.56231 −0.355626
724724 −6.65248 −0.247237
725725 0 0
726726 −2.09017 −0.0775735
727727 −8.58359 −0.318348 −0.159174 0.987251i 0.550883π-0.550883\pi
−0.159174 + 0.987251i 0.550883π0.550883\pi
728728 −16.9443 −0.627996
729729 1.00000 0.0370370
730730 0 0
731731 −9.52786 −0.352401
732732 −2.76393 −0.102158
733733 −35.8885 −1.32557 −0.662787 0.748808i 0.730626π-0.730626\pi
−0.662787 + 0.748808i 0.730626π0.730626\pi
734734 −30.6180 −1.13013
735735 0 0
736736 4.47214 0.164845
737737 −5.52786 −0.203621
738738 5.70820 0.210122
739739 −48.1803 −1.77234 −0.886171 0.463358i 0.846644π-0.846644\pi
−0.886171 + 0.463358i 0.846644π0.846644\pi
740740 0 0
741741 −36.9443 −1.35718
742742 −5.47214 −0.200888
743743 −39.0132 −1.43125 −0.715627 0.698483i 0.753859π-0.753859\pi
−0.715627 + 0.698483i 0.753859π0.753859\pi
744744 −6.61803 −0.242629
745745 0 0
746746 −11.5279 −0.422065
747747 2.14590 0.0785143
748748 4.47214 0.163517
749749 −30.4164 −1.11139
750750 0 0
751751 24.7984 0.904906 0.452453 0.891788i 0.350549π-0.350549\pi
0.452453 + 0.891788i 0.350549π0.350549\pi
752752 1.70820 0.0622918
753753 −13.5623 −0.494238
754754 −54.8328 −1.99689
755755 0 0
756756 −2.61803 −0.0952170
757757 −17.1246 −0.622405 −0.311202 0.950344i 0.600732π-0.600732\pi
−0.311202 + 0.950344i 0.600732π0.600732\pi
758758 −20.1803 −0.732983
759759 −16.1803 −0.587309
760760 0 0
761761 1.41641 0.0513447 0.0256724 0.999670i 0.491827π-0.491827\pi
0.0256724 + 0.999670i 0.491827π0.491827\pi
762762 −13.6180 −0.493329
763763 45.1246 1.63362
764764 4.29180 0.155272
765765 0 0
766766 −20.0000 −0.722629
767767 23.4164 0.845517
768768 −1.00000 −0.0360844
769769 24.6869 0.890233 0.445117 0.895473i 0.353162π-0.353162\pi
0.445117 + 0.895473i 0.353162π0.353162\pi
770770 0 0
771771 22.0000 0.792311
772772 17.8541 0.642583
773773 −1.14590 −0.0412151 −0.0206075 0.999788i 0.506560π-0.506560\pi
−0.0206075 + 0.999788i 0.506560π0.506560\pi
774774 −7.70820 −0.277066
775775 0 0
776776 −3.38197 −0.121406
777777 −20.9443 −0.751372
778778 −12.3820 −0.443915
779779 −32.5836 −1.16743
780780 0 0
781781 20.0000 0.715656
782782 5.52786 0.197676
783783 −8.47214 −0.302769
784784 −0.145898 −0.00521064
785785 0 0
786786 17.8885 0.638063
787787 28.0689 1.00055 0.500274 0.865867i 0.333233π-0.333233\pi
0.500274 + 0.865867i 0.333233π0.333233\pi
788788 −17.0902 −0.608812
789789 11.7082 0.416823
790790 0 0
791791 −50.3607 −1.79062
792792 3.61803 0.128561
793793 −17.8885 −0.635241
794794 −30.7639 −1.09177
795795 0 0
796796 19.5066 0.691392
797797 1.50658 0.0533657 0.0266829 0.999644i 0.491506π-0.491506\pi
0.0266829 + 0.999644i 0.491506π0.491506\pi
798798 14.9443 0.529021
799799 2.11146 0.0746979
800800 0 0
801801 3.52786 0.124651
802802 25.7082 0.907788
803803 12.7639 0.450429
804804 1.52786 0.0538836
805805 0 0
806806 −42.8328 −1.50872
807807 9.09017 0.319989
808808 4.38197 0.154157
809809 −30.8328 −1.08402 −0.542012 0.840371i 0.682337π-0.682337\pi
−0.542012 + 0.840371i 0.682337π0.682337\pi
810810 0 0
811811 −5.70820 −0.200442 −0.100221 0.994965i 0.531955π-0.531955\pi
−0.100221 + 0.994965i 0.531955π0.531955\pi
812812 22.1803 0.778377
813813 18.0344 0.632495
814814 28.9443 1.01450
815815 0 0
816816 −1.23607 −0.0432710
817817 44.0000 1.53937
818818 5.79837 0.202735
819819 −16.9443 −0.592081
820820 0 0
821821 −45.0902 −1.57366 −0.786829 0.617171i 0.788279π-0.788279\pi
−0.786829 + 0.617171i 0.788279π0.788279\pi
822822 12.1803 0.424838
823823 2.96556 0.103373 0.0516864 0.998663i 0.483540π-0.483540\pi
0.0516864 + 0.998663i 0.483540π0.483540\pi
824824 14.3262 0.499078
825825 0 0
826826 −9.47214 −0.329578
827827 44.1033 1.53362 0.766811 0.641872i 0.221842π-0.221842\pi
0.766811 + 0.641872i 0.221842π0.221842\pi
828828 4.47214 0.155417
829829 25.8885 0.899146 0.449573 0.893244i 0.351576π-0.351576\pi
0.449573 + 0.893244i 0.351576π0.351576\pi
830830 0 0
831831 −16.9443 −0.587790
832832 −6.47214 −0.224381
833833 −0.180340 −0.00624841
834834 −10.4721 −0.362620
835835 0 0
836836 −20.6525 −0.714281
837837 −6.61803 −0.228753
838838 −3.09017 −0.106748
839839 6.36068 0.219595 0.109798 0.993954i 0.464980π-0.464980\pi
0.109798 + 0.993954i 0.464980π0.464980\pi
840840 0 0
841841 42.7771 1.47507
842842 −22.7639 −0.784497
843843 −5.88854 −0.202812
844844 −3.41641 −0.117598
845845 0 0
846846 1.70820 0.0587293
847847 5.47214 0.188025
848848 −2.09017 −0.0717767
849849 −4.58359 −0.157308
850850 0 0
851851 35.7771 1.22642
852852 −5.52786 −0.189382
853853 −43.5967 −1.49272 −0.746362 0.665540i 0.768201π-0.768201\pi
−0.746362 + 0.665540i 0.768201π0.768201\pi
854854 7.23607 0.247613
855855 0 0
856856 −11.6180 −0.397096
857857 −16.0689 −0.548903 −0.274451 0.961601i 0.588496π-0.588496\pi
−0.274451 + 0.961601i 0.588496π0.588496\pi
858858 23.4164 0.799423
859859 −2.29180 −0.0781951 −0.0390975 0.999235i 0.512448π-0.512448\pi
−0.0390975 + 0.999235i 0.512448π0.512448\pi
860860 0 0
861861 −14.9443 −0.509299
862862 16.8328 0.573328
863863 −10.1803 −0.346543 −0.173271 0.984874i 0.555434π-0.555434\pi
−0.173271 + 0.984874i 0.555434π0.555434\pi
864864 −1.00000 −0.0340207
865865 0 0
866866 15.5066 0.526935
867867 15.4721 0.525461
868868 17.3262 0.588091
869869 −20.3262 −0.689520
870870 0 0
871871 9.88854 0.335061
872872 17.2361 0.583687
873873 −3.38197 −0.114462
874874 −25.5279 −0.863493
875875 0 0
876876 −3.52786 −0.119195
877877 −37.1246 −1.25361 −0.626805 0.779177i 0.715638π-0.715638\pi
−0.626805 + 0.779177i 0.715638π0.715638\pi
878878 −23.5066 −0.793309
879879 22.0902 0.745083
880880 0 0
881881 −23.5967 −0.794995 −0.397497 0.917603i 0.630121π-0.630121\pi
−0.397497 + 0.917603i 0.630121π0.630121\pi
882882 −0.145898 −0.00491264
883883 −30.0689 −1.01190 −0.505949 0.862563i 0.668858π-0.668858\pi
−0.505949 + 0.862563i 0.668858π0.668858\pi
884884 −8.00000 −0.269069
885885 0 0
886886 16.6180 0.558294
887887 23.4164 0.786246 0.393123 0.919486i 0.371395π-0.371395\pi
0.393123 + 0.919486i 0.371395π0.371395\pi
888888 −8.00000 −0.268462
889889 35.6525 1.19575
890890 0 0
891891 3.61803 0.121209
892892 −8.09017 −0.270879
893893 −9.75078 −0.326297
894894 −22.0902 −0.738806
895895 0 0
896896 2.61803 0.0874624
897897 28.9443 0.966421
898898 −27.7082 −0.924635
899899 56.0689 1.87000
900900 0 0
901901 −2.58359 −0.0860719
902902 20.6525 0.687652
903903 20.1803 0.671560
904904 −19.2361 −0.639782
905905 0 0
906906 −18.3262 −0.608848
907907 30.4721 1.01181 0.505905 0.862589i 0.331159π-0.331159\pi
0.505905 + 0.862589i 0.331159π0.331159\pi
908908 −22.2705 −0.739073
909909 4.38197 0.145341
910910 0 0
911911 18.1803 0.602342 0.301171 0.953570i 0.402623π-0.402623\pi
0.301171 + 0.953570i 0.402623π0.402623\pi
912912 5.70820 0.189018
913913 7.76393 0.256949
914914 −4.09017 −0.135291
915915 0 0
916916 −5.52786 −0.182646
917917 −46.8328 −1.54656
918918 −1.23607 −0.0407963
919919 −40.7214 −1.34327 −0.671637 0.740881i 0.734408π-0.734408\pi
−0.671637 + 0.740881i 0.734408π0.734408\pi
920920 0 0
921921 −10.0000 −0.329511
922922 7.56231 0.249051
923923 −35.7771 −1.17762
924924 −9.47214 −0.311610
925925 0 0
926926 −22.8328 −0.750333
927927 14.3262 0.470535
928928 8.47214 0.278111
929929 −19.0132 −0.623801 −0.311901 0.950115i 0.600966π-0.600966\pi
−0.311901 + 0.950115i 0.600966π0.600966\pi
930930 0 0
931931 0.832816 0.0272944
932932 18.6525 0.610982
933933 1.05573 0.0345630
934934 10.6738 0.349256
935935 0 0
936936 −6.47214 −0.211548
937937 −8.68692 −0.283789 −0.141895 0.989882i 0.545319π-0.545319\pi
−0.141895 + 0.989882i 0.545319π0.545319\pi
938938 −4.00000 −0.130605
939939 16.2705 0.530968
940940 0 0
941941 −4.43769 −0.144665 −0.0723323 0.997381i 0.523044π-0.523044\pi
−0.0723323 + 0.997381i 0.523044π0.523044\pi
942942 −8.65248 −0.281913
943943 25.5279 0.831302
944944 −3.61803 −0.117757
945945 0 0
946946 −27.8885 −0.906735
947947 −33.5623 −1.09063 −0.545314 0.838232i 0.683590π-0.683590\pi
−0.545314 + 0.838232i 0.683590π0.683590\pi
948948 5.61803 0.182465
949949 −22.8328 −0.741185
950950 0 0
951951 20.5623 0.666778
952952 3.23607 0.104882
953953 5.30495 0.171844 0.0859221 0.996302i 0.472616π-0.472616\pi
0.0859221 + 0.996302i 0.472616π0.472616\pi
954954 −2.09017 −0.0676718
955955 0 0
956956 12.2918 0.397545
957957 −30.6525 −0.990854
958958 −29.1246 −0.940973
959959 −31.8885 −1.02973
960960 0 0
961961 12.7984 0.412851
962962 −51.7771 −1.66936
963963 −11.6180 −0.374386
964964 9.56231 0.307981
965965 0 0
966966 −11.7082 −0.376705
967967 10.9098 0.350836 0.175418 0.984494i 0.443872π-0.443872\pi
0.175418 + 0.984494i 0.443872π0.443872\pi
968968 2.09017 0.0671806
969969 7.05573 0.226663
970970 0 0
971971 −14.2148 −0.456174 −0.228087 0.973641i 0.573247π-0.573247\pi
−0.228087 + 0.973641i 0.573247π0.573247\pi
972972 −1.00000 −0.0320750
973973 27.4164 0.878930
974974 17.7984 0.570297
975975 0 0
976976 2.76393 0.0884713
977977 −0.763932 −0.0244404 −0.0122202 0.999925i 0.503890π-0.503890\pi
−0.0122202 + 0.999925i 0.503890π0.503890\pi
978978 0.472136 0.0150972
979979 12.7639 0.407937
980980 0 0
981981 17.2361 0.550305
982982 −25.2705 −0.806414
983983 40.1803 1.28155 0.640777 0.767727i 0.278612π-0.278612\pi
0.640777 + 0.767727i 0.278612π0.278612\pi
984984 −5.70820 −0.181971
985985 0 0
986986 10.4721 0.333501
987987 −4.47214 −0.142350
988988 36.9443 1.17535
989989 −34.4721 −1.09615
990990 0 0
991991 29.4508 0.935537 0.467769 0.883851i 0.345058π-0.345058\pi
0.467769 + 0.883851i 0.345058π0.345058\pi
992992 6.61803 0.210123
993993 18.0000 0.571213
994994 14.4721 0.459028
995995 0 0
996996 −2.14590 −0.0679954
997997 −5.59675 −0.177251 −0.0886254 0.996065i 0.528247π-0.528247\pi
−0.0886254 + 0.996065i 0.528247π0.528247\pi
998998 35.5967 1.12680
999999 −8.00000 −0.253109
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3750.2.a.f.1.2 2
5.2 odd 4 3750.2.c.b.1249.4 4
5.3 odd 4 3750.2.c.b.1249.1 4
5.4 even 2 3750.2.a.d.1.1 2
25.3 odd 20 750.2.h.b.49.1 8
25.4 even 10 750.2.g.b.451.1 4
25.6 even 5 150.2.g.a.61.1 4
25.8 odd 20 750.2.h.b.199.2 8
25.17 odd 20 750.2.h.b.199.1 8
25.19 even 10 750.2.g.b.301.1 4
25.21 even 5 150.2.g.a.91.1 yes 4
25.22 odd 20 750.2.h.b.49.2 8
75.56 odd 10 450.2.h.c.361.1 4
75.71 odd 10 450.2.h.c.91.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.2.g.a.61.1 4 25.6 even 5
150.2.g.a.91.1 yes 4 25.21 even 5
450.2.h.c.91.1 4 75.71 odd 10
450.2.h.c.361.1 4 75.56 odd 10
750.2.g.b.301.1 4 25.19 even 10
750.2.g.b.451.1 4 25.4 even 10
750.2.h.b.49.1 8 25.3 odd 20
750.2.h.b.49.2 8 25.22 odd 20
750.2.h.b.199.1 8 25.17 odd 20
750.2.h.b.199.2 8 25.8 odd 20
3750.2.a.d.1.1 2 5.4 even 2
3750.2.a.f.1.2 2 1.1 even 1 trivial
3750.2.c.b.1249.1 4 5.3 odd 4
3750.2.c.b.1249.4 4 5.2 odd 4