Properties

Label 3750.2.a.f.1.2
Level $3750$
Weight $2$
Character 3750.1
Self dual yes
Analytic conductor $29.944$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3750,2,Mod(1,3750)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3750, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3750.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3750 = 2 \cdot 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3750.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.9439007580\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 150)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 3750.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} +2.61803 q^{7} +1.00000 q^{8} +1.00000 q^{9} +3.61803 q^{11} -1.00000 q^{12} -6.47214 q^{13} +2.61803 q^{14} +1.00000 q^{16} +1.23607 q^{17} +1.00000 q^{18} -5.70820 q^{19} -2.61803 q^{21} +3.61803 q^{22} +4.47214 q^{23} -1.00000 q^{24} -6.47214 q^{26} -1.00000 q^{27} +2.61803 q^{28} +8.47214 q^{29} +6.61803 q^{31} +1.00000 q^{32} -3.61803 q^{33} +1.23607 q^{34} +1.00000 q^{36} +8.00000 q^{37} -5.70820 q^{38} +6.47214 q^{39} +5.70820 q^{41} -2.61803 q^{42} -7.70820 q^{43} +3.61803 q^{44} +4.47214 q^{46} +1.70820 q^{47} -1.00000 q^{48} -0.145898 q^{49} -1.23607 q^{51} -6.47214 q^{52} -2.09017 q^{53} -1.00000 q^{54} +2.61803 q^{56} +5.70820 q^{57} +8.47214 q^{58} -3.61803 q^{59} +2.76393 q^{61} +6.61803 q^{62} +2.61803 q^{63} +1.00000 q^{64} -3.61803 q^{66} -1.52786 q^{67} +1.23607 q^{68} -4.47214 q^{69} +5.52786 q^{71} +1.00000 q^{72} +3.52786 q^{73} +8.00000 q^{74} -5.70820 q^{76} +9.47214 q^{77} +6.47214 q^{78} -5.61803 q^{79} +1.00000 q^{81} +5.70820 q^{82} +2.14590 q^{83} -2.61803 q^{84} -7.70820 q^{86} -8.47214 q^{87} +3.61803 q^{88} +3.52786 q^{89} -16.9443 q^{91} +4.47214 q^{92} -6.61803 q^{93} +1.70820 q^{94} -1.00000 q^{96} -3.38197 q^{97} -0.145898 q^{98} +3.61803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{6} + 3 q^{7} + 2 q^{8} + 2 q^{9} + 5 q^{11} - 2 q^{12} - 4 q^{13} + 3 q^{14} + 2 q^{16} - 2 q^{17} + 2 q^{18} + 2 q^{19} - 3 q^{21} + 5 q^{22} - 2 q^{24} - 4 q^{26}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 2.61803 0.989524 0.494762 0.869029i \(-0.335255\pi\)
0.494762 + 0.869029i \(0.335255\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.61803 1.09088 0.545439 0.838150i \(-0.316363\pi\)
0.545439 + 0.838150i \(0.316363\pi\)
\(12\) −1.00000 −0.288675
\(13\) −6.47214 −1.79505 −0.897524 0.440966i \(-0.854636\pi\)
−0.897524 + 0.440966i \(0.854636\pi\)
\(14\) 2.61803 0.699699
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.23607 0.299791 0.149895 0.988702i \(-0.452106\pi\)
0.149895 + 0.988702i \(0.452106\pi\)
\(18\) 1.00000 0.235702
\(19\) −5.70820 −1.30955 −0.654776 0.755823i \(-0.727237\pi\)
−0.654776 + 0.755823i \(0.727237\pi\)
\(20\) 0 0
\(21\) −2.61803 −0.571302
\(22\) 3.61803 0.771367
\(23\) 4.47214 0.932505 0.466252 0.884652i \(-0.345604\pi\)
0.466252 + 0.884652i \(0.345604\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) −6.47214 −1.26929
\(27\) −1.00000 −0.192450
\(28\) 2.61803 0.494762
\(29\) 8.47214 1.57324 0.786618 0.617440i \(-0.211830\pi\)
0.786618 + 0.617440i \(0.211830\pi\)
\(30\) 0 0
\(31\) 6.61803 1.18863 0.594317 0.804231i \(-0.297422\pi\)
0.594317 + 0.804231i \(0.297422\pi\)
\(32\) 1.00000 0.176777
\(33\) −3.61803 −0.629819
\(34\) 1.23607 0.211984
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) −5.70820 −0.925993
\(39\) 6.47214 1.03637
\(40\) 0 0
\(41\) 5.70820 0.891472 0.445736 0.895165i \(-0.352942\pi\)
0.445736 + 0.895165i \(0.352942\pi\)
\(42\) −2.61803 −0.403971
\(43\) −7.70820 −1.17549 −0.587745 0.809046i \(-0.699984\pi\)
−0.587745 + 0.809046i \(0.699984\pi\)
\(44\) 3.61803 0.545439
\(45\) 0 0
\(46\) 4.47214 0.659380
\(47\) 1.70820 0.249167 0.124584 0.992209i \(-0.460241\pi\)
0.124584 + 0.992209i \(0.460241\pi\)
\(48\) −1.00000 −0.144338
\(49\) −0.145898 −0.0208426
\(50\) 0 0
\(51\) −1.23607 −0.173084
\(52\) −6.47214 −0.897524
\(53\) −2.09017 −0.287107 −0.143553 0.989643i \(-0.545853\pi\)
−0.143553 + 0.989643i \(0.545853\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 2.61803 0.349850
\(57\) 5.70820 0.756070
\(58\) 8.47214 1.11245
\(59\) −3.61803 −0.471028 −0.235514 0.971871i \(-0.575677\pi\)
−0.235514 + 0.971871i \(0.575677\pi\)
\(60\) 0 0
\(61\) 2.76393 0.353885 0.176943 0.984221i \(-0.443379\pi\)
0.176943 + 0.984221i \(0.443379\pi\)
\(62\) 6.61803 0.840491
\(63\) 2.61803 0.329841
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −3.61803 −0.445349
\(67\) −1.52786 −0.186658 −0.0933292 0.995635i \(-0.529751\pi\)
−0.0933292 + 0.995635i \(0.529751\pi\)
\(68\) 1.23607 0.149895
\(69\) −4.47214 −0.538382
\(70\) 0 0
\(71\) 5.52786 0.656037 0.328018 0.944671i \(-0.393619\pi\)
0.328018 + 0.944671i \(0.393619\pi\)
\(72\) 1.00000 0.117851
\(73\) 3.52786 0.412905 0.206453 0.978457i \(-0.433808\pi\)
0.206453 + 0.978457i \(0.433808\pi\)
\(74\) 8.00000 0.929981
\(75\) 0 0
\(76\) −5.70820 −0.654776
\(77\) 9.47214 1.07945
\(78\) 6.47214 0.732825
\(79\) −5.61803 −0.632078 −0.316039 0.948746i \(-0.602353\pi\)
−0.316039 + 0.948746i \(0.602353\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 5.70820 0.630366
\(83\) 2.14590 0.235543 0.117771 0.993041i \(-0.462425\pi\)
0.117771 + 0.993041i \(0.462425\pi\)
\(84\) −2.61803 −0.285651
\(85\) 0 0
\(86\) −7.70820 −0.831197
\(87\) −8.47214 −0.908308
\(88\) 3.61803 0.385684
\(89\) 3.52786 0.373953 0.186976 0.982364i \(-0.440131\pi\)
0.186976 + 0.982364i \(0.440131\pi\)
\(90\) 0 0
\(91\) −16.9443 −1.77624
\(92\) 4.47214 0.466252
\(93\) −6.61803 −0.686258
\(94\) 1.70820 0.176188
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) −3.38197 −0.343387 −0.171693 0.985150i \(-0.554924\pi\)
−0.171693 + 0.985150i \(0.554924\pi\)
\(98\) −0.145898 −0.0147379
\(99\) 3.61803 0.363626
\(100\) 0 0
\(101\) 4.38197 0.436022 0.218011 0.975946i \(-0.430043\pi\)
0.218011 + 0.975946i \(0.430043\pi\)
\(102\) −1.23607 −0.122389
\(103\) 14.3262 1.41161 0.705803 0.708408i \(-0.250586\pi\)
0.705803 + 0.708408i \(0.250586\pi\)
\(104\) −6.47214 −0.634645
\(105\) 0 0
\(106\) −2.09017 −0.203015
\(107\) −11.6180 −1.12316 −0.561579 0.827423i \(-0.689806\pi\)
−0.561579 + 0.827423i \(0.689806\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 17.2361 1.65092 0.825458 0.564464i \(-0.190917\pi\)
0.825458 + 0.564464i \(0.190917\pi\)
\(110\) 0 0
\(111\) −8.00000 −0.759326
\(112\) 2.61803 0.247381
\(113\) −19.2361 −1.80958 −0.904789 0.425861i \(-0.859971\pi\)
−0.904789 + 0.425861i \(0.859971\pi\)
\(114\) 5.70820 0.534622
\(115\) 0 0
\(116\) 8.47214 0.786618
\(117\) −6.47214 −0.598349
\(118\) −3.61803 −0.333067
\(119\) 3.23607 0.296650
\(120\) 0 0
\(121\) 2.09017 0.190015
\(122\) 2.76393 0.250235
\(123\) −5.70820 −0.514691
\(124\) 6.61803 0.594317
\(125\) 0 0
\(126\) 2.61803 0.233233
\(127\) 13.6180 1.20841 0.604203 0.796831i \(-0.293492\pi\)
0.604203 + 0.796831i \(0.293492\pi\)
\(128\) 1.00000 0.0883883
\(129\) 7.70820 0.678670
\(130\) 0 0
\(131\) −17.8885 −1.56293 −0.781465 0.623949i \(-0.785527\pi\)
−0.781465 + 0.623949i \(0.785527\pi\)
\(132\) −3.61803 −0.314909
\(133\) −14.9443 −1.29583
\(134\) −1.52786 −0.131987
\(135\) 0 0
\(136\) 1.23607 0.105992
\(137\) −12.1803 −1.04064 −0.520318 0.853972i \(-0.674187\pi\)
−0.520318 + 0.853972i \(0.674187\pi\)
\(138\) −4.47214 −0.380693
\(139\) 10.4721 0.888235 0.444117 0.895969i \(-0.353517\pi\)
0.444117 + 0.895969i \(0.353517\pi\)
\(140\) 0 0
\(141\) −1.70820 −0.143857
\(142\) 5.52786 0.463888
\(143\) −23.4164 −1.95818
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 3.52786 0.291968
\(147\) 0.145898 0.0120335
\(148\) 8.00000 0.657596
\(149\) 22.0902 1.80970 0.904849 0.425733i \(-0.139984\pi\)
0.904849 + 0.425733i \(0.139984\pi\)
\(150\) 0 0
\(151\) 18.3262 1.49137 0.745684 0.666300i \(-0.232123\pi\)
0.745684 + 0.666300i \(0.232123\pi\)
\(152\) −5.70820 −0.462996
\(153\) 1.23607 0.0999302
\(154\) 9.47214 0.763286
\(155\) 0 0
\(156\) 6.47214 0.518186
\(157\) 8.65248 0.690543 0.345271 0.938503i \(-0.387787\pi\)
0.345271 + 0.938503i \(0.387787\pi\)
\(158\) −5.61803 −0.446947
\(159\) 2.09017 0.165761
\(160\) 0 0
\(161\) 11.7082 0.922736
\(162\) 1.00000 0.0785674
\(163\) −0.472136 −0.0369805 −0.0184903 0.999829i \(-0.505886\pi\)
−0.0184903 + 0.999829i \(0.505886\pi\)
\(164\) 5.70820 0.445736
\(165\) 0 0
\(166\) 2.14590 0.166554
\(167\) 11.7082 0.906008 0.453004 0.891508i \(-0.350352\pi\)
0.453004 + 0.891508i \(0.350352\pi\)
\(168\) −2.61803 −0.201986
\(169\) 28.8885 2.22220
\(170\) 0 0
\(171\) −5.70820 −0.436517
\(172\) −7.70820 −0.587745
\(173\) 5.09017 0.386998 0.193499 0.981100i \(-0.438016\pi\)
0.193499 + 0.981100i \(0.438016\pi\)
\(174\) −8.47214 −0.642271
\(175\) 0 0
\(176\) 3.61803 0.272720
\(177\) 3.61803 0.271948
\(178\) 3.52786 0.264425
\(179\) 9.85410 0.736530 0.368265 0.929721i \(-0.379952\pi\)
0.368265 + 0.929721i \(0.379952\pi\)
\(180\) 0 0
\(181\) −6.65248 −0.494475 −0.247237 0.968955i \(-0.579523\pi\)
−0.247237 + 0.968955i \(0.579523\pi\)
\(182\) −16.9443 −1.25599
\(183\) −2.76393 −0.204316
\(184\) 4.47214 0.329690
\(185\) 0 0
\(186\) −6.61803 −0.485258
\(187\) 4.47214 0.327035
\(188\) 1.70820 0.124584
\(189\) −2.61803 −0.190434
\(190\) 0 0
\(191\) 4.29180 0.310543 0.155272 0.987872i \(-0.450375\pi\)
0.155272 + 0.987872i \(0.450375\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 17.8541 1.28517 0.642583 0.766216i \(-0.277863\pi\)
0.642583 + 0.766216i \(0.277863\pi\)
\(194\) −3.38197 −0.242811
\(195\) 0 0
\(196\) −0.145898 −0.0104213
\(197\) −17.0902 −1.21762 −0.608812 0.793314i \(-0.708354\pi\)
−0.608812 + 0.793314i \(0.708354\pi\)
\(198\) 3.61803 0.257122
\(199\) 19.5066 1.38278 0.691392 0.722480i \(-0.256998\pi\)
0.691392 + 0.722480i \(0.256998\pi\)
\(200\) 0 0
\(201\) 1.52786 0.107767
\(202\) 4.38197 0.308314
\(203\) 22.1803 1.55675
\(204\) −1.23607 −0.0865421
\(205\) 0 0
\(206\) 14.3262 0.998156
\(207\) 4.47214 0.310835
\(208\) −6.47214 −0.448762
\(209\) −20.6525 −1.42856
\(210\) 0 0
\(211\) −3.41641 −0.235195 −0.117598 0.993061i \(-0.537519\pi\)
−0.117598 + 0.993061i \(0.537519\pi\)
\(212\) −2.09017 −0.143553
\(213\) −5.52786 −0.378763
\(214\) −11.6180 −0.794192
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 17.3262 1.17618
\(218\) 17.2361 1.16737
\(219\) −3.52786 −0.238391
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) −8.00000 −0.536925
\(223\) −8.09017 −0.541758 −0.270879 0.962613i \(-0.587314\pi\)
−0.270879 + 0.962613i \(0.587314\pi\)
\(224\) 2.61803 0.174925
\(225\) 0 0
\(226\) −19.2361 −1.27956
\(227\) −22.2705 −1.47815 −0.739073 0.673626i \(-0.764736\pi\)
−0.739073 + 0.673626i \(0.764736\pi\)
\(228\) 5.70820 0.378035
\(229\) −5.52786 −0.365292 −0.182646 0.983179i \(-0.558466\pi\)
−0.182646 + 0.983179i \(0.558466\pi\)
\(230\) 0 0
\(231\) −9.47214 −0.623221
\(232\) 8.47214 0.556223
\(233\) 18.6525 1.22196 0.610982 0.791644i \(-0.290775\pi\)
0.610982 + 0.791644i \(0.290775\pi\)
\(234\) −6.47214 −0.423097
\(235\) 0 0
\(236\) −3.61803 −0.235514
\(237\) 5.61803 0.364931
\(238\) 3.23607 0.209763
\(239\) 12.2918 0.795090 0.397545 0.917583i \(-0.369862\pi\)
0.397545 + 0.917583i \(0.369862\pi\)
\(240\) 0 0
\(241\) 9.56231 0.615962 0.307981 0.951392i \(-0.400347\pi\)
0.307981 + 0.951392i \(0.400347\pi\)
\(242\) 2.09017 0.134361
\(243\) −1.00000 −0.0641500
\(244\) 2.76393 0.176943
\(245\) 0 0
\(246\) −5.70820 −0.363942
\(247\) 36.9443 2.35071
\(248\) 6.61803 0.420246
\(249\) −2.14590 −0.135991
\(250\) 0 0
\(251\) 13.5623 0.856045 0.428023 0.903768i \(-0.359210\pi\)
0.428023 + 0.903768i \(0.359210\pi\)
\(252\) 2.61803 0.164921
\(253\) 16.1803 1.01725
\(254\) 13.6180 0.854471
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −22.0000 −1.37232 −0.686161 0.727450i \(-0.740706\pi\)
−0.686161 + 0.727450i \(0.740706\pi\)
\(258\) 7.70820 0.479892
\(259\) 20.9443 1.30141
\(260\) 0 0
\(261\) 8.47214 0.524412
\(262\) −17.8885 −1.10516
\(263\) −11.7082 −0.721959 −0.360979 0.932574i \(-0.617558\pi\)
−0.360979 + 0.932574i \(0.617558\pi\)
\(264\) −3.61803 −0.222675
\(265\) 0 0
\(266\) −14.9443 −0.916292
\(267\) −3.52786 −0.215902
\(268\) −1.52786 −0.0933292
\(269\) −9.09017 −0.554237 −0.277119 0.960836i \(-0.589380\pi\)
−0.277119 + 0.960836i \(0.589380\pi\)
\(270\) 0 0
\(271\) −18.0344 −1.09551 −0.547757 0.836637i \(-0.684518\pi\)
−0.547757 + 0.836637i \(0.684518\pi\)
\(272\) 1.23607 0.0749476
\(273\) 16.9443 1.02551
\(274\) −12.1803 −0.735841
\(275\) 0 0
\(276\) −4.47214 −0.269191
\(277\) 16.9443 1.01808 0.509041 0.860742i \(-0.330000\pi\)
0.509041 + 0.860742i \(0.330000\pi\)
\(278\) 10.4721 0.628077
\(279\) 6.61803 0.396211
\(280\) 0 0
\(281\) 5.88854 0.351281 0.175641 0.984454i \(-0.443800\pi\)
0.175641 + 0.984454i \(0.443800\pi\)
\(282\) −1.70820 −0.101722
\(283\) 4.58359 0.272466 0.136233 0.990677i \(-0.456500\pi\)
0.136233 + 0.990677i \(0.456500\pi\)
\(284\) 5.52786 0.328018
\(285\) 0 0
\(286\) −23.4164 −1.38464
\(287\) 14.9443 0.882132
\(288\) 1.00000 0.0589256
\(289\) −15.4721 −0.910126
\(290\) 0 0
\(291\) 3.38197 0.198254
\(292\) 3.52786 0.206453
\(293\) −22.0902 −1.29052 −0.645261 0.763962i \(-0.723251\pi\)
−0.645261 + 0.763962i \(0.723251\pi\)
\(294\) 0.145898 0.00850895
\(295\) 0 0
\(296\) 8.00000 0.464991
\(297\) −3.61803 −0.209940
\(298\) 22.0902 1.27965
\(299\) −28.9443 −1.67389
\(300\) 0 0
\(301\) −20.1803 −1.16318
\(302\) 18.3262 1.05456
\(303\) −4.38197 −0.251737
\(304\) −5.70820 −0.327388
\(305\) 0 0
\(306\) 1.23607 0.0706613
\(307\) 10.0000 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(308\) 9.47214 0.539725
\(309\) −14.3262 −0.814991
\(310\) 0 0
\(311\) −1.05573 −0.0598648 −0.0299324 0.999552i \(-0.509529\pi\)
−0.0299324 + 0.999552i \(0.509529\pi\)
\(312\) 6.47214 0.366413
\(313\) −16.2705 −0.919664 −0.459832 0.888006i \(-0.652090\pi\)
−0.459832 + 0.888006i \(0.652090\pi\)
\(314\) 8.65248 0.488287
\(315\) 0 0
\(316\) −5.61803 −0.316039
\(317\) −20.5623 −1.15489 −0.577447 0.816428i \(-0.695951\pi\)
−0.577447 + 0.816428i \(0.695951\pi\)
\(318\) 2.09017 0.117211
\(319\) 30.6525 1.71621
\(320\) 0 0
\(321\) 11.6180 0.648455
\(322\) 11.7082 0.652473
\(323\) −7.05573 −0.392591
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −0.472136 −0.0261492
\(327\) −17.2361 −0.953157
\(328\) 5.70820 0.315183
\(329\) 4.47214 0.246557
\(330\) 0 0
\(331\) −18.0000 −0.989369 −0.494685 0.869072i \(-0.664716\pi\)
−0.494685 + 0.869072i \(0.664716\pi\)
\(332\) 2.14590 0.117771
\(333\) 8.00000 0.438397
\(334\) 11.7082 0.640644
\(335\) 0 0
\(336\) −2.61803 −0.142825
\(337\) 0.909830 0.0495616 0.0247808 0.999693i \(-0.492111\pi\)
0.0247808 + 0.999693i \(0.492111\pi\)
\(338\) 28.8885 1.57133
\(339\) 19.2361 1.04476
\(340\) 0 0
\(341\) 23.9443 1.29666
\(342\) −5.70820 −0.308664
\(343\) −18.7082 −1.01015
\(344\) −7.70820 −0.415599
\(345\) 0 0
\(346\) 5.09017 0.273649
\(347\) 20.5623 1.10384 0.551921 0.833896i \(-0.313895\pi\)
0.551921 + 0.833896i \(0.313895\pi\)
\(348\) −8.47214 −0.454154
\(349\) −27.8885 −1.49284 −0.746420 0.665475i \(-0.768229\pi\)
−0.746420 + 0.665475i \(0.768229\pi\)
\(350\) 0 0
\(351\) 6.47214 0.345457
\(352\) 3.61803 0.192842
\(353\) −13.2361 −0.704485 −0.352242 0.935909i \(-0.614581\pi\)
−0.352242 + 0.935909i \(0.614581\pi\)
\(354\) 3.61803 0.192296
\(355\) 0 0
\(356\) 3.52786 0.186976
\(357\) −3.23607 −0.171271
\(358\) 9.85410 0.520805
\(359\) 22.1803 1.17063 0.585317 0.810805i \(-0.300970\pi\)
0.585317 + 0.810805i \(0.300970\pi\)
\(360\) 0 0
\(361\) 13.5836 0.714926
\(362\) −6.65248 −0.349646
\(363\) −2.09017 −0.109705
\(364\) −16.9443 −0.888121
\(365\) 0 0
\(366\) −2.76393 −0.144473
\(367\) −30.6180 −1.59825 −0.799124 0.601166i \(-0.794703\pi\)
−0.799124 + 0.601166i \(0.794703\pi\)
\(368\) 4.47214 0.233126
\(369\) 5.70820 0.297157
\(370\) 0 0
\(371\) −5.47214 −0.284099
\(372\) −6.61803 −0.343129
\(373\) −11.5279 −0.596890 −0.298445 0.954427i \(-0.596468\pi\)
−0.298445 + 0.954427i \(0.596468\pi\)
\(374\) 4.47214 0.231249
\(375\) 0 0
\(376\) 1.70820 0.0880939
\(377\) −54.8328 −2.82403
\(378\) −2.61803 −0.134657
\(379\) −20.1803 −1.03659 −0.518297 0.855201i \(-0.673434\pi\)
−0.518297 + 0.855201i \(0.673434\pi\)
\(380\) 0 0
\(381\) −13.6180 −0.697673
\(382\) 4.29180 0.219587
\(383\) −20.0000 −1.02195 −0.510976 0.859595i \(-0.670716\pi\)
−0.510976 + 0.859595i \(0.670716\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 17.8541 0.908750
\(387\) −7.70820 −0.391830
\(388\) −3.38197 −0.171693
\(389\) −12.3820 −0.627791 −0.313895 0.949458i \(-0.601634\pi\)
−0.313895 + 0.949458i \(0.601634\pi\)
\(390\) 0 0
\(391\) 5.52786 0.279556
\(392\) −0.145898 −0.00736896
\(393\) 17.8885 0.902358
\(394\) −17.0902 −0.860990
\(395\) 0 0
\(396\) 3.61803 0.181813
\(397\) −30.7639 −1.54400 −0.771999 0.635624i \(-0.780743\pi\)
−0.771999 + 0.635624i \(0.780743\pi\)
\(398\) 19.5066 0.977776
\(399\) 14.9443 0.748149
\(400\) 0 0
\(401\) 25.7082 1.28381 0.641903 0.766786i \(-0.278145\pi\)
0.641903 + 0.766786i \(0.278145\pi\)
\(402\) 1.52786 0.0762029
\(403\) −42.8328 −2.13365
\(404\) 4.38197 0.218011
\(405\) 0 0
\(406\) 22.1803 1.10079
\(407\) 28.9443 1.43471
\(408\) −1.23607 −0.0611945
\(409\) 5.79837 0.286711 0.143356 0.989671i \(-0.454211\pi\)
0.143356 + 0.989671i \(0.454211\pi\)
\(410\) 0 0
\(411\) 12.1803 0.600812
\(412\) 14.3262 0.705803
\(413\) −9.47214 −0.466093
\(414\) 4.47214 0.219793
\(415\) 0 0
\(416\) −6.47214 −0.317323
\(417\) −10.4721 −0.512823
\(418\) −20.6525 −1.01015
\(419\) −3.09017 −0.150965 −0.0754823 0.997147i \(-0.524050\pi\)
−0.0754823 + 0.997147i \(0.524050\pi\)
\(420\) 0 0
\(421\) −22.7639 −1.10945 −0.554723 0.832035i \(-0.687176\pi\)
−0.554723 + 0.832035i \(0.687176\pi\)
\(422\) −3.41641 −0.166308
\(423\) 1.70820 0.0830557
\(424\) −2.09017 −0.101508
\(425\) 0 0
\(426\) −5.52786 −0.267826
\(427\) 7.23607 0.350178
\(428\) −11.6180 −0.561579
\(429\) 23.4164 1.13055
\(430\) 0 0
\(431\) 16.8328 0.810808 0.405404 0.914138i \(-0.367131\pi\)
0.405404 + 0.914138i \(0.367131\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 15.5066 0.745199 0.372599 0.927992i \(-0.378467\pi\)
0.372599 + 0.927992i \(0.378467\pi\)
\(434\) 17.3262 0.831686
\(435\) 0 0
\(436\) 17.2361 0.825458
\(437\) −25.5279 −1.22116
\(438\) −3.52786 −0.168568
\(439\) −23.5066 −1.12191 −0.560954 0.827847i \(-0.689566\pi\)
−0.560954 + 0.827847i \(0.689566\pi\)
\(440\) 0 0
\(441\) −0.145898 −0.00694753
\(442\) −8.00000 −0.380521
\(443\) 16.6180 0.789547 0.394773 0.918779i \(-0.370823\pi\)
0.394773 + 0.918779i \(0.370823\pi\)
\(444\) −8.00000 −0.379663
\(445\) 0 0
\(446\) −8.09017 −0.383081
\(447\) −22.0902 −1.04483
\(448\) 2.61803 0.123690
\(449\) −27.7082 −1.30763 −0.653815 0.756654i \(-0.726833\pi\)
−0.653815 + 0.756654i \(0.726833\pi\)
\(450\) 0 0
\(451\) 20.6525 0.972487
\(452\) −19.2361 −0.904789
\(453\) −18.3262 −0.861042
\(454\) −22.2705 −1.04521
\(455\) 0 0
\(456\) 5.70820 0.267311
\(457\) −4.09017 −0.191330 −0.0956650 0.995414i \(-0.530498\pi\)
−0.0956650 + 0.995414i \(0.530498\pi\)
\(458\) −5.52786 −0.258300
\(459\) −1.23607 −0.0576947
\(460\) 0 0
\(461\) 7.56231 0.352212 0.176106 0.984371i \(-0.443650\pi\)
0.176106 + 0.984371i \(0.443650\pi\)
\(462\) −9.47214 −0.440684
\(463\) −22.8328 −1.06113 −0.530565 0.847644i \(-0.678020\pi\)
−0.530565 + 0.847644i \(0.678020\pi\)
\(464\) 8.47214 0.393309
\(465\) 0 0
\(466\) 18.6525 0.864059
\(467\) 10.6738 0.493923 0.246961 0.969025i \(-0.420568\pi\)
0.246961 + 0.969025i \(0.420568\pi\)
\(468\) −6.47214 −0.299175
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) −8.65248 −0.398685
\(472\) −3.61803 −0.166534
\(473\) −27.8885 −1.28232
\(474\) 5.61803 0.258045
\(475\) 0 0
\(476\) 3.23607 0.148325
\(477\) −2.09017 −0.0957023
\(478\) 12.2918 0.562214
\(479\) −29.1246 −1.33074 −0.665369 0.746515i \(-0.731726\pi\)
−0.665369 + 0.746515i \(0.731726\pi\)
\(480\) 0 0
\(481\) −51.7771 −2.36083
\(482\) 9.56231 0.435551
\(483\) −11.7082 −0.532742
\(484\) 2.09017 0.0950077
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 17.7984 0.806521 0.403261 0.915085i \(-0.367877\pi\)
0.403261 + 0.915085i \(0.367877\pi\)
\(488\) 2.76393 0.125117
\(489\) 0.472136 0.0213507
\(490\) 0 0
\(491\) −25.2705 −1.14044 −0.570221 0.821491i \(-0.693142\pi\)
−0.570221 + 0.821491i \(0.693142\pi\)
\(492\) −5.70820 −0.257346
\(493\) 10.4721 0.471641
\(494\) 36.9443 1.66220
\(495\) 0 0
\(496\) 6.61803 0.297158
\(497\) 14.4721 0.649164
\(498\) −2.14590 −0.0961600
\(499\) 35.5967 1.59353 0.796765 0.604290i \(-0.206543\pi\)
0.796765 + 0.604290i \(0.206543\pi\)
\(500\) 0 0
\(501\) −11.7082 −0.523084
\(502\) 13.5623 0.605315
\(503\) 23.8885 1.06514 0.532569 0.846387i \(-0.321227\pi\)
0.532569 + 0.846387i \(0.321227\pi\)
\(504\) 2.61803 0.116617
\(505\) 0 0
\(506\) 16.1803 0.719304
\(507\) −28.8885 −1.28299
\(508\) 13.6180 0.604203
\(509\) −17.5066 −0.775965 −0.387983 0.921667i \(-0.626828\pi\)
−0.387983 + 0.921667i \(0.626828\pi\)
\(510\) 0 0
\(511\) 9.23607 0.408580
\(512\) 1.00000 0.0441942
\(513\) 5.70820 0.252023
\(514\) −22.0000 −0.970378
\(515\) 0 0
\(516\) 7.70820 0.339335
\(517\) 6.18034 0.271811
\(518\) 20.9443 0.920238
\(519\) −5.09017 −0.223434
\(520\) 0 0
\(521\) 14.1803 0.621252 0.310626 0.950532i \(-0.399461\pi\)
0.310626 + 0.950532i \(0.399461\pi\)
\(522\) 8.47214 0.370815
\(523\) 11.0557 0.483433 0.241717 0.970347i \(-0.422290\pi\)
0.241717 + 0.970347i \(0.422290\pi\)
\(524\) −17.8885 −0.781465
\(525\) 0 0
\(526\) −11.7082 −0.510502
\(527\) 8.18034 0.356341
\(528\) −3.61803 −0.157455
\(529\) −3.00000 −0.130435
\(530\) 0 0
\(531\) −3.61803 −0.157009
\(532\) −14.9443 −0.647916
\(533\) −36.9443 −1.60023
\(534\) −3.52786 −0.152666
\(535\) 0 0
\(536\) −1.52786 −0.0659937
\(537\) −9.85410 −0.425236
\(538\) −9.09017 −0.391905
\(539\) −0.527864 −0.0227367
\(540\) 0 0
\(541\) −26.1803 −1.12558 −0.562790 0.826600i \(-0.690272\pi\)
−0.562790 + 0.826600i \(0.690272\pi\)
\(542\) −18.0344 −0.774646
\(543\) 6.65248 0.285485
\(544\) 1.23607 0.0529960
\(545\) 0 0
\(546\) 16.9443 0.725148
\(547\) 9.70820 0.415093 0.207546 0.978225i \(-0.433452\pi\)
0.207546 + 0.978225i \(0.433452\pi\)
\(548\) −12.1803 −0.520318
\(549\) 2.76393 0.117962
\(550\) 0 0
\(551\) −48.3607 −2.06023
\(552\) −4.47214 −0.190347
\(553\) −14.7082 −0.625456
\(554\) 16.9443 0.719893
\(555\) 0 0
\(556\) 10.4721 0.444117
\(557\) −18.3262 −0.776508 −0.388254 0.921552i \(-0.626922\pi\)
−0.388254 + 0.921552i \(0.626922\pi\)
\(558\) 6.61803 0.280164
\(559\) 49.8885 2.11006
\(560\) 0 0
\(561\) −4.47214 −0.188814
\(562\) 5.88854 0.248393
\(563\) 21.2705 0.896445 0.448223 0.893922i \(-0.352057\pi\)
0.448223 + 0.893922i \(0.352057\pi\)
\(564\) −1.70820 −0.0719284
\(565\) 0 0
\(566\) 4.58359 0.192663
\(567\) 2.61803 0.109947
\(568\) 5.52786 0.231944
\(569\) −27.7771 −1.16448 −0.582238 0.813018i \(-0.697823\pi\)
−0.582238 + 0.813018i \(0.697823\pi\)
\(570\) 0 0
\(571\) 7.88854 0.330125 0.165063 0.986283i \(-0.447217\pi\)
0.165063 + 0.986283i \(0.447217\pi\)
\(572\) −23.4164 −0.979089
\(573\) −4.29180 −0.179292
\(574\) 14.9443 0.623762
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 8.97871 0.373789 0.186894 0.982380i \(-0.440158\pi\)
0.186894 + 0.982380i \(0.440158\pi\)
\(578\) −15.4721 −0.643556
\(579\) −17.8541 −0.741991
\(580\) 0 0
\(581\) 5.61803 0.233075
\(582\) 3.38197 0.140187
\(583\) −7.56231 −0.313199
\(584\) 3.52786 0.145984
\(585\) 0 0
\(586\) −22.0902 −0.912537
\(587\) −0.965558 −0.0398528 −0.0199264 0.999801i \(-0.506343\pi\)
−0.0199264 + 0.999801i \(0.506343\pi\)
\(588\) 0.145898 0.00601673
\(589\) −37.7771 −1.55658
\(590\) 0 0
\(591\) 17.0902 0.702996
\(592\) 8.00000 0.328798
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) −3.61803 −0.148450
\(595\) 0 0
\(596\) 22.0902 0.904849
\(597\) −19.5066 −0.798351
\(598\) −28.9443 −1.18362
\(599\) 0.472136 0.0192910 0.00964548 0.999953i \(-0.496930\pi\)
0.00964548 + 0.999953i \(0.496930\pi\)
\(600\) 0 0
\(601\) −7.72949 −0.315292 −0.157646 0.987496i \(-0.550391\pi\)
−0.157646 + 0.987496i \(0.550391\pi\)
\(602\) −20.1803 −0.822489
\(603\) −1.52786 −0.0622194
\(604\) 18.3262 0.745684
\(605\) 0 0
\(606\) −4.38197 −0.178005
\(607\) 6.56231 0.266356 0.133178 0.991092i \(-0.457482\pi\)
0.133178 + 0.991092i \(0.457482\pi\)
\(608\) −5.70820 −0.231498
\(609\) −22.1803 −0.898793
\(610\) 0 0
\(611\) −11.0557 −0.447267
\(612\) 1.23607 0.0499651
\(613\) 48.2492 1.94877 0.974384 0.224891i \(-0.0722027\pi\)
0.974384 + 0.224891i \(0.0722027\pi\)
\(614\) 10.0000 0.403567
\(615\) 0 0
\(616\) 9.47214 0.381643
\(617\) 2.11146 0.0850040 0.0425020 0.999096i \(-0.486467\pi\)
0.0425020 + 0.999096i \(0.486467\pi\)
\(618\) −14.3262 −0.576286
\(619\) −9.41641 −0.378477 −0.189239 0.981931i \(-0.560602\pi\)
−0.189239 + 0.981931i \(0.560602\pi\)
\(620\) 0 0
\(621\) −4.47214 −0.179461
\(622\) −1.05573 −0.0423308
\(623\) 9.23607 0.370035
\(624\) 6.47214 0.259093
\(625\) 0 0
\(626\) −16.2705 −0.650300
\(627\) 20.6525 0.824780
\(628\) 8.65248 0.345271
\(629\) 9.88854 0.394282
\(630\) 0 0
\(631\) 46.4721 1.85003 0.925013 0.379935i \(-0.124054\pi\)
0.925013 + 0.379935i \(0.124054\pi\)
\(632\) −5.61803 −0.223473
\(633\) 3.41641 0.135790
\(634\) −20.5623 −0.816633
\(635\) 0 0
\(636\) 2.09017 0.0828806
\(637\) 0.944272 0.0374134
\(638\) 30.6525 1.21354
\(639\) 5.52786 0.218679
\(640\) 0 0
\(641\) −13.8197 −0.545844 −0.272922 0.962036i \(-0.587990\pi\)
−0.272922 + 0.962036i \(0.587990\pi\)
\(642\) 11.6180 0.458527
\(643\) 21.8885 0.863200 0.431600 0.902065i \(-0.357949\pi\)
0.431600 + 0.902065i \(0.357949\pi\)
\(644\) 11.7082 0.461368
\(645\) 0 0
\(646\) −7.05573 −0.277604
\(647\) −22.9443 −0.902032 −0.451016 0.892516i \(-0.648938\pi\)
−0.451016 + 0.892516i \(0.648938\pi\)
\(648\) 1.00000 0.0392837
\(649\) −13.0902 −0.513834
\(650\) 0 0
\(651\) −17.3262 −0.679069
\(652\) −0.472136 −0.0184903
\(653\) −3.85410 −0.150823 −0.0754113 0.997153i \(-0.524027\pi\)
−0.0754113 + 0.997153i \(0.524027\pi\)
\(654\) −17.2361 −0.673984
\(655\) 0 0
\(656\) 5.70820 0.222868
\(657\) 3.52786 0.137635
\(658\) 4.47214 0.174342
\(659\) −20.6180 −0.803165 −0.401582 0.915823i \(-0.631540\pi\)
−0.401582 + 0.915823i \(0.631540\pi\)
\(660\) 0 0
\(661\) −30.4721 −1.18523 −0.592614 0.805486i \(-0.701904\pi\)
−0.592614 + 0.805486i \(0.701904\pi\)
\(662\) −18.0000 −0.699590
\(663\) 8.00000 0.310694
\(664\) 2.14590 0.0832770
\(665\) 0 0
\(666\) 8.00000 0.309994
\(667\) 37.8885 1.46705
\(668\) 11.7082 0.453004
\(669\) 8.09017 0.312784
\(670\) 0 0
\(671\) 10.0000 0.386046
\(672\) −2.61803 −0.100993
\(673\) −31.4508 −1.21234 −0.606171 0.795335i \(-0.707295\pi\)
−0.606171 + 0.795335i \(0.707295\pi\)
\(674\) 0.909830 0.0350453
\(675\) 0 0
\(676\) 28.8885 1.11110
\(677\) 29.0902 1.11803 0.559013 0.829159i \(-0.311180\pi\)
0.559013 + 0.829159i \(0.311180\pi\)
\(678\) 19.2361 0.738757
\(679\) −8.85410 −0.339789
\(680\) 0 0
\(681\) 22.2705 0.853408
\(682\) 23.9443 0.916874
\(683\) 33.5066 1.28209 0.641047 0.767502i \(-0.278500\pi\)
0.641047 + 0.767502i \(0.278500\pi\)
\(684\) −5.70820 −0.218259
\(685\) 0 0
\(686\) −18.7082 −0.714283
\(687\) 5.52786 0.210901
\(688\) −7.70820 −0.293873
\(689\) 13.5279 0.515371
\(690\) 0 0
\(691\) 11.2361 0.427440 0.213720 0.976895i \(-0.431442\pi\)
0.213720 + 0.976895i \(0.431442\pi\)
\(692\) 5.09017 0.193499
\(693\) 9.47214 0.359817
\(694\) 20.5623 0.780534
\(695\) 0 0
\(696\) −8.47214 −0.321135
\(697\) 7.05573 0.267255
\(698\) −27.8885 −1.05560
\(699\) −18.6525 −0.705501
\(700\) 0 0
\(701\) 40.8328 1.54223 0.771117 0.636693i \(-0.219698\pi\)
0.771117 + 0.636693i \(0.219698\pi\)
\(702\) 6.47214 0.244275
\(703\) −45.6656 −1.72231
\(704\) 3.61803 0.136360
\(705\) 0 0
\(706\) −13.2361 −0.498146
\(707\) 11.4721 0.431454
\(708\) 3.61803 0.135974
\(709\) −43.7082 −1.64150 −0.820748 0.571290i \(-0.806443\pi\)
−0.820748 + 0.571290i \(0.806443\pi\)
\(710\) 0 0
\(711\) −5.61803 −0.210693
\(712\) 3.52786 0.132212
\(713\) 29.5967 1.10841
\(714\) −3.23607 −0.121107
\(715\) 0 0
\(716\) 9.85410 0.368265
\(717\) −12.2918 −0.459046
\(718\) 22.1803 0.827763
\(719\) −16.5836 −0.618464 −0.309232 0.950987i \(-0.600072\pi\)
−0.309232 + 0.950987i \(0.600072\pi\)
\(720\) 0 0
\(721\) 37.5066 1.39682
\(722\) 13.5836 0.505529
\(723\) −9.56231 −0.355626
\(724\) −6.65248 −0.247237
\(725\) 0 0
\(726\) −2.09017 −0.0775735
\(727\) −8.58359 −0.318348 −0.159174 0.987251i \(-0.550883\pi\)
−0.159174 + 0.987251i \(0.550883\pi\)
\(728\) −16.9443 −0.627996
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −9.52786 −0.352401
\(732\) −2.76393 −0.102158
\(733\) −35.8885 −1.32557 −0.662787 0.748808i \(-0.730626\pi\)
−0.662787 + 0.748808i \(0.730626\pi\)
\(734\) −30.6180 −1.13013
\(735\) 0 0
\(736\) 4.47214 0.164845
\(737\) −5.52786 −0.203621
\(738\) 5.70820 0.210122
\(739\) −48.1803 −1.77234 −0.886171 0.463358i \(-0.846644\pi\)
−0.886171 + 0.463358i \(0.846644\pi\)
\(740\) 0 0
\(741\) −36.9443 −1.35718
\(742\) −5.47214 −0.200888
\(743\) −39.0132 −1.43125 −0.715627 0.698483i \(-0.753859\pi\)
−0.715627 + 0.698483i \(0.753859\pi\)
\(744\) −6.61803 −0.242629
\(745\) 0 0
\(746\) −11.5279 −0.422065
\(747\) 2.14590 0.0785143
\(748\) 4.47214 0.163517
\(749\) −30.4164 −1.11139
\(750\) 0 0
\(751\) 24.7984 0.904906 0.452453 0.891788i \(-0.350549\pi\)
0.452453 + 0.891788i \(0.350549\pi\)
\(752\) 1.70820 0.0622918
\(753\) −13.5623 −0.494238
\(754\) −54.8328 −1.99689
\(755\) 0 0
\(756\) −2.61803 −0.0952170
\(757\) −17.1246 −0.622405 −0.311202 0.950344i \(-0.600732\pi\)
−0.311202 + 0.950344i \(0.600732\pi\)
\(758\) −20.1803 −0.732983
\(759\) −16.1803 −0.587309
\(760\) 0 0
\(761\) 1.41641 0.0513447 0.0256724 0.999670i \(-0.491827\pi\)
0.0256724 + 0.999670i \(0.491827\pi\)
\(762\) −13.6180 −0.493329
\(763\) 45.1246 1.63362
\(764\) 4.29180 0.155272
\(765\) 0 0
\(766\) −20.0000 −0.722629
\(767\) 23.4164 0.845517
\(768\) −1.00000 −0.0360844
\(769\) 24.6869 0.890233 0.445117 0.895473i \(-0.353162\pi\)
0.445117 + 0.895473i \(0.353162\pi\)
\(770\) 0 0
\(771\) 22.0000 0.792311
\(772\) 17.8541 0.642583
\(773\) −1.14590 −0.0412151 −0.0206075 0.999788i \(-0.506560\pi\)
−0.0206075 + 0.999788i \(0.506560\pi\)
\(774\) −7.70820 −0.277066
\(775\) 0 0
\(776\) −3.38197 −0.121406
\(777\) −20.9443 −0.751372
\(778\) −12.3820 −0.443915
\(779\) −32.5836 −1.16743
\(780\) 0 0
\(781\) 20.0000 0.715656
\(782\) 5.52786 0.197676
\(783\) −8.47214 −0.302769
\(784\) −0.145898 −0.00521064
\(785\) 0 0
\(786\) 17.8885 0.638063
\(787\) 28.0689 1.00055 0.500274 0.865867i \(-0.333233\pi\)
0.500274 + 0.865867i \(0.333233\pi\)
\(788\) −17.0902 −0.608812
\(789\) 11.7082 0.416823
\(790\) 0 0
\(791\) −50.3607 −1.79062
\(792\) 3.61803 0.128561
\(793\) −17.8885 −0.635241
\(794\) −30.7639 −1.09177
\(795\) 0 0
\(796\) 19.5066 0.691392
\(797\) 1.50658 0.0533657 0.0266829 0.999644i \(-0.491506\pi\)
0.0266829 + 0.999644i \(0.491506\pi\)
\(798\) 14.9443 0.529021
\(799\) 2.11146 0.0746979
\(800\) 0 0
\(801\) 3.52786 0.124651
\(802\) 25.7082 0.907788
\(803\) 12.7639 0.450429
\(804\) 1.52786 0.0538836
\(805\) 0 0
\(806\) −42.8328 −1.50872
\(807\) 9.09017 0.319989
\(808\) 4.38197 0.154157
\(809\) −30.8328 −1.08402 −0.542012 0.840371i \(-0.682337\pi\)
−0.542012 + 0.840371i \(0.682337\pi\)
\(810\) 0 0
\(811\) −5.70820 −0.200442 −0.100221 0.994965i \(-0.531955\pi\)
−0.100221 + 0.994965i \(0.531955\pi\)
\(812\) 22.1803 0.778377
\(813\) 18.0344 0.632495
\(814\) 28.9443 1.01450
\(815\) 0 0
\(816\) −1.23607 −0.0432710
\(817\) 44.0000 1.53937
\(818\) 5.79837 0.202735
\(819\) −16.9443 −0.592081
\(820\) 0 0
\(821\) −45.0902 −1.57366 −0.786829 0.617171i \(-0.788279\pi\)
−0.786829 + 0.617171i \(0.788279\pi\)
\(822\) 12.1803 0.424838
\(823\) 2.96556 0.103373 0.0516864 0.998663i \(-0.483540\pi\)
0.0516864 + 0.998663i \(0.483540\pi\)
\(824\) 14.3262 0.499078
\(825\) 0 0
\(826\) −9.47214 −0.329578
\(827\) 44.1033 1.53362 0.766811 0.641872i \(-0.221842\pi\)
0.766811 + 0.641872i \(0.221842\pi\)
\(828\) 4.47214 0.155417
\(829\) 25.8885 0.899146 0.449573 0.893244i \(-0.351576\pi\)
0.449573 + 0.893244i \(0.351576\pi\)
\(830\) 0 0
\(831\) −16.9443 −0.587790
\(832\) −6.47214 −0.224381
\(833\) −0.180340 −0.00624841
\(834\) −10.4721 −0.362620
\(835\) 0 0
\(836\) −20.6525 −0.714281
\(837\) −6.61803 −0.228753
\(838\) −3.09017 −0.106748
\(839\) 6.36068 0.219595 0.109798 0.993954i \(-0.464980\pi\)
0.109798 + 0.993954i \(0.464980\pi\)
\(840\) 0 0
\(841\) 42.7771 1.47507
\(842\) −22.7639 −0.784497
\(843\) −5.88854 −0.202812
\(844\) −3.41641 −0.117598
\(845\) 0 0
\(846\) 1.70820 0.0587293
\(847\) 5.47214 0.188025
\(848\) −2.09017 −0.0717767
\(849\) −4.58359 −0.157308
\(850\) 0 0
\(851\) 35.7771 1.22642
\(852\) −5.52786 −0.189382
\(853\) −43.5967 −1.49272 −0.746362 0.665540i \(-0.768201\pi\)
−0.746362 + 0.665540i \(0.768201\pi\)
\(854\) 7.23607 0.247613
\(855\) 0 0
\(856\) −11.6180 −0.397096
\(857\) −16.0689 −0.548903 −0.274451 0.961601i \(-0.588496\pi\)
−0.274451 + 0.961601i \(0.588496\pi\)
\(858\) 23.4164 0.799423
\(859\) −2.29180 −0.0781951 −0.0390975 0.999235i \(-0.512448\pi\)
−0.0390975 + 0.999235i \(0.512448\pi\)
\(860\) 0 0
\(861\) −14.9443 −0.509299
\(862\) 16.8328 0.573328
\(863\) −10.1803 −0.346543 −0.173271 0.984874i \(-0.555434\pi\)
−0.173271 + 0.984874i \(0.555434\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) 15.5066 0.526935
\(867\) 15.4721 0.525461
\(868\) 17.3262 0.588091
\(869\) −20.3262 −0.689520
\(870\) 0 0
\(871\) 9.88854 0.335061
\(872\) 17.2361 0.583687
\(873\) −3.38197 −0.114462
\(874\) −25.5279 −0.863493
\(875\) 0 0
\(876\) −3.52786 −0.119195
\(877\) −37.1246 −1.25361 −0.626805 0.779177i \(-0.715638\pi\)
−0.626805 + 0.779177i \(0.715638\pi\)
\(878\) −23.5066 −0.793309
\(879\) 22.0902 0.745083
\(880\) 0 0
\(881\) −23.5967 −0.794995 −0.397497 0.917603i \(-0.630121\pi\)
−0.397497 + 0.917603i \(0.630121\pi\)
\(882\) −0.145898 −0.00491264
\(883\) −30.0689 −1.01190 −0.505949 0.862563i \(-0.668858\pi\)
−0.505949 + 0.862563i \(0.668858\pi\)
\(884\) −8.00000 −0.269069
\(885\) 0 0
\(886\) 16.6180 0.558294
\(887\) 23.4164 0.786246 0.393123 0.919486i \(-0.371395\pi\)
0.393123 + 0.919486i \(0.371395\pi\)
\(888\) −8.00000 −0.268462
\(889\) 35.6525 1.19575
\(890\) 0 0
\(891\) 3.61803 0.121209
\(892\) −8.09017 −0.270879
\(893\) −9.75078 −0.326297
\(894\) −22.0902 −0.738806
\(895\) 0 0
\(896\) 2.61803 0.0874624
\(897\) 28.9443 0.966421
\(898\) −27.7082 −0.924635
\(899\) 56.0689 1.87000
\(900\) 0 0
\(901\) −2.58359 −0.0860719
\(902\) 20.6525 0.687652
\(903\) 20.1803 0.671560
\(904\) −19.2361 −0.639782
\(905\) 0 0
\(906\) −18.3262 −0.608848
\(907\) 30.4721 1.01181 0.505905 0.862589i \(-0.331159\pi\)
0.505905 + 0.862589i \(0.331159\pi\)
\(908\) −22.2705 −0.739073
\(909\) 4.38197 0.145341
\(910\) 0 0
\(911\) 18.1803 0.602342 0.301171 0.953570i \(-0.402623\pi\)
0.301171 + 0.953570i \(0.402623\pi\)
\(912\) 5.70820 0.189018
\(913\) 7.76393 0.256949
\(914\) −4.09017 −0.135291
\(915\) 0 0
\(916\) −5.52786 −0.182646
\(917\) −46.8328 −1.54656
\(918\) −1.23607 −0.0407963
\(919\) −40.7214 −1.34327 −0.671637 0.740881i \(-0.734408\pi\)
−0.671637 + 0.740881i \(0.734408\pi\)
\(920\) 0 0
\(921\) −10.0000 −0.329511
\(922\) 7.56231 0.249051
\(923\) −35.7771 −1.17762
\(924\) −9.47214 −0.311610
\(925\) 0 0
\(926\) −22.8328 −0.750333
\(927\) 14.3262 0.470535
\(928\) 8.47214 0.278111
\(929\) −19.0132 −0.623801 −0.311901 0.950115i \(-0.600966\pi\)
−0.311901 + 0.950115i \(0.600966\pi\)
\(930\) 0 0
\(931\) 0.832816 0.0272944
\(932\) 18.6525 0.610982
\(933\) 1.05573 0.0345630
\(934\) 10.6738 0.349256
\(935\) 0 0
\(936\) −6.47214 −0.211548
\(937\) −8.68692 −0.283789 −0.141895 0.989882i \(-0.545319\pi\)
−0.141895 + 0.989882i \(0.545319\pi\)
\(938\) −4.00000 −0.130605
\(939\) 16.2705 0.530968
\(940\) 0 0
\(941\) −4.43769 −0.144665 −0.0723323 0.997381i \(-0.523044\pi\)
−0.0723323 + 0.997381i \(0.523044\pi\)
\(942\) −8.65248 −0.281913
\(943\) 25.5279 0.831302
\(944\) −3.61803 −0.117757
\(945\) 0 0
\(946\) −27.8885 −0.906735
\(947\) −33.5623 −1.09063 −0.545314 0.838232i \(-0.683590\pi\)
−0.545314 + 0.838232i \(0.683590\pi\)
\(948\) 5.61803 0.182465
\(949\) −22.8328 −0.741185
\(950\) 0 0
\(951\) 20.5623 0.666778
\(952\) 3.23607 0.104882
\(953\) 5.30495 0.171844 0.0859221 0.996302i \(-0.472616\pi\)
0.0859221 + 0.996302i \(0.472616\pi\)
\(954\) −2.09017 −0.0676718
\(955\) 0 0
\(956\) 12.2918 0.397545
\(957\) −30.6525 −0.990854
\(958\) −29.1246 −0.940973
\(959\) −31.8885 −1.02973
\(960\) 0 0
\(961\) 12.7984 0.412851
\(962\) −51.7771 −1.66936
\(963\) −11.6180 −0.374386
\(964\) 9.56231 0.307981
\(965\) 0 0
\(966\) −11.7082 −0.376705
\(967\) 10.9098 0.350836 0.175418 0.984494i \(-0.443872\pi\)
0.175418 + 0.984494i \(0.443872\pi\)
\(968\) 2.09017 0.0671806
\(969\) 7.05573 0.226663
\(970\) 0 0
\(971\) −14.2148 −0.456174 −0.228087 0.973641i \(-0.573247\pi\)
−0.228087 + 0.973641i \(0.573247\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 27.4164 0.878930
\(974\) 17.7984 0.570297
\(975\) 0 0
\(976\) 2.76393 0.0884713
\(977\) −0.763932 −0.0244404 −0.0122202 0.999925i \(-0.503890\pi\)
−0.0122202 + 0.999925i \(0.503890\pi\)
\(978\) 0.472136 0.0150972
\(979\) 12.7639 0.407937
\(980\) 0 0
\(981\) 17.2361 0.550305
\(982\) −25.2705 −0.806414
\(983\) 40.1803 1.28155 0.640777 0.767727i \(-0.278612\pi\)
0.640777 + 0.767727i \(0.278612\pi\)
\(984\) −5.70820 −0.181971
\(985\) 0 0
\(986\) 10.4721 0.333501
\(987\) −4.47214 −0.142350
\(988\) 36.9443 1.17535
\(989\) −34.4721 −1.09615
\(990\) 0 0
\(991\) 29.4508 0.935537 0.467769 0.883851i \(-0.345058\pi\)
0.467769 + 0.883851i \(0.345058\pi\)
\(992\) 6.61803 0.210123
\(993\) 18.0000 0.571213
\(994\) 14.4721 0.459028
\(995\) 0 0
\(996\) −2.14590 −0.0679954
\(997\) −5.59675 −0.177251 −0.0886254 0.996065i \(-0.528247\pi\)
−0.0886254 + 0.996065i \(0.528247\pi\)
\(998\) 35.5967 1.12680
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3750.2.a.f.1.2 2
5.2 odd 4 3750.2.c.b.1249.4 4
5.3 odd 4 3750.2.c.b.1249.1 4
5.4 even 2 3750.2.a.d.1.1 2
25.3 odd 20 750.2.h.b.49.1 8
25.4 even 10 750.2.g.b.451.1 4
25.6 even 5 150.2.g.a.61.1 4
25.8 odd 20 750.2.h.b.199.2 8
25.17 odd 20 750.2.h.b.199.1 8
25.19 even 10 750.2.g.b.301.1 4
25.21 even 5 150.2.g.a.91.1 yes 4
25.22 odd 20 750.2.h.b.49.2 8
75.56 odd 10 450.2.h.c.361.1 4
75.71 odd 10 450.2.h.c.91.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.2.g.a.61.1 4 25.6 even 5
150.2.g.a.91.1 yes 4 25.21 even 5
450.2.h.c.91.1 4 75.71 odd 10
450.2.h.c.361.1 4 75.56 odd 10
750.2.g.b.301.1 4 25.19 even 10
750.2.g.b.451.1 4 25.4 even 10
750.2.h.b.49.1 8 25.3 odd 20
750.2.h.b.49.2 8 25.22 odd 20
750.2.h.b.199.1 8 25.17 odd 20
750.2.h.b.199.2 8 25.8 odd 20
3750.2.a.d.1.1 2 5.4 even 2
3750.2.a.f.1.2 2 1.1 even 1 trivial
3750.2.c.b.1249.1 4 5.3 odd 4
3750.2.c.b.1249.4 4 5.2 odd 4