Properties

Label 450.2.h.c.361.1
Level $450$
Weight $2$
Character 450.361
Analytic conductor $3.593$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,2,Mod(91,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.91");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.h (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59326809096\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 150)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 361.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 450.361
Dual form 450.2.h.c.91.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 - 0.587785i) q^{2} +(0.309017 - 0.951057i) q^{4} +(-1.80902 + 1.31433i) q^{5} +2.61803 q^{7} +(-0.309017 - 0.951057i) q^{8} +(-0.690983 + 2.12663i) q^{10} +(2.92705 - 2.12663i) q^{11} +(5.23607 + 3.80423i) q^{13} +(2.11803 - 1.53884i) q^{14} +(-0.809017 - 0.587785i) q^{16} +(-0.381966 - 1.17557i) q^{17} +(-1.76393 - 5.42882i) q^{19} +(0.690983 + 2.12663i) q^{20} +(1.11803 - 3.44095i) q^{22} +(3.61803 - 2.62866i) q^{23} +(1.54508 - 4.75528i) q^{25} +6.47214 q^{26} +(0.809017 - 2.48990i) q^{28} +(-2.61803 + 8.05748i) q^{29} +(2.04508 + 6.29412i) q^{31} -1.00000 q^{32} +(-1.00000 - 0.726543i) q^{34} +(-4.73607 + 3.44095i) q^{35} +(-6.47214 - 4.70228i) q^{37} +(-4.61803 - 3.35520i) q^{38} +(1.80902 + 1.31433i) q^{40} +(4.61803 + 3.35520i) q^{41} -7.70820 q^{43} +(-1.11803 - 3.44095i) q^{44} +(1.38197 - 4.25325i) q^{46} +(-0.527864 + 1.62460i) q^{47} -0.145898 q^{49} +(-1.54508 - 4.75528i) q^{50} +(5.23607 - 3.80423i) q^{52} +(0.645898 - 1.98787i) q^{53} +(-2.50000 + 7.69421i) q^{55} +(-0.809017 - 2.48990i) q^{56} +(2.61803 + 8.05748i) q^{58} +(-2.92705 - 2.12663i) q^{59} +(-2.23607 + 1.62460i) q^{61} +(5.35410 + 3.88998i) q^{62} +(-0.809017 + 0.587785i) q^{64} -14.4721 q^{65} +(-0.472136 - 1.45309i) q^{67} -1.23607 q^{68} +(-1.80902 + 5.56758i) q^{70} +(-1.70820 + 5.25731i) q^{71} +(-2.85410 + 2.07363i) q^{73} -8.00000 q^{74} -5.70820 q^{76} +(7.66312 - 5.56758i) q^{77} +(-1.73607 + 5.34307i) q^{79} +2.23607 q^{80} +5.70820 q^{82} +(-0.663119 - 2.04087i) q^{83} +(2.23607 + 1.62460i) q^{85} +(-6.23607 + 4.53077i) q^{86} +(-2.92705 - 2.12663i) q^{88} +(2.85410 - 2.07363i) q^{89} +(13.7082 + 9.95959i) q^{91} +(-1.38197 - 4.25325i) q^{92} +(0.527864 + 1.62460i) q^{94} +(10.3262 + 7.50245i) q^{95} +(-1.04508 + 3.21644i) q^{97} +(-0.118034 + 0.0857567i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - q^{4} - 5 q^{5} + 6 q^{7} + q^{8} - 5 q^{10} + 5 q^{11} + 12 q^{13} + 4 q^{14} - q^{16} - 6 q^{17} - 16 q^{19} + 5 q^{20} + 10 q^{23} - 5 q^{25} + 8 q^{26} + q^{28} - 6 q^{29} - 3 q^{31}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 0.587785i 0.572061 0.415627i
\(3\) 0 0
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) −1.80902 + 1.31433i −0.809017 + 0.587785i
\(6\) 0 0
\(7\) 2.61803 0.989524 0.494762 0.869029i \(-0.335255\pi\)
0.494762 + 0.869029i \(0.335255\pi\)
\(8\) −0.309017 0.951057i −0.109254 0.336249i
\(9\) 0 0
\(10\) −0.690983 + 2.12663i −0.218508 + 0.672499i
\(11\) 2.92705 2.12663i 0.882539 0.641202i −0.0513829 0.998679i \(-0.516363\pi\)
0.933922 + 0.357477i \(0.116363\pi\)
\(12\) 0 0
\(13\) 5.23607 + 3.80423i 1.45222 + 1.05510i 0.985305 + 0.170802i \(0.0546359\pi\)
0.466919 + 0.884300i \(0.345364\pi\)
\(14\) 2.11803 1.53884i 0.566068 0.411273i
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) −0.381966 1.17557i −0.0926404 0.285118i 0.893991 0.448085i \(-0.147894\pi\)
−0.986632 + 0.162967i \(0.947894\pi\)
\(18\) 0 0
\(19\) −1.76393 5.42882i −0.404674 1.24546i −0.921167 0.389167i \(-0.872763\pi\)
0.516494 0.856291i \(-0.327237\pi\)
\(20\) 0.690983 + 2.12663i 0.154508 + 0.475528i
\(21\) 0 0
\(22\) 1.11803 3.44095i 0.238366 0.733614i
\(23\) 3.61803 2.62866i 0.754412 0.548113i −0.142779 0.989755i \(-0.545604\pi\)
0.897191 + 0.441642i \(0.145604\pi\)
\(24\) 0 0
\(25\) 1.54508 4.75528i 0.309017 0.951057i
\(26\) 6.47214 1.26929
\(27\) 0 0
\(28\) 0.809017 2.48990i 0.152890 0.470547i
\(29\) −2.61803 + 8.05748i −0.486157 + 1.49624i 0.344142 + 0.938918i \(0.388170\pi\)
−0.830299 + 0.557319i \(0.811830\pi\)
\(30\) 0 0
\(31\) 2.04508 + 6.29412i 0.367308 + 1.13046i 0.948523 + 0.316708i \(0.102578\pi\)
−0.581215 + 0.813750i \(0.697422\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −1.00000 0.726543i −0.171499 0.124601i
\(35\) −4.73607 + 3.44095i −0.800542 + 0.581628i
\(36\) 0 0
\(37\) −6.47214 4.70228i −1.06401 0.773050i −0.0891861 0.996015i \(-0.528427\pi\)
−0.974827 + 0.222965i \(0.928427\pi\)
\(38\) −4.61803 3.35520i −0.749144 0.544285i
\(39\) 0 0
\(40\) 1.80902 + 1.31433i 0.286031 + 0.207813i
\(41\) 4.61803 + 3.35520i 0.721216 + 0.523994i 0.886772 0.462206i \(-0.152942\pi\)
−0.165557 + 0.986200i \(0.552942\pi\)
\(42\) 0 0
\(43\) −7.70820 −1.17549 −0.587745 0.809046i \(-0.699984\pi\)
−0.587745 + 0.809046i \(0.699984\pi\)
\(44\) −1.11803 3.44095i −0.168550 0.518743i
\(45\) 0 0
\(46\) 1.38197 4.25325i 0.203760 0.627108i
\(47\) −0.527864 + 1.62460i −0.0769969 + 0.236972i −0.982145 0.188123i \(-0.939759\pi\)
0.905149 + 0.425096i \(0.139759\pi\)
\(48\) 0 0
\(49\) −0.145898 −0.0208426
\(50\) −1.54508 4.75528i −0.218508 0.672499i
\(51\) 0 0
\(52\) 5.23607 3.80423i 0.726112 0.527551i
\(53\) 0.645898 1.98787i 0.0887209 0.273055i −0.896846 0.442344i \(-0.854147\pi\)
0.985566 + 0.169289i \(0.0541471\pi\)
\(54\) 0 0
\(55\) −2.50000 + 7.69421i −0.337100 + 1.03749i
\(56\) −0.809017 2.48990i −0.108109 0.332727i
\(57\) 0 0
\(58\) 2.61803 + 8.05748i 0.343765 + 1.05800i
\(59\) −2.92705 2.12663i −0.381070 0.276863i 0.380717 0.924692i \(-0.375677\pi\)
−0.761786 + 0.647829i \(0.775677\pi\)
\(60\) 0 0
\(61\) −2.23607 + 1.62460i −0.286299 + 0.208009i −0.721660 0.692247i \(-0.756621\pi\)
0.435361 + 0.900256i \(0.356621\pi\)
\(62\) 5.35410 + 3.88998i 0.679972 + 0.494028i
\(63\) 0 0
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) −14.4721 −1.79505
\(66\) 0 0
\(67\) −0.472136 1.45309i −0.0576806 0.177523i 0.918065 0.396430i \(-0.129751\pi\)
−0.975746 + 0.218907i \(0.929751\pi\)
\(68\) −1.23607 −0.149895
\(69\) 0 0
\(70\) −1.80902 + 5.56758i −0.216219 + 0.665453i
\(71\) −1.70820 + 5.25731i −0.202727 + 0.623928i 0.797073 + 0.603884i \(0.206381\pi\)
−0.999799 + 0.0200445i \(0.993619\pi\)
\(72\) 0 0
\(73\) −2.85410 + 2.07363i −0.334047 + 0.242700i −0.742146 0.670238i \(-0.766192\pi\)
0.408099 + 0.912938i \(0.366192\pi\)
\(74\) −8.00000 −0.929981
\(75\) 0 0
\(76\) −5.70820 −0.654776
\(77\) 7.66312 5.56758i 0.873293 0.634485i
\(78\) 0 0
\(79\) −1.73607 + 5.34307i −0.195323 + 0.601142i 0.804650 + 0.593750i \(0.202353\pi\)
−0.999973 + 0.00739236i \(0.997647\pi\)
\(80\) 2.23607 0.250000
\(81\) 0 0
\(82\) 5.70820 0.630366
\(83\) −0.663119 2.04087i −0.0727868 0.224015i 0.908044 0.418874i \(-0.137575\pi\)
−0.980831 + 0.194859i \(0.937575\pi\)
\(84\) 0 0
\(85\) 2.23607 + 1.62460i 0.242536 + 0.176212i
\(86\) −6.23607 + 4.53077i −0.672453 + 0.488565i
\(87\) 0 0
\(88\) −2.92705 2.12663i −0.312025 0.226699i
\(89\) 2.85410 2.07363i 0.302534 0.219804i −0.426152 0.904651i \(-0.640131\pi\)
0.728686 + 0.684848i \(0.240131\pi\)
\(90\) 0 0
\(91\) 13.7082 + 9.95959i 1.43701 + 1.04405i
\(92\) −1.38197 4.25325i −0.144080 0.443432i
\(93\) 0 0
\(94\) 0.527864 + 1.62460i 0.0544450 + 0.167565i
\(95\) 10.3262 + 7.50245i 1.05945 + 0.769735i
\(96\) 0 0
\(97\) −1.04508 + 3.21644i −0.106112 + 0.326580i −0.989990 0.141138i \(-0.954924\pi\)
0.883878 + 0.467718i \(0.154924\pi\)
\(98\) −0.118034 + 0.0857567i −0.0119232 + 0.00866274i
\(99\) 0 0
\(100\) −4.04508 2.93893i −0.404508 0.293893i
\(101\) −4.38197 −0.436022 −0.218011 0.975946i \(-0.569957\pi\)
−0.218011 + 0.975946i \(0.569957\pi\)
\(102\) 0 0
\(103\) 4.42705 13.6251i 0.436210 1.34252i −0.455631 0.890169i \(-0.650586\pi\)
0.891841 0.452348i \(-0.149414\pi\)
\(104\) 2.00000 6.15537i 0.196116 0.603583i
\(105\) 0 0
\(106\) −0.645898 1.98787i −0.0627352 0.193079i
\(107\) 11.6180 1.12316 0.561579 0.827423i \(-0.310194\pi\)
0.561579 + 0.827423i \(0.310194\pi\)
\(108\) 0 0
\(109\) −13.9443 10.1311i −1.33562 0.970384i −0.999593 0.0285313i \(-0.990917\pi\)
−0.336026 0.941853i \(-0.609083\pi\)
\(110\) 2.50000 + 7.69421i 0.238366 + 0.733614i
\(111\) 0 0
\(112\) −2.11803 1.53884i −0.200135 0.145407i
\(113\) −15.5623 11.3067i −1.46398 1.06364i −0.982304 0.187292i \(-0.940029\pi\)
−0.481674 0.876350i \(-0.659971\pi\)
\(114\) 0 0
\(115\) −3.09017 + 9.51057i −0.288160 + 0.886865i
\(116\) 6.85410 + 4.97980i 0.636387 + 0.462363i
\(117\) 0 0
\(118\) −3.61803 −0.333067
\(119\) −1.00000 3.07768i −0.0916698 0.282131i
\(120\) 0 0
\(121\) 0.645898 1.98787i 0.0587180 0.180715i
\(122\) −0.854102 + 2.62866i −0.0773268 + 0.237987i
\(123\) 0 0
\(124\) 6.61803 0.594317
\(125\) 3.45492 + 10.6331i 0.309017 + 0.951057i
\(126\) 0 0
\(127\) −11.0172 + 8.00448i −0.977620 + 0.710283i −0.957176 0.289508i \(-0.906508\pi\)
−0.0204448 + 0.999791i \(0.506508\pi\)
\(128\) −0.309017 + 0.951057i −0.0273135 + 0.0840623i
\(129\) 0 0
\(130\) −11.7082 + 8.50651i −1.02688 + 0.746070i
\(131\) 5.52786 + 17.0130i 0.482972 + 1.48643i 0.834897 + 0.550406i \(0.185527\pi\)
−0.351925 + 0.936028i \(0.614473\pi\)
\(132\) 0 0
\(133\) −4.61803 14.2128i −0.400434 1.23241i
\(134\) −1.23607 0.898056i −0.106780 0.0775802i
\(135\) 0 0
\(136\) −1.00000 + 0.726543i −0.0857493 + 0.0623005i
\(137\) −9.85410 7.15942i −0.841893 0.611671i 0.0810060 0.996714i \(-0.474187\pi\)
−0.922899 + 0.385043i \(0.874187\pi\)
\(138\) 0 0
\(139\) −8.47214 + 6.15537i −0.718597 + 0.522091i −0.885936 0.463808i \(-0.846483\pi\)
0.167339 + 0.985899i \(0.446483\pi\)
\(140\) 1.80902 + 5.56758i 0.152890 + 0.470547i
\(141\) 0 0
\(142\) 1.70820 + 5.25731i 0.143349 + 0.441184i
\(143\) 23.4164 1.95818
\(144\) 0 0
\(145\) −5.85410 18.0171i −0.486157 1.49624i
\(146\) −1.09017 + 3.35520i −0.0902231 + 0.277678i
\(147\) 0 0
\(148\) −6.47214 + 4.70228i −0.532006 + 0.386525i
\(149\) −22.0902 −1.80970 −0.904849 0.425733i \(-0.860016\pi\)
−0.904849 + 0.425733i \(0.860016\pi\)
\(150\) 0 0
\(151\) 18.3262 1.49137 0.745684 0.666300i \(-0.232123\pi\)
0.745684 + 0.666300i \(0.232123\pi\)
\(152\) −4.61803 + 3.35520i −0.374572 + 0.272143i
\(153\) 0 0
\(154\) 2.92705 9.00854i 0.235868 0.725929i
\(155\) −11.9721 8.69827i −0.961625 0.698662i
\(156\) 0 0
\(157\) 8.65248 0.690543 0.345271 0.938503i \(-0.387787\pi\)
0.345271 + 0.938503i \(0.387787\pi\)
\(158\) 1.73607 + 5.34307i 0.138114 + 0.425072i
\(159\) 0 0
\(160\) 1.80902 1.31433i 0.143015 0.103907i
\(161\) 9.47214 6.88191i 0.746509 0.542370i
\(162\) 0 0
\(163\) 0.381966 + 0.277515i 0.0299179 + 0.0217366i 0.602644 0.798010i \(-0.294114\pi\)
−0.572726 + 0.819747i \(0.694114\pi\)
\(164\) 4.61803 3.35520i 0.360608 0.261997i
\(165\) 0 0
\(166\) −1.73607 1.26133i −0.134745 0.0978980i
\(167\) −3.61803 11.1352i −0.279972 0.861665i −0.987861 0.155341i \(-0.950352\pi\)
0.707889 0.706324i \(-0.249648\pi\)
\(168\) 0 0
\(169\) 8.92705 + 27.4746i 0.686696 + 2.11343i
\(170\) 2.76393 0.211984
\(171\) 0 0
\(172\) −2.38197 + 7.33094i −0.181623 + 0.558979i
\(173\) 4.11803 2.99193i 0.313088 0.227472i −0.420132 0.907463i \(-0.638016\pi\)
0.733221 + 0.679991i \(0.238016\pi\)
\(174\) 0 0
\(175\) 4.04508 12.4495i 0.305780 0.941093i
\(176\) −3.61803 −0.272720
\(177\) 0 0
\(178\) 1.09017 3.35520i 0.0817117 0.251483i
\(179\) −3.04508 + 9.37181i −0.227600 + 0.700482i 0.770417 + 0.637540i \(0.220048\pi\)
−0.998017 + 0.0629414i \(0.979952\pi\)
\(180\) 0 0
\(181\) −2.05573 6.32688i −0.152801 0.470273i 0.845130 0.534560i \(-0.179523\pi\)
−0.997931 + 0.0642869i \(0.979523\pi\)
\(182\) 16.9443 1.25599
\(183\) 0 0
\(184\) −3.61803 2.62866i −0.266725 0.193787i
\(185\) 17.8885 1.31519
\(186\) 0 0
\(187\) −3.61803 2.62866i −0.264577 0.192226i
\(188\) 1.38197 + 1.00406i 0.100790 + 0.0732284i
\(189\) 0 0
\(190\) 12.7639 0.925993
\(191\) 3.47214 + 2.52265i 0.251235 + 0.182533i 0.706274 0.707939i \(-0.250375\pi\)
−0.455039 + 0.890472i \(0.650375\pi\)
\(192\) 0 0
\(193\) 17.8541 1.28517 0.642583 0.766216i \(-0.277863\pi\)
0.642583 + 0.766216i \(0.277863\pi\)
\(194\) 1.04508 + 3.21644i 0.0750327 + 0.230927i
\(195\) 0 0
\(196\) −0.0450850 + 0.138757i −0.00322036 + 0.00991123i
\(197\) 5.28115 16.2537i 0.376267 1.15803i −0.566354 0.824162i \(-0.691646\pi\)
0.942620 0.333867i \(-0.108354\pi\)
\(198\) 0 0
\(199\) 19.5066 1.38278 0.691392 0.722480i \(-0.256998\pi\)
0.691392 + 0.722480i \(0.256998\pi\)
\(200\) −5.00000 −0.353553
\(201\) 0 0
\(202\) −3.54508 + 2.57565i −0.249431 + 0.181222i
\(203\) −6.85410 + 21.0948i −0.481064 + 1.48056i
\(204\) 0 0
\(205\) −12.7639 −0.891472
\(206\) −4.42705 13.6251i −0.308447 0.949303i
\(207\) 0 0
\(208\) −2.00000 6.15537i −0.138675 0.426798i
\(209\) −16.7082 12.1392i −1.15573 0.839687i
\(210\) 0 0
\(211\) 2.76393 2.00811i 0.190277 0.138244i −0.488568 0.872526i \(-0.662481\pi\)
0.678845 + 0.734281i \(0.262481\pi\)
\(212\) −1.69098 1.22857i −0.116137 0.0843786i
\(213\) 0 0
\(214\) 9.39919 6.82891i 0.642515 0.466815i
\(215\) 13.9443 10.1311i 0.950991 0.690936i
\(216\) 0 0
\(217\) 5.35410 + 16.4782i 0.363460 + 1.11862i
\(218\) −17.2361 −1.16737
\(219\) 0 0
\(220\) 6.54508 + 4.75528i 0.441270 + 0.320601i
\(221\) 2.47214 7.60845i 0.166294 0.511800i
\(222\) 0 0
\(223\) 6.54508 4.75528i 0.438291 0.318437i −0.346664 0.937989i \(-0.612686\pi\)
0.784956 + 0.619552i \(0.212686\pi\)
\(224\) −2.61803 −0.174925
\(225\) 0 0
\(226\) −19.2361 −1.27956
\(227\) −18.0172 + 13.0903i −1.19584 + 0.868832i −0.993870 0.110558i \(-0.964736\pi\)
−0.201975 + 0.979391i \(0.564736\pi\)
\(228\) 0 0
\(229\) −1.70820 + 5.25731i −0.112881 + 0.347413i −0.991499 0.130113i \(-0.958466\pi\)
0.878618 + 0.477525i \(0.158466\pi\)
\(230\) 3.09017 + 9.51057i 0.203760 + 0.627108i
\(231\) 0 0
\(232\) 8.47214 0.556223
\(233\) −5.76393 17.7396i −0.377608 1.16216i −0.941702 0.336447i \(-0.890775\pi\)
0.564095 0.825710i \(-0.309225\pi\)
\(234\) 0 0
\(235\) −1.18034 3.63271i −0.0769969 0.236972i
\(236\) −2.92705 + 2.12663i −0.190535 + 0.138432i
\(237\) 0 0
\(238\) −2.61803 1.90211i −0.169702 0.123296i
\(239\) 9.94427 7.22494i 0.643241 0.467342i −0.217721 0.976011i \(-0.569862\pi\)
0.860962 + 0.508669i \(0.169862\pi\)
\(240\) 0 0
\(241\) −7.73607 5.62058i −0.498324 0.362054i 0.310052 0.950719i \(-0.399653\pi\)
−0.808376 + 0.588666i \(0.799653\pi\)
\(242\) −0.645898 1.98787i −0.0415199 0.127785i
\(243\) 0 0
\(244\) 0.854102 + 2.62866i 0.0546783 + 0.168282i
\(245\) 0.263932 0.191758i 0.0168620 0.0122510i
\(246\) 0 0
\(247\) 11.4164 35.1361i 0.726409 2.23566i
\(248\) 5.35410 3.88998i 0.339986 0.247014i
\(249\) 0 0
\(250\) 9.04508 + 6.57164i 0.572061 + 0.415627i
\(251\) −13.5623 −0.856045 −0.428023 0.903768i \(-0.640790\pi\)
−0.428023 + 0.903768i \(0.640790\pi\)
\(252\) 0 0
\(253\) 5.00000 15.3884i 0.314347 0.967462i
\(254\) −4.20820 + 12.9515i −0.264046 + 0.812651i
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 22.0000 1.37232 0.686161 0.727450i \(-0.259294\pi\)
0.686161 + 0.727450i \(0.259294\pi\)
\(258\) 0 0
\(259\) −16.9443 12.3107i −1.05287 0.764952i
\(260\) −4.47214 + 13.7638i −0.277350 + 0.853596i
\(261\) 0 0
\(262\) 14.4721 + 10.5146i 0.894092 + 0.649596i
\(263\) −9.47214 6.88191i −0.584077 0.424357i 0.256115 0.966646i \(-0.417558\pi\)
−0.840192 + 0.542290i \(0.817558\pi\)
\(264\) 0 0
\(265\) 1.44427 + 4.44501i 0.0887209 + 0.273055i
\(266\) −12.0902 8.78402i −0.741296 0.538583i
\(267\) 0 0
\(268\) −1.52786 −0.0933292
\(269\) 2.80902 + 8.64527i 0.171269 + 0.527111i 0.999443 0.0333590i \(-0.0106205\pi\)
−0.828175 + 0.560470i \(0.810620\pi\)
\(270\) 0 0
\(271\) −5.57295 + 17.1518i −0.338533 + 1.04190i 0.626423 + 0.779483i \(0.284518\pi\)
−0.964956 + 0.262413i \(0.915482\pi\)
\(272\) −0.381966 + 1.17557i −0.0231601 + 0.0712794i
\(273\) 0 0
\(274\) −12.1803 −0.735841
\(275\) −5.59017 17.2048i −0.337100 1.03749i
\(276\) 0 0
\(277\) −13.7082 + 9.95959i −0.823646 + 0.598414i −0.917755 0.397148i \(-0.870000\pi\)
0.0941084 + 0.995562i \(0.470000\pi\)
\(278\) −3.23607 + 9.95959i −0.194086 + 0.597337i
\(279\) 0 0
\(280\) 4.73607 + 3.44095i 0.283034 + 0.205636i
\(281\) −1.81966 5.60034i −0.108552 0.334088i 0.881996 0.471257i \(-0.156200\pi\)
−0.990548 + 0.137169i \(0.956200\pi\)
\(282\) 0 0
\(283\) 1.41641 + 4.35926i 0.0841967 + 0.259131i 0.984288 0.176571i \(-0.0565004\pi\)
−0.900091 + 0.435701i \(0.856500\pi\)
\(284\) 4.47214 + 3.24920i 0.265372 + 0.192804i
\(285\) 0 0
\(286\) 18.9443 13.7638i 1.12020 0.813872i
\(287\) 12.0902 + 8.78402i 0.713660 + 0.518504i
\(288\) 0 0
\(289\) 12.5172 9.09429i 0.736307 0.534958i
\(290\) −15.3262 11.1352i −0.899988 0.653879i
\(291\) 0 0
\(292\) 1.09017 + 3.35520i 0.0637974 + 0.196348i
\(293\) 22.0902 1.29052 0.645261 0.763962i \(-0.276749\pi\)
0.645261 + 0.763962i \(0.276749\pi\)
\(294\) 0 0
\(295\) 8.09017 0.471028
\(296\) −2.47214 + 7.60845i −0.143690 + 0.442232i
\(297\) 0 0
\(298\) −17.8713 + 12.9843i −1.03526 + 0.752159i
\(299\) 28.9443 1.67389
\(300\) 0 0
\(301\) −20.1803 −1.16318
\(302\) 14.8262 10.7719i 0.853154 0.619853i
\(303\) 0 0
\(304\) −1.76393 + 5.42882i −0.101168 + 0.311364i
\(305\) 1.90983 5.87785i 0.109357 0.336565i
\(306\) 0 0
\(307\) 10.0000 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(308\) −2.92705 9.00854i −0.166784 0.513309i
\(309\) 0 0
\(310\) −14.7984 −0.840491
\(311\) −0.854102 + 0.620541i −0.0484317 + 0.0351877i −0.611738 0.791061i \(-0.709529\pi\)
0.563306 + 0.826248i \(0.309529\pi\)
\(312\) 0 0
\(313\) 13.1631 + 9.56357i 0.744023 + 0.540565i 0.893969 0.448130i \(-0.147910\pi\)
−0.149945 + 0.988694i \(0.547910\pi\)
\(314\) 7.00000 5.08580i 0.395033 0.287008i
\(315\) 0 0
\(316\) 4.54508 + 3.30220i 0.255681 + 0.185763i
\(317\) 6.35410 + 19.5559i 0.356882 + 1.09837i 0.954910 + 0.296895i \(0.0959510\pi\)
−0.598028 + 0.801475i \(0.704049\pi\)
\(318\) 0 0
\(319\) 9.47214 + 29.1522i 0.530338 + 1.63221i
\(320\) 0.690983 2.12663i 0.0386271 0.118882i
\(321\) 0 0
\(322\) 3.61803 11.1352i 0.201625 0.620538i
\(323\) −5.70820 + 4.14725i −0.317613 + 0.230759i
\(324\) 0 0
\(325\) 26.1803 19.0211i 1.45222 1.05510i
\(326\) 0.472136 0.0261492
\(327\) 0 0
\(328\) 1.76393 5.42882i 0.0973969 0.299757i
\(329\) −1.38197 + 4.25325i −0.0761903 + 0.234489i
\(330\) 0 0
\(331\) −5.56231 17.1190i −0.305732 0.940946i −0.979403 0.201915i \(-0.935284\pi\)
0.673671 0.739031i \(-0.264716\pi\)
\(332\) −2.14590 −0.117771
\(333\) 0 0
\(334\) −9.47214 6.88191i −0.518292 0.376561i
\(335\) 2.76393 + 2.00811i 0.151010 + 0.109715i
\(336\) 0 0
\(337\) −0.736068 0.534785i −0.0400962 0.0291316i 0.567557 0.823334i \(-0.307889\pi\)
−0.607653 + 0.794203i \(0.707889\pi\)
\(338\) 23.3713 + 16.9803i 1.27123 + 0.923604i
\(339\) 0 0
\(340\) 2.23607 1.62460i 0.121268 0.0881062i
\(341\) 19.3713 + 14.0741i 1.04902 + 0.762155i
\(342\) 0 0
\(343\) −18.7082 −1.01015
\(344\) 2.38197 + 7.33094i 0.128427 + 0.395258i
\(345\) 0 0
\(346\) 1.57295 4.84104i 0.0845623 0.260256i
\(347\) −6.35410 + 19.5559i −0.341106 + 1.04982i 0.622529 + 0.782596i \(0.286105\pi\)
−0.963636 + 0.267220i \(0.913895\pi\)
\(348\) 0 0
\(349\) −27.8885 −1.49284 −0.746420 0.665475i \(-0.768229\pi\)
−0.746420 + 0.665475i \(0.768229\pi\)
\(350\) −4.04508 12.4495i −0.216219 0.665453i
\(351\) 0 0
\(352\) −2.92705 + 2.12663i −0.156012 + 0.113350i
\(353\) 4.09017 12.5882i 0.217698 0.670005i −0.781253 0.624214i \(-0.785419\pi\)
0.998951 0.0457907i \(-0.0145807\pi\)
\(354\) 0 0
\(355\) −3.81966 11.7557i −0.202727 0.623928i
\(356\) −1.09017 3.35520i −0.0577789 0.177825i
\(357\) 0 0
\(358\) 3.04508 + 9.37181i 0.160938 + 0.495315i
\(359\) 17.9443 + 13.0373i 0.947062 + 0.688081i 0.950110 0.311914i \(-0.100970\pi\)
−0.00304782 + 0.999995i \(0.500970\pi\)
\(360\) 0 0
\(361\) −10.9894 + 7.98424i −0.578387 + 0.420223i
\(362\) −5.38197 3.91023i −0.282870 0.205517i
\(363\) 0 0
\(364\) 13.7082 9.95959i 0.718505 0.522025i
\(365\) 2.43769 7.50245i 0.127595 0.392696i
\(366\) 0 0
\(367\) −9.46149 29.1195i −0.493886 1.52002i −0.818686 0.574242i \(-0.805297\pi\)
0.324800 0.945783i \(-0.394703\pi\)
\(368\) −4.47214 −0.233126
\(369\) 0 0
\(370\) 14.4721 10.5146i 0.752371 0.546629i
\(371\) 1.69098 5.20431i 0.0877915 0.270194i
\(372\) 0 0
\(373\) 9.32624 6.77591i 0.482894 0.350843i −0.319551 0.947569i \(-0.603532\pi\)
0.802445 + 0.596726i \(0.203532\pi\)
\(374\) −4.47214 −0.231249
\(375\) 0 0
\(376\) 1.70820 0.0880939
\(377\) −44.3607 + 32.2299i −2.28469 + 1.65993i
\(378\) 0 0
\(379\) −6.23607 + 19.1926i −0.320325 + 0.985860i 0.653181 + 0.757201i \(0.273434\pi\)
−0.973507 + 0.228658i \(0.926566\pi\)
\(380\) 10.3262 7.50245i 0.529725 0.384868i
\(381\) 0 0
\(382\) 4.29180 0.219587
\(383\) 6.18034 + 19.0211i 0.315801 + 0.971934i 0.975424 + 0.220338i \(0.0707160\pi\)
−0.659623 + 0.751597i \(0.729284\pi\)
\(384\) 0 0
\(385\) −6.54508 + 20.1437i −0.333568 + 1.02662i
\(386\) 14.4443 10.4944i 0.735194 0.534150i
\(387\) 0 0
\(388\) 2.73607 + 1.98787i 0.138903 + 0.100919i
\(389\) −10.0172 + 7.27794i −0.507893 + 0.369006i −0.812024 0.583624i \(-0.801634\pi\)
0.304131 + 0.952630i \(0.401634\pi\)
\(390\) 0 0
\(391\) −4.47214 3.24920i −0.226166 0.164319i
\(392\) 0.0450850 + 0.138757i 0.00227713 + 0.00700830i
\(393\) 0 0
\(394\) −5.28115 16.2537i −0.266061 0.818850i
\(395\) −3.88197 11.9475i −0.195323 0.601142i
\(396\) 0 0
\(397\) −9.50658 + 29.2582i −0.477121 + 1.46843i 0.365954 + 0.930633i \(0.380743\pi\)
−0.843075 + 0.537796i \(0.819257\pi\)
\(398\) 15.7812 11.4657i 0.791038 0.574723i
\(399\) 0 0
\(400\) −4.04508 + 2.93893i −0.202254 + 0.146946i
\(401\) −25.7082 −1.28381 −0.641903 0.766786i \(-0.721855\pi\)
−0.641903 + 0.766786i \(0.721855\pi\)
\(402\) 0 0
\(403\) −13.2361 + 40.7364i −0.659336 + 2.02923i
\(404\) −1.35410 + 4.16750i −0.0673691 + 0.207341i
\(405\) 0 0
\(406\) 6.85410 + 21.0948i 0.340163 + 1.04692i
\(407\) −28.9443 −1.43471
\(408\) 0 0
\(409\) −4.69098 3.40820i −0.231954 0.168525i 0.465737 0.884923i \(-0.345789\pi\)
−0.697691 + 0.716399i \(0.745789\pi\)
\(410\) −10.3262 + 7.50245i −0.509977 + 0.370520i
\(411\) 0 0
\(412\) −11.5902 8.42075i −0.571007 0.414861i
\(413\) −7.66312 5.56758i −0.377077 0.273963i
\(414\) 0 0
\(415\) 3.88197 + 2.82041i 0.190558 + 0.138449i
\(416\) −5.23607 3.80423i −0.256719 0.186518i
\(417\) 0 0
\(418\) −20.6525 −1.01015
\(419\) 0.954915 + 2.93893i 0.0466507 + 0.143576i 0.971669 0.236347i \(-0.0759504\pi\)
−0.925018 + 0.379923i \(0.875950\pi\)
\(420\) 0 0
\(421\) −7.03444 + 21.6498i −0.342838 + 1.05515i 0.619893 + 0.784686i \(0.287176\pi\)
−0.962731 + 0.270460i \(0.912824\pi\)
\(422\) 1.05573 3.24920i 0.0513920 0.158168i
\(423\) 0 0
\(424\) −2.09017 −0.101508
\(425\) −6.18034 −0.299791
\(426\) 0 0
\(427\) −5.85410 + 4.25325i −0.283300 + 0.205829i
\(428\) 3.59017 11.0494i 0.173537 0.534093i
\(429\) 0 0
\(430\) 5.32624 16.3925i 0.256854 0.790515i
\(431\) −5.20163 16.0090i −0.250554 0.771124i −0.994673 0.103078i \(-0.967131\pi\)
0.744120 0.668046i \(-0.232869\pi\)
\(432\) 0 0
\(433\) 4.79180 + 14.7476i 0.230279 + 0.708726i 0.997713 + 0.0675976i \(0.0215334\pi\)
−0.767434 + 0.641128i \(0.778467\pi\)
\(434\) 14.0172 + 10.1841i 0.672848 + 0.488853i
\(435\) 0 0
\(436\) −13.9443 + 10.1311i −0.667810 + 0.485192i
\(437\) −20.6525 15.0049i −0.987942 0.717782i
\(438\) 0 0
\(439\) 19.0172 13.8168i 0.907642 0.659441i −0.0327751 0.999463i \(-0.510434\pi\)
0.940418 + 0.340022i \(0.110434\pi\)
\(440\) 8.09017 0.385684
\(441\) 0 0
\(442\) −2.47214 7.60845i −0.117588 0.361897i
\(443\) −16.6180 −0.789547 −0.394773 0.918779i \(-0.629177\pi\)
−0.394773 + 0.918779i \(0.629177\pi\)
\(444\) 0 0
\(445\) −2.43769 + 7.50245i −0.115558 + 0.355650i
\(446\) 2.50000 7.69421i 0.118378 0.364331i
\(447\) 0 0
\(448\) −2.11803 + 1.53884i −0.100068 + 0.0727034i
\(449\) 27.7082 1.30763 0.653815 0.756654i \(-0.273167\pi\)
0.653815 + 0.756654i \(0.273167\pi\)
\(450\) 0 0
\(451\) 20.6525 0.972487
\(452\) −15.5623 + 11.3067i −0.731989 + 0.531821i
\(453\) 0 0
\(454\) −6.88197 + 21.1805i −0.322987 + 0.994051i
\(455\) −37.8885 −1.77624
\(456\) 0 0
\(457\) −4.09017 −0.191330 −0.0956650 0.995414i \(-0.530498\pi\)
−0.0956650 + 0.995414i \(0.530498\pi\)
\(458\) 1.70820 + 5.25731i 0.0798191 + 0.245658i
\(459\) 0 0
\(460\) 8.09017 + 5.87785i 0.377206 + 0.274056i
\(461\) 6.11803 4.44501i 0.284945 0.207025i −0.436126 0.899885i \(-0.643650\pi\)
0.721072 + 0.692861i \(0.243650\pi\)
\(462\) 0 0
\(463\) 18.4721 + 13.4208i 0.858473 + 0.623717i 0.927469 0.373900i \(-0.121980\pi\)
−0.0689961 + 0.997617i \(0.521980\pi\)
\(464\) 6.85410 4.97980i 0.318194 0.231181i
\(465\) 0 0
\(466\) −15.0902 10.9637i −0.699039 0.507881i
\(467\) −3.29837 10.1514i −0.152631 0.469749i 0.845283 0.534320i \(-0.179432\pi\)
−0.997913 + 0.0645710i \(0.979432\pi\)
\(468\) 0 0
\(469\) −1.23607 3.80423i −0.0570763 0.175663i
\(470\) −3.09017 2.24514i −0.142539 0.103561i
\(471\) 0 0
\(472\) −1.11803 + 3.44095i −0.0514617 + 0.158383i
\(473\) −22.5623 + 16.3925i −1.03742 + 0.753727i
\(474\) 0 0
\(475\) −28.5410 −1.30955
\(476\) −3.23607 −0.148325
\(477\) 0 0
\(478\) 3.79837 11.6902i 0.173734 0.534697i
\(479\) 9.00000 27.6992i 0.411220 1.26561i −0.504368 0.863489i \(-0.668274\pi\)
0.915588 0.402117i \(-0.131726\pi\)
\(480\) 0 0
\(481\) −16.0000 49.2429i −0.729537 2.24528i
\(482\) −9.56231 −0.435551
\(483\) 0 0
\(484\) −1.69098 1.22857i −0.0768629 0.0558441i
\(485\) −2.33688 7.19218i −0.106112 0.326580i
\(486\) 0 0
\(487\) −14.3992 10.4616i −0.652489 0.474061i 0.211629 0.977350i \(-0.432123\pi\)
−0.864118 + 0.503289i \(0.832123\pi\)
\(488\) 2.23607 + 1.62460i 0.101222 + 0.0735421i
\(489\) 0 0
\(490\) 0.100813 0.310271i 0.00455427 0.0140166i
\(491\) −20.4443 14.8536i −0.922637 0.670335i 0.0215419 0.999768i \(-0.493142\pi\)
−0.944179 + 0.329433i \(0.893142\pi\)
\(492\) 0 0
\(493\) 10.4721 0.471641
\(494\) −11.4164 35.1361i −0.513648 1.58085i
\(495\) 0 0
\(496\) 2.04508 6.29412i 0.0918270 0.282615i
\(497\) −4.47214 + 13.7638i −0.200603 + 0.617392i
\(498\) 0 0
\(499\) 35.5967 1.59353 0.796765 0.604290i \(-0.206543\pi\)
0.796765 + 0.604290i \(0.206543\pi\)
\(500\) 11.1803 0.500000
\(501\) 0 0
\(502\) −10.9721 + 7.97172i −0.489710 + 0.355795i
\(503\) −7.38197 + 22.7194i −0.329146 + 1.01301i 0.640389 + 0.768051i \(0.278773\pi\)
−0.969534 + 0.244955i \(0.921227\pi\)
\(504\) 0 0
\(505\) 7.92705 5.75934i 0.352749 0.256287i
\(506\) −5.00000 15.3884i −0.222277 0.684099i
\(507\) 0 0
\(508\) 4.20820 + 12.9515i 0.186709 + 0.574631i
\(509\) −14.1631 10.2901i −0.627769 0.456101i 0.227857 0.973694i \(-0.426828\pi\)
−0.855627 + 0.517593i \(0.826828\pi\)
\(510\) 0 0
\(511\) −7.47214 + 5.42882i −0.330548 + 0.240157i
\(512\) 0.809017 + 0.587785i 0.0357538 + 0.0259767i
\(513\) 0 0
\(514\) 17.7984 12.9313i 0.785053 0.570374i
\(515\) 9.89919 + 30.4666i 0.436210 + 1.34252i
\(516\) 0 0
\(517\) 1.90983 + 5.87785i 0.0839942 + 0.258508i
\(518\) −20.9443 −0.920238
\(519\) 0 0
\(520\) 4.47214 + 13.7638i 0.196116 + 0.603583i
\(521\) −4.38197 + 13.4863i −0.191977 + 0.590846i 0.808021 + 0.589153i \(0.200539\pi\)
−0.999999 + 0.00169226i \(0.999461\pi\)
\(522\) 0 0
\(523\) −8.94427 + 6.49839i −0.391106 + 0.284155i −0.765908 0.642950i \(-0.777710\pi\)
0.374803 + 0.927105i \(0.377710\pi\)
\(524\) 17.8885 0.781465
\(525\) 0 0
\(526\) −11.7082 −0.510502
\(527\) 6.61803 4.80828i 0.288286 0.209452i
\(528\) 0 0
\(529\) −0.927051 + 2.85317i −0.0403066 + 0.124051i
\(530\) 3.78115 + 2.74717i 0.164243 + 0.119329i
\(531\) 0 0
\(532\) −14.9443 −0.647916
\(533\) 11.4164 + 35.1361i 0.494500 + 1.52191i
\(534\) 0 0
\(535\) −21.0172 + 15.2699i −0.908654 + 0.660176i
\(536\) −1.23607 + 0.898056i −0.0533900 + 0.0387901i
\(537\) 0 0
\(538\) 7.35410 + 5.34307i 0.317058 + 0.230356i
\(539\) −0.427051 + 0.310271i −0.0183944 + 0.0133643i
\(540\) 0 0
\(541\) 21.1803 + 15.3884i 0.910614 + 0.661600i 0.941170 0.337933i \(-0.109728\pi\)
−0.0305561 + 0.999533i \(0.509728\pi\)
\(542\) 5.57295 + 17.1518i 0.239379 + 0.736732i
\(543\) 0 0
\(544\) 0.381966 + 1.17557i 0.0163767 + 0.0504022i
\(545\) 38.5410 1.65092
\(546\) 0 0
\(547\) 3.00000 9.23305i 0.128271 0.394777i −0.866212 0.499677i \(-0.833452\pi\)
0.994483 + 0.104900i \(0.0334522\pi\)
\(548\) −9.85410 + 7.15942i −0.420946 + 0.305835i
\(549\) 0 0
\(550\) −14.6353 10.6331i −0.624049 0.453398i
\(551\) 48.3607 2.06023
\(552\) 0 0
\(553\) −4.54508 + 13.9883i −0.193277 + 0.594844i
\(554\) −5.23607 + 16.1150i −0.222459 + 0.684659i
\(555\) 0 0
\(556\) 3.23607 + 9.95959i 0.137240 + 0.422381i
\(557\) 18.3262 0.776508 0.388254 0.921552i \(-0.373078\pi\)
0.388254 + 0.921552i \(0.373078\pi\)
\(558\) 0 0
\(559\) −40.3607 29.3238i −1.70707 1.24026i
\(560\) 5.85410 0.247381
\(561\) 0 0
\(562\) −4.76393 3.46120i −0.200954 0.146002i
\(563\) 17.2082 + 12.5025i 0.725239 + 0.526917i 0.888054 0.459739i \(-0.152057\pi\)
−0.162815 + 0.986657i \(0.552057\pi\)
\(564\) 0 0
\(565\) 43.0132 1.80958
\(566\) 3.70820 + 2.69417i 0.155867 + 0.113244i
\(567\) 0 0
\(568\) 5.52786 0.231944
\(569\) 8.58359 + 26.4176i 0.359843 + 1.10748i 0.953148 + 0.302505i \(0.0978228\pi\)
−0.593305 + 0.804978i \(0.702177\pi\)
\(570\) 0 0
\(571\) 2.43769 7.50245i 0.102014 0.313968i −0.887004 0.461762i \(-0.847217\pi\)
0.989018 + 0.147794i \(0.0472174\pi\)
\(572\) 7.23607 22.2703i 0.302555 0.931169i
\(573\) 0 0
\(574\) 14.9443 0.623762
\(575\) −6.90983 21.2663i −0.288160 0.886865i
\(576\) 0 0
\(577\) −7.26393 + 5.27756i −0.302401 + 0.219708i −0.728629 0.684908i \(-0.759842\pi\)
0.426228 + 0.904616i \(0.359842\pi\)
\(578\) 4.78115 14.7149i 0.198870 0.612058i
\(579\) 0 0
\(580\) −18.9443 −0.786618
\(581\) −1.73607 5.34307i −0.0720242 0.221668i
\(582\) 0 0
\(583\) −2.33688 7.19218i −0.0967837 0.297870i
\(584\) 2.85410 + 2.07363i 0.118104 + 0.0858073i
\(585\) 0 0
\(586\) 17.8713 12.9843i 0.738258 0.536376i
\(587\) −0.781153 0.567541i −0.0322416 0.0234249i 0.571548 0.820569i \(-0.306343\pi\)
−0.603789 + 0.797144i \(0.706343\pi\)
\(588\) 0 0
\(589\) 30.5623 22.2048i 1.25930 0.914933i
\(590\) 6.54508 4.75528i 0.269457 0.195772i
\(591\) 0 0
\(592\) 2.47214 + 7.60845i 0.101604 + 0.312705i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 5.85410 + 4.25325i 0.239995 + 0.174366i
\(596\) −6.82624 + 21.0090i −0.279614 + 0.860562i
\(597\) 0 0
\(598\) 23.4164 17.0130i 0.957568 0.695714i
\(599\) −0.472136 −0.0192910 −0.00964548 0.999953i \(-0.503070\pi\)
−0.00964548 + 0.999953i \(0.503070\pi\)
\(600\) 0 0
\(601\) −7.72949 −0.315292 −0.157646 0.987496i \(-0.550391\pi\)
−0.157646 + 0.987496i \(0.550391\pi\)
\(602\) −16.3262 + 11.8617i −0.665408 + 0.483447i
\(603\) 0 0
\(604\) 5.66312 17.4293i 0.230429 0.709188i
\(605\) 1.44427 + 4.44501i 0.0587180 + 0.180715i
\(606\) 0 0
\(607\) 6.56231 0.266356 0.133178 0.991092i \(-0.457482\pi\)
0.133178 + 0.991092i \(0.457482\pi\)
\(608\) 1.76393 + 5.42882i 0.0715369 + 0.220168i
\(609\) 0 0
\(610\) −1.90983 5.87785i −0.0773268 0.237987i
\(611\) −8.94427 + 6.49839i −0.361847 + 0.262897i
\(612\) 0 0
\(613\) −39.0344 28.3602i −1.57659 1.14546i −0.920481 0.390788i \(-0.872203\pi\)
−0.656105 0.754669i \(-0.727797\pi\)
\(614\) 8.09017 5.87785i 0.326493 0.237211i
\(615\) 0 0
\(616\) −7.66312 5.56758i −0.308756 0.224324i
\(617\) −0.652476 2.00811i −0.0262677 0.0808436i 0.937063 0.349160i \(-0.113533\pi\)
−0.963331 + 0.268316i \(0.913533\pi\)
\(618\) 0 0
\(619\) −2.90983 8.95554i −0.116956 0.359953i 0.875394 0.483410i \(-0.160602\pi\)
−0.992350 + 0.123457i \(0.960602\pi\)
\(620\) −11.9721 + 8.69827i −0.480813 + 0.349331i
\(621\) 0 0
\(622\) −0.326238 + 1.00406i −0.0130809 + 0.0402590i
\(623\) 7.47214 5.42882i 0.299365 0.217501i
\(624\) 0 0
\(625\) −20.2254 14.6946i −0.809017 0.587785i
\(626\) 16.2705 0.650300
\(627\) 0 0
\(628\) 2.67376 8.22899i 0.106695 0.328373i
\(629\) −3.05573 + 9.40456i −0.121840 + 0.374985i
\(630\) 0 0
\(631\) 14.3607 + 44.1976i 0.571690 + 1.75948i 0.647184 + 0.762334i \(0.275946\pi\)
−0.0754947 + 0.997146i \(0.524054\pi\)
\(632\) 5.61803 0.223473
\(633\) 0 0
\(634\) 16.6353 + 12.0862i 0.660670 + 0.480005i
\(635\) 9.40983 28.9605i 0.373418 1.14926i
\(636\) 0 0
\(637\) −0.763932 0.555029i −0.0302681 0.0219911i
\(638\) 24.7984 + 18.0171i 0.981777 + 0.713303i
\(639\) 0 0
\(640\) −0.690983 2.12663i −0.0273135 0.0840623i
\(641\) −11.1803 8.12299i −0.441597 0.320839i 0.344672 0.938723i \(-0.387990\pi\)
−0.786269 + 0.617884i \(0.787990\pi\)
\(642\) 0 0
\(643\) 21.8885 0.863200 0.431600 0.902065i \(-0.357949\pi\)
0.431600 + 0.902065i \(0.357949\pi\)
\(644\) −3.61803 11.1352i −0.142571 0.438787i
\(645\) 0 0
\(646\) −2.18034 + 6.71040i −0.0857843 + 0.264017i
\(647\) 7.09017 21.8213i 0.278743 0.857884i −0.709461 0.704744i \(-0.751062\pi\)
0.988205 0.153139i \(-0.0489383\pi\)
\(648\) 0 0
\(649\) −13.0902 −0.513834
\(650\) 10.0000 30.7768i 0.392232 1.20717i
\(651\) 0 0
\(652\) 0.381966 0.277515i 0.0149589 0.0108683i
\(653\) 1.19098 3.66547i 0.0466068 0.143441i −0.925045 0.379858i \(-0.875973\pi\)
0.971652 + 0.236417i \(0.0759730\pi\)
\(654\) 0 0
\(655\) −32.3607 23.5114i −1.26444 0.918667i
\(656\) −1.76393 5.42882i −0.0688700 0.211960i
\(657\) 0 0
\(658\) 1.38197 + 4.25325i 0.0538746 + 0.165809i
\(659\) −16.6803 12.1190i −0.649774 0.472088i 0.213420 0.976960i \(-0.431540\pi\)
−0.863194 + 0.504872i \(0.831540\pi\)
\(660\) 0 0
\(661\) 24.6525 17.9111i 0.958870 0.696660i 0.00598211 0.999982i \(-0.498096\pi\)
0.952888 + 0.303322i \(0.0980958\pi\)
\(662\) −14.5623 10.5801i −0.565980 0.411209i
\(663\) 0 0
\(664\) −1.73607 + 1.26133i −0.0673725 + 0.0489490i
\(665\) 27.0344 + 19.6417i 1.04835 + 0.761671i
\(666\) 0 0
\(667\) 11.7082 + 36.0341i 0.453343 + 1.39525i
\(668\) −11.7082 −0.453004
\(669\) 0 0
\(670\) 3.41641 0.131987
\(671\) −3.09017 + 9.51057i −0.119295 + 0.367151i
\(672\) 0 0
\(673\) 25.4443 18.4863i 0.980805 0.712596i 0.0229163 0.999737i \(-0.492705\pi\)
0.957888 + 0.287141i \(0.0927049\pi\)
\(674\) −0.909830 −0.0350453
\(675\) 0 0
\(676\) 28.8885 1.11110
\(677\) 23.5344 17.0988i 0.904502 0.657159i −0.0351163 0.999383i \(-0.511180\pi\)
0.939618 + 0.342224i \(0.111180\pi\)
\(678\) 0 0
\(679\) −2.73607 + 8.42075i −0.105001 + 0.323159i
\(680\) 0.854102 2.62866i 0.0327533 0.100804i
\(681\) 0 0
\(682\) 23.9443 0.916874
\(683\) −10.3541 31.8666i −0.396189 1.21934i −0.928032 0.372501i \(-0.878500\pi\)
0.531843 0.846843i \(-0.321500\pi\)
\(684\) 0 0
\(685\) 27.2361 1.04064
\(686\) −15.1353 + 10.9964i −0.577867 + 0.419845i
\(687\) 0 0
\(688\) 6.23607 + 4.53077i 0.237748 + 0.172734i
\(689\) 10.9443 7.95148i 0.416944 0.302927i
\(690\) 0 0
\(691\) −9.09017 6.60440i −0.345806 0.251243i 0.401301 0.915946i \(-0.368558\pi\)
−0.747108 + 0.664703i \(0.768558\pi\)
\(692\) −1.57295 4.84104i −0.0597945 0.184029i
\(693\) 0 0
\(694\) 6.35410 + 19.5559i 0.241198 + 0.742332i
\(695\) 7.23607 22.2703i 0.274480 0.844762i
\(696\) 0 0
\(697\) 2.18034 6.71040i 0.0825863 0.254174i
\(698\) −22.5623 + 16.3925i −0.853996 + 0.620464i
\(699\) 0 0
\(700\) −10.5902 7.69421i −0.400271 0.290814i
\(701\) −40.8328 −1.54223 −0.771117 0.636693i \(-0.780302\pi\)
−0.771117 + 0.636693i \(0.780302\pi\)
\(702\) 0 0
\(703\) −14.1115 + 43.4306i −0.532224 + 1.63802i
\(704\) −1.11803 + 3.44095i −0.0421375 + 0.129686i
\(705\) 0 0
\(706\) −4.09017 12.5882i −0.153936 0.473765i
\(707\) −11.4721 −0.431454
\(708\) 0 0
\(709\) 35.3607 + 25.6910i 1.32800 + 0.964847i 0.999795 + 0.0202400i \(0.00644302\pi\)
0.328203 + 0.944607i \(0.393557\pi\)
\(710\) −10.0000 7.26543i −0.375293 0.272667i
\(711\) 0 0
\(712\) −2.85410 2.07363i −0.106962 0.0777124i
\(713\) 23.9443 + 17.3965i 0.896720 + 0.651505i
\(714\) 0 0
\(715\) −42.3607 + 30.7768i −1.58420 + 1.15099i
\(716\) 7.97214 + 5.79210i 0.297933 + 0.216461i
\(717\) 0 0
\(718\) 22.1803 0.827763
\(719\) 5.12461 + 15.7719i 0.191116 + 0.588194i 1.00000 0.000225882i \(7.19006e-5\pi\)
−0.808884 + 0.587968i \(0.799928\pi\)
\(720\) 0 0
\(721\) 11.5902 35.6709i 0.431640 1.32845i
\(722\) −4.19756 + 12.9188i −0.156217 + 0.480787i
\(723\) 0 0
\(724\) −6.65248 −0.247237
\(725\) 34.2705 + 24.8990i 1.27277 + 0.924725i
\(726\) 0 0
\(727\) 6.94427 5.04531i 0.257549 0.187120i −0.451517 0.892263i \(-0.649117\pi\)
0.709066 + 0.705142i \(0.249117\pi\)
\(728\) 5.23607 16.1150i 0.194062 0.597260i
\(729\) 0 0
\(730\) −2.43769 7.50245i −0.0902231 0.277678i
\(731\) 2.94427 + 9.06154i 0.108898 + 0.335153i
\(732\) 0 0
\(733\) −11.0902 34.1320i −0.409625 1.26070i −0.916971 0.398953i \(-0.869374\pi\)
0.507346 0.861742i \(-0.330626\pi\)
\(734\) −24.7705 17.9968i −0.914296 0.664275i
\(735\) 0 0
\(736\) −3.61803 + 2.62866i −0.133363 + 0.0968935i
\(737\) −4.47214 3.24920i −0.164733 0.119686i
\(738\) 0 0
\(739\) 38.9787 28.3197i 1.43386 1.04176i 0.444573 0.895743i \(-0.353356\pi\)
0.989283 0.146014i \(-0.0466444\pi\)
\(740\) 5.52786 17.0130i 0.203208 0.625411i
\(741\) 0 0
\(742\) −1.69098 5.20431i −0.0620779 0.191056i
\(743\) 39.0132 1.43125 0.715627 0.698483i \(-0.246141\pi\)
0.715627 + 0.698483i \(0.246141\pi\)
\(744\) 0 0
\(745\) 39.9615 29.0337i 1.46408 1.06371i
\(746\) 3.56231 10.9637i 0.130425 0.401408i
\(747\) 0 0
\(748\) −3.61803 + 2.62866i −0.132288 + 0.0961132i
\(749\) 30.4164 1.11139
\(750\) 0 0
\(751\) 24.7984 0.904906 0.452453 0.891788i \(-0.350549\pi\)
0.452453 + 0.891788i \(0.350549\pi\)
\(752\) 1.38197 1.00406i 0.0503951 0.0366142i
\(753\) 0 0
\(754\) −16.9443 + 52.1491i −0.617074 + 1.89916i
\(755\) −33.1525 + 24.0867i −1.20654 + 0.876604i
\(756\) 0 0
\(757\) −17.1246 −0.622405 −0.311202 0.950344i \(-0.600732\pi\)
−0.311202 + 0.950344i \(0.600732\pi\)
\(758\) 6.23607 + 19.1926i 0.226504 + 0.697108i
\(759\) 0 0
\(760\) 3.94427 12.1392i 0.143074 0.440336i
\(761\) 1.14590 0.832544i 0.0415388 0.0301797i −0.566822 0.823840i \(-0.691827\pi\)
0.608361 + 0.793661i \(0.291827\pi\)
\(762\) 0 0
\(763\) −36.5066 26.5236i −1.32163 0.960218i
\(764\) 3.47214 2.52265i 0.125617 0.0912664i
\(765\) 0 0
\(766\) 16.1803 + 11.7557i 0.584619 + 0.424751i
\(767\) −7.23607 22.2703i −0.261279 0.804135i
\(768\) 0 0
\(769\) 7.62868 + 23.4787i 0.275097 + 0.846662i 0.989194 + 0.146615i \(0.0468377\pi\)
−0.714097 + 0.700047i \(0.753162\pi\)
\(770\) 6.54508 + 20.1437i 0.235868 + 0.725929i
\(771\) 0 0
\(772\) 5.51722 16.9803i 0.198569 0.611133i
\(773\) −0.927051 + 0.673542i −0.0333437 + 0.0242256i −0.604332 0.796732i \(-0.706560\pi\)
0.570989 + 0.820958i \(0.306560\pi\)
\(774\) 0 0
\(775\) 33.0902 1.18863
\(776\) 3.38197 0.121406
\(777\) 0 0
\(778\) −3.82624 + 11.7759i −0.137177 + 0.422188i
\(779\) 10.0689 30.9888i 0.360755 1.11029i
\(780\) 0 0
\(781\) 6.18034 + 19.0211i 0.221150 + 0.680630i
\(782\) −5.52786 −0.197676
\(783\) 0 0
\(784\) 0.118034 + 0.0857567i 0.00421550 + 0.00306274i
\(785\) −15.6525 + 11.3722i −0.558661 + 0.405891i
\(786\) 0 0
\(787\) −22.7082 16.4985i −0.809460 0.588107i 0.104214 0.994555i \(-0.466767\pi\)
−0.913674 + 0.406448i \(0.866767\pi\)
\(788\) −13.8262 10.0453i −0.492539 0.357851i
\(789\) 0 0
\(790\) −10.1631 7.38394i −0.361588 0.262709i
\(791\) −40.7426 29.6013i −1.44864 1.05250i
\(792\) 0 0
\(793\) −17.8885 −0.635241
\(794\) 9.50658 + 29.2582i 0.337376 + 1.03834i
\(795\) 0 0
\(796\) 6.02786 18.5519i 0.213652 0.657553i
\(797\) −0.465558 + 1.43284i −0.0164909 + 0.0507538i −0.958963 0.283530i \(-0.908494\pi\)
0.942472 + 0.334284i \(0.108494\pi\)
\(798\) 0 0
\(799\) 2.11146 0.0746979
\(800\) −1.54508 + 4.75528i −0.0546270 + 0.168125i
\(801\) 0 0
\(802\) −20.7984 + 15.1109i −0.734416 + 0.533585i
\(803\) −3.94427 + 12.1392i −0.139190 + 0.428384i
\(804\) 0 0
\(805\) −8.09017 + 24.8990i −0.285141 + 0.877574i
\(806\) 13.2361 + 40.7364i 0.466221 + 1.43488i
\(807\) 0 0
\(808\) 1.35410 + 4.16750i 0.0476371 + 0.146612i
\(809\) −24.9443 18.1231i −0.876994 0.637173i 0.0554606 0.998461i \(-0.482337\pi\)
−0.932454 + 0.361288i \(0.882337\pi\)
\(810\) 0 0
\(811\) 4.61803 3.35520i 0.162161 0.117817i −0.503745 0.863852i \(-0.668045\pi\)
0.665906 + 0.746035i \(0.268045\pi\)
\(812\) 17.9443 + 13.0373i 0.629720 + 0.457519i
\(813\) 0 0
\(814\) −23.4164 + 17.0130i −0.820745 + 0.596306i
\(815\) −1.05573 −0.0369805
\(816\) 0 0
\(817\) 13.5967 + 41.8465i 0.475690 + 1.46402i
\(818\) −5.79837 −0.202735
\(819\) 0 0
\(820\) −3.94427 + 12.1392i −0.137740 + 0.423920i
\(821\) 13.9336 42.8833i 0.486287 1.49664i −0.343821 0.939035i \(-0.611721\pi\)
0.830108 0.557602i \(-0.188279\pi\)
\(822\) 0 0
\(823\) −2.39919 + 1.74311i −0.0836304 + 0.0607610i −0.628815 0.777555i \(-0.716460\pi\)
0.545184 + 0.838316i \(0.316460\pi\)
\(824\) −14.3262 −0.499078
\(825\) 0 0
\(826\) −9.47214 −0.329578
\(827\) 35.6803 25.9233i 1.24073 0.901441i 0.243080 0.970006i \(-0.421842\pi\)
0.997647 + 0.0685652i \(0.0218421\pi\)
\(828\) 0 0
\(829\) 8.00000 24.6215i 0.277851 0.855139i −0.710599 0.703597i \(-0.751576\pi\)
0.988451 0.151542i \(-0.0484239\pi\)
\(830\) 4.79837 0.166554
\(831\) 0 0
\(832\) −6.47214 −0.224381
\(833\) 0.0557281 + 0.171513i 0.00193086 + 0.00594259i
\(834\) 0 0
\(835\) 21.1803 + 15.3884i 0.732976 + 0.532538i
\(836\) −16.7082 + 12.1392i −0.577865 + 0.419844i
\(837\) 0 0
\(838\) 2.50000 + 1.81636i 0.0863611 + 0.0627450i
\(839\) 5.14590 3.73871i 0.177656 0.129075i −0.495403 0.868663i \(-0.664980\pi\)
0.673060 + 0.739588i \(0.264980\pi\)
\(840\) 0 0
\(841\) −34.6074 25.1437i −1.19336 0.867026i
\(842\) 7.03444 + 21.6498i 0.242423 + 0.746101i
\(843\) 0 0
\(844\) −1.05573 3.24920i −0.0363397 0.111842i
\(845\) −52.2599 37.9690i −1.79779 1.30617i
\(846\) 0 0
\(847\) 1.69098 5.20431i 0.0581029 0.178822i
\(848\) −1.69098 + 1.22857i −0.0580686 + 0.0421893i
\(849\) 0 0
\(850\) −5.00000 + 3.63271i −0.171499 + 0.124601i
\(851\) −35.7771 −1.22642
\(852\) 0 0
\(853\) −13.4721 + 41.4630i −0.461277 + 1.41967i 0.402328 + 0.915496i \(0.368201\pi\)
−0.863605 + 0.504169i \(0.831799\pi\)
\(854\) −2.23607 + 6.88191i −0.0765167 + 0.235494i
\(855\) 0 0
\(856\) −3.59017 11.0494i −0.122709 0.377661i
\(857\) 16.0689 0.548903 0.274451 0.961601i \(-0.411504\pi\)
0.274451 + 0.961601i \(0.411504\pi\)
\(858\) 0 0
\(859\) 1.85410 + 1.34708i 0.0632611 + 0.0459619i 0.618966 0.785417i \(-0.287552\pi\)
−0.555705 + 0.831379i \(0.687552\pi\)
\(860\) −5.32624 16.3925i −0.181623 0.558979i
\(861\) 0 0
\(862\) −13.6180 9.89408i −0.463832 0.336994i
\(863\) −8.23607 5.98385i −0.280359 0.203693i 0.438715 0.898626i \(-0.355434\pi\)
−0.719074 + 0.694934i \(0.755434\pi\)
\(864\) 0 0
\(865\) −3.51722 + 10.8249i −0.119589 + 0.368057i
\(866\) 12.5451 + 9.11454i 0.426299 + 0.309725i
\(867\) 0 0
\(868\) 17.3262 0.588091
\(869\) 6.28115 + 19.3314i 0.213074 + 0.655773i
\(870\) 0 0
\(871\) 3.05573 9.40456i 0.103539 0.318661i
\(872\) −5.32624 + 16.3925i −0.180369 + 0.555119i
\(873\) 0 0
\(874\) −25.5279 −0.863493
\(875\) 9.04508 + 27.8379i 0.305780 + 0.941093i
\(876\) 0 0
\(877\) 30.0344 21.8213i 1.01419 0.736853i 0.0491070 0.998794i \(-0.484362\pi\)
0.965084 + 0.261941i \(0.0843625\pi\)
\(878\) 7.26393 22.3561i 0.245146 0.754481i
\(879\) 0 0
\(880\) 6.54508 4.75528i 0.220635 0.160301i
\(881\) 7.29180 + 22.4418i 0.245667 + 0.756085i 0.995526 + 0.0944874i \(0.0301212\pi\)
−0.749859 + 0.661597i \(0.769879\pi\)
\(882\) 0 0
\(883\) −9.29180 28.5972i −0.312694 0.962373i −0.976693 0.214640i \(-0.931142\pi\)
0.663999 0.747733i \(-0.268858\pi\)
\(884\) −6.47214 4.70228i −0.217681 0.158155i
\(885\) 0 0
\(886\) −13.4443 + 9.76784i −0.451669 + 0.328157i
\(887\) 18.9443 + 13.7638i 0.636086 + 0.462144i 0.858503 0.512808i \(-0.171395\pi\)
−0.222417 + 0.974952i \(0.571395\pi\)
\(888\) 0 0
\(889\) −28.8435 + 20.9560i −0.967379 + 0.702842i
\(890\) 2.43769 + 7.50245i 0.0817117 + 0.251483i
\(891\) 0 0
\(892\) −2.50000 7.69421i −0.0837062 0.257621i
\(893\) 9.75078 0.326297
\(894\) 0 0
\(895\) −6.80902 20.9560i −0.227600 0.700482i
\(896\) −0.809017 + 2.48990i −0.0270274 + 0.0831817i
\(897\) 0 0
\(898\) 22.4164 16.2865i 0.748045 0.543487i
\(899\) −56.0689 −1.87000
\(900\) 0 0
\(901\) −2.58359 −0.0860719
\(902\) 16.7082 12.1392i 0.556322 0.404192i
\(903\) 0 0
\(904\) −5.94427 + 18.2946i −0.197704 + 0.608469i
\(905\) 12.0344 + 8.74353i 0.400038 + 0.290645i
\(906\) 0 0
\(907\) 30.4721 1.01181 0.505905 0.862589i \(-0.331159\pi\)
0.505905 + 0.862589i \(0.331159\pi\)
\(908\) 6.88197 + 21.1805i 0.228386 + 0.702900i
\(909\) 0 0
\(910\) −30.6525 + 22.2703i −1.01612 + 0.738254i
\(911\) 14.7082 10.6861i 0.487305 0.354047i −0.316842 0.948478i \(-0.602623\pi\)
0.804147 + 0.594431i \(0.202623\pi\)
\(912\) 0 0
\(913\) −6.28115 4.56352i −0.207876 0.151031i
\(914\) −3.30902 + 2.40414i −0.109453 + 0.0795219i
\(915\) 0 0
\(916\) 4.47214 + 3.24920i 0.147764 + 0.107356i
\(917\) 14.4721 + 44.5407i 0.477912 + 1.47086i
\(918\) 0 0
\(919\) −12.5836 38.7283i −0.415094 1.27753i −0.912166 0.409820i \(-0.865592\pi\)
0.497072 0.867709i \(-0.334408\pi\)
\(920\) 10.0000 0.329690
\(921\) 0 0
\(922\) 2.33688 7.19218i 0.0769611 0.236862i
\(923\) −28.9443 + 21.0292i −0.952712 + 0.692186i
\(924\) 0 0
\(925\) −32.3607 + 23.5114i −1.06401 + 0.773050i
\(926\) 22.8328 0.750333
\(927\) 0 0
\(928\) 2.61803 8.05748i 0.0859412 0.264500i
\(929\) 5.87539 18.0826i 0.192765 0.593270i −0.807230 0.590237i \(-0.799034\pi\)
0.999995 0.00303360i \(-0.000965627\pi\)
\(930\) 0 0
\(931\) 0.257354 + 0.792055i 0.00843444 + 0.0259585i
\(932\) −18.6525 −0.610982
\(933\) 0 0
\(934\) −8.63525 6.27388i −0.282554 0.205288i
\(935\) 10.0000 0.327035
\(936\) 0 0
\(937\) 7.02786 + 5.10604i 0.229590 + 0.166807i 0.696633 0.717428i \(-0.254681\pi\)
−0.467043 + 0.884235i \(0.654681\pi\)
\(938\) −3.23607 2.35114i −0.105661 0.0767675i
\(939\) 0 0
\(940\) −3.81966 −0.124584
\(941\) −3.59017 2.60841i −0.117036 0.0850318i 0.527728 0.849414i \(-0.323044\pi\)
−0.644764 + 0.764382i \(0.723044\pi\)
\(942\) 0 0
\(943\) 25.5279 0.831302
\(944\) 1.11803 + 3.44095i 0.0363889 + 0.111994i
\(945\) 0 0
\(946\) −8.61803 + 26.5236i −0.280196 + 0.862356i
\(947\) 10.3713 31.9196i 0.337023 1.03725i −0.628694 0.777652i \(-0.716410\pi\)
0.965717 0.259597i \(-0.0835897\pi\)
\(948\) 0 0
\(949\) −22.8328 −0.741185
\(950\) −23.0902 + 16.7760i −0.749144 + 0.544285i
\(951\) 0 0
\(952\) −2.61803 + 1.90211i −0.0848510 + 0.0616478i
\(953\) −1.63932 + 5.04531i −0.0531028 + 0.163434i −0.974091 0.226157i \(-0.927384\pi\)
0.920988 + 0.389591i \(0.127384\pi\)
\(954\) 0 0
\(955\) −9.59675 −0.310543
\(956\) −3.79837 11.6902i −0.122848 0.378088i
\(957\) 0 0
\(958\) −9.00000 27.6992i −0.290777 0.894919i
\(959\) −25.7984 18.7436i −0.833073 0.605263i
\(960\) 0 0
\(961\) −10.3541 + 7.52270i −0.334003 + 0.242668i
\(962\) −41.8885 30.4338i −1.35054 0.981225i
\(963\) 0 0
\(964\) −7.73607 + 5.62058i −0.249162 + 0.181027i
\(965\) −32.2984 + 23.4661i −1.03972 + 0.755402i
\(966\) 0 0
\(967\) 3.37132 + 10.3759i 0.108414 + 0.333665i 0.990517 0.137393i \(-0.0438722\pi\)
−0.882102 + 0.471058i \(0.843872\pi\)
\(968\) −2.09017 −0.0671806
\(969\) 0 0
\(970\) −6.11803 4.44501i −0.196438 0.142721i
\(971\) 4.39261 13.5191i 0.140966 0.433847i −0.855505 0.517795i \(-0.826753\pi\)
0.996470 + 0.0839479i \(0.0267529\pi\)
\(972\) 0 0
\(973\) −22.1803 + 16.1150i −0.711069 + 0.516622i
\(974\) −17.7984 −0.570297
\(975\) 0 0
\(976\) 2.76393 0.0884713
\(977\) −0.618034 + 0.449028i −0.0197727 + 0.0143657i −0.597628 0.801774i \(-0.703890\pi\)
0.577855 + 0.816139i \(0.303890\pi\)
\(978\) 0 0
\(979\) 3.94427 12.1392i 0.126059 0.387971i
\(980\) −0.100813 0.310271i −0.00322036 0.00991123i
\(981\) 0 0
\(982\) −25.2705 −0.806414
\(983\) −12.4164 38.2138i −0.396022 1.21883i −0.928163 0.372174i \(-0.878612\pi\)
0.532141 0.846656i \(-0.321388\pi\)
\(984\) 0 0
\(985\) 11.8090 + 36.3444i 0.376267 + 1.15803i
\(986\) 8.47214 6.15537i 0.269808 0.196027i
\(987\) 0 0
\(988\) −29.8885 21.7153i −0.950881 0.690856i
\(989\) −27.8885 + 20.2622i −0.886804 + 0.644301i
\(990\) 0 0
\(991\) −23.8262 17.3108i −0.756865 0.549895i 0.141082 0.989998i \(-0.454942\pi\)
−0.897947 + 0.440103i \(0.854942\pi\)
\(992\) −2.04508 6.29412i −0.0649315 0.199839i
\(993\) 0 0
\(994\) 4.47214 + 13.7638i 0.141848 + 0.436562i
\(995\) −35.2877 + 25.6380i −1.11870 + 0.812780i
\(996\) 0 0
\(997\) −1.72949 + 5.32282i −0.0547735 + 0.168576i −0.974701 0.223513i \(-0.928247\pi\)
0.919927 + 0.392089i \(0.128247\pi\)
\(998\) 28.7984 20.9232i 0.911597 0.662314i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.2.h.c.361.1 4
3.2 odd 2 150.2.g.a.61.1 4
15.2 even 4 750.2.h.b.199.1 8
15.8 even 4 750.2.h.b.199.2 8
15.14 odd 2 750.2.g.b.301.1 4
25.16 even 5 inner 450.2.h.c.91.1 4
75.29 odd 10 3750.2.a.d.1.1 2
75.38 even 20 750.2.h.b.49.1 8
75.41 odd 10 150.2.g.a.91.1 yes 4
75.47 even 20 3750.2.c.b.1249.4 4
75.53 even 20 3750.2.c.b.1249.1 4
75.59 odd 10 750.2.g.b.451.1 4
75.62 even 20 750.2.h.b.49.2 8
75.71 odd 10 3750.2.a.f.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.2.g.a.61.1 4 3.2 odd 2
150.2.g.a.91.1 yes 4 75.41 odd 10
450.2.h.c.91.1 4 25.16 even 5 inner
450.2.h.c.361.1 4 1.1 even 1 trivial
750.2.g.b.301.1 4 15.14 odd 2
750.2.g.b.451.1 4 75.59 odd 10
750.2.h.b.49.1 8 75.38 even 20
750.2.h.b.49.2 8 75.62 even 20
750.2.h.b.199.1 8 15.2 even 4
750.2.h.b.199.2 8 15.8 even 4
3750.2.a.d.1.1 2 75.29 odd 10
3750.2.a.f.1.2 2 75.71 odd 10
3750.2.c.b.1249.1 4 75.53 even 20
3750.2.c.b.1249.4 4 75.47 even 20