Properties

Label 3750.2.a.m.1.3
Level $3750$
Weight $2$
Character 3750.1
Self dual yes
Analytic conductor $29.944$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3750,2,Mod(1,3750)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3750, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3750.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3750 = 2 \cdot 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3750.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.9439007580\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 150)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.90211\) of defining polynomial
Character \(\chi\) \(=\) 3750.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} +1.72654 q^{7} -1.00000 q^{8} +1.00000 q^{9} -2.44246 q^{11} +1.00000 q^{12} +2.96917 q^{13} -1.72654 q^{14} +1.00000 q^{16} -3.34458 q^{17} -1.00000 q^{18} +2.24669 q^{19} +1.72654 q^{21} +2.44246 q^{22} -9.11798 q^{23} -1.00000 q^{24} -2.96917 q^{26} +1.00000 q^{27} +1.72654 q^{28} -9.37895 q^{29} -6.12569 q^{31} -1.00000 q^{32} -2.44246 q^{33} +3.34458 q^{34} +1.00000 q^{36} -3.30127 q^{37} -2.24669 q^{38} +2.96917 q^{39} -6.12756 q^{41} -1.72654 q^{42} -7.06997 q^{43} -2.44246 q^{44} +9.11798 q^{46} +4.99228 q^{47} +1.00000 q^{48} -4.01905 q^{49} -3.34458 q^{51} +2.96917 q^{52} +6.85108 q^{53} -1.00000 q^{54} -1.72654 q^{56} +2.24669 q^{57} +9.37895 q^{58} -0.182645 q^{59} +5.15131 q^{61} +6.12569 q^{62} +1.72654 q^{63} +1.00000 q^{64} +2.44246 q^{66} +11.8903 q^{67} -3.34458 q^{68} -9.11798 q^{69} -11.3618 q^{71} -1.00000 q^{72} -6.72539 q^{73} +3.30127 q^{74} +2.24669 q^{76} -4.21702 q^{77} -2.96917 q^{78} -11.3571 q^{79} +1.00000 q^{81} +6.12756 q^{82} +9.13922 q^{83} +1.72654 q^{84} +7.06997 q^{86} -9.37895 q^{87} +2.44246 q^{88} -8.11694 q^{89} +5.12641 q^{91} -9.11798 q^{92} -6.12569 q^{93} -4.99228 q^{94} -1.00000 q^{96} +9.88597 q^{97} +4.01905 q^{98} -2.44246 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{3} + 4 q^{4} - 4 q^{6} + 4 q^{7} - 4 q^{8} + 4 q^{9} - 10 q^{11} + 4 q^{12} - 2 q^{13} - 4 q^{14} + 4 q^{16} - 6 q^{17} - 4 q^{18} - 6 q^{19} + 4 q^{21} + 10 q^{22} - 4 q^{24} + 2 q^{26}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 1.72654 0.652572 0.326286 0.945271i \(-0.394203\pi\)
0.326286 + 0.945271i \(0.394203\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.44246 −0.736430 −0.368215 0.929741i \(-0.620031\pi\)
−0.368215 + 0.929741i \(0.620031\pi\)
\(12\) 1.00000 0.288675
\(13\) 2.96917 0.823501 0.411750 0.911297i \(-0.364918\pi\)
0.411750 + 0.911297i \(0.364918\pi\)
\(14\) −1.72654 −0.461438
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.34458 −0.811179 −0.405589 0.914055i \(-0.632934\pi\)
−0.405589 + 0.914055i \(0.632934\pi\)
\(18\) −1.00000 −0.235702
\(19\) 2.24669 0.515426 0.257713 0.966222i \(-0.417031\pi\)
0.257713 + 0.966222i \(0.417031\pi\)
\(20\) 0 0
\(21\) 1.72654 0.376762
\(22\) 2.44246 0.520735
\(23\) −9.11798 −1.90123 −0.950615 0.310373i \(-0.899546\pi\)
−0.950615 + 0.310373i \(0.899546\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) −2.96917 −0.582303
\(27\) 1.00000 0.192450
\(28\) 1.72654 0.326286
\(29\) −9.37895 −1.74163 −0.870814 0.491613i \(-0.836407\pi\)
−0.870814 + 0.491613i \(0.836407\pi\)
\(30\) 0 0
\(31\) −6.12569 −1.10021 −0.550104 0.835096i \(-0.685412\pi\)
−0.550104 + 0.835096i \(0.685412\pi\)
\(32\) −1.00000 −0.176777
\(33\) −2.44246 −0.425178
\(34\) 3.34458 0.573590
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −3.30127 −0.542725 −0.271362 0.962477i \(-0.587474\pi\)
−0.271362 + 0.962477i \(0.587474\pi\)
\(38\) −2.24669 −0.364461
\(39\) 2.96917 0.475449
\(40\) 0 0
\(41\) −6.12756 −0.956964 −0.478482 0.878097i \(-0.658813\pi\)
−0.478482 + 0.878097i \(0.658813\pi\)
\(42\) −1.72654 −0.266411
\(43\) −7.06997 −1.07816 −0.539080 0.842255i \(-0.681228\pi\)
−0.539080 + 0.842255i \(0.681228\pi\)
\(44\) −2.44246 −0.368215
\(45\) 0 0
\(46\) 9.11798 1.34437
\(47\) 4.99228 0.728199 0.364100 0.931360i \(-0.381377\pi\)
0.364100 + 0.931360i \(0.381377\pi\)
\(48\) 1.00000 0.144338
\(49\) −4.01905 −0.574150
\(50\) 0 0
\(51\) −3.34458 −0.468334
\(52\) 2.96917 0.411750
\(53\) 6.85108 0.941069 0.470534 0.882382i \(-0.344061\pi\)
0.470534 + 0.882382i \(0.344061\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) −1.72654 −0.230719
\(57\) 2.24669 0.297581
\(58\) 9.37895 1.23152
\(59\) −0.182645 −0.0237783 −0.0118892 0.999929i \(-0.503785\pi\)
−0.0118892 + 0.999929i \(0.503785\pi\)
\(60\) 0 0
\(61\) 5.15131 0.659558 0.329779 0.944058i \(-0.393026\pi\)
0.329779 + 0.944058i \(0.393026\pi\)
\(62\) 6.12569 0.777964
\(63\) 1.72654 0.217524
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 2.44246 0.300646
\(67\) 11.8903 1.45264 0.726318 0.687359i \(-0.241230\pi\)
0.726318 + 0.687359i \(0.241230\pi\)
\(68\) −3.34458 −0.405589
\(69\) −9.11798 −1.09768
\(70\) 0 0
\(71\) −11.3618 −1.34839 −0.674197 0.738552i \(-0.735510\pi\)
−0.674197 + 0.738552i \(0.735510\pi\)
\(72\) −1.00000 −0.117851
\(73\) −6.72539 −0.787147 −0.393574 0.919293i \(-0.628761\pi\)
−0.393574 + 0.919293i \(0.628761\pi\)
\(74\) 3.30127 0.383764
\(75\) 0 0
\(76\) 2.24669 0.257713
\(77\) −4.21702 −0.480574
\(78\) −2.96917 −0.336193
\(79\) −11.3571 −1.27777 −0.638885 0.769302i \(-0.720604\pi\)
−0.638885 + 0.769302i \(0.720604\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 6.12756 0.676676
\(83\) 9.13922 1.00316 0.501580 0.865111i \(-0.332752\pi\)
0.501580 + 0.865111i \(0.332752\pi\)
\(84\) 1.72654 0.188381
\(85\) 0 0
\(86\) 7.06997 0.762374
\(87\) −9.37895 −1.00553
\(88\) 2.44246 0.260367
\(89\) −8.11694 −0.860394 −0.430197 0.902735i \(-0.641556\pi\)
−0.430197 + 0.902735i \(0.641556\pi\)
\(90\) 0 0
\(91\) 5.12641 0.537393
\(92\) −9.11798 −0.950615
\(93\) −6.12569 −0.635205
\(94\) −4.99228 −0.514915
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 9.88597 1.00377 0.501884 0.864935i \(-0.332640\pi\)
0.501884 + 0.864935i \(0.332640\pi\)
\(98\) 4.01905 0.405985
\(99\) −2.44246 −0.245477
\(100\) 0 0
\(101\) 6.28885 0.625764 0.312882 0.949792i \(-0.398706\pi\)
0.312882 + 0.949792i \(0.398706\pi\)
\(102\) 3.34458 0.331162
\(103\) −8.57949 −0.845362 −0.422681 0.906278i \(-0.638911\pi\)
−0.422681 + 0.906278i \(0.638911\pi\)
\(104\) −2.96917 −0.291152
\(105\) 0 0
\(106\) −6.85108 −0.665436
\(107\) 9.09673 0.879415 0.439707 0.898141i \(-0.355082\pi\)
0.439707 + 0.898141i \(0.355082\pi\)
\(108\) 1.00000 0.0962250
\(109\) −13.6103 −1.30363 −0.651816 0.758377i \(-0.725993\pi\)
−0.651816 + 0.758377i \(0.725993\pi\)
\(110\) 0 0
\(111\) −3.30127 −0.313342
\(112\) 1.72654 0.163143
\(113\) −8.26761 −0.777751 −0.388875 0.921290i \(-0.627136\pi\)
−0.388875 + 0.921290i \(0.627136\pi\)
\(114\) −2.24669 −0.210422
\(115\) 0 0
\(116\) −9.37895 −0.870814
\(117\) 2.96917 0.274500
\(118\) 0.182645 0.0168138
\(119\) −5.77455 −0.529352
\(120\) 0 0
\(121\) −5.03437 −0.457670
\(122\) −5.15131 −0.466378
\(123\) −6.12756 −0.552503
\(124\) −6.12569 −0.550104
\(125\) 0 0
\(126\) −1.72654 −0.153813
\(127\) 17.8127 1.58062 0.790309 0.612709i \(-0.209920\pi\)
0.790309 + 0.612709i \(0.209920\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −7.06997 −0.622476
\(130\) 0 0
\(131\) 10.3375 0.903192 0.451596 0.892223i \(-0.350855\pi\)
0.451596 + 0.892223i \(0.350855\pi\)
\(132\) −2.44246 −0.212589
\(133\) 3.87901 0.336352
\(134\) −11.8903 −1.02717
\(135\) 0 0
\(136\) 3.34458 0.286795
\(137\) 16.0816 1.37395 0.686973 0.726683i \(-0.258939\pi\)
0.686973 + 0.726683i \(0.258939\pi\)
\(138\) 9.11798 0.776174
\(139\) −16.5094 −1.40031 −0.700155 0.713991i \(-0.746886\pi\)
−0.700155 + 0.713991i \(0.746886\pi\)
\(140\) 0 0
\(141\) 4.99228 0.420426
\(142\) 11.3618 0.953458
\(143\) −7.25210 −0.606451
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 6.72539 0.556597
\(147\) −4.01905 −0.331486
\(148\) −3.30127 −0.271362
\(149\) 20.5325 1.68209 0.841045 0.540965i \(-0.181941\pi\)
0.841045 + 0.540965i \(0.181941\pi\)
\(150\) 0 0
\(151\) 2.78808 0.226891 0.113445 0.993544i \(-0.463811\pi\)
0.113445 + 0.993544i \(0.463811\pi\)
\(152\) −2.24669 −0.182231
\(153\) −3.34458 −0.270393
\(154\) 4.21702 0.339817
\(155\) 0 0
\(156\) 2.96917 0.237724
\(157\) −14.3416 −1.14458 −0.572291 0.820051i \(-0.693945\pi\)
−0.572291 + 0.820051i \(0.693945\pi\)
\(158\) 11.3571 0.903519
\(159\) 6.85108 0.543326
\(160\) 0 0
\(161\) −15.7426 −1.24069
\(162\) −1.00000 −0.0785674
\(163\) 5.90315 0.462371 0.231185 0.972910i \(-0.425740\pi\)
0.231185 + 0.972910i \(0.425740\pi\)
\(164\) −6.12756 −0.478482
\(165\) 0 0
\(166\) −9.13922 −0.709341
\(167\) 8.94427 0.692129 0.346064 0.938211i \(-0.387518\pi\)
0.346064 + 0.938211i \(0.387518\pi\)
\(168\) −1.72654 −0.133206
\(169\) −4.18400 −0.321846
\(170\) 0 0
\(171\) 2.24669 0.171809
\(172\) −7.06997 −0.539080
\(173\) −25.9151 −1.97029 −0.985145 0.171722i \(-0.945067\pi\)
−0.985145 + 0.171722i \(0.945067\pi\)
\(174\) 9.37895 0.711016
\(175\) 0 0
\(176\) −2.44246 −0.184108
\(177\) −0.182645 −0.0137284
\(178\) 8.11694 0.608390
\(179\) 0.0480111 0.00358852 0.00179426 0.999998i \(-0.499429\pi\)
0.00179426 + 0.999998i \(0.499429\pi\)
\(180\) 0 0
\(181\) 20.5347 1.52633 0.763167 0.646202i \(-0.223644\pi\)
0.763167 + 0.646202i \(0.223644\pi\)
\(182\) −5.12641 −0.379995
\(183\) 5.15131 0.380796
\(184\) 9.11798 0.672186
\(185\) 0 0
\(186\) 6.12569 0.449158
\(187\) 8.16901 0.597377
\(188\) 4.99228 0.364100
\(189\) 1.72654 0.125587
\(190\) 0 0
\(191\) 2.42040 0.175134 0.0875668 0.996159i \(-0.472091\pi\)
0.0875668 + 0.996159i \(0.472091\pi\)
\(192\) 1.00000 0.0721688
\(193\) −13.3764 −0.962857 −0.481429 0.876485i \(-0.659882\pi\)
−0.481429 + 0.876485i \(0.659882\pi\)
\(194\) −9.88597 −0.709771
\(195\) 0 0
\(196\) −4.01905 −0.287075
\(197\) −18.9236 −1.34825 −0.674124 0.738618i \(-0.735479\pi\)
−0.674124 + 0.738618i \(0.735479\pi\)
\(198\) 2.44246 0.173578
\(199\) −22.6784 −1.60763 −0.803815 0.594879i \(-0.797200\pi\)
−0.803815 + 0.594879i \(0.797200\pi\)
\(200\) 0 0
\(201\) 11.8903 0.838680
\(202\) −6.28885 −0.442482
\(203\) −16.1932 −1.13654
\(204\) −3.34458 −0.234167
\(205\) 0 0
\(206\) 8.57949 0.597762
\(207\) −9.11798 −0.633743
\(208\) 2.96917 0.205875
\(209\) −5.48746 −0.379575
\(210\) 0 0
\(211\) 2.55876 0.176152 0.0880761 0.996114i \(-0.471928\pi\)
0.0880761 + 0.996114i \(0.471928\pi\)
\(212\) 6.85108 0.470534
\(213\) −11.3618 −0.778495
\(214\) −9.09673 −0.621840
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) −10.5763 −0.717964
\(218\) 13.6103 0.921807
\(219\) −6.72539 −0.454460
\(220\) 0 0
\(221\) −9.93063 −0.668007
\(222\) 3.30127 0.221566
\(223\) 18.6543 1.24918 0.624591 0.780952i \(-0.285266\pi\)
0.624591 + 0.780952i \(0.285266\pi\)
\(224\) −1.72654 −0.115359
\(225\) 0 0
\(226\) 8.26761 0.549953
\(227\) −11.0615 −0.734180 −0.367090 0.930185i \(-0.619646\pi\)
−0.367090 + 0.930185i \(0.619646\pi\)
\(228\) 2.24669 0.148791
\(229\) 27.0493 1.78746 0.893732 0.448600i \(-0.148077\pi\)
0.893732 + 0.448600i \(0.148077\pi\)
\(230\) 0 0
\(231\) −4.21702 −0.277459
\(232\) 9.37895 0.615758
\(233\) 18.2774 1.19739 0.598696 0.800976i \(-0.295686\pi\)
0.598696 + 0.800976i \(0.295686\pi\)
\(234\) −2.96917 −0.194101
\(235\) 0 0
\(236\) −0.182645 −0.0118892
\(237\) −11.3571 −0.737721
\(238\) 5.77455 0.374309
\(239\) −2.56816 −0.166120 −0.0830602 0.996545i \(-0.526469\pi\)
−0.0830602 + 0.996545i \(0.526469\pi\)
\(240\) 0 0
\(241\) 13.3394 0.859264 0.429632 0.903004i \(-0.358643\pi\)
0.429632 + 0.903004i \(0.358643\pi\)
\(242\) 5.03437 0.323622
\(243\) 1.00000 0.0641500
\(244\) 5.15131 0.329779
\(245\) 0 0
\(246\) 6.12756 0.390679
\(247\) 6.67081 0.424454
\(248\) 6.12569 0.388982
\(249\) 9.13922 0.579175
\(250\) 0 0
\(251\) −14.3409 −0.905191 −0.452595 0.891716i \(-0.649502\pi\)
−0.452595 + 0.891716i \(0.649502\pi\)
\(252\) 1.72654 0.108762
\(253\) 22.2703 1.40012
\(254\) −17.8127 −1.11767
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −16.0010 −0.998117 −0.499059 0.866568i \(-0.666321\pi\)
−0.499059 + 0.866568i \(0.666321\pi\)
\(258\) 7.06997 0.440157
\(259\) −5.69977 −0.354167
\(260\) 0 0
\(261\) −9.37895 −0.580542
\(262\) −10.3375 −0.638653
\(263\) 19.8584 1.22452 0.612260 0.790657i \(-0.290261\pi\)
0.612260 + 0.790657i \(0.290261\pi\)
\(264\) 2.44246 0.150323
\(265\) 0 0
\(266\) −3.87901 −0.237837
\(267\) −8.11694 −0.496749
\(268\) 11.8903 0.726318
\(269\) −2.66084 −0.162234 −0.0811170 0.996705i \(-0.525849\pi\)
−0.0811170 + 0.996705i \(0.525849\pi\)
\(270\) 0 0
\(271\) −13.4607 −0.817679 −0.408839 0.912606i \(-0.634066\pi\)
−0.408839 + 0.912606i \(0.634066\pi\)
\(272\) −3.34458 −0.202795
\(273\) 5.12641 0.310264
\(274\) −16.0816 −0.971527
\(275\) 0 0
\(276\) −9.11798 −0.548838
\(277\) 5.34748 0.321299 0.160649 0.987012i \(-0.448641\pi\)
0.160649 + 0.987012i \(0.448641\pi\)
\(278\) 16.5094 0.990169
\(279\) −6.12569 −0.366736
\(280\) 0 0
\(281\) −16.7170 −0.997250 −0.498625 0.866818i \(-0.666162\pi\)
−0.498625 + 0.866818i \(0.666162\pi\)
\(282\) −4.99228 −0.297286
\(283\) 14.1630 0.841901 0.420951 0.907084i \(-0.361697\pi\)
0.420951 + 0.907084i \(0.361697\pi\)
\(284\) −11.3618 −0.674197
\(285\) 0 0
\(286\) 7.25210 0.428826
\(287\) −10.5795 −0.624488
\(288\) −1.00000 −0.0589256
\(289\) −5.81381 −0.341989
\(290\) 0 0
\(291\) 9.88597 0.579526
\(292\) −6.72539 −0.393574
\(293\) −12.4643 −0.728175 −0.364088 0.931365i \(-0.618619\pi\)
−0.364088 + 0.931365i \(0.618619\pi\)
\(294\) 4.01905 0.234396
\(295\) 0 0
\(296\) 3.30127 0.191882
\(297\) −2.44246 −0.141726
\(298\) −20.5325 −1.18942
\(299\) −27.0729 −1.56566
\(300\) 0 0
\(301\) −12.2066 −0.703577
\(302\) −2.78808 −0.160436
\(303\) 6.28885 0.361285
\(304\) 2.24669 0.128856
\(305\) 0 0
\(306\) 3.34458 0.191197
\(307\) 23.9974 1.36960 0.684801 0.728730i \(-0.259889\pi\)
0.684801 + 0.728730i \(0.259889\pi\)
\(308\) −4.21702 −0.240287
\(309\) −8.57949 −0.488070
\(310\) 0 0
\(311\) −13.9591 −0.791547 −0.395773 0.918348i \(-0.629523\pi\)
−0.395773 + 0.918348i \(0.629523\pi\)
\(312\) −2.96917 −0.168096
\(313\) −9.62739 −0.544172 −0.272086 0.962273i \(-0.587714\pi\)
−0.272086 + 0.962273i \(0.587714\pi\)
\(314\) 14.3416 0.809341
\(315\) 0 0
\(316\) −11.3571 −0.638885
\(317\) 0.556314 0.0312457 0.0156229 0.999878i \(-0.495027\pi\)
0.0156229 + 0.999878i \(0.495027\pi\)
\(318\) −6.85108 −0.384190
\(319\) 22.9077 1.28259
\(320\) 0 0
\(321\) 9.09673 0.507730
\(322\) 15.7426 0.877299
\(323\) −7.51423 −0.418103
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −5.90315 −0.326945
\(327\) −13.6103 −0.752652
\(328\) 6.12756 0.338338
\(329\) 8.61939 0.475202
\(330\) 0 0
\(331\) −11.5651 −0.635678 −0.317839 0.948145i \(-0.602957\pi\)
−0.317839 + 0.948145i \(0.602957\pi\)
\(332\) 9.13922 0.501580
\(333\) −3.30127 −0.180908
\(334\) −8.94427 −0.489409
\(335\) 0 0
\(336\) 1.72654 0.0941906
\(337\) 29.8767 1.62749 0.813744 0.581224i \(-0.197426\pi\)
0.813744 + 0.581224i \(0.197426\pi\)
\(338\) 4.18400 0.227580
\(339\) −8.26761 −0.449035
\(340\) 0 0
\(341\) 14.9618 0.810226
\(342\) −2.24669 −0.121487
\(343\) −19.0249 −1.02725
\(344\) 7.06997 0.381187
\(345\) 0 0
\(346\) 25.9151 1.39321
\(347\) −4.24669 −0.227974 −0.113987 0.993482i \(-0.536362\pi\)
−0.113987 + 0.993482i \(0.536362\pi\)
\(348\) −9.37895 −0.502764
\(349\) −19.3711 −1.03691 −0.518456 0.855104i \(-0.673493\pi\)
−0.518456 + 0.855104i \(0.673493\pi\)
\(350\) 0 0
\(351\) 2.96917 0.158483
\(352\) 2.44246 0.130184
\(353\) −0.243275 −0.0129482 −0.00647411 0.999979i \(-0.502061\pi\)
−0.00647411 + 0.999979i \(0.502061\pi\)
\(354\) 0.182645 0.00970747
\(355\) 0 0
\(356\) −8.11694 −0.430197
\(357\) −5.77455 −0.305622
\(358\) −0.0480111 −0.00253746
\(359\) 21.0432 1.11062 0.555309 0.831644i \(-0.312600\pi\)
0.555309 + 0.831644i \(0.312600\pi\)
\(360\) 0 0
\(361\) −13.9524 −0.734336
\(362\) −20.5347 −1.07928
\(363\) −5.03437 −0.264236
\(364\) 5.12641 0.268697
\(365\) 0 0
\(366\) −5.15131 −0.269263
\(367\) −7.83339 −0.408900 −0.204450 0.978877i \(-0.565541\pi\)
−0.204450 + 0.978877i \(0.565541\pi\)
\(368\) −9.11798 −0.475307
\(369\) −6.12756 −0.318988
\(370\) 0 0
\(371\) 11.8287 0.614115
\(372\) −6.12569 −0.317602
\(373\) −15.5256 −0.803883 −0.401941 0.915665i \(-0.631664\pi\)
−0.401941 + 0.915665i \(0.631664\pi\)
\(374\) −8.16901 −0.422409
\(375\) 0 0
\(376\) −4.99228 −0.257457
\(377\) −27.8477 −1.43423
\(378\) −1.72654 −0.0888038
\(379\) −10.8637 −0.558030 −0.279015 0.960287i \(-0.590008\pi\)
−0.279015 + 0.960287i \(0.590008\pi\)
\(380\) 0 0
\(381\) 17.8127 0.912570
\(382\) −2.42040 −0.123838
\(383\) −9.59615 −0.490340 −0.245170 0.969480i \(-0.578844\pi\)
−0.245170 + 0.969480i \(0.578844\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 13.3764 0.680843
\(387\) −7.06997 −0.359387
\(388\) 9.88597 0.501884
\(389\) 34.8220 1.76555 0.882773 0.469800i \(-0.155674\pi\)
0.882773 + 0.469800i \(0.155674\pi\)
\(390\) 0 0
\(391\) 30.4958 1.54224
\(392\) 4.01905 0.202993
\(393\) 10.3375 0.521458
\(394\) 18.9236 0.953355
\(395\) 0 0
\(396\) −2.44246 −0.122738
\(397\) 16.0058 0.803309 0.401654 0.915791i \(-0.368435\pi\)
0.401654 + 0.915791i \(0.368435\pi\)
\(398\) 22.6784 1.13677
\(399\) 3.87901 0.194193
\(400\) 0 0
\(401\) 11.5284 0.575701 0.287850 0.957675i \(-0.407059\pi\)
0.287850 + 0.957675i \(0.407059\pi\)
\(402\) −11.8903 −0.593036
\(403\) −18.1883 −0.906022
\(404\) 6.28885 0.312882
\(405\) 0 0
\(406\) 16.1932 0.803653
\(407\) 8.06322 0.399679
\(408\) 3.34458 0.165581
\(409\) −14.5906 −0.721461 −0.360730 0.932670i \(-0.617473\pi\)
−0.360730 + 0.932670i \(0.617473\pi\)
\(410\) 0 0
\(411\) 16.0816 0.793248
\(412\) −8.57949 −0.422681
\(413\) −0.315344 −0.0155171
\(414\) 9.11798 0.448124
\(415\) 0 0
\(416\) −2.96917 −0.145576
\(417\) −16.5094 −0.808469
\(418\) 5.48746 0.268400
\(419\) −14.1068 −0.689165 −0.344582 0.938756i \(-0.611979\pi\)
−0.344582 + 0.938756i \(0.611979\pi\)
\(420\) 0 0
\(421\) −12.8882 −0.628130 −0.314065 0.949401i \(-0.601691\pi\)
−0.314065 + 0.949401i \(0.601691\pi\)
\(422\) −2.55876 −0.124558
\(423\) 4.99228 0.242733
\(424\) −6.85108 −0.332718
\(425\) 0 0
\(426\) 11.3618 0.550479
\(427\) 8.89396 0.430409
\(428\) 9.09673 0.439707
\(429\) −7.25210 −0.350135
\(430\) 0 0
\(431\) −23.1424 −1.11473 −0.557366 0.830267i \(-0.688188\pi\)
−0.557366 + 0.830267i \(0.688188\pi\)
\(432\) 1.00000 0.0481125
\(433\) −23.5106 −1.12985 −0.564923 0.825144i \(-0.691094\pi\)
−0.564923 + 0.825144i \(0.691094\pi\)
\(434\) 10.5763 0.507677
\(435\) 0 0
\(436\) −13.6103 −0.651816
\(437\) −20.4853 −0.979943
\(438\) 6.72539 0.321352
\(439\) 1.99240 0.0950919 0.0475459 0.998869i \(-0.484860\pi\)
0.0475459 + 0.998869i \(0.484860\pi\)
\(440\) 0 0
\(441\) −4.01905 −0.191383
\(442\) 9.93063 0.472352
\(443\) −13.0327 −0.619202 −0.309601 0.950867i \(-0.600195\pi\)
−0.309601 + 0.950867i \(0.600195\pi\)
\(444\) −3.30127 −0.156671
\(445\) 0 0
\(446\) −18.6543 −0.883305
\(447\) 20.5325 0.971155
\(448\) 1.72654 0.0815715
\(449\) 12.0846 0.570310 0.285155 0.958481i \(-0.407955\pi\)
0.285155 + 0.958481i \(0.407955\pi\)
\(450\) 0 0
\(451\) 14.9663 0.704737
\(452\) −8.26761 −0.388875
\(453\) 2.78808 0.130995
\(454\) 11.0615 0.519144
\(455\) 0 0
\(456\) −2.24669 −0.105211
\(457\) 5.62762 0.263249 0.131624 0.991300i \(-0.457981\pi\)
0.131624 + 0.991300i \(0.457981\pi\)
\(458\) −27.0493 −1.26393
\(459\) −3.34458 −0.156111
\(460\) 0 0
\(461\) −4.62686 −0.215494 −0.107747 0.994178i \(-0.534364\pi\)
−0.107747 + 0.994178i \(0.534364\pi\)
\(462\) 4.21702 0.196193
\(463\) −5.75912 −0.267649 −0.133824 0.991005i \(-0.542726\pi\)
−0.133824 + 0.991005i \(0.542726\pi\)
\(464\) −9.37895 −0.435407
\(465\) 0 0
\(466\) −18.2774 −0.846684
\(467\) −24.5818 −1.13751 −0.568755 0.822507i \(-0.692575\pi\)
−0.568755 + 0.822507i \(0.692575\pi\)
\(468\) 2.96917 0.137250
\(469\) 20.5292 0.947949
\(470\) 0 0
\(471\) −14.3416 −0.660824
\(472\) 0.182645 0.00840692
\(473\) 17.2681 0.793990
\(474\) 11.3571 0.521647
\(475\) 0 0
\(476\) −5.77455 −0.264676
\(477\) 6.85108 0.313690
\(478\) 2.56816 0.117465
\(479\) −5.84150 −0.266905 −0.133453 0.991055i \(-0.542606\pi\)
−0.133453 + 0.991055i \(0.542606\pi\)
\(480\) 0 0
\(481\) −9.80203 −0.446934
\(482\) −13.3394 −0.607592
\(483\) −15.7426 −0.716312
\(484\) −5.03437 −0.228835
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) −5.10374 −0.231272 −0.115636 0.993292i \(-0.536891\pi\)
−0.115636 + 0.993292i \(0.536891\pi\)
\(488\) −5.15131 −0.233189
\(489\) 5.90315 0.266950
\(490\) 0 0
\(491\) 39.0842 1.76385 0.881923 0.471394i \(-0.156249\pi\)
0.881923 + 0.471394i \(0.156249\pi\)
\(492\) −6.12756 −0.276252
\(493\) 31.3686 1.41277
\(494\) −6.67081 −0.300134
\(495\) 0 0
\(496\) −6.12569 −0.275052
\(497\) −19.6166 −0.879923
\(498\) −9.13922 −0.409538
\(499\) −12.0527 −0.539553 −0.269777 0.962923i \(-0.586950\pi\)
−0.269777 + 0.962923i \(0.586950\pi\)
\(500\) 0 0
\(501\) 8.94427 0.399601
\(502\) 14.3409 0.640066
\(503\) −9.88108 −0.440576 −0.220288 0.975435i \(-0.570700\pi\)
−0.220288 + 0.975435i \(0.570700\pi\)
\(504\) −1.72654 −0.0769063
\(505\) 0 0
\(506\) −22.2703 −0.990037
\(507\) −4.18400 −0.185818
\(508\) 17.8127 0.790309
\(509\) 20.0102 0.886936 0.443468 0.896290i \(-0.353748\pi\)
0.443468 + 0.896290i \(0.353748\pi\)
\(510\) 0 0
\(511\) −11.6117 −0.513670
\(512\) −1.00000 −0.0441942
\(513\) 2.24669 0.0991938
\(514\) 16.0010 0.705776
\(515\) 0 0
\(516\) −7.06997 −0.311238
\(517\) −12.1935 −0.536268
\(518\) 5.69977 0.250434
\(519\) −25.9151 −1.13755
\(520\) 0 0
\(521\) 10.7786 0.472220 0.236110 0.971726i \(-0.424128\pi\)
0.236110 + 0.971726i \(0.424128\pi\)
\(522\) 9.37895 0.410505
\(523\) −26.4549 −1.15679 −0.578396 0.815756i \(-0.696321\pi\)
−0.578396 + 0.815756i \(0.696321\pi\)
\(524\) 10.3375 0.451596
\(525\) 0 0
\(526\) −19.8584 −0.865866
\(527\) 20.4879 0.892465
\(528\) −2.44246 −0.106295
\(529\) 60.1375 2.61467
\(530\) 0 0
\(531\) −0.182645 −0.00792612
\(532\) 3.87901 0.168176
\(533\) −18.1938 −0.788061
\(534\) 8.11694 0.351254
\(535\) 0 0
\(536\) −11.8903 −0.513584
\(537\) 0.0480111 0.00207183
\(538\) 2.66084 0.114717
\(539\) 9.81639 0.422822
\(540\) 0 0
\(541\) −28.0936 −1.20784 −0.603919 0.797046i \(-0.706395\pi\)
−0.603919 + 0.797046i \(0.706395\pi\)
\(542\) 13.4607 0.578186
\(543\) 20.5347 0.881229
\(544\) 3.34458 0.143398
\(545\) 0 0
\(546\) −5.12641 −0.219390
\(547\) −7.37748 −0.315438 −0.157719 0.987484i \(-0.550414\pi\)
−0.157719 + 0.987484i \(0.550414\pi\)
\(548\) 16.0816 0.686973
\(549\) 5.15131 0.219853
\(550\) 0 0
\(551\) −21.0716 −0.897680
\(552\) 9.11798 0.388087
\(553\) −19.6085 −0.833836
\(554\) −5.34748 −0.227193
\(555\) 0 0
\(556\) −16.5094 −0.700155
\(557\) −17.2189 −0.729587 −0.364794 0.931088i \(-0.618860\pi\)
−0.364794 + 0.931088i \(0.618860\pi\)
\(558\) 6.12569 0.259321
\(559\) −20.9920 −0.887866
\(560\) 0 0
\(561\) 8.16901 0.344896
\(562\) 16.7170 0.705162
\(563\) −0.199504 −0.00840807 −0.00420404 0.999991i \(-0.501338\pi\)
−0.00420404 + 0.999991i \(0.501338\pi\)
\(564\) 4.99228 0.210213
\(565\) 0 0
\(566\) −14.1630 −0.595314
\(567\) 1.72654 0.0725080
\(568\) 11.3618 0.476729
\(569\) −18.8463 −0.790077 −0.395038 0.918665i \(-0.629269\pi\)
−0.395038 + 0.918665i \(0.629269\pi\)
\(570\) 0 0
\(571\) 18.1761 0.760646 0.380323 0.924854i \(-0.375813\pi\)
0.380323 + 0.924854i \(0.375813\pi\)
\(572\) −7.25210 −0.303226
\(573\) 2.42040 0.101113
\(574\) 10.5795 0.441579
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 0.379704 0.0158073 0.00790364 0.999969i \(-0.497484\pi\)
0.00790364 + 0.999969i \(0.497484\pi\)
\(578\) 5.81381 0.241823
\(579\) −13.3764 −0.555906
\(580\) 0 0
\(581\) 15.7793 0.654634
\(582\) −9.88597 −0.409787
\(583\) −16.7335 −0.693032
\(584\) 6.72539 0.278299
\(585\) 0 0
\(586\) 12.4643 0.514898
\(587\) 15.5322 0.641082 0.320541 0.947235i \(-0.396135\pi\)
0.320541 + 0.947235i \(0.396135\pi\)
\(588\) −4.01905 −0.165743
\(589\) −13.7625 −0.567075
\(590\) 0 0
\(591\) −18.9236 −0.778411
\(592\) −3.30127 −0.135681
\(593\) 4.62686 0.190002 0.0950012 0.995477i \(-0.469715\pi\)
0.0950012 + 0.995477i \(0.469715\pi\)
\(594\) 2.44246 0.100215
\(595\) 0 0
\(596\) 20.5325 0.841045
\(597\) −22.6784 −0.928166
\(598\) 27.0729 1.10709
\(599\) 28.6517 1.17067 0.585337 0.810790i \(-0.300962\pi\)
0.585337 + 0.810790i \(0.300962\pi\)
\(600\) 0 0
\(601\) 7.54545 0.307785 0.153893 0.988088i \(-0.450819\pi\)
0.153893 + 0.988088i \(0.450819\pi\)
\(602\) 12.2066 0.497504
\(603\) 11.8903 0.484212
\(604\) 2.78808 0.113445
\(605\) 0 0
\(606\) −6.28885 −0.255467
\(607\) 0.971865 0.0394468 0.0197234 0.999805i \(-0.493721\pi\)
0.0197234 + 0.999805i \(0.493721\pi\)
\(608\) −2.24669 −0.0911153
\(609\) −16.1932 −0.656180
\(610\) 0 0
\(611\) 14.8230 0.599673
\(612\) −3.34458 −0.135196
\(613\) −41.0725 −1.65890 −0.829452 0.558578i \(-0.811347\pi\)
−0.829452 + 0.558578i \(0.811347\pi\)
\(614\) −23.9974 −0.968455
\(615\) 0 0
\(616\) 4.21702 0.169908
\(617\) 8.20866 0.330468 0.165234 0.986254i \(-0.447162\pi\)
0.165234 + 0.986254i \(0.447162\pi\)
\(618\) 8.57949 0.345118
\(619\) 45.6024 1.83292 0.916458 0.400131i \(-0.131035\pi\)
0.916458 + 0.400131i \(0.131035\pi\)
\(620\) 0 0
\(621\) −9.11798 −0.365892
\(622\) 13.9591 0.559708
\(623\) −14.0142 −0.561469
\(624\) 2.96917 0.118862
\(625\) 0 0
\(626\) 9.62739 0.384788
\(627\) −5.48746 −0.219148
\(628\) −14.3416 −0.572291
\(629\) 11.0413 0.440247
\(630\) 0 0
\(631\) 34.1315 1.35875 0.679377 0.733790i \(-0.262250\pi\)
0.679377 + 0.733790i \(0.262250\pi\)
\(632\) 11.3571 0.451760
\(633\) 2.55876 0.101702
\(634\) −0.556314 −0.0220941
\(635\) 0 0
\(636\) 6.85108 0.271663
\(637\) −11.9333 −0.472813
\(638\) −22.9077 −0.906926
\(639\) −11.3618 −0.449464
\(640\) 0 0
\(641\) −34.3957 −1.35855 −0.679274 0.733884i \(-0.737705\pi\)
−0.679274 + 0.733884i \(0.737705\pi\)
\(642\) −9.09673 −0.359019
\(643\) −2.71413 −0.107035 −0.0535173 0.998567i \(-0.517043\pi\)
−0.0535173 + 0.998567i \(0.517043\pi\)
\(644\) −15.7426 −0.620344
\(645\) 0 0
\(646\) 7.51423 0.295643
\(647\) −28.6041 −1.12455 −0.562273 0.826952i \(-0.690073\pi\)
−0.562273 + 0.826952i \(0.690073\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 0.446104 0.0175111
\(650\) 0 0
\(651\) −10.5763 −0.414517
\(652\) 5.90315 0.231185
\(653\) −34.2818 −1.34155 −0.670776 0.741660i \(-0.734039\pi\)
−0.670776 + 0.741660i \(0.734039\pi\)
\(654\) 13.6103 0.532206
\(655\) 0 0
\(656\) −6.12756 −0.239241
\(657\) −6.72539 −0.262382
\(658\) −8.61939 −0.336019
\(659\) 18.5057 0.720879 0.360440 0.932783i \(-0.382627\pi\)
0.360440 + 0.932783i \(0.382627\pi\)
\(660\) 0 0
\(661\) 13.3123 0.517787 0.258894 0.965906i \(-0.416642\pi\)
0.258894 + 0.965906i \(0.416642\pi\)
\(662\) 11.5651 0.449492
\(663\) −9.93063 −0.385674
\(664\) −9.13922 −0.354671
\(665\) 0 0
\(666\) 3.30127 0.127921
\(667\) 85.5170 3.31123
\(668\) 8.94427 0.346064
\(669\) 18.6543 0.721216
\(670\) 0 0
\(671\) −12.5819 −0.485718
\(672\) −1.72654 −0.0666028
\(673\) 35.9582 1.38609 0.693044 0.720896i \(-0.256269\pi\)
0.693044 + 0.720896i \(0.256269\pi\)
\(674\) −29.8767 −1.15081
\(675\) 0 0
\(676\) −4.18400 −0.160923
\(677\) −6.11998 −0.235210 −0.117605 0.993060i \(-0.537522\pi\)
−0.117605 + 0.993060i \(0.537522\pi\)
\(678\) 8.26761 0.317515
\(679\) 17.0685 0.655031
\(680\) 0 0
\(681\) −11.0615 −0.423879
\(682\) −14.9618 −0.572916
\(683\) −7.39955 −0.283136 −0.141568 0.989929i \(-0.545214\pi\)
−0.141568 + 0.989929i \(0.545214\pi\)
\(684\) 2.24669 0.0859043
\(685\) 0 0
\(686\) 19.0249 0.726373
\(687\) 27.0493 1.03199
\(688\) −7.06997 −0.269540
\(689\) 20.3421 0.774971
\(690\) 0 0
\(691\) −32.6446 −1.24186 −0.620930 0.783866i \(-0.713245\pi\)
−0.620930 + 0.783866i \(0.713245\pi\)
\(692\) −25.9151 −0.985145
\(693\) −4.21702 −0.160191
\(694\) 4.24669 0.161202
\(695\) 0 0
\(696\) 9.37895 0.355508
\(697\) 20.4941 0.776269
\(698\) 19.3711 0.733208
\(699\) 18.2774 0.691315
\(700\) 0 0
\(701\) 15.4733 0.584418 0.292209 0.956354i \(-0.405610\pi\)
0.292209 + 0.956354i \(0.405610\pi\)
\(702\) −2.96917 −0.112064
\(703\) −7.41692 −0.279734
\(704\) −2.44246 −0.0920538
\(705\) 0 0
\(706\) 0.243275 0.00915578
\(707\) 10.8580 0.408356
\(708\) −0.182645 −0.00686422
\(709\) 6.31260 0.237075 0.118537 0.992950i \(-0.462179\pi\)
0.118537 + 0.992950i \(0.462179\pi\)
\(710\) 0 0
\(711\) −11.3571 −0.425923
\(712\) 8.11694 0.304195
\(713\) 55.8539 2.09175
\(714\) 5.77455 0.216107
\(715\) 0 0
\(716\) 0.0480111 0.00179426
\(717\) −2.56816 −0.0959096
\(718\) −21.0432 −0.785325
\(719\) 29.7954 1.11118 0.555591 0.831456i \(-0.312492\pi\)
0.555591 + 0.831456i \(0.312492\pi\)
\(720\) 0 0
\(721\) −14.8129 −0.551660
\(722\) 13.9524 0.519254
\(723\) 13.3394 0.496096
\(724\) 20.5347 0.763167
\(725\) 0 0
\(726\) 5.03437 0.186843
\(727\) 9.68374 0.359150 0.179575 0.983744i \(-0.442528\pi\)
0.179575 + 0.983744i \(0.442528\pi\)
\(728\) −5.12641 −0.189997
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 23.6460 0.874581
\(732\) 5.15131 0.190398
\(733\) −34.7176 −1.28232 −0.641162 0.767405i \(-0.721548\pi\)
−0.641162 + 0.767405i \(0.721548\pi\)
\(734\) 7.83339 0.289136
\(735\) 0 0
\(736\) 9.11798 0.336093
\(737\) −29.0417 −1.06977
\(738\) 6.12756 0.225559
\(739\) −22.6966 −0.834907 −0.417453 0.908698i \(-0.637077\pi\)
−0.417453 + 0.908698i \(0.637077\pi\)
\(740\) 0 0
\(741\) 6.67081 0.245058
\(742\) −11.8287 −0.434245
\(743\) 9.53920 0.349959 0.174980 0.984572i \(-0.444014\pi\)
0.174980 + 0.984572i \(0.444014\pi\)
\(744\) 6.12569 0.224579
\(745\) 0 0
\(746\) 15.5256 0.568431
\(747\) 9.13922 0.334387
\(748\) 8.16901 0.298688
\(749\) 15.7059 0.573881
\(750\) 0 0
\(751\) 22.5289 0.822090 0.411045 0.911615i \(-0.365164\pi\)
0.411045 + 0.911615i \(0.365164\pi\)
\(752\) 4.99228 0.182050
\(753\) −14.3409 −0.522612
\(754\) 27.8477 1.01415
\(755\) 0 0
\(756\) 1.72654 0.0627937
\(757\) 38.3200 1.39276 0.696382 0.717672i \(-0.254792\pi\)
0.696382 + 0.717672i \(0.254792\pi\)
\(758\) 10.8637 0.394587
\(759\) 22.2703 0.808362
\(760\) 0 0
\(761\) 20.4089 0.739823 0.369912 0.929067i \(-0.379388\pi\)
0.369912 + 0.929067i \(0.379388\pi\)
\(762\) −17.8127 −0.645284
\(763\) −23.4988 −0.850713
\(764\) 2.42040 0.0875668
\(765\) 0 0
\(766\) 9.59615 0.346723
\(767\) −0.542305 −0.0195815
\(768\) 1.00000 0.0360844
\(769\) −30.0402 −1.08328 −0.541638 0.840612i \(-0.682196\pi\)
−0.541638 + 0.840612i \(0.682196\pi\)
\(770\) 0 0
\(771\) −16.0010 −0.576263
\(772\) −13.3764 −0.481429
\(773\) 21.7468 0.782179 0.391090 0.920353i \(-0.372098\pi\)
0.391090 + 0.920353i \(0.372098\pi\)
\(774\) 7.06997 0.254125
\(775\) 0 0
\(776\) −9.88597 −0.354886
\(777\) −5.69977 −0.204478
\(778\) −34.8220 −1.24843
\(779\) −13.7667 −0.493244
\(780\) 0 0
\(781\) 27.7507 0.992998
\(782\) −30.4958 −1.09053
\(783\) −9.37895 −0.335176
\(784\) −4.01905 −0.143538
\(785\) 0 0
\(786\) −10.3375 −0.368726
\(787\) 13.1966 0.470409 0.235205 0.971946i \(-0.424424\pi\)
0.235205 + 0.971946i \(0.424424\pi\)
\(788\) −18.9236 −0.674124
\(789\) 19.8584 0.706976
\(790\) 0 0
\(791\) −14.2744 −0.507538
\(792\) 2.44246 0.0867892
\(793\) 15.2951 0.543146
\(794\) −16.0058 −0.568025
\(795\) 0 0
\(796\) −22.6784 −0.803815
\(797\) −16.6732 −0.590595 −0.295297 0.955405i \(-0.595419\pi\)
−0.295297 + 0.955405i \(0.595419\pi\)
\(798\) −3.87901 −0.137315
\(799\) −16.6971 −0.590700
\(800\) 0 0
\(801\) −8.11694 −0.286798
\(802\) −11.5284 −0.407082
\(803\) 16.4265 0.579679
\(804\) 11.8903 0.419340
\(805\) 0 0
\(806\) 18.1883 0.640654
\(807\) −2.66084 −0.0936658
\(808\) −6.28885 −0.221241
\(809\) −27.4913 −0.966542 −0.483271 0.875471i \(-0.660551\pi\)
−0.483271 + 0.875471i \(0.660551\pi\)
\(810\) 0 0
\(811\) −25.8449 −0.907538 −0.453769 0.891119i \(-0.649921\pi\)
−0.453769 + 0.891119i \(0.649921\pi\)
\(812\) −16.1932 −0.568268
\(813\) −13.4607 −0.472087
\(814\) −8.06322 −0.282616
\(815\) 0 0
\(816\) −3.34458 −0.117084
\(817\) −15.8840 −0.555712
\(818\) 14.5906 0.510150
\(819\) 5.12641 0.179131
\(820\) 0 0
\(821\) −32.6620 −1.13991 −0.569956 0.821675i \(-0.693040\pi\)
−0.569956 + 0.821675i \(0.693040\pi\)
\(822\) −16.0816 −0.560911
\(823\) 49.0183 1.70867 0.854336 0.519722i \(-0.173964\pi\)
0.854336 + 0.519722i \(0.173964\pi\)
\(824\) 8.57949 0.298881
\(825\) 0 0
\(826\) 0.315344 0.0109722
\(827\) 9.46963 0.329291 0.164646 0.986353i \(-0.447352\pi\)
0.164646 + 0.986353i \(0.447352\pi\)
\(828\) −9.11798 −0.316872
\(829\) −55.5976 −1.93098 −0.965492 0.260432i \(-0.916135\pi\)
−0.965492 + 0.260432i \(0.916135\pi\)
\(830\) 0 0
\(831\) 5.34748 0.185502
\(832\) 2.96917 0.102938
\(833\) 13.4420 0.465739
\(834\) 16.5094 0.571674
\(835\) 0 0
\(836\) −5.48746 −0.189788
\(837\) −6.12569 −0.211735
\(838\) 14.1068 0.487313
\(839\) −6.13233 −0.211712 −0.105856 0.994381i \(-0.533758\pi\)
−0.105856 + 0.994381i \(0.533758\pi\)
\(840\) 0 0
\(841\) 58.9647 2.03326
\(842\) 12.8882 0.444155
\(843\) −16.7170 −0.575763
\(844\) 2.55876 0.0880761
\(845\) 0 0
\(846\) −4.99228 −0.171638
\(847\) −8.69206 −0.298663
\(848\) 6.85108 0.235267
\(849\) 14.1630 0.486072
\(850\) 0 0
\(851\) 30.1009 1.03184
\(852\) −11.3618 −0.389248
\(853\) 30.4772 1.04352 0.521760 0.853092i \(-0.325276\pi\)
0.521760 + 0.853092i \(0.325276\pi\)
\(854\) −8.89396 −0.304345
\(855\) 0 0
\(856\) −9.09673 −0.310920
\(857\) −7.53137 −0.257267 −0.128633 0.991692i \(-0.541059\pi\)
−0.128633 + 0.991692i \(0.541059\pi\)
\(858\) 7.25210 0.247583
\(859\) 49.3400 1.68346 0.841729 0.539900i \(-0.181538\pi\)
0.841729 + 0.539900i \(0.181538\pi\)
\(860\) 0 0
\(861\) −10.5795 −0.360548
\(862\) 23.1424 0.788235
\(863\) −31.4871 −1.07183 −0.535916 0.844271i \(-0.680034\pi\)
−0.535916 + 0.844271i \(0.680034\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) 23.5106 0.798922
\(867\) −5.81381 −0.197447
\(868\) −10.5763 −0.358982
\(869\) 27.7392 0.940988
\(870\) 0 0
\(871\) 35.3045 1.19625
\(872\) 13.6103 0.460903
\(873\) 9.88597 0.334589
\(874\) 20.4853 0.692924
\(875\) 0 0
\(876\) −6.72539 −0.227230
\(877\) 7.87907 0.266057 0.133029 0.991112i \(-0.457530\pi\)
0.133029 + 0.991112i \(0.457530\pi\)
\(878\) −1.99240 −0.0672401
\(879\) −12.4643 −0.420412
\(880\) 0 0
\(881\) −33.0782 −1.11443 −0.557216 0.830368i \(-0.688130\pi\)
−0.557216 + 0.830368i \(0.688130\pi\)
\(882\) 4.01905 0.135328
\(883\) −7.81473 −0.262987 −0.131493 0.991317i \(-0.541977\pi\)
−0.131493 + 0.991317i \(0.541977\pi\)
\(884\) −9.93063 −0.334003
\(885\) 0 0
\(886\) 13.0327 0.437842
\(887\) 10.1119 0.339525 0.169762 0.985485i \(-0.445700\pi\)
0.169762 + 0.985485i \(0.445700\pi\)
\(888\) 3.30127 0.110783
\(889\) 30.7543 1.03147
\(890\) 0 0
\(891\) −2.44246 −0.0818256
\(892\) 18.6543 0.624591
\(893\) 11.2161 0.375333
\(894\) −20.5325 −0.686710
\(895\) 0 0
\(896\) −1.72654 −0.0576797
\(897\) −27.0729 −0.903937
\(898\) −12.0846 −0.403270
\(899\) 57.4526 1.91615
\(900\) 0 0
\(901\) −22.9140 −0.763375
\(902\) −14.9663 −0.498325
\(903\) −12.2066 −0.406210
\(904\) 8.26761 0.274976
\(905\) 0 0
\(906\) −2.78808 −0.0926277
\(907\) −10.2207 −0.339373 −0.169686 0.985498i \(-0.554275\pi\)
−0.169686 + 0.985498i \(0.554275\pi\)
\(908\) −11.0615 −0.367090
\(909\) 6.28885 0.208588
\(910\) 0 0
\(911\) 42.4554 1.40661 0.703305 0.710889i \(-0.251707\pi\)
0.703305 + 0.710889i \(0.251707\pi\)
\(912\) 2.24669 0.0743953
\(913\) −22.3222 −0.738757
\(914\) −5.62762 −0.186145
\(915\) 0 0
\(916\) 27.0493 0.893732
\(917\) 17.8481 0.589397
\(918\) 3.34458 0.110387
\(919\) 52.0693 1.71761 0.858805 0.512303i \(-0.171208\pi\)
0.858805 + 0.512303i \(0.171208\pi\)
\(920\) 0 0
\(921\) 23.9974 0.790741
\(922\) 4.62686 0.152378
\(923\) −33.7351 −1.11040
\(924\) −4.21702 −0.138730
\(925\) 0 0
\(926\) 5.75912 0.189256
\(927\) −8.57949 −0.281787
\(928\) 9.37895 0.307879
\(929\) 26.3223 0.863605 0.431803 0.901968i \(-0.357878\pi\)
0.431803 + 0.901968i \(0.357878\pi\)
\(930\) 0 0
\(931\) −9.02956 −0.295932
\(932\) 18.2774 0.598696
\(933\) −13.9591 −0.457000
\(934\) 24.5818 0.804341
\(935\) 0 0
\(936\) −2.96917 −0.0970505
\(937\) −10.0676 −0.328894 −0.164447 0.986386i \(-0.552584\pi\)
−0.164447 + 0.986386i \(0.552584\pi\)
\(938\) −20.5292 −0.670301
\(939\) −9.62739 −0.314178
\(940\) 0 0
\(941\) 9.99318 0.325768 0.162884 0.986645i \(-0.447920\pi\)
0.162884 + 0.986645i \(0.447920\pi\)
\(942\) 14.3416 0.467273
\(943\) 55.8709 1.81941
\(944\) −0.182645 −0.00594459
\(945\) 0 0
\(946\) −17.2681 −0.561435
\(947\) 55.4456 1.80174 0.900869 0.434090i \(-0.142930\pi\)
0.900869 + 0.434090i \(0.142930\pi\)
\(948\) −11.3571 −0.368860
\(949\) −19.9689 −0.648217
\(950\) 0 0
\(951\) 0.556314 0.0180397
\(952\) 5.77455 0.187154
\(953\) 12.1049 0.392117 0.196058 0.980592i \(-0.437186\pi\)
0.196058 + 0.980592i \(0.437186\pi\)
\(954\) −6.85108 −0.221812
\(955\) 0 0
\(956\) −2.56816 −0.0830602
\(957\) 22.9077 0.740502
\(958\) 5.84150 0.188730
\(959\) 27.7656 0.896598
\(960\) 0 0
\(961\) 6.52413 0.210456
\(962\) 9.80203 0.316030
\(963\) 9.09673 0.293138
\(964\) 13.3394 0.429632
\(965\) 0 0
\(966\) 15.7426 0.506509
\(967\) 2.91557 0.0937584 0.0468792 0.998901i \(-0.485072\pi\)
0.0468792 + 0.998901i \(0.485072\pi\)
\(968\) 5.03437 0.161811
\(969\) −7.51423 −0.241392
\(970\) 0 0
\(971\) 11.3329 0.363691 0.181845 0.983327i \(-0.441793\pi\)
0.181845 + 0.983327i \(0.441793\pi\)
\(972\) 1.00000 0.0320750
\(973\) −28.5042 −0.913803
\(974\) 5.10374 0.163534
\(975\) 0 0
\(976\) 5.15131 0.164889
\(977\) 4.80307 0.153664 0.0768320 0.997044i \(-0.475519\pi\)
0.0768320 + 0.997044i \(0.475519\pi\)
\(978\) −5.90315 −0.188762
\(979\) 19.8253 0.633620
\(980\) 0 0
\(981\) −13.6103 −0.434544
\(982\) −39.0842 −1.24723
\(983\) −7.76040 −0.247518 −0.123759 0.992312i \(-0.539495\pi\)
−0.123759 + 0.992312i \(0.539495\pi\)
\(984\) 6.12756 0.195339
\(985\) 0 0
\(986\) −31.3686 −0.998980
\(987\) 8.61939 0.274358
\(988\) 6.67081 0.212227
\(989\) 64.4638 2.04983
\(990\) 0 0
\(991\) −44.8119 −1.42350 −0.711749 0.702434i \(-0.752097\pi\)
−0.711749 + 0.702434i \(0.752097\pi\)
\(992\) 6.12569 0.194491
\(993\) −11.5651 −0.367009
\(994\) 19.6166 0.622200
\(995\) 0 0
\(996\) 9.13922 0.289587
\(997\) 3.99189 0.126424 0.0632121 0.998000i \(-0.479866\pi\)
0.0632121 + 0.998000i \(0.479866\pi\)
\(998\) 12.0527 0.381522
\(999\) −3.30127 −0.104447
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3750.2.a.m.1.3 4
5.2 odd 4 3750.2.c.e.1249.3 8
5.3 odd 4 3750.2.c.e.1249.6 8
5.4 even 2 3750.2.a.o.1.2 4
25.3 odd 20 150.2.h.a.109.2 8
25.4 even 10 750.2.g.c.451.1 8
25.6 even 5 750.2.g.e.301.2 8
25.8 odd 20 750.2.h.c.199.1 8
25.17 odd 20 150.2.h.a.139.2 yes 8
25.19 even 10 750.2.g.c.301.1 8
25.21 even 5 750.2.g.e.451.2 8
25.22 odd 20 750.2.h.c.49.1 8
75.17 even 20 450.2.l.a.289.1 8
75.53 even 20 450.2.l.a.109.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.2.h.a.109.2 8 25.3 odd 20
150.2.h.a.139.2 yes 8 25.17 odd 20
450.2.l.a.109.1 8 75.53 even 20
450.2.l.a.289.1 8 75.17 even 20
750.2.g.c.301.1 8 25.19 even 10
750.2.g.c.451.1 8 25.4 even 10
750.2.g.e.301.2 8 25.6 even 5
750.2.g.e.451.2 8 25.21 even 5
750.2.h.c.49.1 8 25.22 odd 20
750.2.h.c.199.1 8 25.8 odd 20
3750.2.a.m.1.3 4 1.1 even 1 trivial
3750.2.a.o.1.2 4 5.4 even 2
3750.2.c.e.1249.3 8 5.2 odd 4
3750.2.c.e.1249.6 8 5.3 odd 4