Properties

Label 750.2.g.e.451.2
Level $750$
Weight $2$
Character 750.451
Analytic conductor $5.989$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [750,2,Mod(151,750)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(750, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("750.151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 750 = 2 \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 750.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.98878015160\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 5 \)
Twist minimal: no (minimal twist has level 150)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 451.2
Root \(-0.587785 - 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 750.451
Dual form 750.2.g.e.301.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 + 0.587785i) q^{2} +(0.309017 + 0.951057i) q^{3} +(0.309017 + 0.951057i) q^{4} +(-0.309017 + 0.951057i) q^{6} +1.72654 q^{7} +(-0.309017 + 0.951057i) q^{8} +(-0.809017 + 0.587785i) q^{9} +(1.97599 + 1.43564i) q^{11} +(-0.809017 + 0.587785i) q^{12} +(-2.40211 + 1.74524i) q^{13} +(1.39680 + 1.01484i) q^{14} +(-0.809017 + 0.587785i) q^{16} +(-1.03353 + 3.18088i) q^{17} -1.00000 q^{18} +(0.694265 - 2.13673i) q^{19} +(0.533531 + 1.64204i) q^{21} +(0.754763 + 2.32292i) q^{22} +(7.37660 + 5.35941i) q^{23} -1.00000 q^{24} -2.96917 q^{26} +(-0.809017 - 0.587785i) q^{27} +(0.533531 + 1.64204i) q^{28} +(-2.89825 - 8.91991i) q^{29} +(-1.89294 + 5.82588i) q^{31} -1.00000 q^{32} +(-0.754763 + 2.32292i) q^{33} +(-2.70582 + 1.96589i) q^{34} +(-0.809017 - 0.587785i) q^{36} +(2.67078 - 1.94043i) q^{37} +(1.81761 - 1.32057i) q^{38} +(-2.40211 - 1.74524i) q^{39} +(4.95730 - 3.60169i) q^{41} +(-0.533531 + 1.64204i) q^{42} -7.06997 q^{43} +(-0.754763 + 2.32292i) q^{44} +(2.81761 + 8.67171i) q^{46} +(1.54270 + 4.74794i) q^{47} +(-0.809017 - 0.587785i) q^{48} -4.01905 q^{49} -3.34458 q^{51} +(-2.40211 - 1.74524i) q^{52} +(2.11710 + 6.51577i) q^{53} +(-0.309017 - 0.951057i) q^{54} +(-0.533531 + 1.64204i) q^{56} +2.24669 q^{57} +(2.89825 - 8.91991i) q^{58} +(0.147763 - 0.107356i) q^{59} +(-4.16750 - 3.02786i) q^{61} +(-4.95579 + 3.60059i) q^{62} +(-1.39680 + 1.01484i) q^{63} +(-0.809017 - 0.587785i) q^{64} +(-1.97599 + 1.43564i) q^{66} +(3.67432 - 11.3084i) q^{67} -3.34458 q^{68} +(-2.81761 + 8.67171i) q^{69} +(-3.51098 - 10.8057i) q^{71} +(-0.309017 - 0.951057i) q^{72} +(5.44095 + 3.95309i) q^{73} +3.30127 q^{74} +2.24669 q^{76} +(3.41164 + 2.47870i) q^{77} +(-0.917526 - 2.82385i) q^{78} +(-3.50953 - 10.8012i) q^{79} +(0.309017 - 0.951057i) q^{81} +6.12756 q^{82} +(2.82417 - 8.69192i) q^{83} +(-1.39680 + 1.01484i) q^{84} +(-5.71972 - 4.15562i) q^{86} +(7.58773 - 5.51281i) q^{87} +(-1.97599 + 1.43564i) q^{88} +(6.56674 + 4.77102i) q^{89} +(-4.14735 + 3.01323i) q^{91} +(-2.81761 + 8.67171i) q^{92} -6.12569 q^{93} +(-1.54270 + 4.74794i) q^{94} +(-0.309017 - 0.951057i) q^{96} +(3.05493 + 9.40211i) q^{97} +(-3.25148 - 2.36234i) q^{98} -2.44246 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{3} - 2 q^{4} + 2 q^{6} + 8 q^{7} + 2 q^{8} - 2 q^{9} + 10 q^{11} - 2 q^{12} - 4 q^{13} + 2 q^{14} - 2 q^{16} - 2 q^{17} - 8 q^{18} + 8 q^{19} - 2 q^{21} + 10 q^{23} - 8 q^{24} + 4 q^{26}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/750\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 + 0.587785i 0.572061 + 0.415627i
\(3\) 0.309017 + 0.951057i 0.178411 + 0.549093i
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0 0
\(6\) −0.309017 + 0.951057i −0.126156 + 0.388267i
\(7\) 1.72654 0.652572 0.326286 0.945271i \(-0.394203\pi\)
0.326286 + 0.945271i \(0.394203\pi\)
\(8\) −0.309017 + 0.951057i −0.109254 + 0.336249i
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) 0 0
\(11\) 1.97599 + 1.43564i 0.595785 + 0.432863i 0.844380 0.535744i \(-0.179969\pi\)
−0.248595 + 0.968607i \(0.579969\pi\)
\(12\) −0.809017 + 0.587785i −0.233543 + 0.169679i
\(13\) −2.40211 + 1.74524i −0.666226 + 0.484042i −0.868760 0.495234i \(-0.835082\pi\)
0.202534 + 0.979275i \(0.435082\pi\)
\(14\) 1.39680 + 1.01484i 0.373311 + 0.271226i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −1.03353 + 3.18088i −0.250668 + 0.771477i 0.743984 + 0.668197i \(0.232934\pi\)
−0.994652 + 0.103280i \(0.967066\pi\)
\(18\) −1.00000 −0.235702
\(19\) 0.694265 2.13673i 0.159275 0.490199i −0.839294 0.543678i \(-0.817031\pi\)
0.998569 + 0.0534793i \(0.0170311\pi\)
\(20\) 0 0
\(21\) 0.533531 + 1.64204i 0.116426 + 0.358322i
\(22\) 0.754763 + 2.32292i 0.160916 + 0.495248i
\(23\) 7.37660 + 5.35941i 1.53813 + 1.11751i 0.951496 + 0.307660i \(0.0995461\pi\)
0.586631 + 0.809854i \(0.300454\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) −2.96917 −0.582303
\(27\) −0.809017 0.587785i −0.155695 0.113119i
\(28\) 0.533531 + 1.64204i 0.100828 + 0.310316i
\(29\) −2.89825 8.91991i −0.538192 1.65639i −0.736648 0.676276i \(-0.763593\pi\)
0.198456 0.980110i \(-0.436407\pi\)
\(30\) 0 0
\(31\) −1.89294 + 5.82588i −0.339983 + 1.04636i 0.624233 + 0.781239i \(0.285412\pi\)
−0.964215 + 0.265121i \(0.914588\pi\)
\(32\) −1.00000 −0.176777
\(33\) −0.754763 + 2.32292i −0.131387 + 0.404369i
\(34\) −2.70582 + 1.96589i −0.464044 + 0.337148i
\(35\) 0 0
\(36\) −0.809017 0.587785i −0.134836 0.0979642i
\(37\) 2.67078 1.94043i 0.439073 0.319006i −0.346193 0.938163i \(-0.612526\pi\)
0.785267 + 0.619158i \(0.212526\pi\)
\(38\) 1.81761 1.32057i 0.294855 0.214225i
\(39\) −2.40211 1.74524i −0.384646 0.279462i
\(40\) 0 0
\(41\) 4.95730 3.60169i 0.774200 0.562489i −0.129033 0.991640i \(-0.541187\pi\)
0.903233 + 0.429151i \(0.141187\pi\)
\(42\) −0.533531 + 1.64204i −0.0823256 + 0.253372i
\(43\) −7.06997 −1.07816 −0.539080 0.842255i \(-0.681228\pi\)
−0.539080 + 0.842255i \(0.681228\pi\)
\(44\) −0.754763 + 2.32292i −0.113785 + 0.350193i
\(45\) 0 0
\(46\) 2.81761 + 8.67171i 0.415434 + 1.27857i
\(47\) 1.54270 + 4.74794i 0.225026 + 0.692559i 0.998289 + 0.0584733i \(0.0186232\pi\)
−0.773263 + 0.634085i \(0.781377\pi\)
\(48\) −0.809017 0.587785i −0.116772 0.0848395i
\(49\) −4.01905 −0.574150
\(50\) 0 0
\(51\) −3.34458 −0.468334
\(52\) −2.40211 1.74524i −0.333113 0.242021i
\(53\) 2.11710 + 6.51577i 0.290806 + 0.895010i 0.984598 + 0.174834i \(0.0559388\pi\)
−0.693792 + 0.720176i \(0.744061\pi\)
\(54\) −0.309017 0.951057i −0.0420519 0.129422i
\(55\) 0 0
\(56\) −0.533531 + 1.64204i −0.0712961 + 0.219427i
\(57\) 2.24669 0.297581
\(58\) 2.89825 8.91991i 0.380559 1.17124i
\(59\) 0.147763 0.107356i 0.0192371 0.0139766i −0.578125 0.815948i \(-0.696215\pi\)
0.597362 + 0.801972i \(0.296215\pi\)
\(60\) 0 0
\(61\) −4.16750 3.02786i −0.533593 0.387678i 0.288107 0.957598i \(-0.406974\pi\)
−0.821700 + 0.569920i \(0.806974\pi\)
\(62\) −4.95579 + 3.60059i −0.629386 + 0.457276i
\(63\) −1.39680 + 1.01484i −0.175981 + 0.127857i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 0 0
\(66\) −1.97599 + 1.43564i −0.243228 + 0.176716i
\(67\) 3.67432 11.3084i 0.448889 1.38154i −0.429272 0.903175i \(-0.641230\pi\)
0.878162 0.478364i \(-0.158770\pi\)
\(68\) −3.34458 −0.405589
\(69\) −2.81761 + 8.67171i −0.339200 + 1.04395i
\(70\) 0 0
\(71\) −3.51098 10.8057i −0.416676 1.28240i −0.910743 0.412974i \(-0.864490\pi\)
0.494066 0.869424i \(-0.335510\pi\)
\(72\) −0.309017 0.951057i −0.0364180 0.112083i
\(73\) 5.44095 + 3.95309i 0.636816 + 0.462674i 0.858755 0.512387i \(-0.171239\pi\)
−0.221939 + 0.975061i \(0.571239\pi\)
\(74\) 3.30127 0.383764
\(75\) 0 0
\(76\) 2.24669 0.257713
\(77\) 3.41164 + 2.47870i 0.388792 + 0.282474i
\(78\) −0.917526 2.82385i −0.103889 0.319738i
\(79\) −3.50953 10.8012i −0.394852 1.21523i −0.929076 0.369888i \(-0.879396\pi\)
0.534224 0.845343i \(-0.320604\pi\)
\(80\) 0 0
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 6.12756 0.676676
\(83\) 2.82417 8.69192i 0.309993 0.954062i −0.667773 0.744365i \(-0.732752\pi\)
0.977766 0.209697i \(-0.0672477\pi\)
\(84\) −1.39680 + 1.01484i −0.152404 + 0.110728i
\(85\) 0 0
\(86\) −5.71972 4.15562i −0.616774 0.448112i
\(87\) 7.58773 5.51281i 0.813490 0.591035i
\(88\) −1.97599 + 1.43564i −0.210642 + 0.153040i
\(89\) 6.56674 + 4.77102i 0.696073 + 0.505727i 0.878651 0.477465i \(-0.158444\pi\)
−0.182578 + 0.983191i \(0.558444\pi\)
\(90\) 0 0
\(91\) −4.14735 + 3.01323i −0.434760 + 0.315872i
\(92\) −2.81761 + 8.67171i −0.293756 + 0.904088i
\(93\) −6.12569 −0.635205
\(94\) −1.54270 + 4.74794i −0.159117 + 0.489713i
\(95\) 0 0
\(96\) −0.309017 0.951057i −0.0315389 0.0970668i
\(97\) 3.05493 + 9.40211i 0.310181 + 0.954640i 0.977693 + 0.210040i \(0.0673595\pi\)
−0.667511 + 0.744600i \(0.732640\pi\)
\(98\) −3.25148 2.36234i −0.328449 0.238632i
\(99\) −2.44246 −0.245477
\(100\) 0 0
\(101\) 6.28885 0.625764 0.312882 0.949792i \(-0.398706\pi\)
0.312882 + 0.949792i \(0.398706\pi\)
\(102\) −2.70582 1.96589i −0.267916 0.194652i
\(103\) −2.65121 8.15958i −0.261231 0.803987i −0.992538 0.121938i \(-0.961089\pi\)
0.731306 0.682049i \(-0.238911\pi\)
\(104\) −0.917526 2.82385i −0.0899708 0.276902i
\(105\) 0 0
\(106\) −2.11710 + 6.51577i −0.205631 + 0.632867i
\(107\) 9.09673 0.879415 0.439707 0.898141i \(-0.355082\pi\)
0.439707 + 0.898141i \(0.355082\pi\)
\(108\) 0.309017 0.951057i 0.0297352 0.0915155i
\(109\) 11.0110 7.99994i 1.05466 0.766256i 0.0815673 0.996668i \(-0.474007\pi\)
0.973093 + 0.230412i \(0.0740075\pi\)
\(110\) 0 0
\(111\) 2.67078 + 1.94043i 0.253499 + 0.184178i
\(112\) −1.39680 + 1.01484i −0.131985 + 0.0958930i
\(113\) 6.68863 4.85958i 0.629214 0.457150i −0.226914 0.973915i \(-0.572864\pi\)
0.856128 + 0.516764i \(0.172864\pi\)
\(114\) 1.81761 + 1.32057i 0.170235 + 0.123683i
\(115\) 0 0
\(116\) 7.58773 5.51281i 0.704503 0.511851i
\(117\) 0.917526 2.82385i 0.0848253 0.261065i
\(118\) 0.182645 0.0168138
\(119\) −1.78444 + 5.49193i −0.163579 + 0.503444i
\(120\) 0 0
\(121\) −1.55571 4.78797i −0.141428 0.435270i
\(122\) −1.59184 4.89919i −0.144119 0.443552i
\(123\) 4.95730 + 3.60169i 0.446985 + 0.324753i
\(124\) −6.12569 −0.550104
\(125\) 0 0
\(126\) −1.72654 −0.153813
\(127\) −14.4107 10.4700i −1.27875 0.929064i −0.279232 0.960224i \(-0.590080\pi\)
−0.999514 + 0.0311599i \(0.990080\pi\)
\(128\) −0.309017 0.951057i −0.0273135 0.0840623i
\(129\) −2.18474 6.72394i −0.192356 0.592010i
\(130\) 0 0
\(131\) 3.19446 9.83155i 0.279102 0.858986i −0.709003 0.705205i \(-0.750855\pi\)
0.988105 0.153781i \(-0.0491451\pi\)
\(132\) −2.44246 −0.212589
\(133\) 1.19868 3.68915i 0.103939 0.319890i
\(134\) 9.61949 6.98897i 0.830997 0.603755i
\(135\) 0 0
\(136\) −2.70582 1.96589i −0.232022 0.168574i
\(137\) −13.0103 + 9.45254i −1.11155 + 0.807585i −0.982906 0.184106i \(-0.941061\pi\)
−0.128639 + 0.991691i \(0.541061\pi\)
\(138\) −7.37660 + 5.35941i −0.627938 + 0.456224i
\(139\) 13.3564 + 9.70399i 1.13287 + 0.823082i 0.986111 0.166090i \(-0.0531142\pi\)
0.146764 + 0.989172i \(0.453114\pi\)
\(140\) 0 0
\(141\) −4.03884 + 2.93439i −0.340132 + 0.247120i
\(142\) 3.51098 10.8057i 0.294635 0.906792i
\(143\) −7.25210 −0.606451
\(144\) 0.309017 0.951057i 0.0257514 0.0792547i
\(145\) 0 0
\(146\) 2.07826 + 6.39623i 0.171998 + 0.529355i
\(147\) −1.24196 3.82234i −0.102435 0.315262i
\(148\) 2.67078 + 1.94043i 0.219537 + 0.159503i
\(149\) 20.5325 1.68209 0.841045 0.540965i \(-0.181941\pi\)
0.841045 + 0.540965i \(0.181941\pi\)
\(150\) 0 0
\(151\) 2.78808 0.226891 0.113445 0.993544i \(-0.463811\pi\)
0.113445 + 0.993544i \(0.463811\pi\)
\(152\) 1.81761 + 1.32057i 0.147428 + 0.107112i
\(153\) −1.03353 3.18088i −0.0835560 0.257159i
\(154\) 1.30313 + 4.01062i 0.105009 + 0.323185i
\(155\) 0 0
\(156\) 0.917526 2.82385i 0.0734608 0.226089i
\(157\) −14.3416 −1.14458 −0.572291 0.820051i \(-0.693945\pi\)
−0.572291 + 0.820051i \(0.693945\pi\)
\(158\) 3.50953 10.8012i 0.279203 0.859298i
\(159\) −5.54264 + 4.02697i −0.439560 + 0.319359i
\(160\) 0 0
\(161\) 12.7360 + 9.25325i 1.00374 + 0.729259i
\(162\) 0.809017 0.587785i 0.0635624 0.0461808i
\(163\) −4.77575 + 3.46979i −0.374066 + 0.271775i −0.758895 0.651213i \(-0.774260\pi\)
0.384829 + 0.922988i \(0.374260\pi\)
\(164\) 4.95730 + 3.60169i 0.387100 + 0.281245i
\(165\) 0 0
\(166\) 7.39378 5.37190i 0.573869 0.416940i
\(167\) 2.76393 8.50651i 0.213879 0.658253i −0.785352 0.619050i \(-0.787518\pi\)
0.999231 0.0392036i \(-0.0124821\pi\)
\(168\) −1.72654 −0.133206
\(169\) −1.29293 + 3.97922i −0.0994559 + 0.306094i
\(170\) 0 0
\(171\) 0.694265 + 2.13673i 0.0530918 + 0.163400i
\(172\) −2.18474 6.72394i −0.166585 0.512695i
\(173\) 20.9658 + 15.2325i 1.59400 + 1.15811i 0.897935 + 0.440128i \(0.145067\pi\)
0.696064 + 0.717980i \(0.254933\pi\)
\(174\) 9.37895 0.711016
\(175\) 0 0
\(176\) −2.44246 −0.184108
\(177\) 0.147763 + 0.107356i 0.0111065 + 0.00806937i
\(178\) 2.50827 + 7.71967i 0.188003 + 0.578613i
\(179\) 0.0148362 + 0.0456612i 0.00110891 + 0.00341288i 0.951609 0.307310i \(-0.0994289\pi\)
−0.950501 + 0.310723i \(0.899429\pi\)
\(180\) 0 0
\(181\) 6.34558 19.5297i 0.471663 1.45163i −0.378743 0.925502i \(-0.623644\pi\)
0.850406 0.526127i \(-0.176356\pi\)
\(182\) −5.12641 −0.379995
\(183\) 1.59184 4.89919i 0.117672 0.362158i
\(184\) −7.37660 + 5.35941i −0.543810 + 0.395101i
\(185\) 0 0
\(186\) −4.95579 3.60059i −0.363376 0.264008i
\(187\) −6.60886 + 4.80162i −0.483288 + 0.351129i
\(188\) −4.03884 + 2.93439i −0.294563 + 0.214012i
\(189\) −1.39680 1.01484i −0.101602 0.0738185i
\(190\) 0 0
\(191\) −1.95814 + 1.42267i −0.141686 + 0.102941i −0.656370 0.754439i \(-0.727909\pi\)
0.514684 + 0.857380i \(0.327909\pi\)
\(192\) 0.309017 0.951057i 0.0223014 0.0686366i
\(193\) −13.3764 −0.962857 −0.481429 0.876485i \(-0.659882\pi\)
−0.481429 + 0.876485i \(0.659882\pi\)
\(194\) −3.05493 + 9.40211i −0.219331 + 0.675032i
\(195\) 0 0
\(196\) −1.24196 3.82234i −0.0887111 0.273025i
\(197\) −5.84770 17.9974i −0.416631 1.28226i −0.910783 0.412884i \(-0.864521\pi\)
0.494152 0.869376i \(-0.335479\pi\)
\(198\) −1.97599 1.43564i −0.140428 0.102027i
\(199\) −22.6784 −1.60763 −0.803815 0.594879i \(-0.797200\pi\)
−0.803815 + 0.594879i \(0.797200\pi\)
\(200\) 0 0
\(201\) 11.8903 0.838680
\(202\) 5.08779 + 3.69649i 0.357975 + 0.260084i
\(203\) −5.00396 15.4006i −0.351209 1.08091i
\(204\) −1.03353 3.18088i −0.0723616 0.222706i
\(205\) 0 0
\(206\) 2.65121 8.15958i 0.184718 0.568505i
\(207\) −9.11798 −0.633743
\(208\) 0.917526 2.82385i 0.0636189 0.195799i
\(209\) 4.43945 3.22545i 0.307083 0.223109i
\(210\) 0 0
\(211\) −2.07008 1.50400i −0.142510 0.103540i 0.514246 0.857643i \(-0.328072\pi\)
−0.656756 + 0.754103i \(0.728072\pi\)
\(212\) −5.54264 + 4.02697i −0.380670 + 0.276573i
\(213\) 9.19186 6.67828i 0.629816 0.457588i
\(214\) 7.35941 + 5.34693i 0.503079 + 0.365508i
\(215\) 0 0
\(216\) 0.809017 0.587785i 0.0550466 0.0399937i
\(217\) −3.26825 + 10.0586i −0.221863 + 0.682824i
\(218\) 13.6103 0.921807
\(219\) −2.07826 + 6.39623i −0.140436 + 0.432217i
\(220\) 0 0
\(221\) −3.06873 9.44459i −0.206425 0.635312i
\(222\) 1.02015 + 3.13969i 0.0684678 + 0.210722i
\(223\) −15.0916 10.9647i −1.01061 0.734251i −0.0462729 0.998929i \(-0.514734\pi\)
−0.964337 + 0.264678i \(0.914734\pi\)
\(224\) −1.72654 −0.115359
\(225\) 0 0
\(226\) 8.26761 0.549953
\(227\) 8.94897 + 6.50181i 0.593964 + 0.431540i 0.843731 0.536766i \(-0.180354\pi\)
−0.249767 + 0.968306i \(0.580354\pi\)
\(228\) 0.694265 + 2.13673i 0.0459788 + 0.141508i
\(229\) 8.35868 + 25.7254i 0.552357 + 1.69998i 0.702823 + 0.711365i \(0.251923\pi\)
−0.150466 + 0.988615i \(0.548077\pi\)
\(230\) 0 0
\(231\) −1.30313 + 4.01062i −0.0857397 + 0.263880i
\(232\) 9.37895 0.615758
\(233\) 5.64803 17.3828i 0.370015 1.13879i −0.576766 0.816909i \(-0.695686\pi\)
0.946781 0.321879i \(-0.104314\pi\)
\(234\) 2.40211 1.74524i 0.157031 0.114090i
\(235\) 0 0
\(236\) 0.147763 + 0.107356i 0.00961854 + 0.00698828i
\(237\) 9.18806 6.67551i 0.596828 0.433621i
\(238\) −4.67171 + 3.39420i −0.302822 + 0.220013i
\(239\) 2.07768 + 1.50953i 0.134394 + 0.0976431i 0.652951 0.757400i \(-0.273531\pi\)
−0.518557 + 0.855043i \(0.673531\pi\)
\(240\) 0 0
\(241\) −10.7918 + 7.84068i −0.695159 + 0.505063i −0.878352 0.478014i \(-0.841357\pi\)
0.183193 + 0.983077i \(0.441357\pi\)
\(242\) 1.55571 4.78797i 0.100005 0.307783i
\(243\) 1.00000 0.0641500
\(244\) 1.59184 4.89919i 0.101907 0.313638i
\(245\) 0 0
\(246\) 1.89352 + 5.82766i 0.120726 + 0.371558i
\(247\) 2.06140 + 6.34432i 0.131163 + 0.403680i
\(248\) −4.95579 3.60059i −0.314693 0.228638i
\(249\) 9.13922 0.579175
\(250\) 0 0
\(251\) −14.3409 −0.905191 −0.452595 0.891716i \(-0.649502\pi\)
−0.452595 + 0.891716i \(0.649502\pi\)
\(252\) −1.39680 1.01484i −0.0879903 0.0639287i
\(253\) 6.88191 + 21.1803i 0.432662 + 1.33160i
\(254\) −5.50441 16.9408i −0.345378 1.06296i
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) −16.0010 −0.998117 −0.499059 0.866568i \(-0.666321\pi\)
−0.499059 + 0.866568i \(0.666321\pi\)
\(258\) 2.18474 6.72394i 0.136016 0.418614i
\(259\) 4.61121 3.35024i 0.286527 0.208174i
\(260\) 0 0
\(261\) 7.58773 + 5.51281i 0.469669 + 0.341234i
\(262\) 8.36321 6.07623i 0.516681 0.375391i
\(263\) −16.0658 + 11.6725i −0.990657 + 0.719754i −0.960065 0.279778i \(-0.909739\pi\)
−0.0305919 + 0.999532i \(0.509739\pi\)
\(264\) −1.97599 1.43564i −0.121614 0.0883578i
\(265\) 0 0
\(266\) 3.13818 2.28002i 0.192414 0.139797i
\(267\) −2.50827 + 7.71967i −0.153504 + 0.472436i
\(268\) 11.8903 0.726318
\(269\) −0.822243 + 2.53060i −0.0501331 + 0.154294i −0.972989 0.230852i \(-0.925849\pi\)
0.922856 + 0.385146i \(0.125849\pi\)
\(270\) 0 0
\(271\) −4.15958 12.8019i −0.252677 0.777659i −0.994279 0.106818i \(-0.965934\pi\)
0.741602 0.670840i \(-0.234066\pi\)
\(272\) −1.03353 3.18088i −0.0626670 0.192869i
\(273\) −4.14735 3.01323i −0.251009 0.182369i
\(274\) −16.0816 −0.971527
\(275\) 0 0
\(276\) −9.11798 −0.548838
\(277\) −4.32620 3.14317i −0.259936 0.188855i 0.450183 0.892936i \(-0.351359\pi\)
−0.710119 + 0.704082i \(0.751359\pi\)
\(278\) 5.10169 + 15.7014i 0.305979 + 0.941706i
\(279\) −1.89294 5.82588i −0.113328 0.348786i
\(280\) 0 0
\(281\) −5.16582 + 15.8988i −0.308167 + 0.948441i 0.670309 + 0.742082i \(0.266162\pi\)
−0.978476 + 0.206359i \(0.933838\pi\)
\(282\) −4.99228 −0.297286
\(283\) 4.37660 13.4698i 0.260162 0.800696i −0.732607 0.680652i \(-0.761697\pi\)
0.992769 0.120044i \(-0.0383034\pi\)
\(284\) 9.19186 6.67828i 0.545436 0.396283i
\(285\) 0 0
\(286\) −5.86707 4.26268i −0.346927 0.252057i
\(287\) 8.55899 6.21847i 0.505221 0.367065i
\(288\) 0.809017 0.587785i 0.0476718 0.0346356i
\(289\) 4.70347 + 3.41727i 0.276675 + 0.201016i
\(290\) 0 0
\(291\) −7.99792 + 5.81083i −0.468846 + 0.340637i
\(292\) −2.07826 + 6.39623i −0.121621 + 0.374311i
\(293\) −12.4643 −0.728175 −0.364088 0.931365i \(-0.618619\pi\)
−0.364088 + 0.931365i \(0.618619\pi\)
\(294\) 1.24196 3.82234i 0.0724323 0.222924i
\(295\) 0 0
\(296\) 1.02015 + 3.13969i 0.0592948 + 0.182491i
\(297\) −0.754763 2.32292i −0.0437958 0.134790i
\(298\) 16.6112 + 12.0687i 0.962259 + 0.699122i
\(299\) −27.0729 −1.56566
\(300\) 0 0
\(301\) −12.2066 −0.703577
\(302\) 2.25560 + 1.63879i 0.129795 + 0.0943019i
\(303\) 1.94336 + 5.98105i 0.111643 + 0.343602i
\(304\) 0.694265 + 2.13673i 0.0398188 + 0.122550i
\(305\) 0 0
\(306\) 1.03353 3.18088i 0.0590830 0.181839i
\(307\) 23.9974 1.36960 0.684801 0.728730i \(-0.259889\pi\)
0.684801 + 0.728730i \(0.259889\pi\)
\(308\) −1.30313 + 4.01062i −0.0742527 + 0.228526i
\(309\) 6.94095 5.04290i 0.394857 0.286880i
\(310\) 0 0
\(311\) 11.2931 + 8.20494i 0.640375 + 0.465260i 0.859979 0.510329i \(-0.170477\pi\)
−0.219604 + 0.975589i \(0.570477\pi\)
\(312\) 2.40211 1.74524i 0.135993 0.0988046i
\(313\) 7.78872 5.65884i 0.440245 0.319856i −0.345488 0.938423i \(-0.612286\pi\)
0.785732 + 0.618567i \(0.212286\pi\)
\(314\) −11.6026 8.42976i −0.654771 0.475719i
\(315\) 0 0
\(316\) 9.18806 6.67551i 0.516869 0.375527i
\(317\) 0.171911 0.529086i 0.00965546 0.0297164i −0.946113 0.323838i \(-0.895027\pi\)
0.955768 + 0.294121i \(0.0950269\pi\)
\(318\) −6.85108 −0.384190
\(319\) 7.07888 21.7866i 0.396341 1.21981i
\(320\) 0 0
\(321\) 2.81105 + 8.65151i 0.156897 + 0.482880i
\(322\) 4.86472 + 14.9721i 0.271100 + 0.834361i
\(323\) 6.07914 + 4.41675i 0.338252 + 0.245755i
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −5.90315 −0.326945
\(327\) 11.0110 + 7.99994i 0.608908 + 0.442398i
\(328\) 1.89352 + 5.82766i 0.104552 + 0.321778i
\(329\) 2.66354 + 8.19753i 0.146846 + 0.451944i
\(330\) 0 0
\(331\) −3.57383 + 10.9991i −0.196435 + 0.604565i 0.803522 + 0.595276i \(0.202957\pi\)
−0.999957 + 0.00928983i \(0.997043\pi\)
\(332\) 9.13922 0.501580
\(333\) −1.02015 + 3.13969i −0.0559037 + 0.172054i
\(334\) 7.23607 5.25731i 0.395940 0.287667i
\(335\) 0 0
\(336\) −1.39680 1.01484i −0.0762018 0.0553639i
\(337\) −24.1708 + 17.5611i −1.31667 + 0.956613i −0.316698 + 0.948526i \(0.602574\pi\)
−0.999967 + 0.00808669i \(0.997426\pi\)
\(338\) −3.38493 + 2.45929i −0.184116 + 0.133768i
\(339\) 6.68863 + 4.85958i 0.363277 + 0.263936i
\(340\) 0 0
\(341\) −12.1043 + 8.79432i −0.655487 + 0.476239i
\(342\) −0.694265 + 2.13673i −0.0375416 + 0.115541i
\(343\) −19.0249 −1.02725
\(344\) 2.18474 6.72394i 0.117793 0.362530i
\(345\) 0 0
\(346\) 8.00822 + 24.6468i 0.430524 + 1.32502i
\(347\) −1.31230 4.03884i −0.0704479 0.216816i 0.909634 0.415411i \(-0.136362\pi\)
−0.980082 + 0.198595i \(0.936362\pi\)
\(348\) 7.58773 + 5.51281i 0.406745 + 0.295518i
\(349\) −19.3711 −1.03691 −0.518456 0.855104i \(-0.673493\pi\)
−0.518456 + 0.855104i \(0.673493\pi\)
\(350\) 0 0
\(351\) 2.96917 0.158483
\(352\) −1.97599 1.43564i −0.105321 0.0765201i
\(353\) −0.0751761 0.231368i −0.00400122 0.0123145i 0.949036 0.315168i \(-0.102061\pi\)
−0.953037 + 0.302853i \(0.902061\pi\)
\(354\) 0.0564404 + 0.173706i 0.00299977 + 0.00923235i
\(355\) 0 0
\(356\) −2.50827 + 7.71967i −0.132938 + 0.409142i
\(357\) −5.77455 −0.305622
\(358\) −0.0148362 + 0.0456612i −0.000784119 + 0.00241327i
\(359\) −17.0243 + 12.3689i −0.898508 + 0.652805i −0.938082 0.346412i \(-0.887400\pi\)
0.0395740 + 0.999217i \(0.487400\pi\)
\(360\) 0 0
\(361\) 11.2877 + 8.20101i 0.594090 + 0.431632i
\(362\) 16.6129 12.0700i 0.873156 0.634385i
\(363\) 4.07289 2.95913i 0.213771 0.155314i
\(364\) −4.14735 3.01323i −0.217380 0.157936i
\(365\) 0 0
\(366\) 4.16750 3.02786i 0.217839 0.158269i
\(367\) −2.42065 + 7.45000i −0.126357 + 0.388887i −0.994146 0.108046i \(-0.965541\pi\)
0.867789 + 0.496933i \(0.165541\pi\)
\(368\) −9.11798 −0.475307
\(369\) −1.89352 + 5.82766i −0.0985727 + 0.303376i
\(370\) 0 0
\(371\) 3.65527 + 11.2498i 0.189772 + 0.584058i
\(372\) −1.89294 5.82588i −0.0981446 0.302058i
\(373\) 12.5604 + 9.12569i 0.650355 + 0.472511i 0.863392 0.504534i \(-0.168336\pi\)
−0.213037 + 0.977044i \(0.568336\pi\)
\(374\) −8.16901 −0.422409
\(375\) 0 0
\(376\) −4.99228 −0.257457
\(377\) 22.5293 + 16.3685i 1.16032 + 0.843020i
\(378\) −0.533531 1.64204i −0.0274419 0.0844574i
\(379\) −3.35706 10.3320i −0.172441 0.530718i 0.827067 0.562104i \(-0.190008\pi\)
−0.999507 + 0.0313859i \(0.990008\pi\)
\(380\) 0 0
\(381\) 5.50441 16.9408i 0.282000 0.867906i
\(382\) −2.42040 −0.123838
\(383\) −2.96537 + 9.12648i −0.151523 + 0.466341i −0.997792 0.0664152i \(-0.978844\pi\)
0.846269 + 0.532756i \(0.178844\pi\)
\(384\) 0.809017 0.587785i 0.0412850 0.0299953i
\(385\) 0 0
\(386\) −10.8218 7.86247i −0.550814 0.400189i
\(387\) 5.71972 4.15562i 0.290750 0.211242i
\(388\) −7.99792 + 5.81083i −0.406033 + 0.295000i
\(389\) −28.1716 20.4679i −1.42836 1.03776i −0.990320 0.138805i \(-0.955674\pi\)
−0.438037 0.898957i \(-0.644326\pi\)
\(390\) 0 0
\(391\) −24.6716 + 17.9250i −1.24770 + 0.906504i
\(392\) 1.24196 3.82234i 0.0627282 0.193058i
\(393\) 10.3375 0.521458
\(394\) 5.84770 17.9974i 0.294603 0.906695i
\(395\) 0 0
\(396\) −0.754763 2.32292i −0.0379283 0.116731i
\(397\) 4.94607 + 15.2224i 0.248236 + 0.763992i 0.995087 + 0.0990008i \(0.0315646\pi\)
−0.746851 + 0.664991i \(0.768435\pi\)
\(398\) −18.3472 13.3300i −0.919663 0.668175i
\(399\) 3.87901 0.194193
\(400\) 0 0
\(401\) 11.5284 0.575701 0.287850 0.957675i \(-0.407059\pi\)
0.287850 + 0.957675i \(0.407059\pi\)
\(402\) 9.61949 + 6.98897i 0.479776 + 0.348578i
\(403\) −5.62048 17.2981i −0.279976 0.861678i
\(404\) 1.94336 + 5.98105i 0.0966858 + 0.297568i
\(405\) 0 0
\(406\) 5.00396 15.4006i 0.248342 0.764319i
\(407\) 8.06322 0.399679
\(408\) 1.03353 3.18088i 0.0511674 0.157477i
\(409\) 11.8041 8.57616i 0.583674 0.424064i −0.256373 0.966578i \(-0.582527\pi\)
0.840047 + 0.542514i \(0.182527\pi\)
\(410\) 0 0
\(411\) −13.0103 9.45254i −0.641751 0.466260i
\(412\) 6.94095 5.04290i 0.341956 0.248446i
\(413\) 0.255119 0.185355i 0.0125536 0.00912071i
\(414\) −7.37660 5.35941i −0.362540 0.263401i
\(415\) 0 0
\(416\) 2.40211 1.74524i 0.117773 0.0855673i
\(417\) −5.10169 + 15.7014i −0.249831 + 0.768900i
\(418\) 5.48746 0.268400
\(419\) −4.35926 + 13.4164i −0.212964 + 0.655434i 0.786328 + 0.617809i \(0.211979\pi\)
−0.999292 + 0.0376256i \(0.988021\pi\)
\(420\) 0 0
\(421\) −3.98266 12.2574i −0.194103 0.597388i −0.999986 0.00531260i \(-0.998309\pi\)
0.805883 0.592075i \(-0.201691\pi\)
\(422\) −0.790700 2.43352i −0.0384907 0.118462i
\(423\) −4.03884 2.93439i −0.196375 0.142675i
\(424\) −6.85108 −0.332718
\(425\) 0 0
\(426\) 11.3618 0.550479
\(427\) −7.19536 5.22774i −0.348208 0.252988i
\(428\) 2.81105 + 8.65151i 0.135877 + 0.418186i
\(429\) −2.24102 6.89716i −0.108198 0.332998i
\(430\) 0 0
\(431\) −7.15141 + 22.0098i −0.344471 + 1.06017i 0.617395 + 0.786653i \(0.288188\pi\)
−0.961866 + 0.273520i \(0.911812\pi\)
\(432\) 1.00000 0.0481125
\(433\) −7.26516 + 22.3599i −0.349142 + 1.07455i 0.610188 + 0.792257i \(0.291094\pi\)
−0.959329 + 0.282290i \(0.908906\pi\)
\(434\) −8.55638 + 6.21658i −0.410720 + 0.298405i
\(435\) 0 0
\(436\) 11.0110 + 7.99994i 0.527330 + 0.383128i
\(437\) 16.5729 12.0409i 0.792791 0.575996i
\(438\) −5.44095 + 3.95309i −0.259979 + 0.188886i
\(439\) −1.61188 1.17110i −0.0769309 0.0558936i 0.548655 0.836049i \(-0.315140\pi\)
−0.625586 + 0.780155i \(0.715140\pi\)
\(440\) 0 0
\(441\) 3.25148 2.36234i 0.154832 0.112492i
\(442\) 3.06873 9.44459i 0.145965 0.449233i
\(443\) −13.0327 −0.619202 −0.309601 0.950867i \(-0.600195\pi\)
−0.309601 + 0.950867i \(0.600195\pi\)
\(444\) −1.02015 + 3.13969i −0.0484140 + 0.149003i
\(445\) 0 0
\(446\) −5.76449 17.7413i −0.272956 0.840073i
\(447\) 6.34490 + 19.5276i 0.300103 + 0.923623i
\(448\) −1.39680 1.01484i −0.0659927 0.0479465i
\(449\) 12.0846 0.570310 0.285155 0.958481i \(-0.407955\pi\)
0.285155 + 0.958481i \(0.407955\pi\)
\(450\) 0 0
\(451\) 14.9663 0.704737
\(452\) 6.68863 + 4.85958i 0.314607 + 0.228575i
\(453\) 0.861564 + 2.65162i 0.0404798 + 0.124584i
\(454\) 3.41820 + 10.5201i 0.160424 + 0.493735i
\(455\) 0 0
\(456\) −0.694265 + 2.13673i −0.0325119 + 0.100061i
\(457\) 5.62762 0.263249 0.131624 0.991300i \(-0.457981\pi\)
0.131624 + 0.991300i \(0.457981\pi\)
\(458\) −8.35868 + 25.7254i −0.390575 + 1.20207i
\(459\) 2.70582 1.96589i 0.126297 0.0917600i
\(460\) 0 0
\(461\) 3.74321 + 2.71960i 0.174339 + 0.126664i 0.671533 0.740975i \(-0.265636\pi\)
−0.497194 + 0.867639i \(0.665636\pi\)
\(462\) −3.41164 + 2.47870i −0.158724 + 0.115320i
\(463\) 4.65923 3.38513i 0.216533 0.157320i −0.474232 0.880400i \(-0.657274\pi\)
0.690764 + 0.723080i \(0.257274\pi\)
\(464\) 7.58773 + 5.51281i 0.352251 + 0.255926i
\(465\) 0 0
\(466\) 14.7867 10.7432i 0.684982 0.497669i
\(467\) −7.59619 + 23.3787i −0.351510 + 1.08184i 0.606496 + 0.795087i \(0.292575\pi\)
−0.958006 + 0.286749i \(0.907425\pi\)
\(468\) 2.96917 0.137250
\(469\) 6.34386 19.5244i 0.292932 0.901553i
\(470\) 0 0
\(471\) −4.43179 13.6396i −0.204206 0.628481i
\(472\) 0.0564404 + 0.173706i 0.00259788 + 0.00799545i
\(473\) −13.9702 10.1500i −0.642351 0.466695i
\(474\) 11.3571 0.521647
\(475\) 0 0
\(476\) −5.77455 −0.264676
\(477\) −5.54264 4.02697i −0.253780 0.184382i
\(478\) 0.793604 + 2.44246i 0.0362986 + 0.111716i
\(479\) −1.80512 5.55560i −0.0824782 0.253842i 0.901310 0.433174i \(-0.142606\pi\)
−0.983789 + 0.179332i \(0.942606\pi\)
\(480\) 0 0
\(481\) −3.02900 + 9.32229i −0.138110 + 0.425060i
\(482\) −13.3394 −0.607592
\(483\) −4.86472 + 14.9721i −0.221353 + 0.681253i
\(484\) 4.07289 2.95913i 0.185131 0.134506i
\(485\) 0 0
\(486\) 0.809017 + 0.587785i 0.0366978 + 0.0266625i
\(487\) 4.12901 2.99990i 0.187103 0.135939i −0.490290 0.871559i \(-0.663109\pi\)
0.677394 + 0.735621i \(0.263109\pi\)
\(488\) 4.16750 3.02786i 0.188654 0.137065i
\(489\) −4.77575 3.46979i −0.215967 0.156909i
\(490\) 0 0
\(491\) −31.6198 + 22.9731i −1.42698 + 1.03676i −0.436412 + 0.899747i \(0.643751\pi\)
−0.990569 + 0.137015i \(0.956249\pi\)
\(492\) −1.89352 + 5.82766i −0.0853665 + 0.262731i
\(493\) 31.3686 1.41277
\(494\) −2.06140 + 6.34432i −0.0927465 + 0.285445i
\(495\) 0 0
\(496\) −1.89294 5.82588i −0.0849957 0.261590i
\(497\) −6.06185 18.6565i −0.271911 0.836857i
\(498\) 7.39378 + 5.37190i 0.331323 + 0.240721i
\(499\) −12.0527 −0.539553 −0.269777 0.962923i \(-0.586950\pi\)
−0.269777 + 0.962923i \(0.586950\pi\)
\(500\) 0 0
\(501\) 8.94427 0.399601
\(502\) −11.6020 8.42938i −0.517825 0.376222i
\(503\) −3.05342 9.39747i −0.136145 0.419012i 0.859621 0.510932i \(-0.170700\pi\)
−0.995766 + 0.0919197i \(0.970700\pi\)
\(504\) −0.533531 1.64204i −0.0237654 0.0731423i
\(505\) 0 0
\(506\) −6.88191 + 21.1803i −0.305938 + 0.941581i
\(507\) −4.18400 −0.185818
\(508\) 5.50441 16.9408i 0.244219 0.751628i
\(509\) −16.1886 + 11.7617i −0.717546 + 0.521328i −0.885599 0.464450i \(-0.846252\pi\)
0.168053 + 0.985778i \(0.446252\pi\)
\(510\) 0 0
\(511\) 9.39404 + 6.82517i 0.415568 + 0.301928i
\(512\) 0.809017 0.587785i 0.0357538 0.0259767i
\(513\) −1.81761 + 1.32057i −0.0802494 + 0.0583046i
\(514\) −12.9451 9.40518i −0.570984 0.414844i
\(515\) 0 0
\(516\) 5.71972 4.15562i 0.251797 0.182941i
\(517\) −3.76799 + 11.5967i −0.165716 + 0.510021i
\(518\) 5.69977 0.250434
\(519\) −8.00822 + 24.6468i −0.351522 + 1.08187i
\(520\) 0 0
\(521\) 3.33077 + 10.2511i 0.145924 + 0.449107i 0.997129 0.0757262i \(-0.0241275\pi\)
−0.851205 + 0.524834i \(0.824128\pi\)
\(522\) 2.89825 + 8.91991i 0.126853 + 0.390414i
\(523\) 21.4025 + 15.5498i 0.935865 + 0.679945i 0.947422 0.319988i \(-0.103679\pi\)
−0.0115570 + 0.999933i \(0.503679\pi\)
\(524\) 10.3375 0.451596
\(525\) 0 0
\(526\) −19.8584 −0.865866
\(527\) −16.5750 12.0425i −0.722019 0.524578i
\(528\) −0.754763 2.32292i −0.0328468 0.101092i
\(529\) 18.5835 + 57.1942i 0.807979 + 2.48670i
\(530\) 0 0
\(531\) −0.0564404 + 0.173706i −0.00244930 + 0.00753818i
\(532\) 3.87901 0.168176
\(533\) −5.62219 + 17.3033i −0.243524 + 0.749490i
\(534\) −6.56674 + 4.77102i −0.284171 + 0.206462i
\(535\) 0 0
\(536\) 9.61949 + 6.98897i 0.415499 + 0.301877i
\(537\) −0.0388418 + 0.0282202i −0.00167615 + 0.00121779i
\(538\) −2.15266 + 1.56400i −0.0928078 + 0.0674288i
\(539\) −7.94162 5.76993i −0.342070 0.248528i
\(540\) 0 0
\(541\) 22.7282 16.5130i 0.977161 0.709949i 0.0200887 0.999798i \(-0.493605\pi\)
0.957072 + 0.289849i \(0.0936051\pi\)
\(542\) 4.15958 12.8019i 0.178669 0.549888i
\(543\) 20.5347 0.881229
\(544\) 1.03353 3.18088i 0.0443123 0.136379i
\(545\) 0 0
\(546\) −1.58415 4.87550i −0.0677952 0.208652i
\(547\) −2.27977 7.01640i −0.0974758 0.300000i 0.890415 0.455149i \(-0.150414\pi\)
−0.987891 + 0.155150i \(0.950414\pi\)
\(548\) −13.0103 9.45254i −0.555773 0.403793i
\(549\) 5.15131 0.219853
\(550\) 0 0
\(551\) −21.0716 −0.897680
\(552\) −7.37660 5.35941i −0.313969 0.228112i
\(553\) −6.05934 18.6487i −0.257670 0.793025i
\(554\) −1.65246 5.08576i −0.0702064 0.216073i
\(555\) 0 0
\(556\) −5.10169 + 15.7014i −0.216360 + 0.665887i
\(557\) −17.2189 −0.729587 −0.364794 0.931088i \(-0.618860\pi\)
−0.364794 + 0.931088i \(0.618860\pi\)
\(558\) 1.89294 5.82588i 0.0801347 0.246629i
\(559\) 16.9829 12.3388i 0.718298 0.521874i
\(560\) 0 0
\(561\) −6.60886 4.80162i −0.279026 0.202725i
\(562\) −13.5243 + 9.82598i −0.570488 + 0.414484i
\(563\) 0.161402 0.117265i 0.00680228 0.00494214i −0.584379 0.811481i \(-0.698662\pi\)
0.591181 + 0.806539i \(0.298662\pi\)
\(564\) −4.03884 2.93439i −0.170066 0.123560i
\(565\) 0 0
\(566\) 11.4581 8.32479i 0.481619 0.349917i
\(567\) 0.533531 1.64204i 0.0224062 0.0689592i
\(568\) 11.3618 0.476729
\(569\) −5.82382 + 17.9239i −0.244147 + 0.751408i 0.751628 + 0.659587i \(0.229269\pi\)
−0.995776 + 0.0918209i \(0.970731\pi\)
\(570\) 0 0
\(571\) 5.61672 + 17.2865i 0.235053 + 0.723417i 0.997114 + 0.0759132i \(0.0241872\pi\)
−0.762062 + 0.647504i \(0.775813\pi\)
\(572\) −2.24102 6.89716i −0.0937019 0.288385i
\(573\) −1.95814 1.42267i −0.0818025 0.0594330i
\(574\) 10.5795 0.441579
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −0.307187 0.223184i −0.0127884 0.00929129i 0.581373 0.813637i \(-0.302516\pi\)
−0.594161 + 0.804346i \(0.702516\pi\)
\(578\) 1.79657 + 5.52926i 0.0747273 + 0.229987i
\(579\) −4.13355 12.7218i −0.171784 0.528698i
\(580\) 0 0
\(581\) 4.87606 15.0070i 0.202293 0.622594i
\(582\) −9.88597 −0.409787
\(583\) −5.17094 + 15.9145i −0.214159 + 0.659112i
\(584\) −5.44095 + 3.95309i −0.225148 + 0.163580i
\(585\) 0 0
\(586\) −10.0839 7.32636i −0.416561 0.302649i
\(587\) −12.5658 + 9.12959i −0.518646 + 0.376819i −0.816094 0.577920i \(-0.803865\pi\)
0.297447 + 0.954738i \(0.403865\pi\)
\(588\) 3.25148 2.36234i 0.134089 0.0974212i
\(589\) 11.1341 + 8.08941i 0.458774 + 0.333319i
\(590\) 0 0
\(591\) 15.3095 11.1230i 0.629748 0.457539i
\(592\) −1.02015 + 3.13969i −0.0419278 + 0.129040i
\(593\) 4.62686 0.190002 0.0950012 0.995477i \(-0.469715\pi\)
0.0950012 + 0.995477i \(0.469715\pi\)
\(594\) 0.754763 2.32292i 0.0309683 0.0953106i
\(595\) 0 0
\(596\) 6.34490 + 19.5276i 0.259897 + 0.799881i
\(597\) −7.00802 21.5685i −0.286819 0.882738i
\(598\) −21.9024 15.9130i −0.895656 0.650732i
\(599\) 28.6517 1.17067 0.585337 0.810790i \(-0.300962\pi\)
0.585337 + 0.810790i \(0.300962\pi\)
\(600\) 0 0
\(601\) 7.54545 0.307785 0.153893 0.988088i \(-0.450819\pi\)
0.153893 + 0.988088i \(0.450819\pi\)
\(602\) −9.87535 7.17486i −0.402489 0.292425i
\(603\) 3.67432 + 11.3084i 0.149630 + 0.460513i
\(604\) 0.861564 + 2.65162i 0.0350565 + 0.107893i
\(605\) 0 0
\(606\) −1.94336 + 5.98105i −0.0789436 + 0.242964i
\(607\) 0.971865 0.0394468 0.0197234 0.999805i \(-0.493721\pi\)
0.0197234 + 0.999805i \(0.493721\pi\)
\(608\) −0.694265 + 2.13673i −0.0281562 + 0.0866558i
\(609\) 13.1005 9.51810i 0.530861 0.385693i
\(610\) 0 0
\(611\) −11.9920 8.71272i −0.485146 0.352479i
\(612\) 2.70582 1.96589i 0.109376 0.0794665i
\(613\) 33.2284 24.1418i 1.34208 0.975080i 0.342717 0.939439i \(-0.388653\pi\)
0.999365 0.0356409i \(-0.0113473\pi\)
\(614\) 19.4143 + 14.1053i 0.783497 + 0.569244i
\(615\) 0 0
\(616\) −3.41164 + 2.47870i −0.137459 + 0.0998697i
\(617\) 2.53661 7.80690i 0.102120 0.314294i −0.886924 0.461916i \(-0.847162\pi\)
0.989044 + 0.147622i \(0.0471620\pi\)
\(618\) 8.57949 0.345118
\(619\) 14.0919 43.3705i 0.566402 1.74321i −0.0973461 0.995251i \(-0.531035\pi\)
0.663748 0.747956i \(-0.268965\pi\)
\(620\) 0 0
\(621\) −2.81761 8.67171i −0.113067 0.347984i
\(622\) 4.31359 + 13.2759i 0.172959 + 0.532314i
\(623\) 11.3378 + 8.23736i 0.454238 + 0.330023i
\(624\) 2.96917 0.118862
\(625\) 0 0
\(626\) 9.62739 0.384788
\(627\) 4.43945 + 3.22545i 0.177294 + 0.128812i
\(628\) −4.43179 13.6396i −0.176847 0.544281i
\(629\) 3.41196 + 10.5009i 0.136044 + 0.418700i
\(630\) 0 0
\(631\) 10.5472 32.4610i 0.419878 1.29225i −0.487936 0.872879i \(-0.662250\pi\)
0.907814 0.419372i \(-0.137750\pi\)
\(632\) 11.3571 0.451760
\(633\) 0.790700 2.43352i 0.0314275 0.0967239i
\(634\) 0.450068 0.326993i 0.0178745 0.0129866i
\(635\) 0 0
\(636\) −5.54264 4.02697i −0.219780 0.159680i
\(637\) 9.65421 7.01420i 0.382514 0.277913i
\(638\) 18.5328 13.4648i 0.733719 0.533078i
\(639\) 9.19186 + 6.67828i 0.363624 + 0.264189i
\(640\) 0 0
\(641\) 27.8267 20.2173i 1.09909 0.798535i 0.118178 0.992992i \(-0.462295\pi\)
0.980911 + 0.194458i \(0.0622946\pi\)
\(642\) −2.81105 + 8.65151i −0.110943 + 0.341448i
\(643\) −2.71413 −0.107035 −0.0535173 0.998567i \(-0.517043\pi\)
−0.0535173 + 0.998567i \(0.517043\pi\)
\(644\) −4.86472 + 14.9721i −0.191697 + 0.589983i
\(645\) 0 0
\(646\) 2.32202 + 7.14645i 0.0913588 + 0.281173i
\(647\) −8.83917 27.2042i −0.347504 1.06951i −0.960230 0.279211i \(-0.909927\pi\)
0.612726 0.790295i \(-0.290073\pi\)
\(648\) 0.809017 + 0.587785i 0.0317812 + 0.0230904i
\(649\) 0.446104 0.0175111
\(650\) 0 0
\(651\) −10.5763 −0.414517
\(652\) −4.77575 3.46979i −0.187033 0.135887i
\(653\) −10.5937 32.6040i −0.414562 1.27589i −0.912642 0.408760i \(-0.865961\pi\)
0.498079 0.867132i \(-0.334039\pi\)
\(654\) 4.20582 + 12.9442i 0.164461 + 0.506158i
\(655\) 0 0
\(656\) −1.89352 + 5.82766i −0.0739295 + 0.227532i
\(657\) −6.72539 −0.262382
\(658\) −2.66354 + 8.19753i −0.103836 + 0.319573i
\(659\) −14.9714 + 10.8774i −0.583203 + 0.423722i −0.839878 0.542776i \(-0.817373\pi\)
0.256674 + 0.966498i \(0.417373\pi\)
\(660\) 0 0
\(661\) −10.7699 7.82476i −0.418899 0.304348i 0.358296 0.933608i \(-0.383358\pi\)
−0.777195 + 0.629260i \(0.783358\pi\)
\(662\) −9.35640 + 6.79782i −0.363647 + 0.264205i
\(663\) 8.03405 5.83708i 0.312017 0.226693i
\(664\) 7.39378 + 5.37190i 0.286935 + 0.208470i
\(665\) 0 0
\(666\) −2.67078 + 1.94043i −0.103491 + 0.0751903i
\(667\) 26.4262 81.3315i 1.02323 3.14917i
\(668\) 8.94427 0.346064
\(669\) 5.76449 17.7413i 0.222868 0.685917i
\(670\) 0 0
\(671\) −3.88802 11.9661i −0.150095 0.461946i
\(672\) −0.533531 1.64204i −0.0205814 0.0633430i
\(673\) −29.0908 21.1357i −1.12137 0.814722i −0.136952 0.990578i \(-0.543731\pi\)
−0.984416 + 0.175856i \(0.943731\pi\)
\(674\) −29.8767 −1.15081
\(675\) 0 0
\(676\) −4.18400 −0.160923
\(677\) 4.95116 + 3.59723i 0.190289 + 0.138253i 0.678851 0.734276i \(-0.262478\pi\)
−0.488562 + 0.872529i \(0.662478\pi\)
\(678\) 2.55483 + 7.86296i 0.0981177 + 0.301975i
\(679\) 5.27447 + 16.2331i 0.202416 + 0.622971i
\(680\) 0 0
\(681\) −3.41820 + 10.5201i −0.130986 + 0.403133i
\(682\) −14.9618 −0.572916
\(683\) −2.28659 + 7.03739i −0.0874938 + 0.269278i −0.985225 0.171266i \(-0.945214\pi\)
0.897731 + 0.440544i \(0.145214\pi\)
\(684\) −1.81761 + 1.32057i −0.0694981 + 0.0504933i
\(685\) 0 0
\(686\) −15.3914 11.1825i −0.587648 0.426951i
\(687\) −21.8833 + 15.8992i −0.834900 + 0.606590i
\(688\) 5.71972 4.15562i 0.218062 0.158432i
\(689\) −16.4571 11.9568i −0.626965 0.455517i
\(690\) 0 0
\(691\) 26.4101 19.1880i 1.00469 0.729947i 0.0415986 0.999134i \(-0.486755\pi\)
0.963088 + 0.269187i \(0.0867549\pi\)
\(692\) −8.00822 + 24.6468i −0.304427 + 0.936929i
\(693\) −4.21702 −0.160191
\(694\) 1.31230 4.03884i 0.0498142 0.153312i
\(695\) 0 0
\(696\) 2.89825 + 8.91991i 0.109858 + 0.338108i
\(697\) 6.33302 + 19.4910i 0.239880 + 0.738276i
\(698\) −15.6716 11.3861i −0.593177 0.430969i
\(699\) 18.2774 0.691315
\(700\) 0 0
\(701\) 15.4733 0.584418 0.292209 0.956354i \(-0.405610\pi\)
0.292209 + 0.956354i \(0.405610\pi\)
\(702\) 2.40211 + 1.74524i 0.0906619 + 0.0658697i
\(703\) −2.29195 7.05391i −0.0864427 0.266043i
\(704\) −0.754763 2.32292i −0.0284462 0.0875484i
\(705\) 0 0
\(706\) 0.0751761 0.231368i 0.00282929 0.00870766i
\(707\) 10.8580 0.408356
\(708\) −0.0564404 + 0.173706i −0.00212116 + 0.00652826i
\(709\) −5.10700 + 3.71045i −0.191797 + 0.139349i −0.679540 0.733639i \(-0.737821\pi\)
0.487742 + 0.872988i \(0.337821\pi\)
\(710\) 0 0
\(711\) 9.18806 + 6.67551i 0.344579 + 0.250351i
\(712\) −6.56674 + 4.77102i −0.246099 + 0.178801i
\(713\) −45.1868 + 32.8301i −1.69226 + 1.22950i
\(714\) −4.67171 3.39420i −0.174834 0.127025i
\(715\) 0 0
\(716\) −0.0388418 + 0.0282202i −0.00145159 + 0.00105464i
\(717\) −0.793604 + 2.44246i −0.0296377 + 0.0912155i
\(718\) −21.0432 −0.785325
\(719\) 9.20729 28.3371i 0.343374 1.05680i −0.619074 0.785332i \(-0.712492\pi\)
0.962448 0.271464i \(-0.0875079\pi\)
\(720\) 0 0
\(721\) −4.57742 14.0879i −0.170472 0.524660i
\(722\) 4.31152 + 13.2695i 0.160458 + 0.493840i
\(723\) −10.7918 7.84068i −0.401350 0.291598i
\(724\) 20.5347 0.763167
\(725\) 0 0
\(726\) 5.03437 0.186843
\(727\) −7.83431 5.69196i −0.290559 0.211103i 0.432951 0.901417i \(-0.357472\pi\)
−0.723510 + 0.690314i \(0.757472\pi\)
\(728\) −1.58415 4.87550i −0.0587124 0.180698i
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) 0 0
\(731\) 7.30703 22.4887i 0.270260 0.831776i
\(732\) 5.15131 0.190398
\(733\) −10.7283 + 33.0184i −0.396260 + 1.21956i 0.531716 + 0.846923i \(0.321548\pi\)
−0.927976 + 0.372640i \(0.878452\pi\)
\(734\) −6.33734 + 4.60435i −0.233916 + 0.169950i
\(735\) 0 0
\(736\) −7.37660 5.35941i −0.271905 0.197551i
\(737\) 23.4952 17.0703i 0.865458 0.628792i
\(738\) −4.95730 + 3.60169i −0.182481 + 0.132580i
\(739\) 18.3619 + 13.3407i 0.675454 + 0.490746i 0.871846 0.489780i \(-0.162923\pi\)
−0.196393 + 0.980525i \(0.562923\pi\)
\(740\) 0 0
\(741\) −5.39680 + 3.92101i −0.198256 + 0.144042i
\(742\) −3.65527 + 11.2498i −0.134189 + 0.412991i
\(743\) 9.53920 0.349959 0.174980 0.984572i \(-0.444014\pi\)
0.174980 + 0.984572i \(0.444014\pi\)
\(744\) 1.89294 5.82588i 0.0693987 0.213587i
\(745\) 0 0
\(746\) 4.79766 + 14.7657i 0.175655 + 0.540610i
\(747\) 2.82417 + 8.69192i 0.103331 + 0.318021i
\(748\) −6.60886 4.80162i −0.241644 0.175565i
\(749\) 15.7059 0.573881
\(750\) 0 0
\(751\) 22.5289 0.822090 0.411045 0.911615i \(-0.365164\pi\)
0.411045 + 0.911615i \(0.365164\pi\)
\(752\) −4.03884 2.93439i −0.147281 0.107006i
\(753\) −4.43159 13.6390i −0.161496 0.497034i
\(754\) 8.60542 + 26.4848i 0.313391 + 0.964519i
\(755\) 0 0
\(756\) 0.533531 1.64204i 0.0194043 0.0597204i
\(757\) 38.3200 1.39276 0.696382 0.717672i \(-0.254792\pi\)
0.696382 + 0.717672i \(0.254792\pi\)
\(758\) 3.35706 10.3320i 0.121934 0.375274i
\(759\) −18.0171 + 13.0902i −0.653978 + 0.475143i
\(760\) 0 0
\(761\) −16.5112 11.9961i −0.598530 0.434857i 0.246827 0.969060i \(-0.420612\pi\)
−0.845357 + 0.534202i \(0.820612\pi\)
\(762\) 14.4107 10.4700i 0.522046 0.379289i
\(763\) 19.0109 13.8122i 0.688242 0.500037i
\(764\) −1.95814 1.42267i −0.0708431 0.0514705i
\(765\) 0 0
\(766\) −7.76345 + 5.64047i −0.280505 + 0.203799i
\(767\) −0.167581 + 0.515763i −0.00605101 + 0.0186231i
\(768\) 1.00000 0.0360844
\(769\) −9.28293 + 28.5699i −0.334751 + 1.03026i 0.632094 + 0.774892i \(0.282196\pi\)
−0.966845 + 0.255365i \(0.917804\pi\)
\(770\) 0 0
\(771\) −4.94459 15.2179i −0.178075 0.548059i
\(772\) −4.13355 12.7218i −0.148770 0.457866i
\(773\) −17.5936 12.7825i −0.632796 0.459753i 0.224572 0.974458i \(-0.427902\pi\)
−0.857368 + 0.514704i \(0.827902\pi\)
\(774\) 7.06997 0.254125
\(775\) 0 0
\(776\) −9.88597 −0.354886
\(777\) 4.61121 + 3.35024i 0.165426 + 0.120189i
\(778\) −10.7606 33.1177i −0.385786 1.18733i
\(779\) −4.25415 13.0929i −0.152421 0.469103i
\(780\) 0 0
\(781\) 8.57543 26.3925i 0.306853 0.944397i
\(782\) −30.4958 −1.09053
\(783\) −2.89825 + 8.91991i −0.103575 + 0.318772i
\(784\) 3.25148 2.36234i 0.116124 0.0843692i
\(785\) 0 0
\(786\) 8.36321 + 6.07623i 0.298306 + 0.216732i
\(787\) −10.6763 + 7.75679i −0.380569 + 0.276500i −0.761580 0.648071i \(-0.775576\pi\)
0.381011 + 0.924571i \(0.375576\pi\)
\(788\) 15.3095 11.1230i 0.545378 0.396240i
\(789\) −16.0658 11.6725i −0.571956 0.415550i
\(790\) 0 0
\(791\) 11.5482 8.39027i 0.410607 0.298323i
\(792\) 0.754763 2.32292i 0.0268193 0.0825414i
\(793\) 15.2951 0.543146
\(794\) −4.94607 + 15.2224i −0.175529 + 0.540224i
\(795\) 0 0
\(796\) −7.00802 21.5685i −0.248393 0.764474i
\(797\) −5.15230 15.8571i −0.182504 0.561689i 0.817393 0.576081i \(-0.195419\pi\)
−0.999896 + 0.0143921i \(0.995419\pi\)
\(798\) 3.13818 + 2.28002i 0.111090 + 0.0807119i
\(799\) −16.6971 −0.590700
\(800\) 0 0
\(801\) −8.11694 −0.286798
\(802\) 9.32667 + 6.77622i 0.329336 + 0.239277i
\(803\) 5.07607 + 15.6225i 0.179131 + 0.551308i
\(804\) 3.67432 + 11.3084i 0.129583 + 0.398816i
\(805\) 0 0
\(806\) 5.62048 17.2981i 0.197973 0.609298i
\(807\) −2.66084 −0.0936658
\(808\) −1.94336 + 5.98105i −0.0683672 + 0.210413i
\(809\) 22.2409 16.1590i 0.781949 0.568119i −0.123614 0.992330i \(-0.539449\pi\)
0.905563 + 0.424211i \(0.139449\pi\)
\(810\) 0 0
\(811\) 20.9090 + 15.1913i 0.734213 + 0.533437i 0.890894 0.454212i \(-0.150079\pi\)
−0.156680 + 0.987649i \(0.550079\pi\)
\(812\) 13.1005 9.51810i 0.459739 0.334020i
\(813\) 10.8899 7.91199i 0.381926 0.277486i
\(814\) 6.52328 + 4.73944i 0.228641 + 0.166117i
\(815\) 0 0
\(816\) 2.70582 1.96589i 0.0947226 0.0688200i
\(817\) −4.90843 + 15.1066i −0.171724 + 0.528513i
\(818\) 14.5906 0.510150
\(819\) 1.58415 4.87550i 0.0553546 0.170364i
\(820\) 0 0
\(821\) −10.0931 31.0634i −0.352252 1.08412i −0.957586 0.288149i \(-0.906960\pi\)
0.605333 0.795972i \(-0.293040\pi\)
\(822\) −4.96950 15.2945i −0.173331 0.533458i
\(823\) −39.6567 28.8122i −1.38234 1.00433i −0.996657 0.0817020i \(-0.973964\pi\)
−0.385687 0.922630i \(-0.626036\pi\)
\(824\) 8.57949 0.298881
\(825\) 0 0
\(826\) 0.315344 0.0109722
\(827\) −7.66109 5.56611i −0.266402 0.193553i 0.446563 0.894752i \(-0.352648\pi\)
−0.712965 + 0.701200i \(0.752648\pi\)
\(828\) −2.81761 8.67171i −0.0979187 0.301363i
\(829\) −17.1806 52.8765i −0.596707 1.83648i −0.546039 0.837760i \(-0.683865\pi\)
−0.0506676 0.998716i \(-0.516135\pi\)
\(830\) 0 0
\(831\) 1.65246 5.08576i 0.0573233 0.176423i
\(832\) 2.96917 0.102938
\(833\) 4.15381 12.7841i 0.143921 0.442944i
\(834\) −13.3564 + 9.70399i −0.462494 + 0.336022i
\(835\) 0 0
\(836\) 4.43945 + 3.22545i 0.153541 + 0.111554i
\(837\) 4.95579 3.60059i 0.171297 0.124455i
\(838\) −11.4127 + 8.29180i −0.394244 + 0.286435i
\(839\) 4.96116 + 3.60449i 0.171278 + 0.124441i 0.670122 0.742251i \(-0.266242\pi\)
−0.498844 + 0.866692i \(0.666242\pi\)
\(840\) 0 0
\(841\) −47.7034 + 34.6586i −1.64495 + 1.19512i
\(842\) 3.98266 12.2574i 0.137252 0.422417i
\(843\) −16.7170 −0.575763
\(844\) 0.790700 2.43352i 0.0272170 0.0837654i
\(845\) 0 0
\(846\) −1.54270 4.74794i −0.0530391 0.163238i
\(847\) −2.68599 8.26664i −0.0922918 0.284045i
\(848\) −5.54264 4.02697i −0.190335 0.138287i
\(849\) 14.1630 0.486072
\(850\) 0 0
\(851\) 30.1009 1.03184
\(852\) 9.19186 + 6.67828i 0.314908 + 0.228794i
\(853\) 9.41798 + 28.9856i 0.322465 + 0.992447i 0.972572 + 0.232603i \(0.0747244\pi\)
−0.650106 + 0.759843i \(0.725276\pi\)
\(854\) −2.74838 8.45865i −0.0940477 0.289449i
\(855\) 0 0
\(856\) −2.81105 + 8.65151i −0.0960796 + 0.295702i
\(857\) −7.53137 −0.257267 −0.128633 0.991692i \(-0.541059\pi\)
−0.128633 + 0.991692i \(0.541059\pi\)
\(858\) 2.24102 6.89716i 0.0765073 0.235465i
\(859\) −39.9169 + 29.0013i −1.36195 + 0.989512i −0.363628 + 0.931544i \(0.618462\pi\)
−0.998318 + 0.0579677i \(0.981538\pi\)
\(860\) 0 0
\(861\) 8.55899 + 6.21847i 0.291690 + 0.211925i
\(862\) −18.7226 + 13.6028i −0.637695 + 0.463313i
\(863\) 25.4736 18.5076i 0.867131 0.630008i −0.0626845 0.998033i \(-0.519966\pi\)
0.929816 + 0.368026i \(0.119966\pi\)
\(864\) 0.809017 + 0.587785i 0.0275233 + 0.0199969i
\(865\) 0 0
\(866\) −19.0204 + 13.8192i −0.646341 + 0.469594i
\(867\) −1.79657 + 5.52926i −0.0610146 + 0.187784i
\(868\) −10.5763 −0.358982
\(869\) 8.57189 26.3816i 0.290781 0.894933i
\(870\) 0 0
\(871\) 10.9097 + 33.5766i 0.369661 + 1.13770i
\(872\) 4.20582 + 12.9442i 0.142427 + 0.438345i
\(873\) −7.99792 5.81083i −0.270688 0.196667i
\(874\) 20.4853 0.692924
\(875\) 0 0
\(876\) −6.72539 −0.227230
\(877\) −6.37431 4.63120i −0.215245 0.156385i 0.474939 0.880019i \(-0.342470\pi\)
−0.690184 + 0.723634i \(0.742470\pi\)
\(878\) −0.615684 1.89488i −0.0207783 0.0639491i
\(879\) −3.85170 11.8543i −0.129914 0.399836i
\(880\) 0 0
\(881\) −10.2217 + 31.4592i −0.344378 + 1.05989i 0.617537 + 0.786542i \(0.288130\pi\)
−0.961916 + 0.273346i \(0.911870\pi\)
\(882\) 4.01905 0.135328
\(883\) −2.41489 + 7.43225i −0.0812674 + 0.250115i −0.983432 0.181276i \(-0.941977\pi\)
0.902165 + 0.431391i \(0.141977\pi\)
\(884\) 8.03405 5.83708i 0.270214 0.196322i
\(885\) 0 0
\(886\) −10.5437 7.66042i −0.354221 0.257357i
\(887\) −8.18071 + 5.94363i −0.274681 + 0.199568i −0.716594 0.697490i \(-0.754300\pi\)
0.441913 + 0.897058i \(0.354300\pi\)
\(888\) −2.67078 + 1.94043i −0.0896255 + 0.0651167i
\(889\) −24.8808 18.0769i −0.834474 0.606281i
\(890\) 0 0
\(891\) 1.97599 1.43564i 0.0661983 0.0480959i
\(892\) 5.76449 17.7413i 0.193009 0.594022i
\(893\) 11.2161 0.375333
\(894\) −6.34490 + 19.5276i −0.212205 + 0.653100i
\(895\) 0 0
\(896\) −0.533531 1.64204i −0.0178240 0.0548567i
\(897\) −8.36598 25.7478i −0.279332 0.859695i
\(898\) 9.77668 + 7.10318i 0.326252 + 0.237036i
\(899\) 57.4526 1.91615
\(900\) 0 0
\(901\) −22.9140 −0.763375
\(902\) 12.1080 + 8.79699i 0.403153 + 0.292908i
\(903\) −3.77205 11.6092i −0.125526 0.386329i
\(904\) 2.55483 + 7.86296i 0.0849724 + 0.261518i
\(905\) 0 0
\(906\) −0.861564 + 2.65162i −0.0286235 + 0.0880942i
\(907\) −10.2207 −0.339373 −0.169686 0.985498i \(-0.554275\pi\)
−0.169686 + 0.985498i \(0.554275\pi\)
\(908\) −3.41820 + 10.5201i −0.113437 + 0.349123i
\(909\) −5.08779 + 3.69649i −0.168751 + 0.122605i
\(910\) 0 0
\(911\) −34.3471 24.9546i −1.13797 0.826784i −0.151135 0.988513i \(-0.548293\pi\)
−0.986835 + 0.161729i \(0.948293\pi\)
\(912\) −1.81761 + 1.32057i −0.0601871 + 0.0437285i
\(913\) 18.0590 13.1207i 0.597667 0.434231i
\(914\) 4.55284 + 3.30783i 0.150594 + 0.109413i
\(915\) 0 0
\(916\) −21.8833 + 15.8992i −0.723045 + 0.525323i
\(917\) 5.51538 16.9746i 0.182134 0.560550i
\(918\) 3.34458 0.110387
\(919\) 16.0903 49.5209i 0.530770 1.63354i −0.221844 0.975082i \(-0.571208\pi\)
0.752615 0.658461i \(-0.228792\pi\)
\(920\) 0 0
\(921\) 7.41560 + 22.8229i 0.244352 + 0.752039i
\(922\) 1.42978 + 4.40041i 0.0470872 + 0.144920i
\(923\) 27.2922 + 19.8290i 0.898335 + 0.652679i
\(924\) −4.21702 −0.138730
\(925\) 0 0
\(926\) 5.75912 0.189256
\(927\) 6.94095 + 5.04290i 0.227971 + 0.165631i
\(928\) 2.89825 + 8.91991i 0.0951399 + 0.292810i
\(929\) 8.13402 + 25.0339i 0.266869 + 0.821337i 0.991257 + 0.131945i \(0.0421223\pi\)
−0.724388 + 0.689392i \(0.757878\pi\)
\(930\) 0 0
\(931\) −2.79029 + 8.58762i −0.0914480 + 0.281448i
\(932\) 18.2774 0.598696
\(933\) −4.31359 + 13.2759i −0.141221 + 0.434633i
\(934\) −19.8871 + 14.4488i −0.650726 + 0.472780i
\(935\) 0 0
\(936\) 2.40211 + 1.74524i 0.0785155 + 0.0570449i
\(937\) 8.14485 5.91758i 0.266081 0.193319i −0.446743 0.894662i \(-0.647416\pi\)
0.712823 + 0.701343i \(0.247416\pi\)
\(938\) 16.6085 12.0667i 0.542285 0.393993i
\(939\) 7.78872 + 5.65884i 0.254175 + 0.184669i
\(940\) 0 0
\(941\) −8.08466 + 5.87385i −0.263552 + 0.191482i −0.711712 0.702472i \(-0.752080\pi\)
0.448159 + 0.893954i \(0.352080\pi\)
\(942\) 4.43179 13.6396i 0.144395 0.444403i
\(943\) 55.8709 1.81941
\(944\) −0.0564404 + 0.173706i −0.00183698 + 0.00565364i
\(945\) 0 0
\(946\) −5.33615 16.4230i −0.173493 0.533957i
\(947\) 17.1336 + 52.7319i 0.556768 + 1.71356i 0.691228 + 0.722637i \(0.257070\pi\)
−0.134460 + 0.990919i \(0.542930\pi\)
\(948\) 9.18806 + 6.67551i 0.298414 + 0.216811i
\(949\) −19.9689 −0.648217
\(950\) 0 0
\(951\) 0.556314 0.0180397
\(952\) −4.67171 3.39420i −0.151411 0.110007i
\(953\) 3.74063 + 11.5125i 0.121171 + 0.372925i 0.993184 0.116557i \(-0.0371858\pi\)
−0.872013 + 0.489482i \(0.837186\pi\)
\(954\) −2.11710 6.51577i −0.0685437 0.210956i
\(955\) 0 0
\(956\) −0.793604 + 2.44246i −0.0256670 + 0.0789949i
\(957\) 22.9077 0.740502
\(958\) 1.80512 5.55560i 0.0583209 0.179493i
\(959\) −22.4629 + 16.3202i −0.725363 + 0.527007i
\(960\) 0 0
\(961\) −5.27814 3.83479i −0.170262 0.123703i
\(962\) −7.93001 + 5.76149i −0.255674 + 0.185758i
\(963\) −7.35941 + 5.34693i −0.237154 + 0.172302i
\(964\) −10.7918 7.84068i −0.347580 0.252531i
\(965\) 0 0
\(966\) −12.7360 + 9.25325i −0.409774 + 0.297719i
\(967\) 0.900961 2.77287i 0.0289729 0.0891695i −0.935524 0.353262i \(-0.885072\pi\)
0.964497 + 0.264092i \(0.0850724\pi\)
\(968\) 5.03437 0.161811
\(969\) −2.32202 + 7.14645i −0.0745941 + 0.229577i
\(970\) 0 0
\(971\) 3.50206 + 10.7782i 0.112387 + 0.345890i 0.991393 0.130920i \(-0.0417930\pi\)
−0.879006 + 0.476810i \(0.841793\pi\)
\(972\) 0.309017 + 0.951057i 0.00991172 + 0.0305052i
\(973\) 23.0604 + 16.7544i 0.739282 + 0.537120i
\(974\) 5.10374 0.163534
\(975\) 0 0
\(976\) 5.15131 0.164889
\(977\) −3.88577 2.82318i −0.124317 0.0903214i 0.523889 0.851786i \(-0.324481\pi\)
−0.648206 + 0.761465i \(0.724481\pi\)
\(978\) −1.82417 5.61423i −0.0583307 0.179523i
\(979\) 6.12636 + 18.8550i 0.195799 + 0.602609i
\(980\) 0 0
\(981\) −4.20582 + 12.9442i −0.134281 + 0.413276i
\(982\) −39.0842 −1.24723
\(983\) −2.39810 + 7.38058i −0.0764874 + 0.235404i −0.981989 0.188939i \(-0.939495\pi\)
0.905501 + 0.424343i \(0.139495\pi\)
\(984\) −4.95730 + 3.60169i −0.158033 + 0.114818i
\(985\) 0 0
\(986\) 25.3777 + 18.4380i 0.808192 + 0.587186i
\(987\) −6.97323 + 5.06635i −0.221960 + 0.161264i
\(988\) −5.39680 + 3.92101i −0.171695 + 0.124744i
\(989\) −52.1523 37.8909i −1.65835 1.20486i
\(990\) 0 0
\(991\) 36.2536 26.3398i 1.15163 0.836711i 0.162937 0.986636i \(-0.447903\pi\)
0.988697 + 0.149925i \(0.0479033\pi\)
\(992\) 1.89294 5.82588i 0.0601010 0.184972i
\(993\) −11.5651 −0.367009
\(994\) 6.06185 18.6565i 0.192270 0.591747i
\(995\) 0 0
\(996\) 2.82417 + 8.69192i 0.0894874 + 0.275414i
\(997\) 1.23356 + 3.79651i 0.0390673 + 0.120237i 0.968688 0.248281i \(-0.0798655\pi\)
−0.929621 + 0.368517i \(0.879866\pi\)
\(998\) −9.75085 7.08441i −0.308658 0.224253i
\(999\) −3.30127 −0.104447
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 750.2.g.e.451.2 8
5.2 odd 4 750.2.h.c.49.1 8
5.3 odd 4 150.2.h.a.109.2 8
5.4 even 2 750.2.g.c.451.1 8
15.8 even 4 450.2.l.a.109.1 8
25.2 odd 20 150.2.h.a.139.2 yes 8
25.6 even 5 3750.2.a.m.1.3 4
25.8 odd 20 3750.2.c.e.1249.6 8
25.11 even 5 inner 750.2.g.e.301.2 8
25.14 even 10 750.2.g.c.301.1 8
25.17 odd 20 3750.2.c.e.1249.3 8
25.19 even 10 3750.2.a.o.1.2 4
25.23 odd 20 750.2.h.c.199.1 8
75.2 even 20 450.2.l.a.289.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.2.h.a.109.2 8 5.3 odd 4
150.2.h.a.139.2 yes 8 25.2 odd 20
450.2.l.a.109.1 8 15.8 even 4
450.2.l.a.289.1 8 75.2 even 20
750.2.g.c.301.1 8 25.14 even 10
750.2.g.c.451.1 8 5.4 even 2
750.2.g.e.301.2 8 25.11 even 5 inner
750.2.g.e.451.2 8 1.1 even 1 trivial
750.2.h.c.49.1 8 5.2 odd 4
750.2.h.c.199.1 8 25.23 odd 20
3750.2.a.m.1.3 4 25.6 even 5
3750.2.a.o.1.2 4 25.19 even 10
3750.2.c.e.1249.3 8 25.17 odd 20
3750.2.c.e.1249.6 8 25.8 odd 20