Properties

Label 3750.2.a.n.1.3
Level $3750$
Weight $2$
Character 3750.1
Self dual yes
Analytic conductor $29.944$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3750,2,Mod(1,3750)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3750, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3750.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3750 = 2 \cdot 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3750.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.9439007580\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.33826\) of defining polynomial
Character \(\chi\) \(=\) 3750.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} +0.511170 q^{7} -1.00000 q^{8} +1.00000 q^{9} +3.29456 q^{11} +1.00000 q^{12} +2.65418 q^{13} -0.511170 q^{14} +1.00000 q^{16} +5.57433 q^{17} -1.00000 q^{18} +0.374409 q^{19} +0.511170 q^{21} -3.29456 q^{22} +5.75638 q^{23} -1.00000 q^{24} -2.65418 q^{26} +1.00000 q^{27} +0.511170 q^{28} -3.89025 q^{29} -1.80008 q^{31} -1.00000 q^{32} +3.29456 q^{33} -5.57433 q^{34} +1.00000 q^{36} +10.3577 q^{37} -0.374409 q^{38} +2.65418 q^{39} +2.33728 q^{41} -0.511170 q^{42} -5.87802 q^{43} +3.29456 q^{44} -5.75638 q^{46} -8.19959 q^{47} +1.00000 q^{48} -6.73870 q^{49} +5.57433 q^{51} +2.65418 q^{52} +0.518727 q^{53} -1.00000 q^{54} -0.511170 q^{56} +0.374409 q^{57} +3.89025 q^{58} -7.62993 q^{59} +2.90345 q^{61} +1.80008 q^{62} +0.511170 q^{63} +1.00000 q^{64} -3.29456 q^{66} -1.78806 q^{67} +5.57433 q^{68} +5.75638 q^{69} +7.27786 q^{71} -1.00000 q^{72} -1.40995 q^{73} -10.3577 q^{74} +0.374409 q^{76} +1.68408 q^{77} -2.65418 q^{78} -12.1395 q^{79} +1.00000 q^{81} -2.33728 q^{82} +3.09306 q^{83} +0.511170 q^{84} +5.87802 q^{86} -3.89025 q^{87} -3.29456 q^{88} +3.42567 q^{89} +1.35674 q^{91} +5.75638 q^{92} -1.80008 q^{93} +8.19959 q^{94} -1.00000 q^{96} -15.1483 q^{97} +6.73870 q^{98} +3.29456 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{3} + 4 q^{4} - 4 q^{6} + 4 q^{7} - 4 q^{8} + 4 q^{9} + 4 q^{12} - 2 q^{13} - 4 q^{14} + 4 q^{16} + 9 q^{17} - 4 q^{18} - 11 q^{19} + 4 q^{21} + 15 q^{23} - 4 q^{24} + 2 q^{26} + 4 q^{27}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 0.511170 0.193204 0.0966021 0.995323i \(-0.469203\pi\)
0.0966021 + 0.995323i \(0.469203\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.29456 0.993346 0.496673 0.867938i \(-0.334555\pi\)
0.496673 + 0.867938i \(0.334555\pi\)
\(12\) 1.00000 0.288675
\(13\) 2.65418 0.736138 0.368069 0.929799i \(-0.380019\pi\)
0.368069 + 0.929799i \(0.380019\pi\)
\(14\) −0.511170 −0.136616
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.57433 1.35197 0.675987 0.736914i \(-0.263718\pi\)
0.675987 + 0.736914i \(0.263718\pi\)
\(18\) −1.00000 −0.235702
\(19\) 0.374409 0.0858953 0.0429477 0.999077i \(-0.486325\pi\)
0.0429477 + 0.999077i \(0.486325\pi\)
\(20\) 0 0
\(21\) 0.511170 0.111547
\(22\) −3.29456 −0.702402
\(23\) 5.75638 1.20029 0.600144 0.799892i \(-0.295110\pi\)
0.600144 + 0.799892i \(0.295110\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) −2.65418 −0.520528
\(27\) 1.00000 0.192450
\(28\) 0.511170 0.0966021
\(29\) −3.89025 −0.722401 −0.361201 0.932488i \(-0.617633\pi\)
−0.361201 + 0.932488i \(0.617633\pi\)
\(30\) 0 0
\(31\) −1.80008 −0.323304 −0.161652 0.986848i \(-0.551682\pi\)
−0.161652 + 0.986848i \(0.551682\pi\)
\(32\) −1.00000 −0.176777
\(33\) 3.29456 0.573509
\(34\) −5.57433 −0.955990
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 10.3577 1.70280 0.851399 0.524519i \(-0.175755\pi\)
0.851399 + 0.524519i \(0.175755\pi\)
\(38\) −0.374409 −0.0607372
\(39\) 2.65418 0.425009
\(40\) 0 0
\(41\) 2.33728 0.365023 0.182511 0.983204i \(-0.441577\pi\)
0.182511 + 0.983204i \(0.441577\pi\)
\(42\) −0.511170 −0.0788753
\(43\) −5.87802 −0.896390 −0.448195 0.893936i \(-0.647933\pi\)
−0.448195 + 0.893936i \(0.647933\pi\)
\(44\) 3.29456 0.496673
\(45\) 0 0
\(46\) −5.75638 −0.848731
\(47\) −8.19959 −1.19603 −0.598017 0.801484i \(-0.704044\pi\)
−0.598017 + 0.801484i \(0.704044\pi\)
\(48\) 1.00000 0.144338
\(49\) −6.73870 −0.962672
\(50\) 0 0
\(51\) 5.57433 0.780562
\(52\) 2.65418 0.368069
\(53\) 0.518727 0.0712527 0.0356263 0.999365i \(-0.488657\pi\)
0.0356263 + 0.999365i \(0.488657\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) −0.511170 −0.0683080
\(57\) 0.374409 0.0495917
\(58\) 3.89025 0.510815
\(59\) −7.62993 −0.993332 −0.496666 0.867942i \(-0.665443\pi\)
−0.496666 + 0.867942i \(0.665443\pi\)
\(60\) 0 0
\(61\) 2.90345 0.371749 0.185875 0.982573i \(-0.440488\pi\)
0.185875 + 0.982573i \(0.440488\pi\)
\(62\) 1.80008 0.228610
\(63\) 0.511170 0.0644014
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −3.29456 −0.405532
\(67\) −1.78806 −0.218446 −0.109223 0.994017i \(-0.534836\pi\)
−0.109223 + 0.994017i \(0.534836\pi\)
\(68\) 5.57433 0.675987
\(69\) 5.75638 0.692986
\(70\) 0 0
\(71\) 7.27786 0.863723 0.431862 0.901940i \(-0.357857\pi\)
0.431862 + 0.901940i \(0.357857\pi\)
\(72\) −1.00000 −0.117851
\(73\) −1.40995 −0.165023 −0.0825113 0.996590i \(-0.526294\pi\)
−0.0825113 + 0.996590i \(0.526294\pi\)
\(74\) −10.3577 −1.20406
\(75\) 0 0
\(76\) 0.374409 0.0429477
\(77\) 1.68408 0.191919
\(78\) −2.65418 −0.300527
\(79\) −12.1395 −1.36580 −0.682901 0.730511i \(-0.739282\pi\)
−0.682901 + 0.730511i \(0.739282\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −2.33728 −0.258110
\(83\) 3.09306 0.339507 0.169754 0.985487i \(-0.445703\pi\)
0.169754 + 0.985487i \(0.445703\pi\)
\(84\) 0.511170 0.0557733
\(85\) 0 0
\(86\) 5.87802 0.633843
\(87\) −3.89025 −0.417079
\(88\) −3.29456 −0.351201
\(89\) 3.42567 0.363120 0.181560 0.983380i \(-0.441885\pi\)
0.181560 + 0.983380i \(0.441885\pi\)
\(90\) 0 0
\(91\) 1.35674 0.142225
\(92\) 5.75638 0.600144
\(93\) −1.80008 −0.186660
\(94\) 8.19959 0.845723
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) −15.1483 −1.53808 −0.769040 0.639201i \(-0.779265\pi\)
−0.769040 + 0.639201i \(0.779265\pi\)
\(98\) 6.73870 0.680712
\(99\) 3.29456 0.331115
\(100\) 0 0
\(101\) 5.58091 0.555321 0.277661 0.960679i \(-0.410441\pi\)
0.277661 + 0.960679i \(0.410441\pi\)
\(102\) −5.57433 −0.551941
\(103\) 15.1228 1.49010 0.745048 0.667011i \(-0.232426\pi\)
0.745048 + 0.667011i \(0.232426\pi\)
\(104\) −2.65418 −0.260264
\(105\) 0 0
\(106\) −0.518727 −0.0503832
\(107\) 18.7290 1.81060 0.905302 0.424768i \(-0.139644\pi\)
0.905302 + 0.424768i \(0.139644\pi\)
\(108\) 1.00000 0.0962250
\(109\) −18.5221 −1.77410 −0.887049 0.461675i \(-0.847249\pi\)
−0.887049 + 0.461675i \(0.847249\pi\)
\(110\) 0 0
\(111\) 10.3577 0.983111
\(112\) 0.511170 0.0483011
\(113\) 16.1273 1.51713 0.758564 0.651598i \(-0.225901\pi\)
0.758564 + 0.651598i \(0.225901\pi\)
\(114\) −0.374409 −0.0350666
\(115\) 0 0
\(116\) −3.89025 −0.361201
\(117\) 2.65418 0.245379
\(118\) 7.62993 0.702392
\(119\) 2.84943 0.261207
\(120\) 0 0
\(121\) −0.145898 −0.0132635
\(122\) −2.90345 −0.262866
\(123\) 2.33728 0.210746
\(124\) −1.80008 −0.161652
\(125\) 0 0
\(126\) −0.511170 −0.0455387
\(127\) −3.62677 −0.321824 −0.160912 0.986969i \(-0.551444\pi\)
−0.160912 + 0.986969i \(0.551444\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −5.87802 −0.517531
\(130\) 0 0
\(131\) −17.4131 −1.52139 −0.760695 0.649109i \(-0.775142\pi\)
−0.760695 + 0.649109i \(0.775142\pi\)
\(132\) 3.29456 0.286754
\(133\) 0.191387 0.0165953
\(134\) 1.78806 0.154465
\(135\) 0 0
\(136\) −5.57433 −0.477995
\(137\) 19.7230 1.68505 0.842524 0.538658i \(-0.181069\pi\)
0.842524 + 0.538658i \(0.181069\pi\)
\(138\) −5.75638 −0.490015
\(139\) 11.4357 0.969960 0.484980 0.874525i \(-0.338827\pi\)
0.484980 + 0.874525i \(0.338827\pi\)
\(140\) 0 0
\(141\) −8.19959 −0.690530
\(142\) −7.27786 −0.610745
\(143\) 8.74435 0.731239
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 1.40995 0.116689
\(147\) −6.73870 −0.555799
\(148\) 10.3577 0.851399
\(149\) 20.5095 1.68021 0.840103 0.542427i \(-0.182494\pi\)
0.840103 + 0.542427i \(0.182494\pi\)
\(150\) 0 0
\(151\) 6.22542 0.506618 0.253309 0.967385i \(-0.418481\pi\)
0.253309 + 0.967385i \(0.418481\pi\)
\(152\) −0.374409 −0.0303686
\(153\) 5.57433 0.450658
\(154\) −1.68408 −0.135707
\(155\) 0 0
\(156\) 2.65418 0.212505
\(157\) −23.9795 −1.91377 −0.956886 0.290465i \(-0.906190\pi\)
−0.956886 + 0.290465i \(0.906190\pi\)
\(158\) 12.1395 0.965768
\(159\) 0.518727 0.0411377
\(160\) 0 0
\(161\) 2.94249 0.231901
\(162\) −1.00000 −0.0785674
\(163\) 24.1232 1.88948 0.944738 0.327825i \(-0.106316\pi\)
0.944738 + 0.327825i \(0.106316\pi\)
\(164\) 2.33728 0.182511
\(165\) 0 0
\(166\) −3.09306 −0.240068
\(167\) 5.43441 0.420527 0.210264 0.977645i \(-0.432568\pi\)
0.210264 + 0.977645i \(0.432568\pi\)
\(168\) −0.511170 −0.0394376
\(169\) −5.95532 −0.458101
\(170\) 0 0
\(171\) 0.374409 0.0286318
\(172\) −5.87802 −0.448195
\(173\) 1.14183 0.0868118 0.0434059 0.999058i \(-0.486179\pi\)
0.0434059 + 0.999058i \(0.486179\pi\)
\(174\) 3.89025 0.294919
\(175\) 0 0
\(176\) 3.29456 0.248337
\(177\) −7.62993 −0.573501
\(178\) −3.42567 −0.256765
\(179\) −15.4030 −1.15127 −0.575637 0.817705i \(-0.695246\pi\)
−0.575637 + 0.817705i \(0.695246\pi\)
\(180\) 0 0
\(181\) 20.5110 1.52457 0.762287 0.647239i \(-0.224077\pi\)
0.762287 + 0.647239i \(0.224077\pi\)
\(182\) −1.35674 −0.100568
\(183\) 2.90345 0.214629
\(184\) −5.75638 −0.424366
\(185\) 0 0
\(186\) 1.80008 0.131988
\(187\) 18.3649 1.34298
\(188\) −8.19959 −0.598017
\(189\) 0.511170 0.0371822
\(190\) 0 0
\(191\) 7.27380 0.526313 0.263157 0.964753i \(-0.415236\pi\)
0.263157 + 0.964753i \(0.415236\pi\)
\(192\) 1.00000 0.0721688
\(193\) 11.4686 0.825531 0.412766 0.910837i \(-0.364563\pi\)
0.412766 + 0.910837i \(0.364563\pi\)
\(194\) 15.1483 1.08759
\(195\) 0 0
\(196\) −6.73870 −0.481336
\(197\) −2.16068 −0.153942 −0.0769711 0.997033i \(-0.524525\pi\)
−0.0769711 + 0.997033i \(0.524525\pi\)
\(198\) −3.29456 −0.234134
\(199\) −7.27998 −0.516064 −0.258032 0.966136i \(-0.583074\pi\)
−0.258032 + 0.966136i \(0.583074\pi\)
\(200\) 0 0
\(201\) −1.78806 −0.126120
\(202\) −5.58091 −0.392671
\(203\) −1.98858 −0.139571
\(204\) 5.57433 0.390281
\(205\) 0 0
\(206\) −15.1228 −1.05366
\(207\) 5.75638 0.400096
\(208\) 2.65418 0.184034
\(209\) 1.23351 0.0853238
\(210\) 0 0
\(211\) −28.7670 −1.98040 −0.990200 0.139658i \(-0.955400\pi\)
−0.990200 + 0.139658i \(0.955400\pi\)
\(212\) 0.518727 0.0356263
\(213\) 7.27786 0.498671
\(214\) −18.7290 −1.28029
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) −0.920147 −0.0624637
\(218\) 18.5221 1.25448
\(219\) −1.40995 −0.0952758
\(220\) 0 0
\(221\) 14.7953 0.995238
\(222\) −10.3577 −0.695164
\(223\) −0.662342 −0.0443537 −0.0221769 0.999754i \(-0.507060\pi\)
−0.0221769 + 0.999754i \(0.507060\pi\)
\(224\) −0.511170 −0.0341540
\(225\) 0 0
\(226\) −16.1273 −1.07277
\(227\) −15.5730 −1.03362 −0.516809 0.856101i \(-0.672880\pi\)
−0.516809 + 0.856101i \(0.672880\pi\)
\(228\) 0.374409 0.0247958
\(229\) −27.7376 −1.83296 −0.916478 0.400086i \(-0.868980\pi\)
−0.916478 + 0.400086i \(0.868980\pi\)
\(230\) 0 0
\(231\) 1.68408 0.110804
\(232\) 3.89025 0.255407
\(233\) −23.2480 −1.52303 −0.761514 0.648149i \(-0.775544\pi\)
−0.761514 + 0.648149i \(0.775544\pi\)
\(234\) −2.65418 −0.173509
\(235\) 0 0
\(236\) −7.62993 −0.496666
\(237\) −12.1395 −0.788547
\(238\) −2.84943 −0.184701
\(239\) 5.81933 0.376421 0.188211 0.982129i \(-0.439731\pi\)
0.188211 + 0.982129i \(0.439731\pi\)
\(240\) 0 0
\(241\) 14.1483 0.911374 0.455687 0.890140i \(-0.349394\pi\)
0.455687 + 0.890140i \(0.349394\pi\)
\(242\) 0.145898 0.00937868
\(243\) 1.00000 0.0641500
\(244\) 2.90345 0.185875
\(245\) 0 0
\(246\) −2.33728 −0.149020
\(247\) 0.993750 0.0632308
\(248\) 1.80008 0.114305
\(249\) 3.09306 0.196014
\(250\) 0 0
\(251\) 3.98246 0.251370 0.125685 0.992070i \(-0.459887\pi\)
0.125685 + 0.992070i \(0.459887\pi\)
\(252\) 0.511170 0.0322007
\(253\) 18.9647 1.19230
\(254\) 3.62677 0.227564
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 12.5114 0.780442 0.390221 0.920721i \(-0.372399\pi\)
0.390221 + 0.920721i \(0.372399\pi\)
\(258\) 5.87802 0.365950
\(259\) 5.29456 0.328988
\(260\) 0 0
\(261\) −3.89025 −0.240800
\(262\) 17.4131 1.07579
\(263\) −2.25374 −0.138971 −0.0694857 0.997583i \(-0.522136\pi\)
−0.0694857 + 0.997583i \(0.522136\pi\)
\(264\) −3.29456 −0.202766
\(265\) 0 0
\(266\) −0.191387 −0.0117347
\(267\) 3.42567 0.209648
\(268\) −1.78806 −0.109223
\(269\) 25.4934 1.55436 0.777179 0.629279i \(-0.216650\pi\)
0.777179 + 0.629279i \(0.216650\pi\)
\(270\) 0 0
\(271\) −19.2503 −1.16937 −0.584687 0.811259i \(-0.698783\pi\)
−0.584687 + 0.811259i \(0.698783\pi\)
\(272\) 5.57433 0.337993
\(273\) 1.35674 0.0821136
\(274\) −19.7230 −1.19151
\(275\) 0 0
\(276\) 5.75638 0.346493
\(277\) 7.73948 0.465020 0.232510 0.972594i \(-0.425306\pi\)
0.232510 + 0.972594i \(0.425306\pi\)
\(278\) −11.4357 −0.685865
\(279\) −1.80008 −0.107768
\(280\) 0 0
\(281\) −10.2724 −0.612801 −0.306401 0.951903i \(-0.599125\pi\)
−0.306401 + 0.951903i \(0.599125\pi\)
\(282\) 8.19959 0.488278
\(283\) 9.86811 0.586598 0.293299 0.956021i \(-0.405247\pi\)
0.293299 + 0.956021i \(0.405247\pi\)
\(284\) 7.27786 0.431862
\(285\) 0 0
\(286\) −8.74435 −0.517064
\(287\) 1.19475 0.0705239
\(288\) −1.00000 −0.0589256
\(289\) 14.0731 0.827832
\(290\) 0 0
\(291\) −15.1483 −0.888011
\(292\) −1.40995 −0.0825113
\(293\) 3.08103 0.179996 0.0899979 0.995942i \(-0.471314\pi\)
0.0899979 + 0.995942i \(0.471314\pi\)
\(294\) 6.73870 0.393009
\(295\) 0 0
\(296\) −10.3577 −0.602030
\(297\) 3.29456 0.191170
\(298\) −20.5095 −1.18809
\(299\) 15.2785 0.883577
\(300\) 0 0
\(301\) −3.00467 −0.173186
\(302\) −6.22542 −0.358233
\(303\) 5.58091 0.320615
\(304\) 0.374409 0.0214738
\(305\) 0 0
\(306\) −5.57433 −0.318663
\(307\) 6.43192 0.367089 0.183545 0.983011i \(-0.441243\pi\)
0.183545 + 0.983011i \(0.441243\pi\)
\(308\) 1.68408 0.0959593
\(309\) 15.1228 0.860308
\(310\) 0 0
\(311\) 20.8818 1.18410 0.592048 0.805903i \(-0.298320\pi\)
0.592048 + 0.805903i \(0.298320\pi\)
\(312\) −2.65418 −0.150263
\(313\) −11.7245 −0.662708 −0.331354 0.943507i \(-0.607505\pi\)
−0.331354 + 0.943507i \(0.607505\pi\)
\(314\) 23.9795 1.35324
\(315\) 0 0
\(316\) −12.1395 −0.682901
\(317\) −5.92233 −0.332631 −0.166316 0.986073i \(-0.553187\pi\)
−0.166316 + 0.986073i \(0.553187\pi\)
\(318\) −0.518727 −0.0290888
\(319\) −12.8166 −0.717594
\(320\) 0 0
\(321\) 18.7290 1.04535
\(322\) −2.94249 −0.163978
\(323\) 2.08708 0.116128
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −24.1232 −1.33606
\(327\) −18.5221 −1.02428
\(328\) −2.33728 −0.129055
\(329\) −4.19139 −0.231079
\(330\) 0 0
\(331\) 27.3753 1.50468 0.752340 0.658775i \(-0.228925\pi\)
0.752340 + 0.658775i \(0.228925\pi\)
\(332\) 3.09306 0.169754
\(333\) 10.3577 0.567599
\(334\) −5.43441 −0.297358
\(335\) 0 0
\(336\) 0.511170 0.0278866
\(337\) 5.86677 0.319583 0.159792 0.987151i \(-0.448918\pi\)
0.159792 + 0.987151i \(0.448918\pi\)
\(338\) 5.95532 0.323927
\(339\) 16.1273 0.875914
\(340\) 0 0
\(341\) −5.93046 −0.321153
\(342\) −0.374409 −0.0202457
\(343\) −7.02282 −0.379197
\(344\) 5.87802 0.316922
\(345\) 0 0
\(346\) −1.14183 −0.0613852
\(347\) −11.8634 −0.636863 −0.318431 0.947946i \(-0.603156\pi\)
−0.318431 + 0.947946i \(0.603156\pi\)
\(348\) −3.89025 −0.208539
\(349\) 28.3391 1.51696 0.758479 0.651698i \(-0.225943\pi\)
0.758479 + 0.651698i \(0.225943\pi\)
\(350\) 0 0
\(351\) 2.65418 0.141670
\(352\) −3.29456 −0.175600
\(353\) −5.83404 −0.310515 −0.155257 0.987874i \(-0.549621\pi\)
−0.155257 + 0.987874i \(0.549621\pi\)
\(354\) 7.62993 0.405526
\(355\) 0 0
\(356\) 3.42567 0.181560
\(357\) 2.84943 0.150808
\(358\) 15.4030 0.814074
\(359\) 9.94932 0.525105 0.262552 0.964918i \(-0.415436\pi\)
0.262552 + 0.964918i \(0.415436\pi\)
\(360\) 0 0
\(361\) −18.8598 −0.992622
\(362\) −20.5110 −1.07804
\(363\) −0.145898 −0.00765766
\(364\) 1.35674 0.0711124
\(365\) 0 0
\(366\) −2.90345 −0.151766
\(367\) −16.2990 −0.850802 −0.425401 0.905005i \(-0.639867\pi\)
−0.425401 + 0.905005i \(0.639867\pi\)
\(368\) 5.75638 0.300072
\(369\) 2.33728 0.121674
\(370\) 0 0
\(371\) 0.265158 0.0137663
\(372\) −1.80008 −0.0933298
\(373\) 8.85626 0.458560 0.229280 0.973361i \(-0.426363\pi\)
0.229280 + 0.973361i \(0.426363\pi\)
\(374\) −18.3649 −0.949629
\(375\) 0 0
\(376\) 8.19959 0.422862
\(377\) −10.3254 −0.531787
\(378\) −0.511170 −0.0262918
\(379\) −14.1431 −0.726480 −0.363240 0.931696i \(-0.618329\pi\)
−0.363240 + 0.931696i \(0.618329\pi\)
\(380\) 0 0
\(381\) −3.62677 −0.185805
\(382\) −7.27380 −0.372160
\(383\) −32.9848 −1.68544 −0.842721 0.538350i \(-0.819048\pi\)
−0.842721 + 0.538350i \(0.819048\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) −11.4686 −0.583739
\(387\) −5.87802 −0.298797
\(388\) −15.1483 −0.769040
\(389\) 11.4919 0.582663 0.291332 0.956622i \(-0.405902\pi\)
0.291332 + 0.956622i \(0.405902\pi\)
\(390\) 0 0
\(391\) 32.0879 1.62276
\(392\) 6.73870 0.340356
\(393\) −17.4131 −0.878375
\(394\) 2.16068 0.108854
\(395\) 0 0
\(396\) 3.29456 0.165558
\(397\) 4.82958 0.242390 0.121195 0.992629i \(-0.461327\pi\)
0.121195 + 0.992629i \(0.461327\pi\)
\(398\) 7.27998 0.364912
\(399\) 0.191387 0.00958132
\(400\) 0 0
\(401\) −21.5779 −1.07755 −0.538775 0.842449i \(-0.681113\pi\)
−0.538775 + 0.842449i \(0.681113\pi\)
\(402\) 1.78806 0.0891802
\(403\) −4.77774 −0.237996
\(404\) 5.58091 0.277661
\(405\) 0 0
\(406\) 1.98858 0.0986916
\(407\) 34.1241 1.69147
\(408\) −5.57433 −0.275970
\(409\) −1.57998 −0.0781248 −0.0390624 0.999237i \(-0.512437\pi\)
−0.0390624 + 0.999237i \(0.512437\pi\)
\(410\) 0 0
\(411\) 19.7230 0.972863
\(412\) 15.1228 0.745048
\(413\) −3.90019 −0.191916
\(414\) −5.75638 −0.282910
\(415\) 0 0
\(416\) −2.65418 −0.130132
\(417\) 11.4357 0.560007
\(418\) −1.23351 −0.0603330
\(419\) −36.7568 −1.79569 −0.897843 0.440316i \(-0.854866\pi\)
−0.897843 + 0.440316i \(0.854866\pi\)
\(420\) 0 0
\(421\) 6.96946 0.339671 0.169835 0.985472i \(-0.445676\pi\)
0.169835 + 0.985472i \(0.445676\pi\)
\(422\) 28.7670 1.40035
\(423\) −8.19959 −0.398678
\(424\) −0.518727 −0.0251916
\(425\) 0 0
\(426\) −7.27786 −0.352614
\(427\) 1.48416 0.0718235
\(428\) 18.7290 0.905302
\(429\) 8.74435 0.422181
\(430\) 0 0
\(431\) 25.4098 1.22395 0.611974 0.790878i \(-0.290376\pi\)
0.611974 + 0.790878i \(0.290376\pi\)
\(432\) 1.00000 0.0481125
\(433\) −13.4595 −0.646823 −0.323411 0.946258i \(-0.604830\pi\)
−0.323411 + 0.946258i \(0.604830\pi\)
\(434\) 0.920147 0.0441685
\(435\) 0 0
\(436\) −18.5221 −0.887049
\(437\) 2.15524 0.103099
\(438\) 1.40995 0.0673702
\(439\) −37.8392 −1.80597 −0.902983 0.429676i \(-0.858628\pi\)
−0.902983 + 0.429676i \(0.858628\pi\)
\(440\) 0 0
\(441\) −6.73870 −0.320891
\(442\) −14.7953 −0.703740
\(443\) 2.70138 0.128346 0.0641731 0.997939i \(-0.479559\pi\)
0.0641731 + 0.997939i \(0.479559\pi\)
\(444\) 10.3577 0.491555
\(445\) 0 0
\(446\) 0.662342 0.0313628
\(447\) 20.5095 0.970068
\(448\) 0.511170 0.0241505
\(449\) 18.9478 0.894200 0.447100 0.894484i \(-0.352457\pi\)
0.447100 + 0.894484i \(0.352457\pi\)
\(450\) 0 0
\(451\) 7.70032 0.362594
\(452\) 16.1273 0.758564
\(453\) 6.22542 0.292496
\(454\) 15.5730 0.730878
\(455\) 0 0
\(456\) −0.374409 −0.0175333
\(457\) −38.2879 −1.79103 −0.895517 0.445028i \(-0.853194\pi\)
−0.895517 + 0.445028i \(0.853194\pi\)
\(458\) 27.7376 1.29610
\(459\) 5.57433 0.260187
\(460\) 0 0
\(461\) 17.3427 0.807731 0.403866 0.914818i \(-0.367666\pi\)
0.403866 + 0.914818i \(0.367666\pi\)
\(462\) −1.68408 −0.0783505
\(463\) 17.6641 0.820922 0.410461 0.911878i \(-0.365368\pi\)
0.410461 + 0.911878i \(0.365368\pi\)
\(464\) −3.89025 −0.180600
\(465\) 0 0
\(466\) 23.2480 1.07694
\(467\) −2.88972 −0.133720 −0.0668600 0.997762i \(-0.521298\pi\)
−0.0668600 + 0.997762i \(0.521298\pi\)
\(468\) 2.65418 0.122690
\(469\) −0.914001 −0.0422047
\(470\) 0 0
\(471\) −23.9795 −1.10492
\(472\) 7.62993 0.351196
\(473\) −19.3655 −0.890426
\(474\) 12.1395 0.557587
\(475\) 0 0
\(476\) 2.84943 0.130603
\(477\) 0.518727 0.0237509
\(478\) −5.81933 −0.266170
\(479\) 27.5859 1.26043 0.630216 0.776420i \(-0.282966\pi\)
0.630216 + 0.776420i \(0.282966\pi\)
\(480\) 0 0
\(481\) 27.4913 1.25349
\(482\) −14.1483 −0.644439
\(483\) 2.94249 0.133888
\(484\) −0.145898 −0.00663173
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 14.9338 0.676713 0.338356 0.941018i \(-0.390129\pi\)
0.338356 + 0.941018i \(0.390129\pi\)
\(488\) −2.90345 −0.131433
\(489\) 24.1232 1.09089
\(490\) 0 0
\(491\) 26.4452 1.19346 0.596728 0.802444i \(-0.296467\pi\)
0.596728 + 0.802444i \(0.296467\pi\)
\(492\) 2.33728 0.105373
\(493\) −21.6855 −0.976667
\(494\) −0.993750 −0.0447109
\(495\) 0 0
\(496\) −1.80008 −0.0808260
\(497\) 3.72023 0.166875
\(498\) −3.09306 −0.138603
\(499\) −10.3375 −0.462771 −0.231386 0.972862i \(-0.574326\pi\)
−0.231386 + 0.972862i \(0.574326\pi\)
\(500\) 0 0
\(501\) 5.43441 0.242791
\(502\) −3.98246 −0.177746
\(503\) 16.9084 0.753908 0.376954 0.926232i \(-0.376971\pi\)
0.376954 + 0.926232i \(0.376971\pi\)
\(504\) −0.511170 −0.0227693
\(505\) 0 0
\(506\) −18.9647 −0.843084
\(507\) −5.95532 −0.264485
\(508\) −3.62677 −0.160912
\(509\) 6.48318 0.287362 0.143681 0.989624i \(-0.454106\pi\)
0.143681 + 0.989624i \(0.454106\pi\)
\(510\) 0 0
\(511\) −0.720726 −0.0318831
\(512\) −1.00000 −0.0441942
\(513\) 0.374409 0.0165306
\(514\) −12.5114 −0.551856
\(515\) 0 0
\(516\) −5.87802 −0.258766
\(517\) −27.0140 −1.18807
\(518\) −5.29456 −0.232629
\(519\) 1.14183 0.0501208
\(520\) 0 0
\(521\) 21.6371 0.947939 0.473970 0.880541i \(-0.342821\pi\)
0.473970 + 0.880541i \(0.342821\pi\)
\(522\) 3.89025 0.170272
\(523\) 15.6560 0.684589 0.342295 0.939593i \(-0.388796\pi\)
0.342295 + 0.939593i \(0.388796\pi\)
\(524\) −17.4131 −0.760695
\(525\) 0 0
\(526\) 2.25374 0.0982677
\(527\) −10.0342 −0.437098
\(528\) 3.29456 0.143377
\(529\) 10.1359 0.440689
\(530\) 0 0
\(531\) −7.62993 −0.331111
\(532\) 0.191387 0.00829767
\(533\) 6.20358 0.268707
\(534\) −3.42567 −0.148243
\(535\) 0 0
\(536\) 1.78806 0.0772323
\(537\) −15.4030 −0.664689
\(538\) −25.4934 −1.09910
\(539\) −22.2010 −0.956267
\(540\) 0 0
\(541\) 14.2839 0.614113 0.307057 0.951691i \(-0.400656\pi\)
0.307057 + 0.951691i \(0.400656\pi\)
\(542\) 19.2503 0.826872
\(543\) 20.5110 0.880213
\(544\) −5.57433 −0.238997
\(545\) 0 0
\(546\) −1.35674 −0.0580631
\(547\) 42.8226 1.83096 0.915481 0.402361i \(-0.131810\pi\)
0.915481 + 0.402361i \(0.131810\pi\)
\(548\) 19.7230 0.842524
\(549\) 2.90345 0.123916
\(550\) 0 0
\(551\) −1.45654 −0.0620509
\(552\) −5.75638 −0.245008
\(553\) −6.20536 −0.263879
\(554\) −7.73948 −0.328819
\(555\) 0 0
\(556\) 11.4357 0.484980
\(557\) 14.5543 0.616688 0.308344 0.951275i \(-0.400225\pi\)
0.308344 + 0.951275i \(0.400225\pi\)
\(558\) 1.80008 0.0762035
\(559\) −15.6013 −0.659866
\(560\) 0 0
\(561\) 18.3649 0.775368
\(562\) 10.2724 0.433316
\(563\) 4.52778 0.190823 0.0954116 0.995438i \(-0.469583\pi\)
0.0954116 + 0.995438i \(0.469583\pi\)
\(564\) −8.19959 −0.345265
\(565\) 0 0
\(566\) −9.86811 −0.414788
\(567\) 0.511170 0.0214671
\(568\) −7.27786 −0.305372
\(569\) 10.0904 0.423010 0.211505 0.977377i \(-0.432163\pi\)
0.211505 + 0.977377i \(0.432163\pi\)
\(570\) 0 0
\(571\) −20.3024 −0.849630 −0.424815 0.905280i \(-0.639661\pi\)
−0.424815 + 0.905280i \(0.639661\pi\)
\(572\) 8.74435 0.365620
\(573\) 7.27380 0.303867
\(574\) −1.19475 −0.0498679
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 19.3900 0.807218 0.403609 0.914932i \(-0.367756\pi\)
0.403609 + 0.914932i \(0.367756\pi\)
\(578\) −14.0731 −0.585366
\(579\) 11.4686 0.476621
\(580\) 0 0
\(581\) 1.58108 0.0655942
\(582\) 15.1483 0.627918
\(583\) 1.70898 0.0707786
\(584\) 1.40995 0.0583443
\(585\) 0 0
\(586\) −3.08103 −0.127276
\(587\) −43.8857 −1.81136 −0.905679 0.423964i \(-0.860638\pi\)
−0.905679 + 0.423964i \(0.860638\pi\)
\(588\) −6.73870 −0.277900
\(589\) −0.673966 −0.0277703
\(590\) 0 0
\(591\) −2.16068 −0.0888786
\(592\) 10.3577 0.425699
\(593\) −27.5651 −1.13196 −0.565981 0.824418i \(-0.691502\pi\)
−0.565981 + 0.824418i \(0.691502\pi\)
\(594\) −3.29456 −0.135177
\(595\) 0 0
\(596\) 20.5095 0.840103
\(597\) −7.27998 −0.297950
\(598\) −15.2785 −0.624783
\(599\) 13.3970 0.547385 0.273692 0.961817i \(-0.411755\pi\)
0.273692 + 0.961817i \(0.411755\pi\)
\(600\) 0 0
\(601\) −32.3401 −1.31918 −0.659590 0.751625i \(-0.729270\pi\)
−0.659590 + 0.751625i \(0.729270\pi\)
\(602\) 3.00467 0.122461
\(603\) −1.78806 −0.0728153
\(604\) 6.22542 0.253309
\(605\) 0 0
\(606\) −5.58091 −0.226709
\(607\) −18.7755 −0.762074 −0.381037 0.924560i \(-0.624433\pi\)
−0.381037 + 0.924560i \(0.624433\pi\)
\(608\) −0.374409 −0.0151843
\(609\) −1.98858 −0.0805813
\(610\) 0 0
\(611\) −21.7632 −0.880445
\(612\) 5.57433 0.225329
\(613\) −5.12696 −0.207076 −0.103538 0.994625i \(-0.533016\pi\)
−0.103538 + 0.994625i \(0.533016\pi\)
\(614\) −6.43192 −0.259571
\(615\) 0 0
\(616\) −1.68408 −0.0678535
\(617\) 27.9234 1.12415 0.562077 0.827085i \(-0.310002\pi\)
0.562077 + 0.827085i \(0.310002\pi\)
\(618\) −15.1228 −0.608329
\(619\) −36.9317 −1.48441 −0.742205 0.670172i \(-0.766220\pi\)
−0.742205 + 0.670172i \(0.766220\pi\)
\(620\) 0 0
\(621\) 5.75638 0.230995
\(622\) −20.8818 −0.837282
\(623\) 1.75110 0.0701564
\(624\) 2.65418 0.106252
\(625\) 0 0
\(626\) 11.7245 0.468605
\(627\) 1.23351 0.0492617
\(628\) −23.9795 −0.956886
\(629\) 57.7373 2.30214
\(630\) 0 0
\(631\) −7.04589 −0.280492 −0.140246 0.990117i \(-0.544789\pi\)
−0.140246 + 0.990117i \(0.544789\pi\)
\(632\) 12.1395 0.482884
\(633\) −28.7670 −1.14338
\(634\) 5.92233 0.235206
\(635\) 0 0
\(636\) 0.518727 0.0205689
\(637\) −17.8857 −0.708659
\(638\) 12.8166 0.507416
\(639\) 7.27786 0.287908
\(640\) 0 0
\(641\) −41.2092 −1.62767 −0.813834 0.581098i \(-0.802623\pi\)
−0.813834 + 0.581098i \(0.802623\pi\)
\(642\) −18.7290 −0.739176
\(643\) 4.40938 0.173889 0.0869444 0.996213i \(-0.472290\pi\)
0.0869444 + 0.996213i \(0.472290\pi\)
\(644\) 2.94249 0.115950
\(645\) 0 0
\(646\) −2.08708 −0.0821150
\(647\) 12.8764 0.506223 0.253111 0.967437i \(-0.418546\pi\)
0.253111 + 0.967437i \(0.418546\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −25.1372 −0.986723
\(650\) 0 0
\(651\) −0.920147 −0.0360634
\(652\) 24.1232 0.944738
\(653\) −33.9475 −1.32847 −0.664234 0.747525i \(-0.731242\pi\)
−0.664234 + 0.747525i \(0.731242\pi\)
\(654\) 18.5221 0.724273
\(655\) 0 0
\(656\) 2.33728 0.0912556
\(657\) −1.40995 −0.0550075
\(658\) 4.19139 0.163397
\(659\) −12.6089 −0.491171 −0.245586 0.969375i \(-0.578980\pi\)
−0.245586 + 0.969375i \(0.578980\pi\)
\(660\) 0 0
\(661\) 14.6188 0.568607 0.284304 0.958734i \(-0.408238\pi\)
0.284304 + 0.958734i \(0.408238\pi\)
\(662\) −27.3753 −1.06397
\(663\) 14.7953 0.574601
\(664\) −3.09306 −0.120034
\(665\) 0 0
\(666\) −10.3577 −0.401353
\(667\) −22.3937 −0.867089
\(668\) 5.43441 0.210264
\(669\) −0.662342 −0.0256076
\(670\) 0 0
\(671\) 9.56559 0.369276
\(672\) −0.511170 −0.0197188
\(673\) 13.4341 0.517847 0.258924 0.965898i \(-0.416632\pi\)
0.258924 + 0.965898i \(0.416632\pi\)
\(674\) −5.86677 −0.225980
\(675\) 0 0
\(676\) −5.95532 −0.229051
\(677\) 31.9199 1.22678 0.613391 0.789780i \(-0.289805\pi\)
0.613391 + 0.789780i \(0.289805\pi\)
\(678\) −16.1273 −0.619365
\(679\) −7.74338 −0.297163
\(680\) 0 0
\(681\) −15.5730 −0.596760
\(682\) 5.93046 0.227089
\(683\) −19.0698 −0.729685 −0.364842 0.931069i \(-0.618877\pi\)
−0.364842 + 0.931069i \(0.618877\pi\)
\(684\) 0.374409 0.0143159
\(685\) 0 0
\(686\) 7.02282 0.268132
\(687\) −27.7376 −1.05826
\(688\) −5.87802 −0.224098
\(689\) 1.37680 0.0524518
\(690\) 0 0
\(691\) 21.5074 0.818181 0.409091 0.912494i \(-0.365846\pi\)
0.409091 + 0.912494i \(0.365846\pi\)
\(692\) 1.14183 0.0434059
\(693\) 1.68408 0.0639729
\(694\) 11.8634 0.450330
\(695\) 0 0
\(696\) 3.89025 0.147460
\(697\) 13.0288 0.493501
\(698\) −28.3391 −1.07265
\(699\) −23.2480 −0.879320
\(700\) 0 0
\(701\) −5.65381 −0.213541 −0.106771 0.994284i \(-0.534051\pi\)
−0.106771 + 0.994284i \(0.534051\pi\)
\(702\) −2.65418 −0.100176
\(703\) 3.87802 0.146262
\(704\) 3.29456 0.124168
\(705\) 0 0
\(706\) 5.83404 0.219567
\(707\) 2.85280 0.107290
\(708\) −7.62993 −0.286750
\(709\) 43.7198 1.64193 0.820967 0.570976i \(-0.193435\pi\)
0.820967 + 0.570976i \(0.193435\pi\)
\(710\) 0 0
\(711\) −12.1395 −0.455268
\(712\) −3.42567 −0.128382
\(713\) −10.3619 −0.388058
\(714\) −2.84943 −0.106637
\(715\) 0 0
\(716\) −15.4030 −0.575637
\(717\) 5.81933 0.217327
\(718\) −9.94932 −0.371305
\(719\) −8.09200 −0.301781 −0.150890 0.988551i \(-0.548214\pi\)
−0.150890 + 0.988551i \(0.548214\pi\)
\(720\) 0 0
\(721\) 7.73034 0.287893
\(722\) 18.8598 0.701890
\(723\) 14.1483 0.526182
\(724\) 20.5110 0.762287
\(725\) 0 0
\(726\) 0.145898 0.00541478
\(727\) 47.3889 1.75756 0.878779 0.477228i \(-0.158359\pi\)
0.878779 + 0.477228i \(0.158359\pi\)
\(728\) −1.35674 −0.0502841
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −32.7660 −1.21190
\(732\) 2.90345 0.107315
\(733\) −14.6145 −0.539801 −0.269900 0.962888i \(-0.586991\pi\)
−0.269900 + 0.962888i \(0.586991\pi\)
\(734\) 16.2990 0.601608
\(735\) 0 0
\(736\) −5.75638 −0.212183
\(737\) −5.89085 −0.216992
\(738\) −2.33728 −0.0860366
\(739\) −12.1592 −0.447283 −0.223641 0.974672i \(-0.571794\pi\)
−0.223641 + 0.974672i \(0.571794\pi\)
\(740\) 0 0
\(741\) 0.993750 0.0365063
\(742\) −0.265158 −0.00973426
\(743\) −50.5368 −1.85402 −0.927008 0.375041i \(-0.877629\pi\)
−0.927008 + 0.375041i \(0.877629\pi\)
\(744\) 1.80008 0.0659941
\(745\) 0 0
\(746\) −8.85626 −0.324251
\(747\) 3.09306 0.113169
\(748\) 18.3649 0.671489
\(749\) 9.57373 0.349816
\(750\) 0 0
\(751\) 33.9598 1.23921 0.619605 0.784914i \(-0.287293\pi\)
0.619605 + 0.784914i \(0.287293\pi\)
\(752\) −8.19959 −0.299008
\(753\) 3.98246 0.145129
\(754\) 10.3254 0.376030
\(755\) 0 0
\(756\) 0.511170 0.0185911
\(757\) −47.9954 −1.74442 −0.872211 0.489130i \(-0.837315\pi\)
−0.872211 + 0.489130i \(0.837315\pi\)
\(758\) 14.1431 0.513699
\(759\) 18.9647 0.688375
\(760\) 0 0
\(761\) 27.6622 1.00275 0.501377 0.865229i \(-0.332827\pi\)
0.501377 + 0.865229i \(0.332827\pi\)
\(762\) 3.62677 0.131384
\(763\) −9.46796 −0.342763
\(764\) 7.27380 0.263157
\(765\) 0 0
\(766\) 32.9848 1.19179
\(767\) −20.2512 −0.731229
\(768\) 1.00000 0.0360844
\(769\) −15.0664 −0.543310 −0.271655 0.962395i \(-0.587571\pi\)
−0.271655 + 0.962395i \(0.587571\pi\)
\(770\) 0 0
\(771\) 12.5114 0.450589
\(772\) 11.4686 0.412766
\(773\) −29.4391 −1.05885 −0.529426 0.848356i \(-0.677593\pi\)
−0.529426 + 0.848356i \(0.677593\pi\)
\(774\) 5.87802 0.211281
\(775\) 0 0
\(776\) 15.1483 0.543793
\(777\) 5.29456 0.189941
\(778\) −11.4919 −0.412005
\(779\) 0.875101 0.0313537
\(780\) 0 0
\(781\) 23.9773 0.857976
\(782\) −32.0879 −1.14746
\(783\) −3.89025 −0.139026
\(784\) −6.73870 −0.240668
\(785\) 0 0
\(786\) 17.4131 0.621105
\(787\) −17.7230 −0.631756 −0.315878 0.948800i \(-0.602299\pi\)
−0.315878 + 0.948800i \(0.602299\pi\)
\(788\) −2.16068 −0.0769711
\(789\) −2.25374 −0.0802352
\(790\) 0 0
\(791\) 8.24379 0.293116
\(792\) −3.29456 −0.117067
\(793\) 7.70629 0.273659
\(794\) −4.82958 −0.171395
\(795\) 0 0
\(796\) −7.27998 −0.258032
\(797\) −24.6949 −0.874737 −0.437368 0.899282i \(-0.644089\pi\)
−0.437368 + 0.899282i \(0.644089\pi\)
\(798\) −0.191387 −0.00677502
\(799\) −45.7072 −1.61700
\(800\) 0 0
\(801\) 3.42567 0.121040
\(802\) 21.5779 0.761944
\(803\) −4.64517 −0.163925
\(804\) −1.78806 −0.0630599
\(805\) 0 0
\(806\) 4.77774 0.168289
\(807\) 25.4934 0.897409
\(808\) −5.58091 −0.196336
\(809\) −16.4366 −0.577879 −0.288939 0.957347i \(-0.593303\pi\)
−0.288939 + 0.957347i \(0.593303\pi\)
\(810\) 0 0
\(811\) −12.9773 −0.455696 −0.227848 0.973697i \(-0.573169\pi\)
−0.227848 + 0.973697i \(0.573169\pi\)
\(812\) −1.98858 −0.0697855
\(813\) −19.2503 −0.675138
\(814\) −34.1241 −1.19605
\(815\) 0 0
\(816\) 5.57433 0.195141
\(817\) −2.20078 −0.0769957
\(818\) 1.57998 0.0552426
\(819\) 1.35674 0.0474083
\(820\) 0 0
\(821\) −31.7784 −1.10907 −0.554537 0.832159i \(-0.687105\pi\)
−0.554537 + 0.832159i \(0.687105\pi\)
\(822\) −19.7230 −0.687918
\(823\) −38.3742 −1.33764 −0.668820 0.743425i \(-0.733200\pi\)
−0.668820 + 0.743425i \(0.733200\pi\)
\(824\) −15.1228 −0.526829
\(825\) 0 0
\(826\) 3.90019 0.135705
\(827\) −23.0395 −0.801162 −0.400581 0.916261i \(-0.631192\pi\)
−0.400581 + 0.916261i \(0.631192\pi\)
\(828\) 5.75638 0.200048
\(829\) −17.5852 −0.610758 −0.305379 0.952231i \(-0.598783\pi\)
−0.305379 + 0.952231i \(0.598783\pi\)
\(830\) 0 0
\(831\) 7.73948 0.268479
\(832\) 2.65418 0.0920172
\(833\) −37.5638 −1.30151
\(834\) −11.4357 −0.395984
\(835\) 0 0
\(836\) 1.23351 0.0426619
\(837\) −1.80008 −0.0622199
\(838\) 36.7568 1.26974
\(839\) −44.0619 −1.52119 −0.760593 0.649229i \(-0.775092\pi\)
−0.760593 + 0.649229i \(0.775092\pi\)
\(840\) 0 0
\(841\) −13.8660 −0.478136
\(842\) −6.96946 −0.240183
\(843\) −10.2724 −0.353801
\(844\) −28.7670 −0.990200
\(845\) 0 0
\(846\) 8.19959 0.281908
\(847\) −0.0745787 −0.00256256
\(848\) 0.518727 0.0178132
\(849\) 9.86811 0.338673
\(850\) 0 0
\(851\) 59.6229 2.04385
\(852\) 7.27786 0.249335
\(853\) −38.1231 −1.30531 −0.652655 0.757656i \(-0.726345\pi\)
−0.652655 + 0.757656i \(0.726345\pi\)
\(854\) −1.48416 −0.0507869
\(855\) 0 0
\(856\) −18.7290 −0.640145
\(857\) −40.2837 −1.37607 −0.688033 0.725679i \(-0.741526\pi\)
−0.688033 + 0.725679i \(0.741526\pi\)
\(858\) −8.74435 −0.298527
\(859\) −16.9314 −0.577691 −0.288845 0.957376i \(-0.593271\pi\)
−0.288845 + 0.957376i \(0.593271\pi\)
\(860\) 0 0
\(861\) 1.19475 0.0407170
\(862\) −25.4098 −0.865462
\(863\) −38.3696 −1.30612 −0.653058 0.757308i \(-0.726514\pi\)
−0.653058 + 0.757308i \(0.726514\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) 13.4595 0.457373
\(867\) 14.0731 0.477949
\(868\) −0.920147 −0.0312318
\(869\) −39.9943 −1.35672
\(870\) 0 0
\(871\) −4.74583 −0.160806
\(872\) 18.5221 0.627239
\(873\) −15.1483 −0.512693
\(874\) −2.15524 −0.0729020
\(875\) 0 0
\(876\) −1.40995 −0.0476379
\(877\) 9.59661 0.324055 0.162027 0.986786i \(-0.448197\pi\)
0.162027 + 0.986786i \(0.448197\pi\)
\(878\) 37.8392 1.27701
\(879\) 3.08103 0.103921
\(880\) 0 0
\(881\) 21.0921 0.710610 0.355305 0.934750i \(-0.384377\pi\)
0.355305 + 0.934750i \(0.384377\pi\)
\(882\) 6.73870 0.226904
\(883\) −1.26807 −0.0426740 −0.0213370 0.999772i \(-0.506792\pi\)
−0.0213370 + 0.999772i \(0.506792\pi\)
\(884\) 14.7953 0.497619
\(885\) 0 0
\(886\) −2.70138 −0.0907545
\(887\) −3.50065 −0.117540 −0.0587701 0.998272i \(-0.518718\pi\)
−0.0587701 + 0.998272i \(0.518718\pi\)
\(888\) −10.3577 −0.347582
\(889\) −1.85390 −0.0621777
\(890\) 0 0
\(891\) 3.29456 0.110372
\(892\) −0.662342 −0.0221769
\(893\) −3.07000 −0.102734
\(894\) −20.5095 −0.685941
\(895\) 0 0
\(896\) −0.511170 −0.0170770
\(897\) 15.2785 0.510133
\(898\) −18.9478 −0.632295
\(899\) 7.00276 0.233555
\(900\) 0 0
\(901\) 2.89156 0.0963317
\(902\) −7.70032 −0.256393
\(903\) −3.00467 −0.0999892
\(904\) −16.1273 −0.536386
\(905\) 0 0
\(906\) −6.22542 −0.206826
\(907\) −20.2610 −0.672757 −0.336378 0.941727i \(-0.609202\pi\)
−0.336378 + 0.941727i \(0.609202\pi\)
\(908\) −15.5730 −0.516809
\(909\) 5.58091 0.185107
\(910\) 0 0
\(911\) −5.90220 −0.195549 −0.0977744 0.995209i \(-0.531172\pi\)
−0.0977744 + 0.995209i \(0.531172\pi\)
\(912\) 0.374409 0.0123979
\(913\) 10.1902 0.337248
\(914\) 38.2879 1.26645
\(915\) 0 0
\(916\) −27.7376 −0.916478
\(917\) −8.90107 −0.293939
\(918\) −5.57433 −0.183980
\(919\) −45.3645 −1.49644 −0.748219 0.663452i \(-0.769091\pi\)
−0.748219 + 0.663452i \(0.769091\pi\)
\(920\) 0 0
\(921\) 6.43192 0.211939
\(922\) −17.3427 −0.571152
\(923\) 19.3168 0.635819
\(924\) 1.68408 0.0554021
\(925\) 0 0
\(926\) −17.6641 −0.580479
\(927\) 15.1228 0.496699
\(928\) 3.89025 0.127704
\(929\) 46.2829 1.51849 0.759247 0.650803i \(-0.225568\pi\)
0.759247 + 0.650803i \(0.225568\pi\)
\(930\) 0 0
\(931\) −2.52303 −0.0826890
\(932\) −23.2480 −0.761514
\(933\) 20.8818 0.683638
\(934\) 2.88972 0.0945544
\(935\) 0 0
\(936\) −2.65418 −0.0867546
\(937\) 21.2179 0.693158 0.346579 0.938021i \(-0.387343\pi\)
0.346579 + 0.938021i \(0.387343\pi\)
\(938\) 0.914001 0.0298432
\(939\) −11.7245 −0.382615
\(940\) 0 0
\(941\) −43.4850 −1.41757 −0.708784 0.705425i \(-0.750756\pi\)
−0.708784 + 0.705425i \(0.750756\pi\)
\(942\) 23.9795 0.781294
\(943\) 13.4543 0.438132
\(944\) −7.62993 −0.248333
\(945\) 0 0
\(946\) 19.3655 0.629626
\(947\) −34.6211 −1.12504 −0.562518 0.826785i \(-0.690167\pi\)
−0.562518 + 0.826785i \(0.690167\pi\)
\(948\) −12.1395 −0.394273
\(949\) −3.74227 −0.121479
\(950\) 0 0
\(951\) −5.92233 −0.192045
\(952\) −2.84943 −0.0923506
\(953\) −21.1695 −0.685747 −0.342874 0.939382i \(-0.611400\pi\)
−0.342874 + 0.939382i \(0.611400\pi\)
\(954\) −0.518727 −0.0167944
\(955\) 0 0
\(956\) 5.81933 0.188211
\(957\) −12.8166 −0.414303
\(958\) −27.5859 −0.891260
\(959\) 10.0818 0.325558
\(960\) 0 0
\(961\) −27.7597 −0.895475
\(962\) −27.4913 −0.886354
\(963\) 18.7290 0.603535
\(964\) 14.1483 0.455687
\(965\) 0 0
\(966\) −2.94249 −0.0946730
\(967\) 43.1011 1.38604 0.693020 0.720919i \(-0.256280\pi\)
0.693020 + 0.720919i \(0.256280\pi\)
\(968\) 0.145898 0.00468934
\(969\) 2.08708 0.0670466
\(970\) 0 0
\(971\) −32.5128 −1.04338 −0.521692 0.853134i \(-0.674699\pi\)
−0.521692 + 0.853134i \(0.674699\pi\)
\(972\) 1.00000 0.0320750
\(973\) 5.84557 0.187400
\(974\) −14.9338 −0.478508
\(975\) 0 0
\(976\) 2.90345 0.0929373
\(977\) 56.2425 1.79936 0.899679 0.436552i \(-0.143800\pi\)
0.899679 + 0.436552i \(0.143800\pi\)
\(978\) −24.1232 −0.771376
\(979\) 11.2861 0.360704
\(980\) 0 0
\(981\) −18.5221 −0.591366
\(982\) −26.4452 −0.843900
\(983\) 31.7227 1.01180 0.505898 0.862593i \(-0.331161\pi\)
0.505898 + 0.862593i \(0.331161\pi\)
\(984\) −2.33728 −0.0745099
\(985\) 0 0
\(986\) 21.6855 0.690608
\(987\) −4.19139 −0.133413
\(988\) 0.993750 0.0316154
\(989\) −33.8361 −1.07593
\(990\) 0 0
\(991\) 15.6911 0.498445 0.249222 0.968446i \(-0.419825\pi\)
0.249222 + 0.968446i \(0.419825\pi\)
\(992\) 1.80008 0.0571526
\(993\) 27.3753 0.868728
\(994\) −3.72023 −0.117998
\(995\) 0 0
\(996\) 3.09306 0.0980072
\(997\) 34.2809 1.08569 0.542843 0.839834i \(-0.317348\pi\)
0.542843 + 0.839834i \(0.317348\pi\)
\(998\) 10.3375 0.327229
\(999\) 10.3577 0.327704
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3750.2.a.n.1.3 4
5.2 odd 4 3750.2.c.g.1249.3 8
5.3 odd 4 3750.2.c.g.1249.6 8
5.4 even 2 3750.2.a.p.1.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3750.2.a.n.1.3 4 1.1 even 1 trivial
3750.2.a.p.1.2 yes 4 5.4 even 2
3750.2.c.g.1249.3 8 5.2 odd 4
3750.2.c.g.1249.6 8 5.3 odd 4