Properties

Label 3750.2.c.g.1249.3
Level 37503750
Weight 22
Character 3750.1249
Analytic conductor 29.94429.944
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3750,2,Mod(1249,3750)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3750, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3750.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3750=2354 3750 = 2 \cdot 3 \cdot 5^{4}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3750.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 29.943900758029.9439007580
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.324000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+9x6+26x4+24x2+1 x^{8} + 9x^{6} + 26x^{4} + 24x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1249.3
Root 1.95630i1.95630i of defining polynomial
Character χ\chi == 3750.1249
Dual form 3750.2.c.g.1249.6

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq21.00000iq31.00000q41.00000q6+0.511170iq7+1.00000iq81.00000q9+3.29456q11+1.00000iq122.65418iq13+0.511170q14+1.00000q16+5.57433iq17+1.00000iq180.374409q19+0.511170q213.29456iq225.75638iq23+1.00000q242.65418q26+1.00000iq270.511170iq28+3.89025q291.80008q311.00000iq323.29456iq33+5.57433q34+1.00000q36+10.3577iq37+0.374409iq382.65418q39+2.33728q410.511170iq42+5.87802iq433.29456q445.75638q468.19959iq471.00000iq48+6.73870q49+5.57433q51+2.65418iq520.518727iq53+1.00000q540.511170q56+0.374409iq573.89025iq58+7.62993q59+2.90345q61+1.80008iq620.511170iq631.00000q643.29456q661.78806iq675.57433iq685.75638q69+7.27786q711.00000iq72+1.40995iq73+10.3577q74+0.374409q76+1.68408iq77+2.65418iq78+12.1395q79+1.00000q812.33728iq823.09306iq830.511170q84+5.87802q863.89025iq87+3.29456iq883.42567q89+1.35674q91+5.75638iq92+1.80008iq938.19959q941.00000q9615.1483iq976.73870iq983.29456q99+O(q100)q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} +0.511170i q^{7} +1.00000i q^{8} -1.00000 q^{9} +3.29456 q^{11} +1.00000i q^{12} -2.65418i q^{13} +0.511170 q^{14} +1.00000 q^{16} +5.57433i q^{17} +1.00000i q^{18} -0.374409 q^{19} +0.511170 q^{21} -3.29456i q^{22} -5.75638i q^{23} +1.00000 q^{24} -2.65418 q^{26} +1.00000i q^{27} -0.511170i q^{28} +3.89025 q^{29} -1.80008 q^{31} -1.00000i q^{32} -3.29456i q^{33} +5.57433 q^{34} +1.00000 q^{36} +10.3577i q^{37} +0.374409i q^{38} -2.65418 q^{39} +2.33728 q^{41} -0.511170i q^{42} +5.87802i q^{43} -3.29456 q^{44} -5.75638 q^{46} -8.19959i q^{47} -1.00000i q^{48} +6.73870 q^{49} +5.57433 q^{51} +2.65418i q^{52} -0.518727i q^{53} +1.00000 q^{54} -0.511170 q^{56} +0.374409i q^{57} -3.89025i q^{58} +7.62993 q^{59} +2.90345 q^{61} +1.80008i q^{62} -0.511170i q^{63} -1.00000 q^{64} -3.29456 q^{66} -1.78806i q^{67} -5.57433i q^{68} -5.75638 q^{69} +7.27786 q^{71} -1.00000i q^{72} +1.40995i q^{73} +10.3577 q^{74} +0.374409 q^{76} +1.68408i q^{77} +2.65418i q^{78} +12.1395 q^{79} +1.00000 q^{81} -2.33728i q^{82} -3.09306i q^{83} -0.511170 q^{84} +5.87802 q^{86} -3.89025i q^{87} +3.29456i q^{88} -3.42567 q^{89} +1.35674 q^{91} +5.75638i q^{92} +1.80008i q^{93} -8.19959 q^{94} -1.00000 q^{96} -15.1483i q^{97} -6.73870i q^{98} -3.29456 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q48q68q9+8q14+8q16+22q19+8q21+8q24+4q2612q2916q31+18q34+8q36+4q39+12q4130q46+8q49+18q51+8q96+O(q100) 8 q - 8 q^{4} - 8 q^{6} - 8 q^{9} + 8 q^{14} + 8 q^{16} + 22 q^{19} + 8 q^{21} + 8 q^{24} + 4 q^{26} - 12 q^{29} - 16 q^{31} + 18 q^{34} + 8 q^{36} + 4 q^{39} + 12 q^{41} - 30 q^{46} + 8 q^{49} + 18 q^{51}+ \cdots - 8 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3750Z)×\left(\mathbb{Z}/3750\mathbb{Z}\right)^\times.

nn 25012501 31273127
χ(n)\chi(n) 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 − 1.00000i − 0.707107i
33 − 1.00000i − 0.577350i
44 −1.00000 −0.500000
55 0 0
66 −1.00000 −0.408248
77 0.511170i 0.193204i 0.995323 + 0.0966021i 0.0307974π0.0307974\pi
−0.995323 + 0.0966021i 0.969203π0.969203\pi
88 1.00000i 0.353553i
99 −1.00000 −0.333333
1010 0 0
1111 3.29456 0.993346 0.496673 0.867938i 0.334555π-0.334555\pi
0.496673 + 0.867938i 0.334555π0.334555\pi
1212 1.00000i 0.288675i
1313 − 2.65418i − 0.736138i −0.929799 0.368069i 0.880019π-0.880019\pi
0.929799 0.368069i 0.119981π-0.119981\pi
1414 0.511170 0.136616
1515 0 0
1616 1.00000 0.250000
1717 5.57433i 1.35197i 0.736914 + 0.675987i 0.236282π0.236282\pi
−0.736914 + 0.675987i 0.763718π0.763718\pi
1818 1.00000i 0.235702i
1919 −0.374409 −0.0858953 −0.0429477 0.999077i 0.513675π-0.513675\pi
−0.0429477 + 0.999077i 0.513675π0.513675\pi
2020 0 0
2121 0.511170 0.111547
2222 − 3.29456i − 0.702402i
2323 − 5.75638i − 1.20029i −0.799892 0.600144i 0.795110π-0.795110\pi
0.799892 0.600144i 0.204890π-0.204890\pi
2424 1.00000 0.204124
2525 0 0
2626 −2.65418 −0.520528
2727 1.00000i 0.192450i
2828 − 0.511170i − 0.0966021i
2929 3.89025 0.722401 0.361201 0.932488i 0.382367π-0.382367\pi
0.361201 + 0.932488i 0.382367π0.382367\pi
3030 0 0
3131 −1.80008 −0.323304 −0.161652 0.986848i 0.551682π-0.551682\pi
−0.161652 + 0.986848i 0.551682π0.551682\pi
3232 − 1.00000i − 0.176777i
3333 − 3.29456i − 0.573509i
3434 5.57433 0.955990
3535 0 0
3636 1.00000 0.166667
3737 10.3577i 1.70280i 0.524519 + 0.851399i 0.324245π0.324245\pi
−0.524519 + 0.851399i 0.675755π0.675755\pi
3838 0.374409i 0.0607372i
3939 −2.65418 −0.425009
4040 0 0
4141 2.33728 0.365023 0.182511 0.983204i 0.441577π-0.441577\pi
0.182511 + 0.983204i 0.441577π0.441577\pi
4242 − 0.511170i − 0.0788753i
4343 5.87802i 0.896390i 0.893936 + 0.448195i 0.147933π0.147933\pi
−0.893936 + 0.448195i 0.852067π0.852067\pi
4444 −3.29456 −0.496673
4545 0 0
4646 −5.75638 −0.848731
4747 − 8.19959i − 1.19603i −0.801484 0.598017i 0.795956π-0.795956\pi
0.801484 0.598017i 0.204044π-0.204044\pi
4848 − 1.00000i − 0.144338i
4949 6.73870 0.962672
5050 0 0
5151 5.57433 0.780562
5252 2.65418i 0.368069i
5353 − 0.518727i − 0.0712527i −0.999365 0.0356263i 0.988657π-0.988657\pi
0.999365 0.0356263i 0.0113426π-0.0113426\pi
5454 1.00000 0.136083
5555 0 0
5656 −0.511170 −0.0683080
5757 0.374409i 0.0495917i
5858 − 3.89025i − 0.510815i
5959 7.62993 0.993332 0.496666 0.867942i 0.334557π-0.334557\pi
0.496666 + 0.867942i 0.334557π0.334557\pi
6060 0 0
6161 2.90345 0.371749 0.185875 0.982573i 0.440488π-0.440488\pi
0.185875 + 0.982573i 0.440488π0.440488\pi
6262 1.80008i 0.228610i
6363 − 0.511170i − 0.0644014i
6464 −1.00000 −0.125000
6565 0 0
6666 −3.29456 −0.405532
6767 − 1.78806i − 0.218446i −0.994017 0.109223i 0.965164π-0.965164\pi
0.994017 0.109223i 0.0348362π-0.0348362\pi
6868 − 5.57433i − 0.675987i
6969 −5.75638 −0.692986
7070 0 0
7171 7.27786 0.863723 0.431862 0.901940i 0.357857π-0.357857\pi
0.431862 + 0.901940i 0.357857π0.357857\pi
7272 − 1.00000i − 0.117851i
7373 1.40995i 0.165023i 0.996590 + 0.0825113i 0.0262941π0.0262941\pi
−0.996590 + 0.0825113i 0.973706π0.973706\pi
7474 10.3577 1.20406
7575 0 0
7676 0.374409 0.0429477
7777 1.68408i 0.191919i
7878 2.65418i 0.300527i
7979 12.1395 1.36580 0.682901 0.730511i 0.260718π-0.260718\pi
0.682901 + 0.730511i 0.260718π0.260718\pi
8080 0 0
8181 1.00000 0.111111
8282 − 2.33728i − 0.258110i
8383 − 3.09306i − 0.339507i −0.985487 0.169754i 0.945703π-0.945703\pi
0.985487 0.169754i 0.0542972π-0.0542972\pi
8484 −0.511170 −0.0557733
8585 0 0
8686 5.87802 0.633843
8787 − 3.89025i − 0.417079i
8888 3.29456i 0.351201i
8989 −3.42567 −0.363120 −0.181560 0.983380i 0.558115π-0.558115\pi
−0.181560 + 0.983380i 0.558115π0.558115\pi
9090 0 0
9191 1.35674 0.142225
9292 5.75638i 0.600144i
9393 1.80008i 0.186660i
9494 −8.19959 −0.845723
9595 0 0
9696 −1.00000 −0.102062
9797 − 15.1483i − 1.53808i −0.639201 0.769040i 0.720735π-0.720735\pi
0.639201 0.769040i 0.279265π-0.279265\pi
9898 − 6.73870i − 0.680712i
9999 −3.29456 −0.331115
100100 0 0
101101 5.58091 0.555321 0.277661 0.960679i 0.410441π-0.410441\pi
0.277661 + 0.960679i 0.410441π0.410441\pi
102102 − 5.57433i − 0.551941i
103103 − 15.1228i − 1.49010i −0.667011 0.745048i 0.732426π-0.732426\pi
0.667011 0.745048i 0.267574π-0.267574\pi
104104 2.65418 0.260264
105105 0 0
106106 −0.518727 −0.0503832
107107 18.7290i 1.81060i 0.424768 + 0.905302i 0.360356π0.360356\pi
−0.424768 + 0.905302i 0.639644π0.639644\pi
108108 − 1.00000i − 0.0962250i
109109 18.5221 1.77410 0.887049 0.461675i 0.152751π-0.152751\pi
0.887049 + 0.461675i 0.152751π0.152751\pi
110110 0 0
111111 10.3577 0.983111
112112 0.511170i 0.0483011i
113113 − 16.1273i − 1.51713i −0.651598 0.758564i 0.725901π-0.725901\pi
0.651598 0.758564i 0.274099π-0.274099\pi
114114 0.374409 0.0350666
115115 0 0
116116 −3.89025 −0.361201
117117 2.65418i 0.245379i
118118 − 7.62993i − 0.702392i
119119 −2.84943 −0.261207
120120 0 0
121121 −0.145898 −0.0132635
122122 − 2.90345i − 0.262866i
123123 − 2.33728i − 0.210746i
124124 1.80008 0.161652
125125 0 0
126126 −0.511170 −0.0455387
127127 − 3.62677i − 0.321824i −0.986969 0.160912i 0.948556π-0.948556\pi
0.986969 0.160912i 0.0514435π-0.0514435\pi
128128 1.00000i 0.0883883i
129129 5.87802 0.517531
130130 0 0
131131 −17.4131 −1.52139 −0.760695 0.649109i 0.775142π-0.775142\pi
−0.760695 + 0.649109i 0.775142π0.775142\pi
132132 3.29456i 0.286754i
133133 − 0.191387i − 0.0165953i
134134 −1.78806 −0.154465
135135 0 0
136136 −5.57433 −0.477995
137137 19.7230i 1.68505i 0.538658 + 0.842524i 0.318931π0.318931\pi
−0.538658 + 0.842524i 0.681069π0.681069\pi
138138 5.75638i 0.490015i
139139 −11.4357 −0.969960 −0.484980 0.874525i 0.661173π-0.661173\pi
−0.484980 + 0.874525i 0.661173π0.661173\pi
140140 0 0
141141 −8.19959 −0.690530
142142 − 7.27786i − 0.610745i
143143 − 8.74435i − 0.731239i
144144 −1.00000 −0.0833333
145145 0 0
146146 1.40995 0.116689
147147 − 6.73870i − 0.555799i
148148 − 10.3577i − 0.851399i
149149 −20.5095 −1.68021 −0.840103 0.542427i 0.817506π-0.817506\pi
−0.840103 + 0.542427i 0.817506π0.817506\pi
150150 0 0
151151 6.22542 0.506618 0.253309 0.967385i 0.418481π-0.418481\pi
0.253309 + 0.967385i 0.418481π0.418481\pi
152152 − 0.374409i − 0.0303686i
153153 − 5.57433i − 0.450658i
154154 1.68408 0.135707
155155 0 0
156156 2.65418 0.212505
157157 − 23.9795i − 1.91377i −0.290465 0.956886i 0.593810π-0.593810\pi
0.290465 0.956886i 0.406190π-0.406190\pi
158158 − 12.1395i − 0.965768i
159159 −0.518727 −0.0411377
160160 0 0
161161 2.94249 0.231901
162162 − 1.00000i − 0.0785674i
163163 − 24.1232i − 1.88948i −0.327825 0.944738i 0.606316π-0.606316\pi
0.327825 0.944738i 0.393684π-0.393684\pi
164164 −2.33728 −0.182511
165165 0 0
166166 −3.09306 −0.240068
167167 5.43441i 0.420527i 0.977645 + 0.210264i 0.0674322π0.0674322\pi
−0.977645 + 0.210264i 0.932568π0.932568\pi
168168 0.511170i 0.0394376i
169169 5.95532 0.458101
170170 0 0
171171 0.374409 0.0286318
172172 − 5.87802i − 0.448195i
173173 − 1.14183i − 0.0868118i −0.999058 0.0434059i 0.986179π-0.986179\pi
0.999058 0.0434059i 0.0138209π-0.0138209\pi
174174 −3.89025 −0.294919
175175 0 0
176176 3.29456 0.248337
177177 − 7.62993i − 0.573501i
178178 3.42567i 0.256765i
179179 15.4030 1.15127 0.575637 0.817705i 0.304754π-0.304754\pi
0.575637 + 0.817705i 0.304754π0.304754\pi
180180 0 0
181181 20.5110 1.52457 0.762287 0.647239i 0.224077π-0.224077\pi
0.762287 + 0.647239i 0.224077π0.224077\pi
182182 − 1.35674i − 0.100568i
183183 − 2.90345i − 0.214629i
184184 5.75638 0.424366
185185 0 0
186186 1.80008 0.131988
187187 18.3649i 1.34298i
188188 8.19959i 0.598017i
189189 −0.511170 −0.0371822
190190 0 0
191191 7.27380 0.526313 0.263157 0.964753i 0.415236π-0.415236\pi
0.263157 + 0.964753i 0.415236π0.415236\pi
192192 1.00000i 0.0721688i
193193 − 11.4686i − 0.825531i −0.910837 0.412766i 0.864563π-0.864563\pi
0.910837 0.412766i 0.135437π-0.135437\pi
194194 −15.1483 −1.08759
195195 0 0
196196 −6.73870 −0.481336
197197 − 2.16068i − 0.153942i −0.997033 0.0769711i 0.975475π-0.975475\pi
0.997033 0.0769711i 0.0245249π-0.0245249\pi
198198 3.29456i 0.234134i
199199 7.27998 0.516064 0.258032 0.966136i 0.416926π-0.416926\pi
0.258032 + 0.966136i 0.416926π0.416926\pi
200200 0 0
201201 −1.78806 −0.126120
202202 − 5.58091i − 0.392671i
203203 1.98858i 0.139571i
204204 −5.57433 −0.390281
205205 0 0
206206 −15.1228 −1.05366
207207 5.75638i 0.400096i
208208 − 2.65418i − 0.184034i
209209 −1.23351 −0.0853238
210210 0 0
211211 −28.7670 −1.98040 −0.990200 0.139658i 0.955400π-0.955400\pi
−0.990200 + 0.139658i 0.955400π0.955400\pi
212212 0.518727i 0.0356263i
213213 − 7.27786i − 0.498671i
214214 18.7290 1.28029
215215 0 0
216216 −1.00000 −0.0680414
217217 − 0.920147i − 0.0624637i
218218 − 18.5221i − 1.25448i
219219 1.40995 0.0952758
220220 0 0
221221 14.7953 0.995238
222222 − 10.3577i − 0.695164i
223223 0.662342i 0.0443537i 0.999754 + 0.0221769i 0.00705969π0.00705969\pi
−0.999754 + 0.0221769i 0.992940π0.992940\pi
224224 0.511170 0.0341540
225225 0 0
226226 −16.1273 −1.07277
227227 − 15.5730i − 1.03362i −0.856101 0.516809i 0.827120π-0.827120\pi
0.856101 0.516809i 0.172880π-0.172880\pi
228228 − 0.374409i − 0.0247958i
229229 27.7376 1.83296 0.916478 0.400086i 0.131020π-0.131020\pi
0.916478 + 0.400086i 0.131020π0.131020\pi
230230 0 0
231231 1.68408 0.110804
232232 3.89025i 0.255407i
233233 23.2480i 1.52303i 0.648149 + 0.761514i 0.275544π0.275544\pi
−0.648149 + 0.761514i 0.724456π0.724456\pi
234234 2.65418 0.173509
235235 0 0
236236 −7.62993 −0.496666
237237 − 12.1395i − 0.788547i
238238 2.84943i 0.184701i
239239 −5.81933 −0.376421 −0.188211 0.982129i 0.560269π-0.560269\pi
−0.188211 + 0.982129i 0.560269π0.560269\pi
240240 0 0
241241 14.1483 0.911374 0.455687 0.890140i 0.349394π-0.349394\pi
0.455687 + 0.890140i 0.349394π0.349394\pi
242242 0.145898i 0.00937868i
243243 − 1.00000i − 0.0641500i
244244 −2.90345 −0.185875
245245 0 0
246246 −2.33728 −0.149020
247247 0.993750i 0.0632308i
248248 − 1.80008i − 0.114305i
249249 −3.09306 −0.196014
250250 0 0
251251 3.98246 0.251370 0.125685 0.992070i 0.459887π-0.459887\pi
0.125685 + 0.992070i 0.459887π0.459887\pi
252252 0.511170i 0.0322007i
253253 − 18.9647i − 1.19230i
254254 −3.62677 −0.227564
255255 0 0
256256 1.00000 0.0625000
257257 12.5114i 0.780442i 0.920721 + 0.390221i 0.127601π0.127601\pi
−0.920721 + 0.390221i 0.872399π0.872399\pi
258258 − 5.87802i − 0.365950i
259259 −5.29456 −0.328988
260260 0 0
261261 −3.89025 −0.240800
262262 17.4131i 1.07579i
263263 2.25374i 0.138971i 0.997583 + 0.0694857i 0.0221358π0.0221358\pi
−0.997583 + 0.0694857i 0.977864π0.977864\pi
264264 3.29456 0.202766
265265 0 0
266266 −0.191387 −0.0117347
267267 3.42567i 0.209648i
268268 1.78806i 0.109223i
269269 −25.4934 −1.55436 −0.777179 0.629279i 0.783350π-0.783350\pi
−0.777179 + 0.629279i 0.783350π0.783350\pi
270270 0 0
271271 −19.2503 −1.16937 −0.584687 0.811259i 0.698783π-0.698783\pi
−0.584687 + 0.811259i 0.698783π0.698783\pi
272272 5.57433i 0.337993i
273273 − 1.35674i − 0.0821136i
274274 19.7230 1.19151
275275 0 0
276276 5.75638 0.346493
277277 7.73948i 0.465020i 0.972594 + 0.232510i 0.0746939π0.0746939\pi
−0.972594 + 0.232510i 0.925306π0.925306\pi
278278 11.4357i 0.685865i
279279 1.80008 0.107768
280280 0 0
281281 −10.2724 −0.612801 −0.306401 0.951903i 0.599125π-0.599125\pi
−0.306401 + 0.951903i 0.599125π0.599125\pi
282282 8.19959i 0.488278i
283283 − 9.86811i − 0.586598i −0.956021 0.293299i 0.905247π-0.905247\pi
0.956021 0.293299i 0.0947532π-0.0947532\pi
284284 −7.27786 −0.431862
285285 0 0
286286 −8.74435 −0.517064
287287 1.19475i 0.0705239i
288288 1.00000i 0.0589256i
289289 −14.0731 −0.827832
290290 0 0
291291 −15.1483 −0.888011
292292 − 1.40995i − 0.0825113i
293293 − 3.08103i − 0.179996i −0.995942 0.0899979i 0.971314π-0.971314\pi
0.995942 0.0899979i 0.0286860π-0.0286860\pi
294294 −6.73870 −0.393009
295295 0 0
296296 −10.3577 −0.602030
297297 3.29456i 0.191170i
298298 20.5095i 1.18809i
299299 −15.2785 −0.883577
300300 0 0
301301 −3.00467 −0.173186
302302 − 6.22542i − 0.358233i
303303 − 5.58091i − 0.320615i
304304 −0.374409 −0.0214738
305305 0 0
306306 −5.57433 −0.318663
307307 6.43192i 0.367089i 0.983011 + 0.183545i 0.0587572π0.0587572\pi
−0.983011 + 0.183545i 0.941243π0.941243\pi
308308 − 1.68408i − 0.0959593i
309309 −15.1228 −0.860308
310310 0 0
311311 20.8818 1.18410 0.592048 0.805903i 0.298320π-0.298320\pi
0.592048 + 0.805903i 0.298320π0.298320\pi
312312 − 2.65418i − 0.150263i
313313 11.7245i 0.662708i 0.943507 + 0.331354i 0.107505π0.107505\pi
−0.943507 + 0.331354i 0.892495π0.892495\pi
314314 −23.9795 −1.35324
315315 0 0
316316 −12.1395 −0.682901
317317 − 5.92233i − 0.332631i −0.986073 0.166316i 0.946813π-0.946813\pi
0.986073 0.166316i 0.0531871π-0.0531871\pi
318318 0.518727i 0.0290888i
319319 12.8166 0.717594
320320 0 0
321321 18.7290 1.04535
322322 − 2.94249i − 0.163978i
323323 − 2.08708i − 0.116128i
324324 −1.00000 −0.0555556
325325 0 0
326326 −24.1232 −1.33606
327327 − 18.5221i − 1.02428i
328328 2.33728i 0.129055i
329329 4.19139 0.231079
330330 0 0
331331 27.3753 1.50468 0.752340 0.658775i 0.228925π-0.228925\pi
0.752340 + 0.658775i 0.228925π0.228925\pi
332332 3.09306i 0.169754i
333333 − 10.3577i − 0.567599i
334334 5.43441 0.297358
335335 0 0
336336 0.511170 0.0278866
337337 5.86677i 0.319583i 0.987151 + 0.159792i 0.0510823π0.0510823\pi
−0.987151 + 0.159792i 0.948918π0.948918\pi
338338 − 5.95532i − 0.323927i
339339 −16.1273 −0.875914
340340 0 0
341341 −5.93046 −0.321153
342342 − 0.374409i − 0.0202457i
343343 7.02282i 0.379197i
344344 −5.87802 −0.316922
345345 0 0
346346 −1.14183 −0.0613852
347347 − 11.8634i − 0.636863i −0.947946 0.318431i 0.896844π-0.896844\pi
0.947946 0.318431i 0.103156π-0.103156\pi
348348 3.89025i 0.208539i
349349 −28.3391 −1.51696 −0.758479 0.651698i 0.774057π-0.774057\pi
−0.758479 + 0.651698i 0.774057π0.774057\pi
350350 0 0
351351 2.65418 0.141670
352352 − 3.29456i − 0.175600i
353353 5.83404i 0.310515i 0.987874 + 0.155257i 0.0496207π0.0496207\pi
−0.987874 + 0.155257i 0.950379π0.950379\pi
354354 −7.62993 −0.405526
355355 0 0
356356 3.42567 0.181560
357357 2.84943i 0.150808i
358358 − 15.4030i − 0.814074i
359359 −9.94932 −0.525105 −0.262552 0.964918i 0.584564π-0.584564\pi
−0.262552 + 0.964918i 0.584564π0.584564\pi
360360 0 0
361361 −18.8598 −0.992622
362362 − 20.5110i − 1.07804i
363363 0.145898i 0.00765766i
364364 −1.35674 −0.0711124
365365 0 0
366366 −2.90345 −0.151766
367367 − 16.2990i − 0.850802i −0.905005 0.425401i 0.860133π-0.860133\pi
0.905005 0.425401i 0.139867π-0.139867\pi
368368 − 5.75638i − 0.300072i
369369 −2.33728 −0.121674
370370 0 0
371371 0.265158 0.0137663
372372 − 1.80008i − 0.0933298i
373373 − 8.85626i − 0.458560i −0.973361 0.229280i 0.926363π-0.926363\pi
0.973361 0.229280i 0.0736371π-0.0736371\pi
374374 18.3649 0.949629
375375 0 0
376376 8.19959 0.422862
377377 − 10.3254i − 0.531787i
378378 0.511170i 0.0262918i
379379 14.1431 0.726480 0.363240 0.931696i 0.381671π-0.381671\pi
0.363240 + 0.931696i 0.381671π0.381671\pi
380380 0 0
381381 −3.62677 −0.185805
382382 − 7.27380i − 0.372160i
383383 32.9848i 1.68544i 0.538350 + 0.842721i 0.319048π0.319048\pi
−0.538350 + 0.842721i 0.680952π0.680952\pi
384384 1.00000 0.0510310
385385 0 0
386386 −11.4686 −0.583739
387387 − 5.87802i − 0.298797i
388388 15.1483i 0.769040i
389389 −11.4919 −0.582663 −0.291332 0.956622i 0.594098π-0.594098\pi
−0.291332 + 0.956622i 0.594098π0.594098\pi
390390 0 0
391391 32.0879 1.62276
392392 6.73870i 0.340356i
393393 17.4131i 0.878375i
394394 −2.16068 −0.108854
395395 0 0
396396 3.29456 0.165558
397397 4.82958i 0.242390i 0.992629 + 0.121195i 0.0386726π0.0386726\pi
−0.992629 + 0.121195i 0.961327π0.961327\pi
398398 − 7.27998i − 0.364912i
399399 −0.191387 −0.00958132
400400 0 0
401401 −21.5779 −1.07755 −0.538775 0.842449i 0.681113π-0.681113\pi
−0.538775 + 0.842449i 0.681113π0.681113\pi
402402 1.78806i 0.0891802i
403403 4.77774i 0.237996i
404404 −5.58091 −0.277661
405405 0 0
406406 1.98858 0.0986916
407407 34.1241i 1.69147i
408408 5.57433i 0.275970i
409409 1.57998 0.0781248 0.0390624 0.999237i 0.487563π-0.487563\pi
0.0390624 + 0.999237i 0.487563π0.487563\pi
410410 0 0
411411 19.7230 0.972863
412412 15.1228i 0.745048i
413413 3.90019i 0.191916i
414414 5.75638 0.282910
415415 0 0
416416 −2.65418 −0.130132
417417 11.4357i 0.560007i
418418 1.23351i 0.0603330i
419419 36.7568 1.79569 0.897843 0.440316i 0.145134π-0.145134\pi
0.897843 + 0.440316i 0.145134π0.145134\pi
420420 0 0
421421 6.96946 0.339671 0.169835 0.985472i 0.445676π-0.445676\pi
0.169835 + 0.985472i 0.445676π0.445676\pi
422422 28.7670i 1.40035i
423423 8.19959i 0.398678i
424424 0.518727 0.0251916
425425 0 0
426426 −7.27786 −0.352614
427427 1.48416i 0.0718235i
428428 − 18.7290i − 0.905302i
429429 −8.74435 −0.422181
430430 0 0
431431 25.4098 1.22395 0.611974 0.790878i 0.290376π-0.290376\pi
0.611974 + 0.790878i 0.290376π0.290376\pi
432432 1.00000i 0.0481125i
433433 13.4595i 0.646823i 0.946258 + 0.323411i 0.104830π0.104830\pi
−0.946258 + 0.323411i 0.895170π0.895170\pi
434434 −0.920147 −0.0441685
435435 0 0
436436 −18.5221 −0.887049
437437 2.15524i 0.103099i
438438 − 1.40995i − 0.0673702i
439439 37.8392 1.80597 0.902983 0.429676i 0.141372π-0.141372\pi
0.902983 + 0.429676i 0.141372π0.141372\pi
440440 0 0
441441 −6.73870 −0.320891
442442 − 14.7953i − 0.703740i
443443 − 2.70138i − 0.128346i −0.997939 0.0641731i 0.979559π-0.979559\pi
0.997939 0.0641731i 0.0204410π-0.0204410\pi
444444 −10.3577 −0.491555
445445 0 0
446446 0.662342 0.0313628
447447 20.5095i 0.970068i
448448 − 0.511170i − 0.0241505i
449449 −18.9478 −0.894200 −0.447100 0.894484i 0.647543π-0.647543\pi
−0.447100 + 0.894484i 0.647543π0.647543\pi
450450 0 0
451451 7.70032 0.362594
452452 16.1273i 0.758564i
453453 − 6.22542i − 0.292496i
454454 −15.5730 −0.730878
455455 0 0
456456 −0.374409 −0.0175333
457457 − 38.2879i − 1.79103i −0.445028 0.895517i 0.646806π-0.646806\pi
0.445028 0.895517i 0.353194π-0.353194\pi
458458 − 27.7376i − 1.29610i
459459 −5.57433 −0.260187
460460 0 0
461461 17.3427 0.807731 0.403866 0.914818i 0.367666π-0.367666\pi
0.403866 + 0.914818i 0.367666π0.367666\pi
462462 − 1.68408i − 0.0783505i
463463 − 17.6641i − 0.820922i −0.911878 0.410461i 0.865368π-0.865368\pi
0.911878 0.410461i 0.134632π-0.134632\pi
464464 3.89025 0.180600
465465 0 0
466466 23.2480 1.07694
467467 − 2.88972i − 0.133720i −0.997762 0.0668600i 0.978702π-0.978702\pi
0.997762 0.0668600i 0.0212981π-0.0212981\pi
468468 − 2.65418i − 0.122690i
469469 0.914001 0.0422047
470470 0 0
471471 −23.9795 −1.10492
472472 7.62993i 0.351196i
473473 19.3655i 0.890426i
474474 −12.1395 −0.557587
475475 0 0
476476 2.84943 0.130603
477477 0.518727i 0.0237509i
478478 5.81933i 0.266170i
479479 −27.5859 −1.26043 −0.630216 0.776420i 0.717034π-0.717034\pi
−0.630216 + 0.776420i 0.717034π0.717034\pi
480480 0 0
481481 27.4913 1.25349
482482 − 14.1483i − 0.644439i
483483 − 2.94249i − 0.133888i
484484 0.145898 0.00663173
485485 0 0
486486 −1.00000 −0.0453609
487487 14.9338i 0.676713i 0.941018 + 0.338356i 0.109871π0.109871\pi
−0.941018 + 0.338356i 0.890129π0.890129\pi
488488 2.90345i 0.131433i
489489 −24.1232 −1.09089
490490 0 0
491491 26.4452 1.19346 0.596728 0.802444i 0.296467π-0.296467\pi
0.596728 + 0.802444i 0.296467π0.296467\pi
492492 2.33728i 0.105373i
493493 21.6855i 0.976667i
494494 0.993750 0.0447109
495495 0 0
496496 −1.80008 −0.0808260
497497 3.72023i 0.166875i
498498 3.09306i 0.138603i
499499 10.3375 0.462771 0.231386 0.972862i 0.425674π-0.425674\pi
0.231386 + 0.972862i 0.425674π0.425674\pi
500500 0 0
501501 5.43441 0.242791
502502 − 3.98246i − 0.177746i
503503 − 16.9084i − 0.753908i −0.926232 0.376954i 0.876971π-0.876971\pi
0.926232 0.376954i 0.123029π-0.123029\pi
504504 0.511170 0.0227693
505505 0 0
506506 −18.9647 −0.843084
507507 − 5.95532i − 0.264485i
508508 3.62677i 0.160912i
509509 −6.48318 −0.287362 −0.143681 0.989624i 0.545894π-0.545894\pi
−0.143681 + 0.989624i 0.545894π0.545894\pi
510510 0 0
511511 −0.720726 −0.0318831
512512 − 1.00000i − 0.0441942i
513513 − 0.374409i − 0.0165306i
514514 12.5114 0.551856
515515 0 0
516516 −5.87802 −0.258766
517517 − 27.0140i − 1.18807i
518518 5.29456i 0.232629i
519519 −1.14183 −0.0501208
520520 0 0
521521 21.6371 0.947939 0.473970 0.880541i 0.342821π-0.342821\pi
0.473970 + 0.880541i 0.342821π0.342821\pi
522522 3.89025i 0.170272i
523523 − 15.6560i − 0.684589i −0.939593 0.342295i 0.888796π-0.888796\pi
0.939593 0.342295i 0.111204π-0.111204\pi
524524 17.4131 0.760695
525525 0 0
526526 2.25374 0.0982677
527527 − 10.0342i − 0.437098i
528528 − 3.29456i − 0.143377i
529529 −10.1359 −0.440689
530530 0 0
531531 −7.62993 −0.331111
532532 0.191387i 0.00829767i
533533 − 6.20358i − 0.268707i
534534 3.42567 0.148243
535535 0 0
536536 1.78806 0.0772323
537537 − 15.4030i − 0.664689i
538538 25.4934i 1.09910i
539539 22.2010 0.956267
540540 0 0
541541 14.2839 0.614113 0.307057 0.951691i 0.400656π-0.400656\pi
0.307057 + 0.951691i 0.400656π0.400656\pi
542542 19.2503i 0.826872i
543543 − 20.5110i − 0.880213i
544544 5.57433 0.238997
545545 0 0
546546 −1.35674 −0.0580631
547547 42.8226i 1.83096i 0.402361 + 0.915481i 0.368190π0.368190\pi
−0.402361 + 0.915481i 0.631810π0.631810\pi
548548 − 19.7230i − 0.842524i
549549 −2.90345 −0.123916
550550 0 0
551551 −1.45654 −0.0620509
552552 − 5.75638i − 0.245008i
553553 6.20536i 0.263879i
554554 7.73948 0.328819
555555 0 0
556556 11.4357 0.484980
557557 14.5543i 0.616688i 0.951275 + 0.308344i 0.0997747π0.0997747\pi
−0.951275 + 0.308344i 0.900225π0.900225\pi
558558 − 1.80008i − 0.0762035i
559559 15.6013 0.659866
560560 0 0
561561 18.3649 0.775368
562562 10.2724i 0.433316i
563563 − 4.52778i − 0.190823i −0.995438 0.0954116i 0.969583π-0.969583\pi
0.995438 0.0954116i 0.0304167π-0.0304167\pi
564564 8.19959 0.345265
565565 0 0
566566 −9.86811 −0.414788
567567 0.511170i 0.0214671i
568568 7.27786i 0.305372i
569569 −10.0904 −0.423010 −0.211505 0.977377i 0.567837π-0.567837\pi
−0.211505 + 0.977377i 0.567837π0.567837\pi
570570 0 0
571571 −20.3024 −0.849630 −0.424815 0.905280i 0.639661π-0.639661\pi
−0.424815 + 0.905280i 0.639661π0.639661\pi
572572 8.74435i 0.365620i
573573 − 7.27380i − 0.303867i
574574 1.19475 0.0498679
575575 0 0
576576 1.00000 0.0416667
577577 19.3900i 0.807218i 0.914932 + 0.403609i 0.132244π0.132244\pi
−0.914932 + 0.403609i 0.867756π0.867756\pi
578578 14.0731i 0.585366i
579579 −11.4686 −0.476621
580580 0 0
581581 1.58108 0.0655942
582582 15.1483i 0.627918i
583583 − 1.70898i − 0.0707786i
584584 −1.40995 −0.0583443
585585 0 0
586586 −3.08103 −0.127276
587587 − 43.8857i − 1.81136i −0.423964 0.905679i 0.639362π-0.639362\pi
0.423964 0.905679i 0.360638π-0.360638\pi
588588 6.73870i 0.277900i
589589 0.673966 0.0277703
590590 0 0
591591 −2.16068 −0.0888786
592592 10.3577i 0.425699i
593593 27.5651i 1.13196i 0.824418 + 0.565981i 0.191502π0.191502\pi
−0.824418 + 0.565981i 0.808498π0.808498\pi
594594 3.29456 0.135177
595595 0 0
596596 20.5095 0.840103
597597 − 7.27998i − 0.297950i
598598 15.2785i 0.624783i
599599 −13.3970 −0.547385 −0.273692 0.961817i 0.588245π-0.588245\pi
−0.273692 + 0.961817i 0.588245π0.588245\pi
600600 0 0
601601 −32.3401 −1.31918 −0.659590 0.751625i 0.729270π-0.729270\pi
−0.659590 + 0.751625i 0.729270π0.729270\pi
602602 3.00467i 0.122461i
603603 1.78806i 0.0728153i
604604 −6.22542 −0.253309
605605 0 0
606606 −5.58091 −0.226709
607607 − 18.7755i − 0.762074i −0.924560 0.381037i 0.875567π-0.875567\pi
0.924560 0.381037i 0.124433π-0.124433\pi
608608 0.374409i 0.0151843i
609609 1.98858 0.0805813
610610 0 0
611611 −21.7632 −0.880445
612612 5.57433i 0.225329i
613613 5.12696i 0.207076i 0.994625 + 0.103538i 0.0330164π0.0330164\pi
−0.994625 + 0.103538i 0.966984π0.966984\pi
614614 6.43192 0.259571
615615 0 0
616616 −1.68408 −0.0678535
617617 27.9234i 1.12415i 0.827085 + 0.562077i 0.189998π0.189998\pi
−0.827085 + 0.562077i 0.810002π0.810002\pi
618618 15.1228i 0.608329i
619619 36.9317 1.48441 0.742205 0.670172i 0.233780π-0.233780\pi
0.742205 + 0.670172i 0.233780π0.233780\pi
620620 0 0
621621 5.75638 0.230995
622622 − 20.8818i − 0.837282i
623623 − 1.75110i − 0.0701564i
624624 −2.65418 −0.106252
625625 0 0
626626 11.7245 0.468605
627627 1.23351i 0.0492617i
628628 23.9795i 0.956886i
629629 −57.7373 −2.30214
630630 0 0
631631 −7.04589 −0.280492 −0.140246 0.990117i 0.544789π-0.544789\pi
−0.140246 + 0.990117i 0.544789π0.544789\pi
632632 12.1395i 0.482884i
633633 28.7670i 1.14338i
634634 −5.92233 −0.235206
635635 0 0
636636 0.518727 0.0205689
637637 − 17.8857i − 0.708659i
638638 − 12.8166i − 0.507416i
639639 −7.27786 −0.287908
640640 0 0
641641 −41.2092 −1.62767 −0.813834 0.581098i 0.802623π-0.802623\pi
−0.813834 + 0.581098i 0.802623π0.802623\pi
642642 − 18.7290i − 0.739176i
643643 − 4.40938i − 0.173889i −0.996213 0.0869444i 0.972290π-0.972290\pi
0.996213 0.0869444i 0.0277103π-0.0277103\pi
644644 −2.94249 −0.115950
645645 0 0
646646 −2.08708 −0.0821150
647647 12.8764i 0.506223i 0.967437 + 0.253111i 0.0814539π0.0814539\pi
−0.967437 + 0.253111i 0.918546π0.918546\pi
648648 1.00000i 0.0392837i
649649 25.1372 0.986723
650650 0 0
651651 −0.920147 −0.0360634
652652 24.1232i 0.944738i
653653 33.9475i 1.32847i 0.747525 + 0.664234i 0.231242π0.231242\pi
−0.747525 + 0.664234i 0.768758π0.768758\pi
654654 −18.5221 −0.724273
655655 0 0
656656 2.33728 0.0912556
657657 − 1.40995i − 0.0550075i
658658 − 4.19139i − 0.163397i
659659 12.6089 0.491171 0.245586 0.969375i 0.421020π-0.421020\pi
0.245586 + 0.969375i 0.421020π0.421020\pi
660660 0 0
661661 14.6188 0.568607 0.284304 0.958734i 0.408238π-0.408238\pi
0.284304 + 0.958734i 0.408238π0.408238\pi
662662 − 27.3753i − 1.06397i
663663 − 14.7953i − 0.574601i
664664 3.09306 0.120034
665665 0 0
666666 −10.3577 −0.401353
667667 − 22.3937i − 0.867089i
668668 − 5.43441i − 0.210264i
669669 0.662342 0.0256076
670670 0 0
671671 9.56559 0.369276
672672 − 0.511170i − 0.0197188i
673673 − 13.4341i − 0.517847i −0.965898 0.258924i 0.916632π-0.916632\pi
0.965898 0.258924i 0.0833678π-0.0833678\pi
674674 5.86677 0.225980
675675 0 0
676676 −5.95532 −0.229051
677677 31.9199i 1.22678i 0.789780 + 0.613391i 0.210195π0.210195\pi
−0.789780 + 0.613391i 0.789805π0.789805\pi
678678 16.1273i 0.619365i
679679 7.74338 0.297163
680680 0 0
681681 −15.5730 −0.596760
682682 5.93046i 0.227089i
683683 19.0698i 0.729685i 0.931069 + 0.364842i 0.118877π0.118877\pi
−0.931069 + 0.364842i 0.881123π0.881123\pi
684684 −0.374409 −0.0143159
685685 0 0
686686 7.02282 0.268132
687687 − 27.7376i − 1.05826i
688688 5.87802i 0.224098i
689689 −1.37680 −0.0524518
690690 0 0
691691 21.5074 0.818181 0.409091 0.912494i 0.365846π-0.365846\pi
0.409091 + 0.912494i 0.365846π0.365846\pi
692692 1.14183i 0.0434059i
693693 − 1.68408i − 0.0639729i
694694 −11.8634 −0.450330
695695 0 0
696696 3.89025 0.147460
697697 13.0288i 0.493501i
698698 28.3391i 1.07265i
699699 23.2480 0.879320
700700 0 0
701701 −5.65381 −0.213541 −0.106771 0.994284i 0.534051π-0.534051\pi
−0.106771 + 0.994284i 0.534051π0.534051\pi
702702 − 2.65418i − 0.100176i
703703 − 3.87802i − 0.146262i
704704 −3.29456 −0.124168
705705 0 0
706706 5.83404 0.219567
707707 2.85280i 0.107290i
708708 7.62993i 0.286750i
709709 −43.7198 −1.64193 −0.820967 0.570976i 0.806565π-0.806565\pi
−0.820967 + 0.570976i 0.806565π0.806565\pi
710710 0 0
711711 −12.1395 −0.455268
712712 − 3.42567i − 0.128382i
713713 10.3619i 0.388058i
714714 2.84943 0.106637
715715 0 0
716716 −15.4030 −0.575637
717717 5.81933i 0.217327i
718718 9.94932i 0.371305i
719719 8.09200 0.301781 0.150890 0.988551i 0.451786π-0.451786\pi
0.150890 + 0.988551i 0.451786π0.451786\pi
720720 0 0
721721 7.73034 0.287893
722722 18.8598i 0.701890i
723723 − 14.1483i − 0.526182i
724724 −20.5110 −0.762287
725725 0 0
726726 0.145898 0.00541478
727727 47.3889i 1.75756i 0.477228 + 0.878779i 0.341641π0.341641\pi
−0.477228 + 0.878779i 0.658359π0.658359\pi
728728 1.35674i 0.0502841i
729729 −1.00000 −0.0370370
730730 0 0
731731 −32.7660 −1.21190
732732 2.90345i 0.107315i
733733 14.6145i 0.539801i 0.962888 + 0.269900i 0.0869907π0.0869907\pi
−0.962888 + 0.269900i 0.913009π0.913009\pi
734734 −16.2990 −0.601608
735735 0 0
736736 −5.75638 −0.212183
737737 − 5.89085i − 0.216992i
738738 2.33728i 0.0860366i
739739 12.1592 0.447283 0.223641 0.974672i 0.428206π-0.428206\pi
0.223641 + 0.974672i 0.428206π0.428206\pi
740740 0 0
741741 0.993750 0.0365063
742742 − 0.265158i − 0.00973426i
743743 50.5368i 1.85402i 0.375041 + 0.927008i 0.377629π0.377629\pi
−0.375041 + 0.927008i 0.622371π0.622371\pi
744744 −1.80008 −0.0659941
745745 0 0
746746 −8.85626 −0.324251
747747 3.09306i 0.113169i
748748 − 18.3649i − 0.671489i
749749 −9.57373 −0.349816
750750 0 0
751751 33.9598 1.23921 0.619605 0.784914i 0.287293π-0.287293\pi
0.619605 + 0.784914i 0.287293π0.287293\pi
752752 − 8.19959i − 0.299008i
753753 − 3.98246i − 0.145129i
754754 −10.3254 −0.376030
755755 0 0
756756 0.511170 0.0185911
757757 − 47.9954i − 1.74442i −0.489130 0.872211i 0.662685π-0.662685\pi
0.489130 0.872211i 0.337315π-0.337315\pi
758758 − 14.1431i − 0.513699i
759759 −18.9647 −0.688375
760760 0 0
761761 27.6622 1.00275 0.501377 0.865229i 0.332827π-0.332827\pi
0.501377 + 0.865229i 0.332827π0.332827\pi
762762 3.62677i 0.131384i
763763 9.46796i 0.342763i
764764 −7.27380 −0.263157
765765 0 0
766766 32.9848 1.19179
767767 − 20.2512i − 0.731229i
768768 − 1.00000i − 0.0360844i
769769 15.0664 0.543310 0.271655 0.962395i 0.412429π-0.412429\pi
0.271655 + 0.962395i 0.412429π0.412429\pi
770770 0 0
771771 12.5114 0.450589
772772 11.4686i 0.412766i
773773 29.4391i 1.05885i 0.848356 + 0.529426i 0.177593π0.177593\pi
−0.848356 + 0.529426i 0.822407π0.822407\pi
774774 −5.87802 −0.211281
775775 0 0
776776 15.1483 0.543793
777777 5.29456i 0.189941i
778778 11.4919i 0.412005i
779779 −0.875101 −0.0313537
780780 0 0
781781 23.9773 0.857976
782782 − 32.0879i − 1.14746i
783783 3.89025i 0.139026i
784784 6.73870 0.240668
785785 0 0
786786 17.4131 0.621105
787787 − 17.7230i − 0.631756i −0.948800 0.315878i 0.897701π-0.897701\pi
0.948800 0.315878i 0.102299π-0.102299\pi
788788 2.16068i 0.0769711i
789789 2.25374 0.0802352
790790 0 0
791791 8.24379 0.293116
792792 − 3.29456i − 0.117067i
793793 − 7.70629i − 0.273659i
794794 4.82958 0.171395
795795 0 0
796796 −7.27998 −0.258032
797797 − 24.6949i − 0.874737i −0.899282 0.437368i 0.855911π-0.855911\pi
0.899282 0.437368i 0.144089π-0.144089\pi
798798 0.191387i 0.00677502i
799799 45.7072 1.61700
800800 0 0
801801 3.42567 0.121040
802802 21.5779i 0.761944i
803803 4.64517i 0.163925i
804804 1.78806 0.0630599
805805 0 0
806806 4.77774 0.168289
807807 25.4934i 0.897409i
808808 5.58091i 0.196336i
809809 16.4366 0.577879 0.288939 0.957347i 0.406697π-0.406697\pi
0.288939 + 0.957347i 0.406697π0.406697\pi
810810 0 0
811811 −12.9773 −0.455696 −0.227848 0.973697i 0.573169π-0.573169\pi
−0.227848 + 0.973697i 0.573169π0.573169\pi
812812 − 1.98858i − 0.0697855i
813813 19.2503i 0.675138i
814814 34.1241 1.19605
815815 0 0
816816 5.57433 0.195141
817817 − 2.20078i − 0.0769957i
818818 − 1.57998i − 0.0552426i
819819 −1.35674 −0.0474083
820820 0 0
821821 −31.7784 −1.10907 −0.554537 0.832159i 0.687105π-0.687105\pi
−0.554537 + 0.832159i 0.687105π0.687105\pi
822822 − 19.7230i − 0.687918i
823823 38.3742i 1.33764i 0.743425 + 0.668820i 0.233200π0.233200\pi
−0.743425 + 0.668820i 0.766800π0.766800\pi
824824 15.1228 0.526829
825825 0 0
826826 3.90019 0.135705
827827 − 23.0395i − 0.801162i −0.916261 0.400581i 0.868808π-0.868808\pi
0.916261 0.400581i 0.131192π-0.131192\pi
828828 − 5.75638i − 0.200048i
829829 17.5852 0.610758 0.305379 0.952231i 0.401217π-0.401217\pi
0.305379 + 0.952231i 0.401217π0.401217\pi
830830 0 0
831831 7.73948 0.268479
832832 2.65418i 0.0920172i
833833 37.5638i 1.30151i
834834 11.4357 0.395984
835835 0 0
836836 1.23351 0.0426619
837837 − 1.80008i − 0.0622199i
838838 − 36.7568i − 1.26974i
839839 44.0619 1.52119 0.760593 0.649229i 0.224908π-0.224908\pi
0.760593 + 0.649229i 0.224908π0.224908\pi
840840 0 0
841841 −13.8660 −0.478136
842842 − 6.96946i − 0.240183i
843843 10.2724i 0.353801i
844844 28.7670 0.990200
845845 0 0
846846 8.19959 0.281908
847847 − 0.0745787i − 0.00256256i
848848 − 0.518727i − 0.0178132i
849849 −9.86811 −0.338673
850850 0 0
851851 59.6229 2.04385
852852 7.27786i 0.249335i
853853 38.1231i 1.30531i 0.757656 + 0.652655i 0.226345π0.226345\pi
−0.757656 + 0.652655i 0.773655π0.773655\pi
854854 1.48416 0.0507869
855855 0 0
856856 −18.7290 −0.640145
857857 − 40.2837i − 1.37607i −0.725679 0.688033i 0.758474π-0.758474\pi
0.725679 0.688033i 0.241526π-0.241526\pi
858858 8.74435i 0.298527i
859859 16.9314 0.577691 0.288845 0.957376i 0.406729π-0.406729\pi
0.288845 + 0.957376i 0.406729π0.406729\pi
860860 0 0
861861 1.19475 0.0407170
862862 − 25.4098i − 0.865462i
863863 38.3696i 1.30612i 0.757308 + 0.653058i 0.226514π0.226514\pi
−0.757308 + 0.653058i 0.773486π0.773486\pi
864864 1.00000 0.0340207
865865 0 0
866866 13.4595 0.457373
867867 14.0731i 0.477949i
868868 0.920147i 0.0312318i
869869 39.9943 1.35672
870870 0 0
871871 −4.74583 −0.160806
872872 18.5221i 0.627239i
873873 15.1483i 0.512693i
874874 2.15524 0.0729020
875875 0 0
876876 −1.40995 −0.0476379
877877 9.59661i 0.324055i 0.986786 + 0.162027i 0.0518033π0.0518033\pi
−0.986786 + 0.162027i 0.948197π0.948197\pi
878878 − 37.8392i − 1.27701i
879879 −3.08103 −0.103921
880880 0 0
881881 21.0921 0.710610 0.355305 0.934750i 0.384377π-0.384377\pi
0.355305 + 0.934750i 0.384377π0.384377\pi
882882 6.73870i 0.226904i
883883 1.26807i 0.0426740i 0.999772 + 0.0213370i 0.00679229π0.00679229\pi
−0.999772 + 0.0213370i 0.993208π0.993208\pi
884884 −14.7953 −0.497619
885885 0 0
886886 −2.70138 −0.0907545
887887 − 3.50065i − 0.117540i −0.998272 0.0587701i 0.981282π-0.981282\pi
0.998272 0.0587701i 0.0187179π-0.0187179\pi
888888 10.3577i 0.347582i
889889 1.85390 0.0621777
890890 0 0
891891 3.29456 0.110372
892892 − 0.662342i − 0.0221769i
893893 3.07000i 0.102734i
894894 20.5095 0.685941
895895 0 0
896896 −0.511170 −0.0170770
897897 15.2785i 0.510133i
898898 18.9478i 0.632295i
899899 −7.00276 −0.233555
900900 0 0
901901 2.89156 0.0963317
902902 − 7.70032i − 0.256393i
903903 3.00467i 0.0999892i
904904 16.1273 0.536386
905905 0 0
906906 −6.22542 −0.206826
907907 − 20.2610i − 0.672757i −0.941727 0.336378i 0.890798π-0.890798\pi
0.941727 0.336378i 0.109202π-0.109202\pi
908908 15.5730i 0.516809i
909909 −5.58091 −0.185107
910910 0 0
911911 −5.90220 −0.195549 −0.0977744 0.995209i 0.531172π-0.531172\pi
−0.0977744 + 0.995209i 0.531172π0.531172\pi
912912 0.374409i 0.0123979i
913913 − 10.1902i − 0.337248i
914914 −38.2879 −1.26645
915915 0 0
916916 −27.7376 −0.916478
917917 − 8.90107i − 0.293939i
918918 5.57433i 0.183980i
919919 45.3645 1.49644 0.748219 0.663452i 0.230909π-0.230909\pi
0.748219 + 0.663452i 0.230909π0.230909\pi
920920 0 0
921921 6.43192 0.211939
922922 − 17.3427i − 0.571152i
923923 − 19.3168i − 0.635819i
924924 −1.68408 −0.0554021
925925 0 0
926926 −17.6641 −0.580479
927927 15.1228i 0.496699i
928928 − 3.89025i − 0.127704i
929929 −46.2829 −1.51849 −0.759247 0.650803i 0.774432π-0.774432\pi
−0.759247 + 0.650803i 0.774432π0.774432\pi
930930 0 0
931931 −2.52303 −0.0826890
932932 − 23.2480i − 0.761514i
933933 − 20.8818i − 0.683638i
934934 −2.88972 −0.0945544
935935 0 0
936936 −2.65418 −0.0867546
937937 21.2179i 0.693158i 0.938021 + 0.346579i 0.112657π0.112657\pi
−0.938021 + 0.346579i 0.887343π0.887343\pi
938938 − 0.914001i − 0.0298432i
939939 11.7245 0.382615
940940 0 0
941941 −43.4850 −1.41757 −0.708784 0.705425i 0.750756π-0.750756\pi
−0.708784 + 0.705425i 0.750756π0.750756\pi
942942 23.9795i 0.781294i
943943 − 13.4543i − 0.438132i
944944 7.62993 0.248333
945945 0 0
946946 19.3655 0.629626
947947 − 34.6211i − 1.12504i −0.826785 0.562518i 0.809833π-0.809833\pi
0.826785 0.562518i 0.190167π-0.190167\pi
948948 12.1395i 0.394273i
949949 3.74227 0.121479
950950 0 0
951951 −5.92233 −0.192045
952952 − 2.84943i − 0.0923506i
953953 21.1695i 0.685747i 0.939382 + 0.342874i 0.111400π0.111400\pi
−0.939382 + 0.342874i 0.888600π0.888600\pi
954954 0.518727 0.0167944
955955 0 0
956956 5.81933 0.188211
957957 − 12.8166i − 0.414303i
958958 27.5859i 0.891260i
959959 −10.0818 −0.325558
960960 0 0
961961 −27.7597 −0.895475
962962 − 27.4913i − 0.886354i
963963 − 18.7290i − 0.603535i
964964 −14.1483 −0.455687
965965 0 0
966966 −2.94249 −0.0946730
967967 43.1011i 1.38604i 0.720919 + 0.693020i 0.243720π0.243720\pi
−0.720919 + 0.693020i 0.756280π0.756280\pi
968968 − 0.145898i − 0.00468934i
969969 −2.08708 −0.0670466
970970 0 0
971971 −32.5128 −1.04338 −0.521692 0.853134i 0.674699π-0.674699\pi
−0.521692 + 0.853134i 0.674699π0.674699\pi
972972 1.00000i 0.0320750i
973973 − 5.84557i − 0.187400i
974974 14.9338 0.478508
975975 0 0
976976 2.90345 0.0929373
977977 56.2425i 1.79936i 0.436552 + 0.899679i 0.356200π0.356200\pi
−0.436552 + 0.899679i 0.643800π0.643800\pi
978978 24.1232i 0.771376i
979979 −11.2861 −0.360704
980980 0 0
981981 −18.5221 −0.591366
982982 − 26.4452i − 0.843900i
983983 − 31.7227i − 1.01180i −0.862593 0.505898i 0.831161π-0.831161\pi
0.862593 0.505898i 0.168839π-0.168839\pi
984984 2.33728 0.0745099
985985 0 0
986986 21.6855 0.690608
987987 − 4.19139i − 0.133413i
988988 − 0.993750i − 0.0316154i
989989 33.8361 1.07593
990990 0 0
991991 15.6911 0.498445 0.249222 0.968446i 0.419825π-0.419825\pi
0.249222 + 0.968446i 0.419825π0.419825\pi
992992 1.80008i 0.0571526i
993993 − 27.3753i − 0.868728i
994994 3.72023 0.117998
995995 0 0
996996 3.09306 0.0980072
997997 34.2809i 1.08569i 0.839834 + 0.542843i 0.182652π0.182652\pi
−0.839834 + 0.542843i 0.817348π0.817348\pi
998998 − 10.3375i − 0.327229i
999999 −10.3577 −0.327704
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3750.2.c.g.1249.3 8
5.2 odd 4 3750.2.a.p.1.2 yes 4
5.3 odd 4 3750.2.a.n.1.3 4
5.4 even 2 inner 3750.2.c.g.1249.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3750.2.a.n.1.3 4 5.3 odd 4
3750.2.a.p.1.2 yes 4 5.2 odd 4
3750.2.c.g.1249.3 8 1.1 even 1 trivial
3750.2.c.g.1249.6 8 5.4 even 2 inner