Properties

Label 3750.2.c.g.1249.3
Level $3750$
Weight $2$
Character 3750.1249
Analytic conductor $29.944$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3750,2,Mod(1249,3750)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3750, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3750.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3750 = 2 \cdot 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3750.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.9439007580\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.324000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 26x^{4} + 24x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.3
Root \(1.95630i\) of defining polynomial
Character \(\chi\) \(=\) 3750.1249
Dual form 3750.2.c.g.1249.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} +0.511170i q^{7} +1.00000i q^{8} -1.00000 q^{9} +3.29456 q^{11} +1.00000i q^{12} -2.65418i q^{13} +0.511170 q^{14} +1.00000 q^{16} +5.57433i q^{17} +1.00000i q^{18} -0.374409 q^{19} +0.511170 q^{21} -3.29456i q^{22} -5.75638i q^{23} +1.00000 q^{24} -2.65418 q^{26} +1.00000i q^{27} -0.511170i q^{28} +3.89025 q^{29} -1.80008 q^{31} -1.00000i q^{32} -3.29456i q^{33} +5.57433 q^{34} +1.00000 q^{36} +10.3577i q^{37} +0.374409i q^{38} -2.65418 q^{39} +2.33728 q^{41} -0.511170i q^{42} +5.87802i q^{43} -3.29456 q^{44} -5.75638 q^{46} -8.19959i q^{47} -1.00000i q^{48} +6.73870 q^{49} +5.57433 q^{51} +2.65418i q^{52} -0.518727i q^{53} +1.00000 q^{54} -0.511170 q^{56} +0.374409i q^{57} -3.89025i q^{58} +7.62993 q^{59} +2.90345 q^{61} +1.80008i q^{62} -0.511170i q^{63} -1.00000 q^{64} -3.29456 q^{66} -1.78806i q^{67} -5.57433i q^{68} -5.75638 q^{69} +7.27786 q^{71} -1.00000i q^{72} +1.40995i q^{73} +10.3577 q^{74} +0.374409 q^{76} +1.68408i q^{77} +2.65418i q^{78} +12.1395 q^{79} +1.00000 q^{81} -2.33728i q^{82} -3.09306i q^{83} -0.511170 q^{84} +5.87802 q^{86} -3.89025i q^{87} +3.29456i q^{88} -3.42567 q^{89} +1.35674 q^{91} +5.75638i q^{92} +1.80008i q^{93} -8.19959 q^{94} -1.00000 q^{96} -15.1483i q^{97} -6.73870i q^{98} -3.29456 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 8 q^{6} - 8 q^{9} + 8 q^{14} + 8 q^{16} + 22 q^{19} + 8 q^{21} + 8 q^{24} + 4 q^{26} - 12 q^{29} - 16 q^{31} + 18 q^{34} + 8 q^{36} + 4 q^{39} + 12 q^{41} - 30 q^{46} + 8 q^{49} + 18 q^{51}+ \cdots - 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3750\mathbb{Z}\right)^\times\).

\(n\) \(2501\) \(3127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) − 1.00000i − 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 0.511170i 0.193204i 0.995323 + 0.0966021i \(0.0307974\pi\)
−0.995323 + 0.0966021i \(0.969203\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 3.29456 0.993346 0.496673 0.867938i \(-0.334555\pi\)
0.496673 + 0.867938i \(0.334555\pi\)
\(12\) 1.00000i 0.288675i
\(13\) − 2.65418i − 0.736138i −0.929799 0.368069i \(-0.880019\pi\)
0.929799 0.368069i \(-0.119981\pi\)
\(14\) 0.511170 0.136616
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.57433i 1.35197i 0.736914 + 0.675987i \(0.236282\pi\)
−0.736914 + 0.675987i \(0.763718\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −0.374409 −0.0858953 −0.0429477 0.999077i \(-0.513675\pi\)
−0.0429477 + 0.999077i \(0.513675\pi\)
\(20\) 0 0
\(21\) 0.511170 0.111547
\(22\) − 3.29456i − 0.702402i
\(23\) − 5.75638i − 1.20029i −0.799892 0.600144i \(-0.795110\pi\)
0.799892 0.600144i \(-0.204890\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) −2.65418 −0.520528
\(27\) 1.00000i 0.192450i
\(28\) − 0.511170i − 0.0966021i
\(29\) 3.89025 0.722401 0.361201 0.932488i \(-0.382367\pi\)
0.361201 + 0.932488i \(0.382367\pi\)
\(30\) 0 0
\(31\) −1.80008 −0.323304 −0.161652 0.986848i \(-0.551682\pi\)
−0.161652 + 0.986848i \(0.551682\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) − 3.29456i − 0.573509i
\(34\) 5.57433 0.955990
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 10.3577i 1.70280i 0.524519 + 0.851399i \(0.324245\pi\)
−0.524519 + 0.851399i \(0.675755\pi\)
\(38\) 0.374409i 0.0607372i
\(39\) −2.65418 −0.425009
\(40\) 0 0
\(41\) 2.33728 0.365023 0.182511 0.983204i \(-0.441577\pi\)
0.182511 + 0.983204i \(0.441577\pi\)
\(42\) − 0.511170i − 0.0788753i
\(43\) 5.87802i 0.896390i 0.893936 + 0.448195i \(0.147933\pi\)
−0.893936 + 0.448195i \(0.852067\pi\)
\(44\) −3.29456 −0.496673
\(45\) 0 0
\(46\) −5.75638 −0.848731
\(47\) − 8.19959i − 1.19603i −0.801484 0.598017i \(-0.795956\pi\)
0.801484 0.598017i \(-0.204044\pi\)
\(48\) − 1.00000i − 0.144338i
\(49\) 6.73870 0.962672
\(50\) 0 0
\(51\) 5.57433 0.780562
\(52\) 2.65418i 0.368069i
\(53\) − 0.518727i − 0.0712527i −0.999365 0.0356263i \(-0.988657\pi\)
0.999365 0.0356263i \(-0.0113426\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) −0.511170 −0.0683080
\(57\) 0.374409i 0.0495917i
\(58\) − 3.89025i − 0.510815i
\(59\) 7.62993 0.993332 0.496666 0.867942i \(-0.334557\pi\)
0.496666 + 0.867942i \(0.334557\pi\)
\(60\) 0 0
\(61\) 2.90345 0.371749 0.185875 0.982573i \(-0.440488\pi\)
0.185875 + 0.982573i \(0.440488\pi\)
\(62\) 1.80008i 0.228610i
\(63\) − 0.511170i − 0.0644014i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −3.29456 −0.405532
\(67\) − 1.78806i − 0.218446i −0.994017 0.109223i \(-0.965164\pi\)
0.994017 0.109223i \(-0.0348362\pi\)
\(68\) − 5.57433i − 0.675987i
\(69\) −5.75638 −0.692986
\(70\) 0 0
\(71\) 7.27786 0.863723 0.431862 0.901940i \(-0.357857\pi\)
0.431862 + 0.901940i \(0.357857\pi\)
\(72\) − 1.00000i − 0.117851i
\(73\) 1.40995i 0.165023i 0.996590 + 0.0825113i \(0.0262941\pi\)
−0.996590 + 0.0825113i \(0.973706\pi\)
\(74\) 10.3577 1.20406
\(75\) 0 0
\(76\) 0.374409 0.0429477
\(77\) 1.68408i 0.191919i
\(78\) 2.65418i 0.300527i
\(79\) 12.1395 1.36580 0.682901 0.730511i \(-0.260718\pi\)
0.682901 + 0.730511i \(0.260718\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 2.33728i − 0.258110i
\(83\) − 3.09306i − 0.339507i −0.985487 0.169754i \(-0.945703\pi\)
0.985487 0.169754i \(-0.0542972\pi\)
\(84\) −0.511170 −0.0557733
\(85\) 0 0
\(86\) 5.87802 0.633843
\(87\) − 3.89025i − 0.417079i
\(88\) 3.29456i 0.351201i
\(89\) −3.42567 −0.363120 −0.181560 0.983380i \(-0.558115\pi\)
−0.181560 + 0.983380i \(0.558115\pi\)
\(90\) 0 0
\(91\) 1.35674 0.142225
\(92\) 5.75638i 0.600144i
\(93\) 1.80008i 0.186660i
\(94\) −8.19959 −0.845723
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) − 15.1483i − 1.53808i −0.639201 0.769040i \(-0.720735\pi\)
0.639201 0.769040i \(-0.279265\pi\)
\(98\) − 6.73870i − 0.680712i
\(99\) −3.29456 −0.331115
\(100\) 0 0
\(101\) 5.58091 0.555321 0.277661 0.960679i \(-0.410441\pi\)
0.277661 + 0.960679i \(0.410441\pi\)
\(102\) − 5.57433i − 0.551941i
\(103\) − 15.1228i − 1.49010i −0.667011 0.745048i \(-0.732426\pi\)
0.667011 0.745048i \(-0.267574\pi\)
\(104\) 2.65418 0.260264
\(105\) 0 0
\(106\) −0.518727 −0.0503832
\(107\) 18.7290i 1.81060i 0.424768 + 0.905302i \(0.360356\pi\)
−0.424768 + 0.905302i \(0.639644\pi\)
\(108\) − 1.00000i − 0.0962250i
\(109\) 18.5221 1.77410 0.887049 0.461675i \(-0.152751\pi\)
0.887049 + 0.461675i \(0.152751\pi\)
\(110\) 0 0
\(111\) 10.3577 0.983111
\(112\) 0.511170i 0.0483011i
\(113\) − 16.1273i − 1.51713i −0.651598 0.758564i \(-0.725901\pi\)
0.651598 0.758564i \(-0.274099\pi\)
\(114\) 0.374409 0.0350666
\(115\) 0 0
\(116\) −3.89025 −0.361201
\(117\) 2.65418i 0.245379i
\(118\) − 7.62993i − 0.702392i
\(119\) −2.84943 −0.261207
\(120\) 0 0
\(121\) −0.145898 −0.0132635
\(122\) − 2.90345i − 0.262866i
\(123\) − 2.33728i − 0.210746i
\(124\) 1.80008 0.161652
\(125\) 0 0
\(126\) −0.511170 −0.0455387
\(127\) − 3.62677i − 0.321824i −0.986969 0.160912i \(-0.948556\pi\)
0.986969 0.160912i \(-0.0514435\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 5.87802 0.517531
\(130\) 0 0
\(131\) −17.4131 −1.52139 −0.760695 0.649109i \(-0.775142\pi\)
−0.760695 + 0.649109i \(0.775142\pi\)
\(132\) 3.29456i 0.286754i
\(133\) − 0.191387i − 0.0165953i
\(134\) −1.78806 −0.154465
\(135\) 0 0
\(136\) −5.57433 −0.477995
\(137\) 19.7230i 1.68505i 0.538658 + 0.842524i \(0.318931\pi\)
−0.538658 + 0.842524i \(0.681069\pi\)
\(138\) 5.75638i 0.490015i
\(139\) −11.4357 −0.969960 −0.484980 0.874525i \(-0.661173\pi\)
−0.484980 + 0.874525i \(0.661173\pi\)
\(140\) 0 0
\(141\) −8.19959 −0.690530
\(142\) − 7.27786i − 0.610745i
\(143\) − 8.74435i − 0.731239i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) 1.40995 0.116689
\(147\) − 6.73870i − 0.555799i
\(148\) − 10.3577i − 0.851399i
\(149\) −20.5095 −1.68021 −0.840103 0.542427i \(-0.817506\pi\)
−0.840103 + 0.542427i \(0.817506\pi\)
\(150\) 0 0
\(151\) 6.22542 0.506618 0.253309 0.967385i \(-0.418481\pi\)
0.253309 + 0.967385i \(0.418481\pi\)
\(152\) − 0.374409i − 0.0303686i
\(153\) − 5.57433i − 0.450658i
\(154\) 1.68408 0.135707
\(155\) 0 0
\(156\) 2.65418 0.212505
\(157\) − 23.9795i − 1.91377i −0.290465 0.956886i \(-0.593810\pi\)
0.290465 0.956886i \(-0.406190\pi\)
\(158\) − 12.1395i − 0.965768i
\(159\) −0.518727 −0.0411377
\(160\) 0 0
\(161\) 2.94249 0.231901
\(162\) − 1.00000i − 0.0785674i
\(163\) − 24.1232i − 1.88948i −0.327825 0.944738i \(-0.606316\pi\)
0.327825 0.944738i \(-0.393684\pi\)
\(164\) −2.33728 −0.182511
\(165\) 0 0
\(166\) −3.09306 −0.240068
\(167\) 5.43441i 0.420527i 0.977645 + 0.210264i \(0.0674322\pi\)
−0.977645 + 0.210264i \(0.932568\pi\)
\(168\) 0.511170i 0.0394376i
\(169\) 5.95532 0.458101
\(170\) 0 0
\(171\) 0.374409 0.0286318
\(172\) − 5.87802i − 0.448195i
\(173\) − 1.14183i − 0.0868118i −0.999058 0.0434059i \(-0.986179\pi\)
0.999058 0.0434059i \(-0.0138209\pi\)
\(174\) −3.89025 −0.294919
\(175\) 0 0
\(176\) 3.29456 0.248337
\(177\) − 7.62993i − 0.573501i
\(178\) 3.42567i 0.256765i
\(179\) 15.4030 1.15127 0.575637 0.817705i \(-0.304754\pi\)
0.575637 + 0.817705i \(0.304754\pi\)
\(180\) 0 0
\(181\) 20.5110 1.52457 0.762287 0.647239i \(-0.224077\pi\)
0.762287 + 0.647239i \(0.224077\pi\)
\(182\) − 1.35674i − 0.100568i
\(183\) − 2.90345i − 0.214629i
\(184\) 5.75638 0.424366
\(185\) 0 0
\(186\) 1.80008 0.131988
\(187\) 18.3649i 1.34298i
\(188\) 8.19959i 0.598017i
\(189\) −0.511170 −0.0371822
\(190\) 0 0
\(191\) 7.27380 0.526313 0.263157 0.964753i \(-0.415236\pi\)
0.263157 + 0.964753i \(0.415236\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) − 11.4686i − 0.825531i −0.910837 0.412766i \(-0.864563\pi\)
0.910837 0.412766i \(-0.135437\pi\)
\(194\) −15.1483 −1.08759
\(195\) 0 0
\(196\) −6.73870 −0.481336
\(197\) − 2.16068i − 0.153942i −0.997033 0.0769711i \(-0.975475\pi\)
0.997033 0.0769711i \(-0.0245249\pi\)
\(198\) 3.29456i 0.234134i
\(199\) 7.27998 0.516064 0.258032 0.966136i \(-0.416926\pi\)
0.258032 + 0.966136i \(0.416926\pi\)
\(200\) 0 0
\(201\) −1.78806 −0.126120
\(202\) − 5.58091i − 0.392671i
\(203\) 1.98858i 0.139571i
\(204\) −5.57433 −0.390281
\(205\) 0 0
\(206\) −15.1228 −1.05366
\(207\) 5.75638i 0.400096i
\(208\) − 2.65418i − 0.184034i
\(209\) −1.23351 −0.0853238
\(210\) 0 0
\(211\) −28.7670 −1.98040 −0.990200 0.139658i \(-0.955400\pi\)
−0.990200 + 0.139658i \(0.955400\pi\)
\(212\) 0.518727i 0.0356263i
\(213\) − 7.27786i − 0.498671i
\(214\) 18.7290 1.28029
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) − 0.920147i − 0.0624637i
\(218\) − 18.5221i − 1.25448i
\(219\) 1.40995 0.0952758
\(220\) 0 0
\(221\) 14.7953 0.995238
\(222\) − 10.3577i − 0.695164i
\(223\) 0.662342i 0.0443537i 0.999754 + 0.0221769i \(0.00705969\pi\)
−0.999754 + 0.0221769i \(0.992940\pi\)
\(224\) 0.511170 0.0341540
\(225\) 0 0
\(226\) −16.1273 −1.07277
\(227\) − 15.5730i − 1.03362i −0.856101 0.516809i \(-0.827120\pi\)
0.856101 0.516809i \(-0.172880\pi\)
\(228\) − 0.374409i − 0.0247958i
\(229\) 27.7376 1.83296 0.916478 0.400086i \(-0.131020\pi\)
0.916478 + 0.400086i \(0.131020\pi\)
\(230\) 0 0
\(231\) 1.68408 0.110804
\(232\) 3.89025i 0.255407i
\(233\) 23.2480i 1.52303i 0.648149 + 0.761514i \(0.275544\pi\)
−0.648149 + 0.761514i \(0.724456\pi\)
\(234\) 2.65418 0.173509
\(235\) 0 0
\(236\) −7.62993 −0.496666
\(237\) − 12.1395i − 0.788547i
\(238\) 2.84943i 0.184701i
\(239\) −5.81933 −0.376421 −0.188211 0.982129i \(-0.560269\pi\)
−0.188211 + 0.982129i \(0.560269\pi\)
\(240\) 0 0
\(241\) 14.1483 0.911374 0.455687 0.890140i \(-0.349394\pi\)
0.455687 + 0.890140i \(0.349394\pi\)
\(242\) 0.145898i 0.00937868i
\(243\) − 1.00000i − 0.0641500i
\(244\) −2.90345 −0.185875
\(245\) 0 0
\(246\) −2.33728 −0.149020
\(247\) 0.993750i 0.0632308i
\(248\) − 1.80008i − 0.114305i
\(249\) −3.09306 −0.196014
\(250\) 0 0
\(251\) 3.98246 0.251370 0.125685 0.992070i \(-0.459887\pi\)
0.125685 + 0.992070i \(0.459887\pi\)
\(252\) 0.511170i 0.0322007i
\(253\) − 18.9647i − 1.19230i
\(254\) −3.62677 −0.227564
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 12.5114i 0.780442i 0.920721 + 0.390221i \(0.127601\pi\)
−0.920721 + 0.390221i \(0.872399\pi\)
\(258\) − 5.87802i − 0.365950i
\(259\) −5.29456 −0.328988
\(260\) 0 0
\(261\) −3.89025 −0.240800
\(262\) 17.4131i 1.07579i
\(263\) 2.25374i 0.138971i 0.997583 + 0.0694857i \(0.0221358\pi\)
−0.997583 + 0.0694857i \(0.977864\pi\)
\(264\) 3.29456 0.202766
\(265\) 0 0
\(266\) −0.191387 −0.0117347
\(267\) 3.42567i 0.209648i
\(268\) 1.78806i 0.109223i
\(269\) −25.4934 −1.55436 −0.777179 0.629279i \(-0.783350\pi\)
−0.777179 + 0.629279i \(0.783350\pi\)
\(270\) 0 0
\(271\) −19.2503 −1.16937 −0.584687 0.811259i \(-0.698783\pi\)
−0.584687 + 0.811259i \(0.698783\pi\)
\(272\) 5.57433i 0.337993i
\(273\) − 1.35674i − 0.0821136i
\(274\) 19.7230 1.19151
\(275\) 0 0
\(276\) 5.75638 0.346493
\(277\) 7.73948i 0.465020i 0.972594 + 0.232510i \(0.0746939\pi\)
−0.972594 + 0.232510i \(0.925306\pi\)
\(278\) 11.4357i 0.685865i
\(279\) 1.80008 0.107768
\(280\) 0 0
\(281\) −10.2724 −0.612801 −0.306401 0.951903i \(-0.599125\pi\)
−0.306401 + 0.951903i \(0.599125\pi\)
\(282\) 8.19959i 0.488278i
\(283\) − 9.86811i − 0.586598i −0.956021 0.293299i \(-0.905247\pi\)
0.956021 0.293299i \(-0.0947532\pi\)
\(284\) −7.27786 −0.431862
\(285\) 0 0
\(286\) −8.74435 −0.517064
\(287\) 1.19475i 0.0705239i
\(288\) 1.00000i 0.0589256i
\(289\) −14.0731 −0.827832
\(290\) 0 0
\(291\) −15.1483 −0.888011
\(292\) − 1.40995i − 0.0825113i
\(293\) − 3.08103i − 0.179996i −0.995942 0.0899979i \(-0.971314\pi\)
0.995942 0.0899979i \(-0.0286860\pi\)
\(294\) −6.73870 −0.393009
\(295\) 0 0
\(296\) −10.3577 −0.602030
\(297\) 3.29456i 0.191170i
\(298\) 20.5095i 1.18809i
\(299\) −15.2785 −0.883577
\(300\) 0 0
\(301\) −3.00467 −0.173186
\(302\) − 6.22542i − 0.358233i
\(303\) − 5.58091i − 0.320615i
\(304\) −0.374409 −0.0214738
\(305\) 0 0
\(306\) −5.57433 −0.318663
\(307\) 6.43192i 0.367089i 0.983011 + 0.183545i \(0.0587572\pi\)
−0.983011 + 0.183545i \(0.941243\pi\)
\(308\) − 1.68408i − 0.0959593i
\(309\) −15.1228 −0.860308
\(310\) 0 0
\(311\) 20.8818 1.18410 0.592048 0.805903i \(-0.298320\pi\)
0.592048 + 0.805903i \(0.298320\pi\)
\(312\) − 2.65418i − 0.150263i
\(313\) 11.7245i 0.662708i 0.943507 + 0.331354i \(0.107505\pi\)
−0.943507 + 0.331354i \(0.892495\pi\)
\(314\) −23.9795 −1.35324
\(315\) 0 0
\(316\) −12.1395 −0.682901
\(317\) − 5.92233i − 0.332631i −0.986073 0.166316i \(-0.946813\pi\)
0.986073 0.166316i \(-0.0531871\pi\)
\(318\) 0.518727i 0.0290888i
\(319\) 12.8166 0.717594
\(320\) 0 0
\(321\) 18.7290 1.04535
\(322\) − 2.94249i − 0.163978i
\(323\) − 2.08708i − 0.116128i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −24.1232 −1.33606
\(327\) − 18.5221i − 1.02428i
\(328\) 2.33728i 0.129055i
\(329\) 4.19139 0.231079
\(330\) 0 0
\(331\) 27.3753 1.50468 0.752340 0.658775i \(-0.228925\pi\)
0.752340 + 0.658775i \(0.228925\pi\)
\(332\) 3.09306i 0.169754i
\(333\) − 10.3577i − 0.567599i
\(334\) 5.43441 0.297358
\(335\) 0 0
\(336\) 0.511170 0.0278866
\(337\) 5.86677i 0.319583i 0.987151 + 0.159792i \(0.0510823\pi\)
−0.987151 + 0.159792i \(0.948918\pi\)
\(338\) − 5.95532i − 0.323927i
\(339\) −16.1273 −0.875914
\(340\) 0 0
\(341\) −5.93046 −0.321153
\(342\) − 0.374409i − 0.0202457i
\(343\) 7.02282i 0.379197i
\(344\) −5.87802 −0.316922
\(345\) 0 0
\(346\) −1.14183 −0.0613852
\(347\) − 11.8634i − 0.636863i −0.947946 0.318431i \(-0.896844\pi\)
0.947946 0.318431i \(-0.103156\pi\)
\(348\) 3.89025i 0.208539i
\(349\) −28.3391 −1.51696 −0.758479 0.651698i \(-0.774057\pi\)
−0.758479 + 0.651698i \(0.774057\pi\)
\(350\) 0 0
\(351\) 2.65418 0.141670
\(352\) − 3.29456i − 0.175600i
\(353\) 5.83404i 0.310515i 0.987874 + 0.155257i \(0.0496207\pi\)
−0.987874 + 0.155257i \(0.950379\pi\)
\(354\) −7.62993 −0.405526
\(355\) 0 0
\(356\) 3.42567 0.181560
\(357\) 2.84943i 0.150808i
\(358\) − 15.4030i − 0.814074i
\(359\) −9.94932 −0.525105 −0.262552 0.964918i \(-0.584564\pi\)
−0.262552 + 0.964918i \(0.584564\pi\)
\(360\) 0 0
\(361\) −18.8598 −0.992622
\(362\) − 20.5110i − 1.07804i
\(363\) 0.145898i 0.00765766i
\(364\) −1.35674 −0.0711124
\(365\) 0 0
\(366\) −2.90345 −0.151766
\(367\) − 16.2990i − 0.850802i −0.905005 0.425401i \(-0.860133\pi\)
0.905005 0.425401i \(-0.139867\pi\)
\(368\) − 5.75638i − 0.300072i
\(369\) −2.33728 −0.121674
\(370\) 0 0
\(371\) 0.265158 0.0137663
\(372\) − 1.80008i − 0.0933298i
\(373\) − 8.85626i − 0.458560i −0.973361 0.229280i \(-0.926363\pi\)
0.973361 0.229280i \(-0.0736371\pi\)
\(374\) 18.3649 0.949629
\(375\) 0 0
\(376\) 8.19959 0.422862
\(377\) − 10.3254i − 0.531787i
\(378\) 0.511170i 0.0262918i
\(379\) 14.1431 0.726480 0.363240 0.931696i \(-0.381671\pi\)
0.363240 + 0.931696i \(0.381671\pi\)
\(380\) 0 0
\(381\) −3.62677 −0.185805
\(382\) − 7.27380i − 0.372160i
\(383\) 32.9848i 1.68544i 0.538350 + 0.842721i \(0.319048\pi\)
−0.538350 + 0.842721i \(0.680952\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −11.4686 −0.583739
\(387\) − 5.87802i − 0.298797i
\(388\) 15.1483i 0.769040i
\(389\) −11.4919 −0.582663 −0.291332 0.956622i \(-0.594098\pi\)
−0.291332 + 0.956622i \(0.594098\pi\)
\(390\) 0 0
\(391\) 32.0879 1.62276
\(392\) 6.73870i 0.340356i
\(393\) 17.4131i 0.878375i
\(394\) −2.16068 −0.108854
\(395\) 0 0
\(396\) 3.29456 0.165558
\(397\) 4.82958i 0.242390i 0.992629 + 0.121195i \(0.0386726\pi\)
−0.992629 + 0.121195i \(0.961327\pi\)
\(398\) − 7.27998i − 0.364912i
\(399\) −0.191387 −0.00958132
\(400\) 0 0
\(401\) −21.5779 −1.07755 −0.538775 0.842449i \(-0.681113\pi\)
−0.538775 + 0.842449i \(0.681113\pi\)
\(402\) 1.78806i 0.0891802i
\(403\) 4.77774i 0.237996i
\(404\) −5.58091 −0.277661
\(405\) 0 0
\(406\) 1.98858 0.0986916
\(407\) 34.1241i 1.69147i
\(408\) 5.57433i 0.275970i
\(409\) 1.57998 0.0781248 0.0390624 0.999237i \(-0.487563\pi\)
0.0390624 + 0.999237i \(0.487563\pi\)
\(410\) 0 0
\(411\) 19.7230 0.972863
\(412\) 15.1228i 0.745048i
\(413\) 3.90019i 0.191916i
\(414\) 5.75638 0.282910
\(415\) 0 0
\(416\) −2.65418 −0.130132
\(417\) 11.4357i 0.560007i
\(418\) 1.23351i 0.0603330i
\(419\) 36.7568 1.79569 0.897843 0.440316i \(-0.145134\pi\)
0.897843 + 0.440316i \(0.145134\pi\)
\(420\) 0 0
\(421\) 6.96946 0.339671 0.169835 0.985472i \(-0.445676\pi\)
0.169835 + 0.985472i \(0.445676\pi\)
\(422\) 28.7670i 1.40035i
\(423\) 8.19959i 0.398678i
\(424\) 0.518727 0.0251916
\(425\) 0 0
\(426\) −7.27786 −0.352614
\(427\) 1.48416i 0.0718235i
\(428\) − 18.7290i − 0.905302i
\(429\) −8.74435 −0.422181
\(430\) 0 0
\(431\) 25.4098 1.22395 0.611974 0.790878i \(-0.290376\pi\)
0.611974 + 0.790878i \(0.290376\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) 13.4595i 0.646823i 0.946258 + 0.323411i \(0.104830\pi\)
−0.946258 + 0.323411i \(0.895170\pi\)
\(434\) −0.920147 −0.0441685
\(435\) 0 0
\(436\) −18.5221 −0.887049
\(437\) 2.15524i 0.103099i
\(438\) − 1.40995i − 0.0673702i
\(439\) 37.8392 1.80597 0.902983 0.429676i \(-0.141372\pi\)
0.902983 + 0.429676i \(0.141372\pi\)
\(440\) 0 0
\(441\) −6.73870 −0.320891
\(442\) − 14.7953i − 0.703740i
\(443\) − 2.70138i − 0.128346i −0.997939 0.0641731i \(-0.979559\pi\)
0.997939 0.0641731i \(-0.0204410\pi\)
\(444\) −10.3577 −0.491555
\(445\) 0 0
\(446\) 0.662342 0.0313628
\(447\) 20.5095i 0.970068i
\(448\) − 0.511170i − 0.0241505i
\(449\) −18.9478 −0.894200 −0.447100 0.894484i \(-0.647543\pi\)
−0.447100 + 0.894484i \(0.647543\pi\)
\(450\) 0 0
\(451\) 7.70032 0.362594
\(452\) 16.1273i 0.758564i
\(453\) − 6.22542i − 0.292496i
\(454\) −15.5730 −0.730878
\(455\) 0 0
\(456\) −0.374409 −0.0175333
\(457\) − 38.2879i − 1.79103i −0.445028 0.895517i \(-0.646806\pi\)
0.445028 0.895517i \(-0.353194\pi\)
\(458\) − 27.7376i − 1.29610i
\(459\) −5.57433 −0.260187
\(460\) 0 0
\(461\) 17.3427 0.807731 0.403866 0.914818i \(-0.367666\pi\)
0.403866 + 0.914818i \(0.367666\pi\)
\(462\) − 1.68408i − 0.0783505i
\(463\) − 17.6641i − 0.820922i −0.911878 0.410461i \(-0.865368\pi\)
0.911878 0.410461i \(-0.134632\pi\)
\(464\) 3.89025 0.180600
\(465\) 0 0
\(466\) 23.2480 1.07694
\(467\) − 2.88972i − 0.133720i −0.997762 0.0668600i \(-0.978702\pi\)
0.997762 0.0668600i \(-0.0212981\pi\)
\(468\) − 2.65418i − 0.122690i
\(469\) 0.914001 0.0422047
\(470\) 0 0
\(471\) −23.9795 −1.10492
\(472\) 7.62993i 0.351196i
\(473\) 19.3655i 0.890426i
\(474\) −12.1395 −0.557587
\(475\) 0 0
\(476\) 2.84943 0.130603
\(477\) 0.518727i 0.0237509i
\(478\) 5.81933i 0.266170i
\(479\) −27.5859 −1.26043 −0.630216 0.776420i \(-0.717034\pi\)
−0.630216 + 0.776420i \(0.717034\pi\)
\(480\) 0 0
\(481\) 27.4913 1.25349
\(482\) − 14.1483i − 0.644439i
\(483\) − 2.94249i − 0.133888i
\(484\) 0.145898 0.00663173
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 14.9338i 0.676713i 0.941018 + 0.338356i \(0.109871\pi\)
−0.941018 + 0.338356i \(0.890129\pi\)
\(488\) 2.90345i 0.131433i
\(489\) −24.1232 −1.09089
\(490\) 0 0
\(491\) 26.4452 1.19346 0.596728 0.802444i \(-0.296467\pi\)
0.596728 + 0.802444i \(0.296467\pi\)
\(492\) 2.33728i 0.105373i
\(493\) 21.6855i 0.976667i
\(494\) 0.993750 0.0447109
\(495\) 0 0
\(496\) −1.80008 −0.0808260
\(497\) 3.72023i 0.166875i
\(498\) 3.09306i 0.138603i
\(499\) 10.3375 0.462771 0.231386 0.972862i \(-0.425674\pi\)
0.231386 + 0.972862i \(0.425674\pi\)
\(500\) 0 0
\(501\) 5.43441 0.242791
\(502\) − 3.98246i − 0.177746i
\(503\) − 16.9084i − 0.753908i −0.926232 0.376954i \(-0.876971\pi\)
0.926232 0.376954i \(-0.123029\pi\)
\(504\) 0.511170 0.0227693
\(505\) 0 0
\(506\) −18.9647 −0.843084
\(507\) − 5.95532i − 0.264485i
\(508\) 3.62677i 0.160912i
\(509\) −6.48318 −0.287362 −0.143681 0.989624i \(-0.545894\pi\)
−0.143681 + 0.989624i \(0.545894\pi\)
\(510\) 0 0
\(511\) −0.720726 −0.0318831
\(512\) − 1.00000i − 0.0441942i
\(513\) − 0.374409i − 0.0165306i
\(514\) 12.5114 0.551856
\(515\) 0 0
\(516\) −5.87802 −0.258766
\(517\) − 27.0140i − 1.18807i
\(518\) 5.29456i 0.232629i
\(519\) −1.14183 −0.0501208
\(520\) 0 0
\(521\) 21.6371 0.947939 0.473970 0.880541i \(-0.342821\pi\)
0.473970 + 0.880541i \(0.342821\pi\)
\(522\) 3.89025i 0.170272i
\(523\) − 15.6560i − 0.684589i −0.939593 0.342295i \(-0.888796\pi\)
0.939593 0.342295i \(-0.111204\pi\)
\(524\) 17.4131 0.760695
\(525\) 0 0
\(526\) 2.25374 0.0982677
\(527\) − 10.0342i − 0.437098i
\(528\) − 3.29456i − 0.143377i
\(529\) −10.1359 −0.440689
\(530\) 0 0
\(531\) −7.62993 −0.331111
\(532\) 0.191387i 0.00829767i
\(533\) − 6.20358i − 0.268707i
\(534\) 3.42567 0.148243
\(535\) 0 0
\(536\) 1.78806 0.0772323
\(537\) − 15.4030i − 0.664689i
\(538\) 25.4934i 1.09910i
\(539\) 22.2010 0.956267
\(540\) 0 0
\(541\) 14.2839 0.614113 0.307057 0.951691i \(-0.400656\pi\)
0.307057 + 0.951691i \(0.400656\pi\)
\(542\) 19.2503i 0.826872i
\(543\) − 20.5110i − 0.880213i
\(544\) 5.57433 0.238997
\(545\) 0 0
\(546\) −1.35674 −0.0580631
\(547\) 42.8226i 1.83096i 0.402361 + 0.915481i \(0.368190\pi\)
−0.402361 + 0.915481i \(0.631810\pi\)
\(548\) − 19.7230i − 0.842524i
\(549\) −2.90345 −0.123916
\(550\) 0 0
\(551\) −1.45654 −0.0620509
\(552\) − 5.75638i − 0.245008i
\(553\) 6.20536i 0.263879i
\(554\) 7.73948 0.328819
\(555\) 0 0
\(556\) 11.4357 0.484980
\(557\) 14.5543i 0.616688i 0.951275 + 0.308344i \(0.0997747\pi\)
−0.951275 + 0.308344i \(0.900225\pi\)
\(558\) − 1.80008i − 0.0762035i
\(559\) 15.6013 0.659866
\(560\) 0 0
\(561\) 18.3649 0.775368
\(562\) 10.2724i 0.433316i
\(563\) − 4.52778i − 0.190823i −0.995438 0.0954116i \(-0.969583\pi\)
0.995438 0.0954116i \(-0.0304167\pi\)
\(564\) 8.19959 0.345265
\(565\) 0 0
\(566\) −9.86811 −0.414788
\(567\) 0.511170i 0.0214671i
\(568\) 7.27786i 0.305372i
\(569\) −10.0904 −0.423010 −0.211505 0.977377i \(-0.567837\pi\)
−0.211505 + 0.977377i \(0.567837\pi\)
\(570\) 0 0
\(571\) −20.3024 −0.849630 −0.424815 0.905280i \(-0.639661\pi\)
−0.424815 + 0.905280i \(0.639661\pi\)
\(572\) 8.74435i 0.365620i
\(573\) − 7.27380i − 0.303867i
\(574\) 1.19475 0.0498679
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 19.3900i 0.807218i 0.914932 + 0.403609i \(0.132244\pi\)
−0.914932 + 0.403609i \(0.867756\pi\)
\(578\) 14.0731i 0.585366i
\(579\) −11.4686 −0.476621
\(580\) 0 0
\(581\) 1.58108 0.0655942
\(582\) 15.1483i 0.627918i
\(583\) − 1.70898i − 0.0707786i
\(584\) −1.40995 −0.0583443
\(585\) 0 0
\(586\) −3.08103 −0.127276
\(587\) − 43.8857i − 1.81136i −0.423964 0.905679i \(-0.639362\pi\)
0.423964 0.905679i \(-0.360638\pi\)
\(588\) 6.73870i 0.277900i
\(589\) 0.673966 0.0277703
\(590\) 0 0
\(591\) −2.16068 −0.0888786
\(592\) 10.3577i 0.425699i
\(593\) 27.5651i 1.13196i 0.824418 + 0.565981i \(0.191502\pi\)
−0.824418 + 0.565981i \(0.808498\pi\)
\(594\) 3.29456 0.135177
\(595\) 0 0
\(596\) 20.5095 0.840103
\(597\) − 7.27998i − 0.297950i
\(598\) 15.2785i 0.624783i
\(599\) −13.3970 −0.547385 −0.273692 0.961817i \(-0.588245\pi\)
−0.273692 + 0.961817i \(0.588245\pi\)
\(600\) 0 0
\(601\) −32.3401 −1.31918 −0.659590 0.751625i \(-0.729270\pi\)
−0.659590 + 0.751625i \(0.729270\pi\)
\(602\) 3.00467i 0.122461i
\(603\) 1.78806i 0.0728153i
\(604\) −6.22542 −0.253309
\(605\) 0 0
\(606\) −5.58091 −0.226709
\(607\) − 18.7755i − 0.762074i −0.924560 0.381037i \(-0.875567\pi\)
0.924560 0.381037i \(-0.124433\pi\)
\(608\) 0.374409i 0.0151843i
\(609\) 1.98858 0.0805813
\(610\) 0 0
\(611\) −21.7632 −0.880445
\(612\) 5.57433i 0.225329i
\(613\) 5.12696i 0.207076i 0.994625 + 0.103538i \(0.0330164\pi\)
−0.994625 + 0.103538i \(0.966984\pi\)
\(614\) 6.43192 0.259571
\(615\) 0 0
\(616\) −1.68408 −0.0678535
\(617\) 27.9234i 1.12415i 0.827085 + 0.562077i \(0.189998\pi\)
−0.827085 + 0.562077i \(0.810002\pi\)
\(618\) 15.1228i 0.608329i
\(619\) 36.9317 1.48441 0.742205 0.670172i \(-0.233780\pi\)
0.742205 + 0.670172i \(0.233780\pi\)
\(620\) 0 0
\(621\) 5.75638 0.230995
\(622\) − 20.8818i − 0.837282i
\(623\) − 1.75110i − 0.0701564i
\(624\) −2.65418 −0.106252
\(625\) 0 0
\(626\) 11.7245 0.468605
\(627\) 1.23351i 0.0492617i
\(628\) 23.9795i 0.956886i
\(629\) −57.7373 −2.30214
\(630\) 0 0
\(631\) −7.04589 −0.280492 −0.140246 0.990117i \(-0.544789\pi\)
−0.140246 + 0.990117i \(0.544789\pi\)
\(632\) 12.1395i 0.482884i
\(633\) 28.7670i 1.14338i
\(634\) −5.92233 −0.235206
\(635\) 0 0
\(636\) 0.518727 0.0205689
\(637\) − 17.8857i − 0.708659i
\(638\) − 12.8166i − 0.507416i
\(639\) −7.27786 −0.287908
\(640\) 0 0
\(641\) −41.2092 −1.62767 −0.813834 0.581098i \(-0.802623\pi\)
−0.813834 + 0.581098i \(0.802623\pi\)
\(642\) − 18.7290i − 0.739176i
\(643\) − 4.40938i − 0.173889i −0.996213 0.0869444i \(-0.972290\pi\)
0.996213 0.0869444i \(-0.0277103\pi\)
\(644\) −2.94249 −0.115950
\(645\) 0 0
\(646\) −2.08708 −0.0821150
\(647\) 12.8764i 0.506223i 0.967437 + 0.253111i \(0.0814539\pi\)
−0.967437 + 0.253111i \(0.918546\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 25.1372 0.986723
\(650\) 0 0
\(651\) −0.920147 −0.0360634
\(652\) 24.1232i 0.944738i
\(653\) 33.9475i 1.32847i 0.747525 + 0.664234i \(0.231242\pi\)
−0.747525 + 0.664234i \(0.768758\pi\)
\(654\) −18.5221 −0.724273
\(655\) 0 0
\(656\) 2.33728 0.0912556
\(657\) − 1.40995i − 0.0550075i
\(658\) − 4.19139i − 0.163397i
\(659\) 12.6089 0.491171 0.245586 0.969375i \(-0.421020\pi\)
0.245586 + 0.969375i \(0.421020\pi\)
\(660\) 0 0
\(661\) 14.6188 0.568607 0.284304 0.958734i \(-0.408238\pi\)
0.284304 + 0.958734i \(0.408238\pi\)
\(662\) − 27.3753i − 1.06397i
\(663\) − 14.7953i − 0.574601i
\(664\) 3.09306 0.120034
\(665\) 0 0
\(666\) −10.3577 −0.401353
\(667\) − 22.3937i − 0.867089i
\(668\) − 5.43441i − 0.210264i
\(669\) 0.662342 0.0256076
\(670\) 0 0
\(671\) 9.56559 0.369276
\(672\) − 0.511170i − 0.0197188i
\(673\) − 13.4341i − 0.517847i −0.965898 0.258924i \(-0.916632\pi\)
0.965898 0.258924i \(-0.0833678\pi\)
\(674\) 5.86677 0.225980
\(675\) 0 0
\(676\) −5.95532 −0.229051
\(677\) 31.9199i 1.22678i 0.789780 + 0.613391i \(0.210195\pi\)
−0.789780 + 0.613391i \(0.789805\pi\)
\(678\) 16.1273i 0.619365i
\(679\) 7.74338 0.297163
\(680\) 0 0
\(681\) −15.5730 −0.596760
\(682\) 5.93046i 0.227089i
\(683\) 19.0698i 0.729685i 0.931069 + 0.364842i \(0.118877\pi\)
−0.931069 + 0.364842i \(0.881123\pi\)
\(684\) −0.374409 −0.0143159
\(685\) 0 0
\(686\) 7.02282 0.268132
\(687\) − 27.7376i − 1.05826i
\(688\) 5.87802i 0.224098i
\(689\) −1.37680 −0.0524518
\(690\) 0 0
\(691\) 21.5074 0.818181 0.409091 0.912494i \(-0.365846\pi\)
0.409091 + 0.912494i \(0.365846\pi\)
\(692\) 1.14183i 0.0434059i
\(693\) − 1.68408i − 0.0639729i
\(694\) −11.8634 −0.450330
\(695\) 0 0
\(696\) 3.89025 0.147460
\(697\) 13.0288i 0.493501i
\(698\) 28.3391i 1.07265i
\(699\) 23.2480 0.879320
\(700\) 0 0
\(701\) −5.65381 −0.213541 −0.106771 0.994284i \(-0.534051\pi\)
−0.106771 + 0.994284i \(0.534051\pi\)
\(702\) − 2.65418i − 0.100176i
\(703\) − 3.87802i − 0.146262i
\(704\) −3.29456 −0.124168
\(705\) 0 0
\(706\) 5.83404 0.219567
\(707\) 2.85280i 0.107290i
\(708\) 7.62993i 0.286750i
\(709\) −43.7198 −1.64193 −0.820967 0.570976i \(-0.806565\pi\)
−0.820967 + 0.570976i \(0.806565\pi\)
\(710\) 0 0
\(711\) −12.1395 −0.455268
\(712\) − 3.42567i − 0.128382i
\(713\) 10.3619i 0.388058i
\(714\) 2.84943 0.106637
\(715\) 0 0
\(716\) −15.4030 −0.575637
\(717\) 5.81933i 0.217327i
\(718\) 9.94932i 0.371305i
\(719\) 8.09200 0.301781 0.150890 0.988551i \(-0.451786\pi\)
0.150890 + 0.988551i \(0.451786\pi\)
\(720\) 0 0
\(721\) 7.73034 0.287893
\(722\) 18.8598i 0.701890i
\(723\) − 14.1483i − 0.526182i
\(724\) −20.5110 −0.762287
\(725\) 0 0
\(726\) 0.145898 0.00541478
\(727\) 47.3889i 1.75756i 0.477228 + 0.878779i \(0.341641\pi\)
−0.477228 + 0.878779i \(0.658359\pi\)
\(728\) 1.35674i 0.0502841i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −32.7660 −1.21190
\(732\) 2.90345i 0.107315i
\(733\) 14.6145i 0.539801i 0.962888 + 0.269900i \(0.0869907\pi\)
−0.962888 + 0.269900i \(0.913009\pi\)
\(734\) −16.2990 −0.601608
\(735\) 0 0
\(736\) −5.75638 −0.212183
\(737\) − 5.89085i − 0.216992i
\(738\) 2.33728i 0.0860366i
\(739\) 12.1592 0.447283 0.223641 0.974672i \(-0.428206\pi\)
0.223641 + 0.974672i \(0.428206\pi\)
\(740\) 0 0
\(741\) 0.993750 0.0365063
\(742\) − 0.265158i − 0.00973426i
\(743\) 50.5368i 1.85402i 0.375041 + 0.927008i \(0.377629\pi\)
−0.375041 + 0.927008i \(0.622371\pi\)
\(744\) −1.80008 −0.0659941
\(745\) 0 0
\(746\) −8.85626 −0.324251
\(747\) 3.09306i 0.113169i
\(748\) − 18.3649i − 0.671489i
\(749\) −9.57373 −0.349816
\(750\) 0 0
\(751\) 33.9598 1.23921 0.619605 0.784914i \(-0.287293\pi\)
0.619605 + 0.784914i \(0.287293\pi\)
\(752\) − 8.19959i − 0.299008i
\(753\) − 3.98246i − 0.145129i
\(754\) −10.3254 −0.376030
\(755\) 0 0
\(756\) 0.511170 0.0185911
\(757\) − 47.9954i − 1.74442i −0.489130 0.872211i \(-0.662685\pi\)
0.489130 0.872211i \(-0.337315\pi\)
\(758\) − 14.1431i − 0.513699i
\(759\) −18.9647 −0.688375
\(760\) 0 0
\(761\) 27.6622 1.00275 0.501377 0.865229i \(-0.332827\pi\)
0.501377 + 0.865229i \(0.332827\pi\)
\(762\) 3.62677i 0.131384i
\(763\) 9.46796i 0.342763i
\(764\) −7.27380 −0.263157
\(765\) 0 0
\(766\) 32.9848 1.19179
\(767\) − 20.2512i − 0.731229i
\(768\) − 1.00000i − 0.0360844i
\(769\) 15.0664 0.543310 0.271655 0.962395i \(-0.412429\pi\)
0.271655 + 0.962395i \(0.412429\pi\)
\(770\) 0 0
\(771\) 12.5114 0.450589
\(772\) 11.4686i 0.412766i
\(773\) 29.4391i 1.05885i 0.848356 + 0.529426i \(0.177593\pi\)
−0.848356 + 0.529426i \(0.822407\pi\)
\(774\) −5.87802 −0.211281
\(775\) 0 0
\(776\) 15.1483 0.543793
\(777\) 5.29456i 0.189941i
\(778\) 11.4919i 0.412005i
\(779\) −0.875101 −0.0313537
\(780\) 0 0
\(781\) 23.9773 0.857976
\(782\) − 32.0879i − 1.14746i
\(783\) 3.89025i 0.139026i
\(784\) 6.73870 0.240668
\(785\) 0 0
\(786\) 17.4131 0.621105
\(787\) − 17.7230i − 0.631756i −0.948800 0.315878i \(-0.897701\pi\)
0.948800 0.315878i \(-0.102299\pi\)
\(788\) 2.16068i 0.0769711i
\(789\) 2.25374 0.0802352
\(790\) 0 0
\(791\) 8.24379 0.293116
\(792\) − 3.29456i − 0.117067i
\(793\) − 7.70629i − 0.273659i
\(794\) 4.82958 0.171395
\(795\) 0 0
\(796\) −7.27998 −0.258032
\(797\) − 24.6949i − 0.874737i −0.899282 0.437368i \(-0.855911\pi\)
0.899282 0.437368i \(-0.144089\pi\)
\(798\) 0.191387i 0.00677502i
\(799\) 45.7072 1.61700
\(800\) 0 0
\(801\) 3.42567 0.121040
\(802\) 21.5779i 0.761944i
\(803\) 4.64517i 0.163925i
\(804\) 1.78806 0.0630599
\(805\) 0 0
\(806\) 4.77774 0.168289
\(807\) 25.4934i 0.897409i
\(808\) 5.58091i 0.196336i
\(809\) 16.4366 0.577879 0.288939 0.957347i \(-0.406697\pi\)
0.288939 + 0.957347i \(0.406697\pi\)
\(810\) 0 0
\(811\) −12.9773 −0.455696 −0.227848 0.973697i \(-0.573169\pi\)
−0.227848 + 0.973697i \(0.573169\pi\)
\(812\) − 1.98858i − 0.0697855i
\(813\) 19.2503i 0.675138i
\(814\) 34.1241 1.19605
\(815\) 0 0
\(816\) 5.57433 0.195141
\(817\) − 2.20078i − 0.0769957i
\(818\) − 1.57998i − 0.0552426i
\(819\) −1.35674 −0.0474083
\(820\) 0 0
\(821\) −31.7784 −1.10907 −0.554537 0.832159i \(-0.687105\pi\)
−0.554537 + 0.832159i \(0.687105\pi\)
\(822\) − 19.7230i − 0.687918i
\(823\) 38.3742i 1.33764i 0.743425 + 0.668820i \(0.233200\pi\)
−0.743425 + 0.668820i \(0.766800\pi\)
\(824\) 15.1228 0.526829
\(825\) 0 0
\(826\) 3.90019 0.135705
\(827\) − 23.0395i − 0.801162i −0.916261 0.400581i \(-0.868808\pi\)
0.916261 0.400581i \(-0.131192\pi\)
\(828\) − 5.75638i − 0.200048i
\(829\) 17.5852 0.610758 0.305379 0.952231i \(-0.401217\pi\)
0.305379 + 0.952231i \(0.401217\pi\)
\(830\) 0 0
\(831\) 7.73948 0.268479
\(832\) 2.65418i 0.0920172i
\(833\) 37.5638i 1.30151i
\(834\) 11.4357 0.395984
\(835\) 0 0
\(836\) 1.23351 0.0426619
\(837\) − 1.80008i − 0.0622199i
\(838\) − 36.7568i − 1.26974i
\(839\) 44.0619 1.52119 0.760593 0.649229i \(-0.224908\pi\)
0.760593 + 0.649229i \(0.224908\pi\)
\(840\) 0 0
\(841\) −13.8660 −0.478136
\(842\) − 6.96946i − 0.240183i
\(843\) 10.2724i 0.353801i
\(844\) 28.7670 0.990200
\(845\) 0 0
\(846\) 8.19959 0.281908
\(847\) − 0.0745787i − 0.00256256i
\(848\) − 0.518727i − 0.0178132i
\(849\) −9.86811 −0.338673
\(850\) 0 0
\(851\) 59.6229 2.04385
\(852\) 7.27786i 0.249335i
\(853\) 38.1231i 1.30531i 0.757656 + 0.652655i \(0.226345\pi\)
−0.757656 + 0.652655i \(0.773655\pi\)
\(854\) 1.48416 0.0507869
\(855\) 0 0
\(856\) −18.7290 −0.640145
\(857\) − 40.2837i − 1.37607i −0.725679 0.688033i \(-0.758474\pi\)
0.725679 0.688033i \(-0.241526\pi\)
\(858\) 8.74435i 0.298527i
\(859\) 16.9314 0.577691 0.288845 0.957376i \(-0.406729\pi\)
0.288845 + 0.957376i \(0.406729\pi\)
\(860\) 0 0
\(861\) 1.19475 0.0407170
\(862\) − 25.4098i − 0.865462i
\(863\) 38.3696i 1.30612i 0.757308 + 0.653058i \(0.226514\pi\)
−0.757308 + 0.653058i \(0.773486\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) 13.4595 0.457373
\(867\) 14.0731i 0.477949i
\(868\) 0.920147i 0.0312318i
\(869\) 39.9943 1.35672
\(870\) 0 0
\(871\) −4.74583 −0.160806
\(872\) 18.5221i 0.627239i
\(873\) 15.1483i 0.512693i
\(874\) 2.15524 0.0729020
\(875\) 0 0
\(876\) −1.40995 −0.0476379
\(877\) 9.59661i 0.324055i 0.986786 + 0.162027i \(0.0518033\pi\)
−0.986786 + 0.162027i \(0.948197\pi\)
\(878\) − 37.8392i − 1.27701i
\(879\) −3.08103 −0.103921
\(880\) 0 0
\(881\) 21.0921 0.710610 0.355305 0.934750i \(-0.384377\pi\)
0.355305 + 0.934750i \(0.384377\pi\)
\(882\) 6.73870i 0.226904i
\(883\) 1.26807i 0.0426740i 0.999772 + 0.0213370i \(0.00679229\pi\)
−0.999772 + 0.0213370i \(0.993208\pi\)
\(884\) −14.7953 −0.497619
\(885\) 0 0
\(886\) −2.70138 −0.0907545
\(887\) − 3.50065i − 0.117540i −0.998272 0.0587701i \(-0.981282\pi\)
0.998272 0.0587701i \(-0.0187179\pi\)
\(888\) 10.3577i 0.347582i
\(889\) 1.85390 0.0621777
\(890\) 0 0
\(891\) 3.29456 0.110372
\(892\) − 0.662342i − 0.0221769i
\(893\) 3.07000i 0.102734i
\(894\) 20.5095 0.685941
\(895\) 0 0
\(896\) −0.511170 −0.0170770
\(897\) 15.2785i 0.510133i
\(898\) 18.9478i 0.632295i
\(899\) −7.00276 −0.233555
\(900\) 0 0
\(901\) 2.89156 0.0963317
\(902\) − 7.70032i − 0.256393i
\(903\) 3.00467i 0.0999892i
\(904\) 16.1273 0.536386
\(905\) 0 0
\(906\) −6.22542 −0.206826
\(907\) − 20.2610i − 0.672757i −0.941727 0.336378i \(-0.890798\pi\)
0.941727 0.336378i \(-0.109202\pi\)
\(908\) 15.5730i 0.516809i
\(909\) −5.58091 −0.185107
\(910\) 0 0
\(911\) −5.90220 −0.195549 −0.0977744 0.995209i \(-0.531172\pi\)
−0.0977744 + 0.995209i \(0.531172\pi\)
\(912\) 0.374409i 0.0123979i
\(913\) − 10.1902i − 0.337248i
\(914\) −38.2879 −1.26645
\(915\) 0 0
\(916\) −27.7376 −0.916478
\(917\) − 8.90107i − 0.293939i
\(918\) 5.57433i 0.183980i
\(919\) 45.3645 1.49644 0.748219 0.663452i \(-0.230909\pi\)
0.748219 + 0.663452i \(0.230909\pi\)
\(920\) 0 0
\(921\) 6.43192 0.211939
\(922\) − 17.3427i − 0.571152i
\(923\) − 19.3168i − 0.635819i
\(924\) −1.68408 −0.0554021
\(925\) 0 0
\(926\) −17.6641 −0.580479
\(927\) 15.1228i 0.496699i
\(928\) − 3.89025i − 0.127704i
\(929\) −46.2829 −1.51849 −0.759247 0.650803i \(-0.774432\pi\)
−0.759247 + 0.650803i \(0.774432\pi\)
\(930\) 0 0
\(931\) −2.52303 −0.0826890
\(932\) − 23.2480i − 0.761514i
\(933\) − 20.8818i − 0.683638i
\(934\) −2.88972 −0.0945544
\(935\) 0 0
\(936\) −2.65418 −0.0867546
\(937\) 21.2179i 0.693158i 0.938021 + 0.346579i \(0.112657\pi\)
−0.938021 + 0.346579i \(0.887343\pi\)
\(938\) − 0.914001i − 0.0298432i
\(939\) 11.7245 0.382615
\(940\) 0 0
\(941\) −43.4850 −1.41757 −0.708784 0.705425i \(-0.750756\pi\)
−0.708784 + 0.705425i \(0.750756\pi\)
\(942\) 23.9795i 0.781294i
\(943\) − 13.4543i − 0.438132i
\(944\) 7.62993 0.248333
\(945\) 0 0
\(946\) 19.3655 0.629626
\(947\) − 34.6211i − 1.12504i −0.826785 0.562518i \(-0.809833\pi\)
0.826785 0.562518i \(-0.190167\pi\)
\(948\) 12.1395i 0.394273i
\(949\) 3.74227 0.121479
\(950\) 0 0
\(951\) −5.92233 −0.192045
\(952\) − 2.84943i − 0.0923506i
\(953\) 21.1695i 0.685747i 0.939382 + 0.342874i \(0.111400\pi\)
−0.939382 + 0.342874i \(0.888600\pi\)
\(954\) 0.518727 0.0167944
\(955\) 0 0
\(956\) 5.81933 0.188211
\(957\) − 12.8166i − 0.414303i
\(958\) 27.5859i 0.891260i
\(959\) −10.0818 −0.325558
\(960\) 0 0
\(961\) −27.7597 −0.895475
\(962\) − 27.4913i − 0.886354i
\(963\) − 18.7290i − 0.603535i
\(964\) −14.1483 −0.455687
\(965\) 0 0
\(966\) −2.94249 −0.0946730
\(967\) 43.1011i 1.38604i 0.720919 + 0.693020i \(0.243720\pi\)
−0.720919 + 0.693020i \(0.756280\pi\)
\(968\) − 0.145898i − 0.00468934i
\(969\) −2.08708 −0.0670466
\(970\) 0 0
\(971\) −32.5128 −1.04338 −0.521692 0.853134i \(-0.674699\pi\)
−0.521692 + 0.853134i \(0.674699\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) − 5.84557i − 0.187400i
\(974\) 14.9338 0.478508
\(975\) 0 0
\(976\) 2.90345 0.0929373
\(977\) 56.2425i 1.79936i 0.436552 + 0.899679i \(0.356200\pi\)
−0.436552 + 0.899679i \(0.643800\pi\)
\(978\) 24.1232i 0.771376i
\(979\) −11.2861 −0.360704
\(980\) 0 0
\(981\) −18.5221 −0.591366
\(982\) − 26.4452i − 0.843900i
\(983\) − 31.7227i − 1.01180i −0.862593 0.505898i \(-0.831161\pi\)
0.862593 0.505898i \(-0.168839\pi\)
\(984\) 2.33728 0.0745099
\(985\) 0 0
\(986\) 21.6855 0.690608
\(987\) − 4.19139i − 0.133413i
\(988\) − 0.993750i − 0.0316154i
\(989\) 33.8361 1.07593
\(990\) 0 0
\(991\) 15.6911 0.498445 0.249222 0.968446i \(-0.419825\pi\)
0.249222 + 0.968446i \(0.419825\pi\)
\(992\) 1.80008i 0.0571526i
\(993\) − 27.3753i − 0.868728i
\(994\) 3.72023 0.117998
\(995\) 0 0
\(996\) 3.09306 0.0980072
\(997\) 34.2809i 1.08569i 0.839834 + 0.542843i \(0.182652\pi\)
−0.839834 + 0.542843i \(0.817348\pi\)
\(998\) − 10.3375i − 0.327229i
\(999\) −10.3577 −0.327704
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3750.2.c.g.1249.3 8
5.2 odd 4 3750.2.a.p.1.2 yes 4
5.3 odd 4 3750.2.a.n.1.3 4
5.4 even 2 inner 3750.2.c.g.1249.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3750.2.a.n.1.3 4 5.3 odd 4
3750.2.a.p.1.2 yes 4 5.2 odd 4
3750.2.c.g.1249.3 8 1.1 even 1 trivial
3750.2.c.g.1249.6 8 5.4 even 2 inner