Properties

Label 3762.2.g.l.2089.13
Level $3762$
Weight $2$
Character 3762.2089
Analytic conductor $30.040$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3762,2,Mod(2089,3762)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3762, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3762.2089");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3762.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.0397212404\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 2 x^{18} + 199 x^{16} - 414 x^{15} + 430 x^{14} + 184 x^{13} + 6939 x^{12} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 1254)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2089.13
Root \(-0.196118 + 0.196118i\) of defining polynomial
Character \(\chi\) \(=\) 3762.2089
Dual form 3762.2.g.l.2089.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.28096 q^{5} -0.392237i q^{7} +1.00000 q^{8} +1.28096 q^{10} +(-3.22665 - 0.767284i) q^{11} -4.16029 q^{13} -0.392237i q^{14} +1.00000 q^{16} +7.31859i q^{17} +(3.16426 + 2.99791i) q^{19} +1.28096 q^{20} +(-3.22665 - 0.767284i) q^{22} -7.62219 q^{23} -3.35913 q^{25} -4.16029 q^{26} -0.392237i q^{28} -3.00432 q^{29} +2.68525i q^{31} +1.00000 q^{32} +7.31859i q^{34} -0.502441i q^{35} +9.08665i q^{37} +(3.16426 + 2.99791i) q^{38} +1.28096 q^{40} +0.825668 q^{41} -5.57398i q^{43} +(-3.22665 - 0.767284i) q^{44} -7.62219 q^{46} -9.65646 q^{47} +6.84615 q^{49} -3.35913 q^{50} -4.16029 q^{52} +4.43450i q^{53} +(-4.13322 - 0.982862i) q^{55} -0.392237i q^{56} -3.00432 q^{58} +6.49403i q^{59} -4.87403i q^{61} +2.68525i q^{62} +1.00000 q^{64} -5.32918 q^{65} +14.6118i q^{67} +7.31859i q^{68} -0.502441i q^{70} -8.75634i q^{71} +10.3074i q^{73} +9.08665i q^{74} +(3.16426 + 2.99791i) q^{76} +(-0.300957 + 1.26561i) q^{77} +15.4604 q^{79} +1.28096 q^{80} +0.825668 q^{82} -6.29838i q^{83} +9.37485i q^{85} -5.57398i q^{86} +(-3.22665 - 0.767284i) q^{88} +4.35469i q^{89} +1.63182i q^{91} -7.62219 q^{92} -9.65646 q^{94} +(4.05330 + 3.84021i) q^{95} -6.18155i q^{97} +6.84615 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{2} + 20 q^{4} - 4 q^{5} + 20 q^{8} - 4 q^{10} - 6 q^{11} + 4 q^{13} + 20 q^{16} + 2 q^{19} - 4 q^{20} - 6 q^{22} + 8 q^{23} + 32 q^{25} + 4 q^{26} - 4 q^{29} + 20 q^{32} + 2 q^{38} - 4 q^{40}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3762\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(2377\) \(2927\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.28096 0.572864 0.286432 0.958101i \(-0.407531\pi\)
0.286432 + 0.958101i \(0.407531\pi\)
\(6\) 0 0
\(7\) 0.392237i 0.148252i −0.997249 0.0741258i \(-0.976383\pi\)
0.997249 0.0741258i \(-0.0236166\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.28096 0.405076
\(11\) −3.22665 0.767284i −0.972872 0.231345i
\(12\) 0 0
\(13\) −4.16029 −1.15386 −0.576928 0.816795i \(-0.695749\pi\)
−0.576928 + 0.816795i \(0.695749\pi\)
\(14\) 0.392237i 0.104830i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 7.31859i 1.77502i 0.460789 + 0.887510i \(0.347566\pi\)
−0.460789 + 0.887510i \(0.652434\pi\)
\(18\) 0 0
\(19\) 3.16426 + 2.99791i 0.725931 + 0.687767i
\(20\) 1.28096 0.286432
\(21\) 0 0
\(22\) −3.22665 0.767284i −0.687924 0.163585i
\(23\) −7.62219 −1.58934 −0.794668 0.607044i \(-0.792355\pi\)
−0.794668 + 0.607044i \(0.792355\pi\)
\(24\) 0 0
\(25\) −3.35913 −0.671827
\(26\) −4.16029 −0.815900
\(27\) 0 0
\(28\) 0.392237i 0.0741258i
\(29\) −3.00432 −0.557888 −0.278944 0.960307i \(-0.589984\pi\)
−0.278944 + 0.960307i \(0.589984\pi\)
\(30\) 0 0
\(31\) 2.68525i 0.482285i 0.970490 + 0.241142i \(0.0775221\pi\)
−0.970490 + 0.241142i \(0.922478\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 7.31859i 1.25513i
\(35\) 0.502441i 0.0849280i
\(36\) 0 0
\(37\) 9.08665i 1.49384i 0.664917 + 0.746918i \(0.268467\pi\)
−0.664917 + 0.746918i \(0.731533\pi\)
\(38\) 3.16426 + 2.99791i 0.513311 + 0.486325i
\(39\) 0 0
\(40\) 1.28096 0.202538
\(41\) 0.825668 0.128948 0.0644739 0.997919i \(-0.479463\pi\)
0.0644739 + 0.997919i \(0.479463\pi\)
\(42\) 0 0
\(43\) 5.57398i 0.850023i −0.905188 0.425012i \(-0.860270\pi\)
0.905188 0.425012i \(-0.139730\pi\)
\(44\) −3.22665 0.767284i −0.486436 0.115672i
\(45\) 0 0
\(46\) −7.62219 −1.12383
\(47\) −9.65646 −1.40854 −0.704270 0.709932i \(-0.748726\pi\)
−0.704270 + 0.709932i \(0.748726\pi\)
\(48\) 0 0
\(49\) 6.84615 0.978021
\(50\) −3.35913 −0.475053
\(51\) 0 0
\(52\) −4.16029 −0.576928
\(53\) 4.43450i 0.609125i 0.952492 + 0.304563i \(0.0985103\pi\)
−0.952492 + 0.304563i \(0.901490\pi\)
\(54\) 0 0
\(55\) −4.13322 0.982862i −0.557323 0.132529i
\(56\) 0.392237i 0.0524149i
\(57\) 0 0
\(58\) −3.00432 −0.394486
\(59\) 6.49403i 0.845450i 0.906258 + 0.422725i \(0.138926\pi\)
−0.906258 + 0.422725i \(0.861074\pi\)
\(60\) 0 0
\(61\) 4.87403i 0.624056i −0.950073 0.312028i \(-0.898992\pi\)
0.950073 0.312028i \(-0.101008\pi\)
\(62\) 2.68525i 0.341027i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −5.32918 −0.661003
\(66\) 0 0
\(67\) 14.6118i 1.78512i 0.450932 + 0.892559i \(0.351092\pi\)
−0.450932 + 0.892559i \(0.648908\pi\)
\(68\) 7.31859i 0.887510i
\(69\) 0 0
\(70\) 0.502441i 0.0600532i
\(71\) 8.75634i 1.03919i −0.854414 0.519593i \(-0.826083\pi\)
0.854414 0.519593i \(-0.173917\pi\)
\(72\) 0 0
\(73\) 10.3074i 1.20639i 0.797594 + 0.603195i \(0.206106\pi\)
−0.797594 + 0.603195i \(0.793894\pi\)
\(74\) 9.08665i 1.05630i
\(75\) 0 0
\(76\) 3.16426 + 2.99791i 0.362966 + 0.343884i
\(77\) −0.300957 + 1.26561i −0.0342972 + 0.144230i
\(78\) 0 0
\(79\) 15.4604 1.73943 0.869713 0.493558i \(-0.164304\pi\)
0.869713 + 0.493558i \(0.164304\pi\)
\(80\) 1.28096 0.143216
\(81\) 0 0
\(82\) 0.825668 0.0911798
\(83\) 6.29838i 0.691337i −0.938357 0.345669i \(-0.887652\pi\)
0.938357 0.345669i \(-0.112348\pi\)
\(84\) 0 0
\(85\) 9.37485i 1.01685i
\(86\) 5.57398i 0.601057i
\(87\) 0 0
\(88\) −3.22665 0.767284i −0.343962 0.0817927i
\(89\) 4.35469i 0.461596i 0.973002 + 0.230798i \(0.0741337\pi\)
−0.973002 + 0.230798i \(0.925866\pi\)
\(90\) 0 0
\(91\) 1.63182i 0.171061i
\(92\) −7.62219 −0.794668
\(93\) 0 0
\(94\) −9.65646 −0.995988
\(95\) 4.05330 + 3.84021i 0.415860 + 0.393997i
\(96\) 0 0
\(97\) 6.18155i 0.627641i −0.949482 0.313821i \(-0.898391\pi\)
0.949482 0.313821i \(-0.101609\pi\)
\(98\) 6.84615 0.691566
\(99\) 0 0
\(100\) −3.35913 −0.335913
\(101\) 16.5100i 1.64281i −0.570349 0.821403i \(-0.693192\pi\)
0.570349 0.821403i \(-0.306808\pi\)
\(102\) 0 0
\(103\) 5.61416i 0.553180i −0.960988 0.276590i \(-0.910796\pi\)
0.960988 0.276590i \(-0.0892043\pi\)
\(104\) −4.16029 −0.407950
\(105\) 0 0
\(106\) 4.43450i 0.430717i
\(107\) 2.31418 0.223720 0.111860 0.993724i \(-0.464319\pi\)
0.111860 + 0.993724i \(0.464319\pi\)
\(108\) 0 0
\(109\) 14.1894 1.35910 0.679548 0.733631i \(-0.262176\pi\)
0.679548 + 0.733631i \(0.262176\pi\)
\(110\) −4.13322 0.982862i −0.394087 0.0937123i
\(111\) 0 0
\(112\) 0.392237i 0.0370629i
\(113\) 8.73342i 0.821571i 0.911732 + 0.410786i \(0.134746\pi\)
−0.911732 + 0.410786i \(0.865254\pi\)
\(114\) 0 0
\(115\) −9.76374 −0.910474
\(116\) −3.00432 −0.278944
\(117\) 0 0
\(118\) 6.49403i 0.597824i
\(119\) 2.87062 0.263149
\(120\) 0 0
\(121\) 9.82255 + 4.95151i 0.892959 + 0.450138i
\(122\) 4.87403i 0.441274i
\(123\) 0 0
\(124\) 2.68525i 0.241142i
\(125\) −10.7077 −0.957730
\(126\) 0 0
\(127\) −11.8120 −1.04815 −0.524073 0.851674i \(-0.675588\pi\)
−0.524073 + 0.851674i \(0.675588\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −5.32918 −0.467400
\(131\) 6.40399i 0.559519i −0.960070 0.279760i \(-0.909745\pi\)
0.960070 0.279760i \(-0.0902548\pi\)
\(132\) 0 0
\(133\) 1.17589 1.24114i 0.101963 0.107621i
\(134\) 14.6118i 1.26227i
\(135\) 0 0
\(136\) 7.31859i 0.627564i
\(137\) −10.5157 −0.898416 −0.449208 0.893427i \(-0.648294\pi\)
−0.449208 + 0.893427i \(0.648294\pi\)
\(138\) 0 0
\(139\) 9.62814i 0.816648i 0.912837 + 0.408324i \(0.133887\pi\)
−0.912837 + 0.408324i \(0.866113\pi\)
\(140\) 0.502441i 0.0424640i
\(141\) 0 0
\(142\) 8.75634i 0.734816i
\(143\) 13.4238 + 3.19212i 1.12255 + 0.266939i
\(144\) 0 0
\(145\) −3.84842 −0.319594
\(146\) 10.3074i 0.853046i
\(147\) 0 0
\(148\) 9.08665i 0.746918i
\(149\) 1.79326i 0.146910i 0.997299 + 0.0734549i \(0.0234025\pi\)
−0.997299 + 0.0734549i \(0.976598\pi\)
\(150\) 0 0
\(151\) 19.0044 1.54656 0.773280 0.634065i \(-0.218615\pi\)
0.773280 + 0.634065i \(0.218615\pi\)
\(152\) 3.16426 + 2.99791i 0.256656 + 0.243162i
\(153\) 0 0
\(154\) −0.300957 + 1.26561i −0.0242518 + 0.101986i
\(155\) 3.43971i 0.276284i
\(156\) 0 0
\(157\) 7.84764 0.626310 0.313155 0.949702i \(-0.398614\pi\)
0.313155 + 0.949702i \(0.398614\pi\)
\(158\) 15.4604 1.22996
\(159\) 0 0
\(160\) 1.28096 0.101269
\(161\) 2.98970i 0.235622i
\(162\) 0 0
\(163\) −14.6344 −1.14625 −0.573127 0.819467i \(-0.694270\pi\)
−0.573127 + 0.819467i \(0.694270\pi\)
\(164\) 0.825668 0.0644739
\(165\) 0 0
\(166\) 6.29838i 0.488849i
\(167\) −17.8960 −1.38484 −0.692418 0.721497i \(-0.743455\pi\)
−0.692418 + 0.721497i \(0.743455\pi\)
\(168\) 0 0
\(169\) 4.30801 0.331385
\(170\) 9.37485i 0.719018i
\(171\) 0 0
\(172\) 5.57398i 0.425012i
\(173\) −7.95773 −0.605015 −0.302507 0.953147i \(-0.597824\pi\)
−0.302507 + 0.953147i \(0.597824\pi\)
\(174\) 0 0
\(175\) 1.31758i 0.0995994i
\(176\) −3.22665 0.767284i −0.243218 0.0578362i
\(177\) 0 0
\(178\) 4.35469i 0.326398i
\(179\) 2.64141i 0.197428i 0.995116 + 0.0987139i \(0.0314729\pi\)
−0.995116 + 0.0987139i \(0.968527\pi\)
\(180\) 0 0
\(181\) 7.86248i 0.584414i −0.956355 0.292207i \(-0.905610\pi\)
0.956355 0.292207i \(-0.0943895\pi\)
\(182\) 1.63182i 0.120958i
\(183\) 0 0
\(184\) −7.62219 −0.561915
\(185\) 11.6397i 0.855765i
\(186\) 0 0
\(187\) 5.61544 23.6145i 0.410642 1.72687i
\(188\) −9.65646 −0.704270
\(189\) 0 0
\(190\) 4.05330 + 3.84021i 0.294057 + 0.278598i
\(191\) −4.82045 −0.348796 −0.174398 0.984675i \(-0.555798\pi\)
−0.174398 + 0.984675i \(0.555798\pi\)
\(192\) 0 0
\(193\) −1.00099 −0.0720527 −0.0360263 0.999351i \(-0.511470\pi\)
−0.0360263 + 0.999351i \(0.511470\pi\)
\(194\) 6.18155i 0.443809i
\(195\) 0 0
\(196\) 6.84615 0.489011
\(197\) 14.3961i 1.02568i −0.858485 0.512839i \(-0.828594\pi\)
0.858485 0.512839i \(-0.171406\pi\)
\(198\) 0 0
\(199\) 9.58482 0.679450 0.339725 0.940525i \(-0.389666\pi\)
0.339725 + 0.940525i \(0.389666\pi\)
\(200\) −3.35913 −0.237527
\(201\) 0 0
\(202\) 16.5100i 1.16164i
\(203\) 1.17840i 0.0827078i
\(204\) 0 0
\(205\) 1.05765 0.0738695
\(206\) 5.61416i 0.391157i
\(207\) 0 0
\(208\) −4.16029 −0.288464
\(209\) −7.90972 12.1011i −0.547127 0.837050i
\(210\) 0 0
\(211\) −6.83304 −0.470406 −0.235203 0.971946i \(-0.575575\pi\)
−0.235203 + 0.971946i \(0.575575\pi\)
\(212\) 4.43450i 0.304563i
\(213\) 0 0
\(214\) 2.31418 0.158194
\(215\) 7.14006i 0.486948i
\(216\) 0 0
\(217\) 1.05325 0.0714995
\(218\) 14.1894 0.961025
\(219\) 0 0
\(220\) −4.13322 0.982862i −0.278662 0.0662646i
\(221\) 30.4475i 2.04812i
\(222\) 0 0
\(223\) 29.3935i 1.96834i −0.177239 0.984168i \(-0.556716\pi\)
0.177239 0.984168i \(-0.443284\pi\)
\(224\) 0.392237i 0.0262074i
\(225\) 0 0
\(226\) 8.73342i 0.580939i
\(227\) 24.3018 1.61297 0.806485 0.591255i \(-0.201367\pi\)
0.806485 + 0.591255i \(0.201367\pi\)
\(228\) 0 0
\(229\) −19.5240 −1.29018 −0.645090 0.764106i \(-0.723180\pi\)
−0.645090 + 0.764106i \(0.723180\pi\)
\(230\) −9.76374 −0.643802
\(231\) 0 0
\(232\) −3.00432 −0.197243
\(233\) 9.93903i 0.651127i 0.945520 + 0.325564i \(0.105554\pi\)
−0.945520 + 0.325564i \(0.894446\pi\)
\(234\) 0 0
\(235\) −12.3696 −0.806902
\(236\) 6.49403i 0.422725i
\(237\) 0 0
\(238\) 2.87062 0.186075
\(239\) 4.70511i 0.304348i 0.988354 + 0.152174i \(0.0486274\pi\)
−0.988354 + 0.152174i \(0.951373\pi\)
\(240\) 0 0
\(241\) −18.6944 −1.20421 −0.602107 0.798415i \(-0.705672\pi\)
−0.602107 + 0.798415i \(0.705672\pi\)
\(242\) 9.82255 + 4.95151i 0.631417 + 0.318295i
\(243\) 0 0
\(244\) 4.87403i 0.312028i
\(245\) 8.76967 0.560273
\(246\) 0 0
\(247\) −13.1642 12.4722i −0.837621 0.793585i
\(248\) 2.68525i 0.170513i
\(249\) 0 0
\(250\) −10.7077 −0.677217
\(251\) −7.50024 −0.473411 −0.236705 0.971581i \(-0.576068\pi\)
−0.236705 + 0.971581i \(0.576068\pi\)
\(252\) 0 0
\(253\) 24.5941 + 5.84838i 1.54622 + 0.367685i
\(254\) −11.8120 −0.741151
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 13.0530i 0.814226i 0.913378 + 0.407113i \(0.133464\pi\)
−0.913378 + 0.407113i \(0.866536\pi\)
\(258\) 0 0
\(259\) 3.56412 0.221463
\(260\) −5.32918 −0.330502
\(261\) 0 0
\(262\) 6.40399i 0.395640i
\(263\) 27.6548i 1.70527i 0.522508 + 0.852634i \(0.324996\pi\)
−0.522508 + 0.852634i \(0.675004\pi\)
\(264\) 0 0
\(265\) 5.68043i 0.348946i
\(266\) 1.17589 1.24114i 0.0720984 0.0760992i
\(267\) 0 0
\(268\) 14.6118i 0.892559i
\(269\) 16.8086i 1.02484i 0.858736 + 0.512418i \(0.171250\pi\)
−0.858736 + 0.512418i \(0.828750\pi\)
\(270\) 0 0
\(271\) 9.95751i 0.604875i −0.953169 0.302438i \(-0.902200\pi\)
0.953169 0.302438i \(-0.0978004\pi\)
\(272\) 7.31859i 0.443755i
\(273\) 0 0
\(274\) −10.5157 −0.635276
\(275\) 10.8388 + 2.57741i 0.653601 + 0.155424i
\(276\) 0 0
\(277\) 11.4686i 0.689083i 0.938771 + 0.344542i \(0.111966\pi\)
−0.938771 + 0.344542i \(0.888034\pi\)
\(278\) 9.62814i 0.577458i
\(279\) 0 0
\(280\) 0.502441i 0.0300266i
\(281\) 12.2517 0.730873 0.365437 0.930836i \(-0.380920\pi\)
0.365437 + 0.930836i \(0.380920\pi\)
\(282\) 0 0
\(283\) 27.0812i 1.60981i −0.593405 0.804904i \(-0.702217\pi\)
0.593405 0.804904i \(-0.297783\pi\)
\(284\) 8.75634i 0.519593i
\(285\) 0 0
\(286\) 13.4238 + 3.19212i 0.793766 + 0.188754i
\(287\) 0.323858i 0.0191167i
\(288\) 0 0
\(289\) −36.5618 −2.15069
\(290\) −3.84842 −0.225987
\(291\) 0 0
\(292\) 10.3074i 0.603195i
\(293\) −9.60892 −0.561359 −0.280679 0.959802i \(-0.590560\pi\)
−0.280679 + 0.959802i \(0.590560\pi\)
\(294\) 0 0
\(295\) 8.31861i 0.484328i
\(296\) 9.08665i 0.528151i
\(297\) 0 0
\(298\) 1.79326i 0.103881i
\(299\) 31.7105 1.83387
\(300\) 0 0
\(301\) −2.18632 −0.126017
\(302\) 19.0044 1.09358
\(303\) 0 0
\(304\) 3.16426 + 2.99791i 0.181483 + 0.171942i
\(305\) 6.24345i 0.357499i
\(306\) 0 0
\(307\) 2.13570 0.121891 0.0609453 0.998141i \(-0.480588\pi\)
0.0609453 + 0.998141i \(0.480588\pi\)
\(308\) −0.300957 + 1.26561i −0.0171486 + 0.0721149i
\(309\) 0 0
\(310\) 3.43971i 0.195362i
\(311\) 16.6337 0.943209 0.471605 0.881810i \(-0.343675\pi\)
0.471605 + 0.881810i \(0.343675\pi\)
\(312\) 0 0
\(313\) −32.0516 −1.81166 −0.905831 0.423639i \(-0.860753\pi\)
−0.905831 + 0.423639i \(0.860753\pi\)
\(314\) 7.84764 0.442868
\(315\) 0 0
\(316\) 15.4604 0.869713
\(317\) 34.7556i 1.95207i 0.217621 + 0.976033i \(0.430170\pi\)
−0.217621 + 0.976033i \(0.569830\pi\)
\(318\) 0 0
\(319\) 9.69389 + 2.30517i 0.542754 + 0.129065i
\(320\) 1.28096 0.0716080
\(321\) 0 0
\(322\) 2.98970i 0.166610i
\(323\) −21.9405 + 23.1579i −1.22080 + 1.28854i
\(324\) 0 0
\(325\) 13.9750 0.775192
\(326\) −14.6344 −0.810524
\(327\) 0 0
\(328\) 0.825668 0.0455899
\(329\) 3.78762i 0.208818i
\(330\) 0 0
\(331\) 26.8731i 1.47708i 0.674211 + 0.738539i \(0.264484\pi\)
−0.674211 + 0.738539i \(0.735516\pi\)
\(332\) 6.29838i 0.345669i
\(333\) 0 0
\(334\) −17.8960 −0.979227
\(335\) 18.7172i 1.02263i
\(336\) 0 0
\(337\) 6.33466 0.345071 0.172536 0.985003i \(-0.444804\pi\)
0.172536 + 0.985003i \(0.444804\pi\)
\(338\) 4.30801 0.234325
\(339\) 0 0
\(340\) 9.37485i 0.508423i
\(341\) 2.06035 8.66436i 0.111574 0.469201i
\(342\) 0 0
\(343\) 5.43097i 0.293245i
\(344\) 5.57398i 0.300529i
\(345\) 0 0
\(346\) −7.95773 −0.427810
\(347\) 17.1780i 0.922162i 0.887358 + 0.461081i \(0.152538\pi\)
−0.887358 + 0.461081i \(0.847462\pi\)
\(348\) 0 0
\(349\) 33.1259i 1.77319i 0.462547 + 0.886595i \(0.346936\pi\)
−0.462547 + 0.886595i \(0.653064\pi\)
\(350\) 1.31758i 0.0704274i
\(351\) 0 0
\(352\) −3.22665 0.767284i −0.171981 0.0408964i
\(353\) 0.856028 0.0455618 0.0227809 0.999740i \(-0.492748\pi\)
0.0227809 + 0.999740i \(0.492748\pi\)
\(354\) 0 0
\(355\) 11.2166i 0.595313i
\(356\) 4.35469i 0.230798i
\(357\) 0 0
\(358\) 2.64141i 0.139603i
\(359\) 32.3606i 1.70793i −0.520331 0.853965i \(-0.674191\pi\)
0.520331 0.853965i \(-0.325809\pi\)
\(360\) 0 0
\(361\) 1.02511 + 18.9723i 0.0539529 + 0.998543i
\(362\) 7.86248i 0.413243i
\(363\) 0 0
\(364\) 1.63182i 0.0855306i
\(365\) 13.2034i 0.691097i
\(366\) 0 0
\(367\) −1.85564 −0.0968637 −0.0484318 0.998826i \(-0.515422\pi\)
−0.0484318 + 0.998826i \(0.515422\pi\)
\(368\) −7.62219 −0.397334
\(369\) 0 0
\(370\) 11.6397i 0.605117i
\(371\) 1.73937 0.0903038
\(372\) 0 0
\(373\) 27.9173 1.44551 0.722753 0.691107i \(-0.242877\pi\)
0.722753 + 0.691107i \(0.242877\pi\)
\(374\) 5.61544 23.6145i 0.290367 1.22108i
\(375\) 0 0
\(376\) −9.65646 −0.497994
\(377\) 12.4988 0.643723
\(378\) 0 0
\(379\) 5.41292i 0.278043i −0.990289 0.139021i \(-0.955604\pi\)
0.990289 0.139021i \(-0.0443957\pi\)
\(380\) 4.05330 + 3.84021i 0.207930 + 0.196999i
\(381\) 0 0
\(382\) −4.82045 −0.246636
\(383\) 8.83675i 0.451537i −0.974181 0.225768i \(-0.927511\pi\)
0.974181 0.225768i \(-0.0724893\pi\)
\(384\) 0 0
\(385\) −0.385515 + 1.62120i −0.0196477 + 0.0826241i
\(386\) −1.00099 −0.0509489
\(387\) 0 0
\(388\) 6.18155i 0.313821i
\(389\) −31.7505 −1.60981 −0.804906 0.593402i \(-0.797785\pi\)
−0.804906 + 0.593402i \(0.797785\pi\)
\(390\) 0 0
\(391\) 55.7837i 2.82110i
\(392\) 6.84615 0.345783
\(393\) 0 0
\(394\) 14.3961i 0.725264i
\(395\) 19.8041 0.996455
\(396\) 0 0
\(397\) −17.1766 −0.862066 −0.431033 0.902336i \(-0.641851\pi\)
−0.431033 + 0.902336i \(0.641851\pi\)
\(398\) 9.58482 0.480444
\(399\) 0 0
\(400\) −3.35913 −0.167957
\(401\) 10.1717i 0.507948i 0.967211 + 0.253974i \(0.0817378\pi\)
−0.967211 + 0.253974i \(0.918262\pi\)
\(402\) 0 0
\(403\) 11.1714i 0.556488i
\(404\) 16.5100i 0.821403i
\(405\) 0 0
\(406\) 1.17840i 0.0584833i
\(407\) 6.97204 29.3194i 0.345591 1.45331i
\(408\) 0 0
\(409\) 15.0584 0.744592 0.372296 0.928114i \(-0.378571\pi\)
0.372296 + 0.928114i \(0.378571\pi\)
\(410\) 1.05765 0.0522336
\(411\) 0 0
\(412\) 5.61416i 0.276590i
\(413\) 2.54720 0.125339
\(414\) 0 0
\(415\) 8.06800i 0.396042i
\(416\) −4.16029 −0.203975
\(417\) 0 0
\(418\) −7.90972 12.1011i −0.386877 0.591883i
\(419\) 12.2679 0.599325 0.299662 0.954045i \(-0.403126\pi\)
0.299662 + 0.954045i \(0.403126\pi\)
\(420\) 0 0
\(421\) 33.4918i 1.63229i −0.577848 0.816144i \(-0.696108\pi\)
0.577848 0.816144i \(-0.303892\pi\)
\(422\) −6.83304 −0.332627
\(423\) 0 0
\(424\) 4.43450i 0.215358i
\(425\) 24.5841i 1.19251i
\(426\) 0 0
\(427\) −1.91177 −0.0925172
\(428\) 2.31418 0.111860
\(429\) 0 0
\(430\) 7.14006i 0.344324i
\(431\) 9.17278 0.441837 0.220919 0.975292i \(-0.429095\pi\)
0.220919 + 0.975292i \(0.429095\pi\)
\(432\) 0 0
\(433\) 38.9700i 1.87278i 0.350960 + 0.936390i \(0.385855\pi\)
−0.350960 + 0.936390i \(0.614145\pi\)
\(434\) 1.05325 0.0505578
\(435\) 0 0
\(436\) 14.1894 0.679548
\(437\) −24.1186 22.8506i −1.15375 1.09309i
\(438\) 0 0
\(439\) −14.9980 −0.715818 −0.357909 0.933757i \(-0.616510\pi\)
−0.357909 + 0.933757i \(0.616510\pi\)
\(440\) −4.13322 0.982862i −0.197044 0.0468561i
\(441\) 0 0
\(442\) 30.4475i 1.44824i
\(443\) 21.6446 1.02837 0.514183 0.857681i \(-0.328095\pi\)
0.514183 + 0.857681i \(0.328095\pi\)
\(444\) 0 0
\(445\) 5.57820i 0.264432i
\(446\) 29.3935i 1.39182i
\(447\) 0 0
\(448\) 0.392237i 0.0185315i
\(449\) 28.0549i 1.32399i −0.749508 0.661996i \(-0.769710\pi\)
0.749508 0.661996i \(-0.230290\pi\)
\(450\) 0 0
\(451\) −2.66414 0.633522i −0.125450 0.0298314i
\(452\) 8.73342i 0.410786i
\(453\) 0 0
\(454\) 24.3018 1.14054
\(455\) 2.09030i 0.0979948i
\(456\) 0 0
\(457\) 13.6597i 0.638975i −0.947591 0.319487i \(-0.896489\pi\)
0.947591 0.319487i \(-0.103511\pi\)
\(458\) −19.5240 −0.912295
\(459\) 0 0
\(460\) −9.76374 −0.455237
\(461\) 29.8154i 1.38864i 0.719665 + 0.694321i \(0.244295\pi\)
−0.719665 + 0.694321i \(0.755705\pi\)
\(462\) 0 0
\(463\) 10.2461 0.476179 0.238089 0.971243i \(-0.423479\pi\)
0.238089 + 0.971243i \(0.423479\pi\)
\(464\) −3.00432 −0.139472
\(465\) 0 0
\(466\) 9.93903i 0.460417i
\(467\) 27.9949 1.29545 0.647725 0.761875i \(-0.275721\pi\)
0.647725 + 0.761875i \(0.275721\pi\)
\(468\) 0 0
\(469\) 5.73129 0.264646
\(470\) −12.3696 −0.570566
\(471\) 0 0
\(472\) 6.49403i 0.298912i
\(473\) −4.27682 + 17.9853i −0.196648 + 0.826964i
\(474\) 0 0
\(475\) −10.6292 10.0704i −0.487700 0.462060i
\(476\) 2.87062 0.131575
\(477\) 0 0
\(478\) 4.70511i 0.215207i
\(479\) 34.9593i 1.59733i 0.601776 + 0.798665i \(0.294460\pi\)
−0.601776 + 0.798665i \(0.705540\pi\)
\(480\) 0 0
\(481\) 37.8031i 1.72367i
\(482\) −18.6944 −0.851508
\(483\) 0 0
\(484\) 9.82255 + 4.95151i 0.446480 + 0.225069i
\(485\) 7.91834i 0.359553i
\(486\) 0 0
\(487\) 5.81207i 0.263370i −0.991292 0.131685i \(-0.957961\pi\)
0.991292 0.131685i \(-0.0420388\pi\)
\(488\) 4.87403i 0.220637i
\(489\) 0 0
\(490\) 8.76967 0.396173
\(491\) 14.0518i 0.634150i −0.948400 0.317075i \(-0.897299\pi\)
0.948400 0.317075i \(-0.102701\pi\)
\(492\) 0 0
\(493\) 21.9874i 0.990262i
\(494\) −13.1642 12.4722i −0.592287 0.561149i
\(495\) 0 0
\(496\) 2.68525i 0.120571i
\(497\) −3.43456 −0.154061
\(498\) 0 0
\(499\) 7.99077 0.357716 0.178858 0.983875i \(-0.442760\pi\)
0.178858 + 0.983875i \(0.442760\pi\)
\(500\) −10.7077 −0.478865
\(501\) 0 0
\(502\) −7.50024 −0.334752
\(503\) 12.1803i 0.543093i −0.962425 0.271546i \(-0.912465\pi\)
0.962425 0.271546i \(-0.0875351\pi\)
\(504\) 0 0
\(505\) 21.1487i 0.941104i
\(506\) 24.5941 + 5.84838i 1.09334 + 0.259992i
\(507\) 0 0
\(508\) −11.8120 −0.524073
\(509\) 7.44144i 0.329836i 0.986307 + 0.164918i \(0.0527359\pi\)
−0.986307 + 0.164918i \(0.947264\pi\)
\(510\) 0 0
\(511\) 4.04294 0.178849
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 13.0530i 0.575745i
\(515\) 7.19153i 0.316897i
\(516\) 0 0
\(517\) 31.1580 + 7.40925i 1.37033 + 0.325858i
\(518\) 3.56412 0.156598
\(519\) 0 0
\(520\) −5.32918 −0.233700
\(521\) 23.7435i 1.04022i −0.854098 0.520111i \(-0.825890\pi\)
0.854098 0.520111i \(-0.174110\pi\)
\(522\) 0 0
\(523\) −22.1470 −0.968422 −0.484211 0.874951i \(-0.660893\pi\)
−0.484211 + 0.874951i \(0.660893\pi\)
\(524\) 6.40399i 0.279760i
\(525\) 0 0
\(526\) 27.6548i 1.20581i
\(527\) −19.6522 −0.856065
\(528\) 0 0
\(529\) 35.0978 1.52599
\(530\) 5.68043i 0.246742i
\(531\) 0 0
\(532\) 1.17589 1.24114i 0.0509813 0.0538103i
\(533\) −3.43502 −0.148787
\(534\) 0 0
\(535\) 2.96438 0.128161
\(536\) 14.6118i 0.631134i
\(537\) 0 0
\(538\) 16.8086i 0.724669i
\(539\) −22.0901 5.25294i −0.951490 0.226260i
\(540\) 0 0
\(541\) 32.6100i 1.40202i 0.713154 + 0.701008i \(0.247266\pi\)
−0.713154 + 0.701008i \(0.752734\pi\)
\(542\) 9.95751i 0.427712i
\(543\) 0 0
\(544\) 7.31859i 0.313782i
\(545\) 18.1761 0.778577
\(546\) 0 0
\(547\) 43.5283 1.86113 0.930567 0.366121i \(-0.119314\pi\)
0.930567 + 0.366121i \(0.119314\pi\)
\(548\) −10.5157 −0.449208
\(549\) 0 0
\(550\) 10.8388 + 2.57741i 0.462166 + 0.109901i
\(551\) −9.50645 9.00667i −0.404989 0.383697i
\(552\) 0 0
\(553\) 6.06412i 0.257873i
\(554\) 11.4686i 0.487255i
\(555\) 0 0
\(556\) 9.62814i 0.408324i
\(557\) 14.0929i 0.597136i −0.954388 0.298568i \(-0.903491\pi\)
0.954388 0.298568i \(-0.0965090\pi\)
\(558\) 0 0
\(559\) 23.1894i 0.980805i
\(560\) 0.502441i 0.0212320i
\(561\) 0 0
\(562\) 12.2517 0.516806
\(563\) −4.40278 −0.185555 −0.0927775 0.995687i \(-0.529575\pi\)
−0.0927775 + 0.995687i \(0.529575\pi\)
\(564\) 0 0
\(565\) 11.1872i 0.470649i
\(566\) 27.0812i 1.13831i
\(567\) 0 0
\(568\) 8.75634i 0.367408i
\(569\) 15.7550 0.660485 0.330242 0.943896i \(-0.392870\pi\)
0.330242 + 0.943896i \(0.392870\pi\)
\(570\) 0 0
\(571\) 7.86435i 0.329113i 0.986368 + 0.164556i \(0.0526192\pi\)
−0.986368 + 0.164556i \(0.947381\pi\)
\(572\) 13.4238 + 3.19212i 0.561277 + 0.133469i
\(573\) 0 0
\(574\) 0.323858i 0.0135176i
\(575\) 25.6040 1.06776
\(576\) 0 0
\(577\) 18.9389 0.788437 0.394218 0.919017i \(-0.371015\pi\)
0.394218 + 0.919017i \(0.371015\pi\)
\(578\) −36.5618 −1.52077
\(579\) 0 0
\(580\) −3.84842 −0.159797
\(581\) −2.47046 −0.102492
\(582\) 0 0
\(583\) 3.40252 14.3086i 0.140918 0.592601i
\(584\) 10.3074i 0.426523i
\(585\) 0 0
\(586\) −9.60892 −0.396941
\(587\) −32.3029 −1.33328 −0.666642 0.745378i \(-0.732269\pi\)
−0.666642 + 0.745378i \(0.732269\pi\)
\(588\) 0 0
\(589\) −8.05013 + 8.49683i −0.331700 + 0.350106i
\(590\) 8.31861i 0.342472i
\(591\) 0 0
\(592\) 9.08665i 0.373459i
\(593\) 5.01688i 0.206018i −0.994680 0.103009i \(-0.967153\pi\)
0.994680 0.103009i \(-0.0328471\pi\)
\(594\) 0 0
\(595\) 3.67716 0.150749
\(596\) 1.79326i 0.0734549i
\(597\) 0 0
\(598\) 31.7105 1.29674
\(599\) 26.8152i 1.09564i −0.836597 0.547819i \(-0.815458\pi\)
0.836597 0.547819i \(-0.184542\pi\)
\(600\) 0 0
\(601\) 7.45857 0.304241 0.152121 0.988362i \(-0.451390\pi\)
0.152121 + 0.988362i \(0.451390\pi\)
\(602\) −2.18632 −0.0891077
\(603\) 0 0
\(604\) 19.0044 0.773280
\(605\) 12.5823 + 6.34271i 0.511544 + 0.257868i
\(606\) 0 0
\(607\) 9.97458 0.404856 0.202428 0.979297i \(-0.435117\pi\)
0.202428 + 0.979297i \(0.435117\pi\)
\(608\) 3.16426 + 2.99791i 0.128328 + 0.121581i
\(609\) 0 0
\(610\) 6.24345i 0.252790i
\(611\) 40.1737 1.62525
\(612\) 0 0
\(613\) 14.8691i 0.600557i −0.953852 0.300279i \(-0.902920\pi\)
0.953852 0.300279i \(-0.0970796\pi\)
\(614\) 2.13570 0.0861897
\(615\) 0 0
\(616\) −0.300957 + 1.26561i −0.0121259 + 0.0509929i
\(617\) −35.3162 −1.42178 −0.710888 0.703305i \(-0.751707\pi\)
−0.710888 + 0.703305i \(0.751707\pi\)
\(618\) 0 0
\(619\) 39.0066 1.56781 0.783904 0.620882i \(-0.213225\pi\)
0.783904 + 0.620882i \(0.213225\pi\)
\(620\) 3.43971i 0.138142i
\(621\) 0 0
\(622\) 16.6337 0.666950
\(623\) 1.70807 0.0684324
\(624\) 0 0
\(625\) 3.07944 0.123178
\(626\) −32.0516 −1.28104
\(627\) 0 0
\(628\) 7.84764 0.313155
\(629\) −66.5015 −2.65159
\(630\) 0 0
\(631\) −18.8570 −0.750684 −0.375342 0.926886i \(-0.622475\pi\)
−0.375342 + 0.926886i \(0.622475\pi\)
\(632\) 15.4604 0.614980
\(633\) 0 0
\(634\) 34.7556i 1.38032i
\(635\) −15.1307 −0.600445
\(636\) 0 0
\(637\) −28.4820 −1.12850
\(638\) 9.69389 + 2.30517i 0.383785 + 0.0912624i
\(639\) 0 0
\(640\) 1.28096 0.0506345
\(641\) 8.61956i 0.340452i −0.985405 0.170226i \(-0.945550\pi\)
0.985405 0.170226i \(-0.0544498\pi\)
\(642\) 0 0
\(643\) −42.5257 −1.67705 −0.838526 0.544862i \(-0.816582\pi\)
−0.838526 + 0.544862i \(0.816582\pi\)
\(644\) 2.98970i 0.117811i
\(645\) 0 0
\(646\) −21.9405 + 23.1579i −0.863236 + 0.911137i
\(647\) −15.0890 −0.593211 −0.296606 0.955000i \(-0.595855\pi\)
−0.296606 + 0.955000i \(0.595855\pi\)
\(648\) 0 0
\(649\) 4.98276 20.9540i 0.195591 0.822515i
\(650\) 13.9750 0.548143
\(651\) 0 0
\(652\) −14.6344 −0.573127
\(653\) 22.9868 0.899541 0.449771 0.893144i \(-0.351506\pi\)
0.449771 + 0.893144i \(0.351506\pi\)
\(654\) 0 0
\(655\) 8.20328i 0.320529i
\(656\) 0.825668 0.0322369
\(657\) 0 0
\(658\) 3.78762i 0.147657i
\(659\) −27.0408 −1.05336 −0.526679 0.850064i \(-0.676563\pi\)
−0.526679 + 0.850064i \(0.676563\pi\)
\(660\) 0 0
\(661\) 34.0283i 1.32355i −0.749704 0.661773i \(-0.769804\pi\)
0.749704 0.661773i \(-0.230196\pi\)
\(662\) 26.8731i 1.04445i
\(663\) 0 0
\(664\) 6.29838i 0.244425i
\(665\) 1.50627 1.58985i 0.0584107 0.0616519i
\(666\) 0 0
\(667\) 22.8995 0.886672
\(668\) −17.8960 −0.692418
\(669\) 0 0
\(670\) 18.7172i 0.723108i
\(671\) −3.73976 + 15.7268i −0.144372 + 0.607126i
\(672\) 0 0
\(673\) −9.68072 −0.373164 −0.186582 0.982439i \(-0.559741\pi\)
−0.186582 + 0.982439i \(0.559741\pi\)
\(674\) 6.33466 0.244002
\(675\) 0 0
\(676\) 4.30801 0.165693
\(677\) 19.1039 0.734224 0.367112 0.930177i \(-0.380347\pi\)
0.367112 + 0.930177i \(0.380347\pi\)
\(678\) 0 0
\(679\) −2.42463 −0.0930488
\(680\) 9.37485i 0.359509i
\(681\) 0 0
\(682\) 2.06035 8.66436i 0.0788948 0.331776i
\(683\) 34.2778i 1.31160i −0.754933 0.655802i \(-0.772331\pi\)
0.754933 0.655802i \(-0.227669\pi\)
\(684\) 0 0
\(685\) −13.4702 −0.514671
\(686\) 5.43097i 0.207355i
\(687\) 0 0
\(688\) 5.57398i 0.212506i
\(689\) 18.4488i 0.702843i
\(690\) 0 0
\(691\) 36.8018 1.40001 0.700003 0.714140i \(-0.253182\pi\)
0.700003 + 0.714140i \(0.253182\pi\)
\(692\) −7.95773 −0.302507
\(693\) 0 0
\(694\) 17.1780i 0.652067i
\(695\) 12.3333i 0.467829i
\(696\) 0 0
\(697\) 6.04273i 0.228885i
\(698\) 33.1259i 1.25383i
\(699\) 0 0
\(700\) 1.31758i 0.0497997i
\(701\) 12.5960i 0.475743i −0.971297 0.237872i \(-0.923550\pi\)
0.971297 0.237872i \(-0.0764498\pi\)
\(702\) 0 0
\(703\) −27.2409 + 28.7525i −1.02741 + 1.08442i
\(704\) −3.22665 0.767284i −0.121609 0.0289181i
\(705\) 0 0
\(706\) 0.856028 0.0322170
\(707\) −6.47583 −0.243549
\(708\) 0 0
\(709\) 18.5468 0.696541 0.348271 0.937394i \(-0.386769\pi\)
0.348271 + 0.937394i \(0.386769\pi\)
\(710\) 11.2166i 0.420950i
\(711\) 0 0
\(712\) 4.35469i 0.163199i
\(713\) 20.4675i 0.766513i
\(714\) 0 0
\(715\) 17.1954 + 4.08899i 0.643071 + 0.152920i
\(716\) 2.64141i 0.0987139i
\(717\) 0 0
\(718\) 32.3606i 1.20769i
\(719\) 25.2658 0.942256 0.471128 0.882065i \(-0.343847\pi\)
0.471128 + 0.882065i \(0.343847\pi\)
\(720\) 0 0
\(721\) −2.20208 −0.0820098
\(722\) 1.02511 + 18.9723i 0.0381505 + 0.706077i
\(723\) 0 0
\(724\) 7.86248i 0.292207i
\(725\) 10.0919 0.374804
\(726\) 0 0
\(727\) 18.9714 0.703609 0.351805 0.936073i \(-0.385568\pi\)
0.351805 + 0.936073i \(0.385568\pi\)
\(728\) 1.63182i 0.0604792i
\(729\) 0 0
\(730\) 13.2034i 0.488680i
\(731\) 40.7937 1.50881
\(732\) 0 0
\(733\) 27.5546i 1.01775i −0.860840 0.508876i \(-0.830061\pi\)
0.860840 0.508876i \(-0.169939\pi\)
\(734\) −1.85564 −0.0684930
\(735\) 0 0
\(736\) −7.62219 −0.280958
\(737\) 11.2114 47.1472i 0.412978 1.73669i
\(738\) 0 0
\(739\) 24.2374i 0.891588i 0.895136 + 0.445794i \(0.147079\pi\)
−0.895136 + 0.445794i \(0.852921\pi\)
\(740\) 11.6397i 0.427882i
\(741\) 0 0
\(742\) 1.73937 0.0638544
\(743\) 41.9694 1.53971 0.769853 0.638221i \(-0.220329\pi\)
0.769853 + 0.638221i \(0.220329\pi\)
\(744\) 0 0
\(745\) 2.29710i 0.0841594i
\(746\) 27.9173 1.02213
\(747\) 0 0
\(748\) 5.61544 23.6145i 0.205321 0.863433i
\(749\) 0.907707i 0.0331669i
\(750\) 0 0
\(751\) 13.5234i 0.493476i −0.969082 0.246738i \(-0.920641\pi\)
0.969082 0.246738i \(-0.0793587\pi\)
\(752\) −9.65646 −0.352135
\(753\) 0 0
\(754\) 12.4988 0.455181
\(755\) 24.3440 0.885968
\(756\) 0 0
\(757\) −14.3267 −0.520712 −0.260356 0.965513i \(-0.583840\pi\)
−0.260356 + 0.965513i \(0.583840\pi\)
\(758\) 5.41292i 0.196606i
\(759\) 0 0
\(760\) 4.05330 + 3.84021i 0.147029 + 0.139299i
\(761\) 26.9287i 0.976164i 0.872798 + 0.488082i \(0.162303\pi\)
−0.872798 + 0.488082i \(0.837697\pi\)
\(762\) 0 0
\(763\) 5.56559i 0.201488i
\(764\) −4.82045 −0.174398
\(765\) 0 0
\(766\) 8.83675i 0.319285i
\(767\) 27.0170i 0.975528i
\(768\) 0 0
\(769\) 9.78202i 0.352748i 0.984323 + 0.176374i \(0.0564369\pi\)
−0.984323 + 0.176374i \(0.943563\pi\)
\(770\) −0.385515 + 1.62120i −0.0138930 + 0.0584241i
\(771\) 0 0
\(772\) −1.00099 −0.0360263
\(773\) 0.265027i 0.00953238i −0.999989 0.00476619i \(-0.998483\pi\)
0.999989 0.00476619i \(-0.00151713\pi\)
\(774\) 0 0
\(775\) 9.02011i 0.324012i
\(776\) 6.18155i 0.221905i
\(777\) 0 0
\(778\) −31.7505 −1.13831
\(779\) 2.61263 + 2.47528i 0.0936072 + 0.0886860i
\(780\) 0 0
\(781\) −6.71860 + 28.2537i −0.240410 + 1.01100i
\(782\) 55.7837i 1.99482i
\(783\) 0 0
\(784\) 6.84615 0.244505
\(785\) 10.0525 0.358791
\(786\) 0 0
\(787\) −18.1212 −0.645952 −0.322976 0.946407i \(-0.604683\pi\)
−0.322976 + 0.946407i \(0.604683\pi\)
\(788\) 14.3961i 0.512839i
\(789\) 0 0
\(790\) 19.8041 0.704600
\(791\) 3.42557 0.121799
\(792\) 0 0
\(793\) 20.2774i 0.720071i
\(794\) −17.1766 −0.609573
\(795\) 0 0
\(796\) 9.58482 0.339725
\(797\) 23.4980i 0.832341i 0.909287 + 0.416171i \(0.136628\pi\)
−0.909287 + 0.416171i \(0.863372\pi\)
\(798\) 0 0
\(799\) 70.6717i 2.50019i
\(800\) −3.35913 −0.118763
\(801\) 0 0
\(802\) 10.1717i 0.359174i
\(803\) 7.90870 33.2584i 0.279092 1.17366i
\(804\) 0 0
\(805\) 3.82970i 0.134979i
\(806\) 11.1714i 0.393496i
\(807\) 0 0
\(808\) 16.5100i 0.580819i
\(809\) 16.4267i 0.577533i −0.957400 0.288766i \(-0.906755\pi\)
0.957400 0.288766i \(-0.0932451\pi\)
\(810\) 0 0
\(811\) −5.50789 −0.193408 −0.0967040 0.995313i \(-0.530830\pi\)
−0.0967040 + 0.995313i \(0.530830\pi\)
\(812\) 1.17840i 0.0413539i
\(813\) 0 0
\(814\) 6.97204 29.3194i 0.244370 1.02765i
\(815\) −18.7461 −0.656647
\(816\) 0 0
\(817\) 16.7103 17.6375i 0.584618 0.617059i
\(818\) 15.0584 0.526506
\(819\) 0 0
\(820\) 1.05765 0.0369348
\(821\) 18.9098i 0.659956i −0.943989 0.329978i \(-0.892959\pi\)
0.943989 0.329978i \(-0.107041\pi\)
\(822\) 0 0
\(823\) −13.2282 −0.461106 −0.230553 0.973060i \(-0.574054\pi\)
−0.230553 + 0.973060i \(0.574054\pi\)
\(824\) 5.61416i 0.195579i
\(825\) 0 0
\(826\) 2.54720 0.0886283
\(827\) 21.5619 0.749782 0.374891 0.927069i \(-0.377680\pi\)
0.374891 + 0.927069i \(0.377680\pi\)
\(828\) 0 0
\(829\) 48.9602i 1.70046i 0.526414 + 0.850228i \(0.323536\pi\)
−0.526414 + 0.850228i \(0.676464\pi\)
\(830\) 8.06800i 0.280044i
\(831\) 0 0
\(832\) −4.16029 −0.144232
\(833\) 50.1042i 1.73601i
\(834\) 0 0
\(835\) −22.9242 −0.793323
\(836\) −7.90972 12.1011i −0.273563 0.418525i
\(837\) 0 0
\(838\) 12.2679 0.423787
\(839\) 9.21919i 0.318282i 0.987256 + 0.159141i \(0.0508724\pi\)
−0.987256 + 0.159141i \(0.949128\pi\)
\(840\) 0 0
\(841\) −19.9741 −0.688761
\(842\) 33.4918i 1.15420i
\(843\) 0 0
\(844\) −6.83304 −0.235203
\(845\) 5.51840 0.189839
\(846\) 0 0
\(847\) 1.94217 3.85277i 0.0667336 0.132383i
\(848\) 4.43450i 0.152281i
\(849\) 0 0
\(850\) 24.5841i 0.843229i
\(851\) 69.2601i 2.37421i
\(852\) 0 0
\(853\) 39.8016i 1.36278i 0.731920 + 0.681390i \(0.238624\pi\)
−0.731920 + 0.681390i \(0.761376\pi\)
\(854\) −1.91177 −0.0654196
\(855\) 0 0
\(856\) 2.31418 0.0790970
\(857\) −20.5092 −0.700582 −0.350291 0.936641i \(-0.613917\pi\)
−0.350291 + 0.936641i \(0.613917\pi\)
\(858\) 0 0
\(859\) 36.9792 1.26171 0.630856 0.775900i \(-0.282704\pi\)
0.630856 + 0.775900i \(0.282704\pi\)
\(860\) 7.14006i 0.243474i
\(861\) 0 0
\(862\) 9.17278 0.312426
\(863\) 11.0139i 0.374917i 0.982273 + 0.187458i \(0.0600250\pi\)
−0.982273 + 0.187458i \(0.939975\pi\)
\(864\) 0 0
\(865\) −10.1936 −0.346591
\(866\) 38.9700i 1.32426i
\(867\) 0 0
\(868\) 1.05325 0.0357498
\(869\) −49.8852 11.8625i −1.69224 0.402407i
\(870\) 0 0
\(871\) 60.7894i 2.05977i
\(872\) 14.1894 0.480513
\(873\) 0 0
\(874\) −24.1186 22.8506i −0.815824 0.772934i
\(875\) 4.19997i 0.141985i
\(876\) 0 0
\(877\) 1.15451 0.0389850 0.0194925 0.999810i \(-0.493795\pi\)
0.0194925 + 0.999810i \(0.493795\pi\)
\(878\) −14.9980 −0.506160
\(879\) 0 0
\(880\) −4.13322 0.982862i −0.139331 0.0331323i
\(881\) 33.2868 1.12146 0.560731 0.827998i \(-0.310520\pi\)
0.560731 + 0.827998i \(0.310520\pi\)
\(882\) 0 0
\(883\) 3.06728 0.103222 0.0516112 0.998667i \(-0.483564\pi\)
0.0516112 + 0.998667i \(0.483564\pi\)
\(884\) 30.4475i 1.02406i
\(885\) 0 0
\(886\) 21.6446 0.727164
\(887\) 19.7574 0.663388 0.331694 0.943387i \(-0.392380\pi\)
0.331694 + 0.943387i \(0.392380\pi\)
\(888\) 0 0
\(889\) 4.63310i 0.155389i
\(890\) 5.57820i 0.186982i
\(891\) 0 0
\(892\) 29.3935i 0.984168i
\(893\) −30.5556 28.9492i −1.02250 0.968748i
\(894\) 0 0
\(895\) 3.38354i 0.113099i
\(896\) 0.392237i 0.0131037i
\(897\) 0 0
\(898\) 28.0549i 0.936203i
\(899\) 8.06735i 0.269061i
\(900\) 0 0
\(901\) −32.4543 −1.08121
\(902\) −2.66414 0.633522i −0.0887063 0.0210940i
\(903\) 0 0
\(904\) 8.73342i 0.290469i
\(905\) 10.0715i 0.334790i
\(906\) 0 0
\(907\) 33.1350i 1.10023i 0.835089 + 0.550115i \(0.185416\pi\)
−0.835089 + 0.550115i \(0.814584\pi\)
\(908\) 24.3018 0.806485
\(909\) 0 0
\(910\) 2.09030i 0.0692928i
\(911\) 14.9875i 0.496557i −0.968689 0.248279i \(-0.920135\pi\)
0.968689 0.248279i \(-0.0798649\pi\)
\(912\) 0 0
\(913\) −4.83265 + 20.3227i −0.159937 + 0.672583i
\(914\) 13.6597i 0.451823i
\(915\) 0 0
\(916\) −19.5240 −0.645090
\(917\) −2.51188 −0.0829497
\(918\) 0 0
\(919\) 20.4574i 0.674828i −0.941356 0.337414i \(-0.890448\pi\)
0.941356 0.337414i \(-0.109552\pi\)
\(920\) −9.76374 −0.321901
\(921\) 0 0
\(922\) 29.8154i 0.981918i
\(923\) 36.4289i 1.19907i
\(924\) 0 0
\(925\) 30.5233i 1.00360i
\(926\) 10.2461 0.336709
\(927\) 0 0
\(928\) −3.00432 −0.0986216
\(929\) 45.9441 1.50738 0.753689 0.657231i \(-0.228272\pi\)
0.753689 + 0.657231i \(0.228272\pi\)
\(930\) 0 0
\(931\) 21.6630 + 20.5241i 0.709977 + 0.672651i
\(932\) 9.93903i 0.325564i
\(933\) 0 0
\(934\) 27.9949 0.916021
\(935\) 7.19317 30.2494i 0.235242 0.989260i
\(936\) 0 0
\(937\) 59.0141i 1.92791i 0.266070 + 0.963954i \(0.414275\pi\)
−0.266070 + 0.963954i \(0.585725\pi\)
\(938\) 5.73129 0.187133
\(939\) 0 0
\(940\) −12.3696 −0.403451
\(941\) −40.6727 −1.32589 −0.662946 0.748667i \(-0.730694\pi\)
−0.662946 + 0.748667i \(0.730694\pi\)
\(942\) 0 0
\(943\) −6.29340 −0.204941
\(944\) 6.49403i 0.211363i
\(945\) 0 0
\(946\) −4.27682 + 17.9853i −0.139051 + 0.584752i
\(947\) −7.56822 −0.245934 −0.122967 0.992411i \(-0.539241\pi\)
−0.122967 + 0.992411i \(0.539241\pi\)
\(948\) 0 0
\(949\) 42.8818i 1.39200i
\(950\) −10.6292 10.0704i −0.344856 0.326726i
\(951\) 0 0
\(952\) 2.87062 0.0930374
\(953\) 31.4260 1.01799 0.508994 0.860770i \(-0.330018\pi\)
0.508994 + 0.860770i \(0.330018\pi\)
\(954\) 0 0
\(955\) −6.17482 −0.199813
\(956\) 4.70511i 0.152174i
\(957\) 0 0
\(958\) 34.9593i 1.12948i
\(959\) 4.12464i 0.133192i
\(960\) 0 0
\(961\) 23.7894 0.767401
\(962\) 37.8031i 1.21882i
\(963\) 0 0
\(964\) −18.6944 −0.602107
\(965\) −1.28223 −0.0412764
\(966\) 0 0
\(967\) 13.4842i 0.433624i 0.976213 + 0.216812i \(0.0695659\pi\)
−0.976213 + 0.216812i \(0.930434\pi\)
\(968\) 9.82255 + 4.95151i 0.315709 + 0.159148i
\(969\) 0 0
\(970\) 7.91834i 0.254243i
\(971\) 49.1332i 1.57676i 0.615190 + 0.788379i \(0.289079\pi\)
−0.615190 + 0.788379i \(0.710921\pi\)
\(972\) 0 0
\(973\) 3.77651 0.121069
\(974\) 5.81207i 0.186231i
\(975\) 0 0
\(976\) 4.87403i 0.156014i
\(977\) 41.7887i 1.33694i 0.743740 + 0.668469i \(0.233050\pi\)
−0.743740 + 0.668469i \(0.766950\pi\)
\(978\) 0 0
\(979\) 3.34128 14.0511i 0.106788 0.449074i
\(980\) 8.76967 0.280137
\(981\) 0 0
\(982\) 14.0518i 0.448412i
\(983\) 32.0576i 1.02248i −0.859438 0.511240i \(-0.829186\pi\)
0.859438 0.511240i \(-0.170814\pi\)
\(984\) 0 0
\(985\) 18.4408i 0.587574i
\(986\) 21.9874i 0.700221i
\(987\) 0 0
\(988\) −13.1642 12.4722i −0.418810 0.396792i
\(989\) 42.4859i 1.35097i
\(990\) 0 0
\(991\) 41.3431i 1.31331i 0.754192 + 0.656654i \(0.228029\pi\)
−0.754192 + 0.656654i \(0.771971\pi\)
\(992\) 2.68525i 0.0852567i
\(993\) 0 0
\(994\) −3.43456 −0.108938
\(995\) 12.2778 0.389232
\(996\) 0 0
\(997\) 10.1676i 0.322011i 0.986954 + 0.161006i \(0.0514737\pi\)
−0.986954 + 0.161006i \(0.948526\pi\)
\(998\) 7.99077 0.252943
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3762.2.g.l.2089.13 20
3.2 odd 2 1254.2.g.a.835.14 yes 20
11.10 odd 2 3762.2.g.k.2089.14 20
19.18 odd 2 3762.2.g.k.2089.13 20
33.32 even 2 1254.2.g.b.835.14 yes 20
57.56 even 2 1254.2.g.b.835.4 yes 20
209.208 even 2 inner 3762.2.g.l.2089.14 20
627.626 odd 2 1254.2.g.a.835.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1254.2.g.a.835.4 20 627.626 odd 2
1254.2.g.a.835.14 yes 20 3.2 odd 2
1254.2.g.b.835.4 yes 20 57.56 even 2
1254.2.g.b.835.14 yes 20 33.32 even 2
3762.2.g.k.2089.13 20 19.18 odd 2
3762.2.g.k.2089.14 20 11.10 odd 2
3762.2.g.l.2089.13 20 1.1 even 1 trivial
3762.2.g.l.2089.14 20 209.208 even 2 inner