Properties

Label 3762.2.g.l.2089.7
Level $3762$
Weight $2$
Character 3762.2089
Analytic conductor $30.040$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3762,2,Mod(2089,3762)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3762, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3762.2089");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3762.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.0397212404\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 2 x^{18} + 199 x^{16} - 414 x^{15} + 430 x^{14} + 184 x^{13} + 6939 x^{12} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 1254)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2089.7
Root \(1.75638 + 1.75638i\) of defining polynomial
Character \(\chi\) \(=\) 3762.2089
Dual form 3762.2.g.l.2089.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.24031 q^{5} -3.51276i q^{7} +1.00000 q^{8} -1.24031 q^{10} +(-0.393943 + 3.29315i) q^{11} -1.46033 q^{13} -3.51276i q^{14} +1.00000 q^{16} +3.83935i q^{17} +(-3.98747 + 1.76071i) q^{19} -1.24031 q^{20} +(-0.393943 + 3.29315i) q^{22} +2.48371 q^{23} -3.46162 q^{25} -1.46033 q^{26} -3.51276i q^{28} -5.89617 q^{29} +4.18521i q^{31} +1.00000 q^{32} +3.83935i q^{34} +4.35693i q^{35} +0.866253i q^{37} +(-3.98747 + 1.76071i) q^{38} -1.24031 q^{40} +11.4391 q^{41} +0.0872418i q^{43} +(-0.393943 + 3.29315i) q^{44} +2.48371 q^{46} -9.68535 q^{47} -5.33951 q^{49} -3.46162 q^{50} -1.46033 q^{52} +2.65543i q^{53} +(0.488613 - 4.08453i) q^{55} -3.51276i q^{56} -5.89617 q^{58} -0.285318i q^{59} +7.00823i q^{61} +4.18521i q^{62} +1.00000 q^{64} +1.81127 q^{65} -8.14823i q^{67} +3.83935i q^{68} +4.35693i q^{70} +15.0087i q^{71} +16.4472i q^{73} +0.866253i q^{74} +(-3.98747 + 1.76071i) q^{76} +(11.5680 + 1.38383i) q^{77} +6.48850 q^{79} -1.24031 q^{80} +11.4391 q^{82} +10.0557i q^{83} -4.76199i q^{85} +0.0872418i q^{86} +(-0.393943 + 3.29315i) q^{88} -9.47873i q^{89} +5.12980i q^{91} +2.48371 q^{92} -9.68535 q^{94} +(4.94571 - 2.18383i) q^{95} -7.60274i q^{97} -5.33951 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{2} + 20 q^{4} - 4 q^{5} + 20 q^{8} - 4 q^{10} - 6 q^{11} + 4 q^{13} + 20 q^{16} + 2 q^{19} - 4 q^{20} - 6 q^{22} + 8 q^{23} + 32 q^{25} + 4 q^{26} - 4 q^{29} + 20 q^{32} + 2 q^{38} - 4 q^{40}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3762\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(2377\) \(2927\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.24031 −0.554685 −0.277342 0.960771i \(-0.589454\pi\)
−0.277342 + 0.960771i \(0.589454\pi\)
\(6\) 0 0
\(7\) 3.51276i 1.32770i −0.747866 0.663850i \(-0.768921\pi\)
0.747866 0.663850i \(-0.231079\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.24031 −0.392221
\(11\) −0.393943 + 3.29315i −0.118778 + 0.992921i
\(12\) 0 0
\(13\) −1.46033 −0.405023 −0.202512 0.979280i \(-0.564910\pi\)
−0.202512 + 0.979280i \(0.564910\pi\)
\(14\) 3.51276i 0.938826i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.83935i 0.931179i 0.885001 + 0.465590i \(0.154158\pi\)
−0.885001 + 0.465590i \(0.845842\pi\)
\(18\) 0 0
\(19\) −3.98747 + 1.76071i −0.914788 + 0.403935i
\(20\) −1.24031 −0.277342
\(21\) 0 0
\(22\) −0.393943 + 3.29315i −0.0839890 + 0.702101i
\(23\) 2.48371 0.517890 0.258945 0.965892i \(-0.416625\pi\)
0.258945 + 0.965892i \(0.416625\pi\)
\(24\) 0 0
\(25\) −3.46162 −0.692325
\(26\) −1.46033 −0.286395
\(27\) 0 0
\(28\) 3.51276i 0.663850i
\(29\) −5.89617 −1.09489 −0.547446 0.836841i \(-0.684400\pi\)
−0.547446 + 0.836841i \(0.684400\pi\)
\(30\) 0 0
\(31\) 4.18521i 0.751686i 0.926683 + 0.375843i \(0.122647\pi\)
−0.926683 + 0.375843i \(0.877353\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 3.83935i 0.658443i
\(35\) 4.35693i 0.736455i
\(36\) 0 0
\(37\) 0.866253i 0.142411i 0.997462 + 0.0712055i \(0.0226846\pi\)
−0.997462 + 0.0712055i \(0.977315\pi\)
\(38\) −3.98747 + 1.76071i −0.646853 + 0.285625i
\(39\) 0 0
\(40\) −1.24031 −0.196111
\(41\) 11.4391 1.78649 0.893244 0.449571i \(-0.148423\pi\)
0.893244 + 0.449571i \(0.148423\pi\)
\(42\) 0 0
\(43\) 0.0872418i 0.0133043i 0.999978 + 0.00665213i \(0.00211745\pi\)
−0.999978 + 0.00665213i \(0.997883\pi\)
\(44\) −0.393943 + 3.29315i −0.0593892 + 0.496460i
\(45\) 0 0
\(46\) 2.48371 0.366204
\(47\) −9.68535 −1.41275 −0.706377 0.707836i \(-0.749671\pi\)
−0.706377 + 0.707836i \(0.749671\pi\)
\(48\) 0 0
\(49\) −5.33951 −0.762788
\(50\) −3.46162 −0.489548
\(51\) 0 0
\(52\) −1.46033 −0.202512
\(53\) 2.65543i 0.364752i 0.983229 + 0.182376i \(0.0583787\pi\)
−0.983229 + 0.182376i \(0.941621\pi\)
\(54\) 0 0
\(55\) 0.488613 4.08453i 0.0658846 0.550758i
\(56\) 3.51276i 0.469413i
\(57\) 0 0
\(58\) −5.89617 −0.774205
\(59\) 0.285318i 0.0371453i −0.999828 0.0185726i \(-0.994088\pi\)
0.999828 0.0185726i \(-0.00591219\pi\)
\(60\) 0 0
\(61\) 7.00823i 0.897312i 0.893705 + 0.448656i \(0.148097\pi\)
−0.893705 + 0.448656i \(0.851903\pi\)
\(62\) 4.18521i 0.531522i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.81127 0.224660
\(66\) 0 0
\(67\) 8.14823i 0.995465i −0.867331 0.497732i \(-0.834166\pi\)
0.867331 0.497732i \(-0.165834\pi\)
\(68\) 3.83935i 0.465590i
\(69\) 0 0
\(70\) 4.35693i 0.520752i
\(71\) 15.0087i 1.78120i 0.454783 + 0.890602i \(0.349717\pi\)
−0.454783 + 0.890602i \(0.650283\pi\)
\(72\) 0 0
\(73\) 16.4472i 1.92500i 0.271278 + 0.962501i \(0.412554\pi\)
−0.271278 + 0.962501i \(0.587446\pi\)
\(74\) 0.866253i 0.100700i
\(75\) 0 0
\(76\) −3.98747 + 1.76071i −0.457394 + 0.201967i
\(77\) 11.5680 + 1.38383i 1.31830 + 0.157702i
\(78\) 0 0
\(79\) 6.48850 0.730013 0.365007 0.931005i \(-0.381067\pi\)
0.365007 + 0.931005i \(0.381067\pi\)
\(80\) −1.24031 −0.138671
\(81\) 0 0
\(82\) 11.4391 1.26324
\(83\) 10.0557i 1.10375i 0.833925 + 0.551877i \(0.186088\pi\)
−0.833925 + 0.551877i \(0.813912\pi\)
\(84\) 0 0
\(85\) 4.76199i 0.516511i
\(86\) 0.0872418i 0.00940753i
\(87\) 0 0
\(88\) −0.393943 + 3.29315i −0.0419945 + 0.351051i
\(89\) 9.47873i 1.00474i −0.864652 0.502372i \(-0.832461\pi\)
0.864652 0.502372i \(-0.167539\pi\)
\(90\) 0 0
\(91\) 5.12980i 0.537749i
\(92\) 2.48371 0.258945
\(93\) 0 0
\(94\) −9.68535 −0.998967
\(95\) 4.94571 2.18383i 0.507419 0.224056i
\(96\) 0 0
\(97\) 7.60274i 0.771941i −0.922511 0.385971i \(-0.873867\pi\)
0.922511 0.385971i \(-0.126133\pi\)
\(98\) −5.33951 −0.539372
\(99\) 0 0
\(100\) −3.46162 −0.346162
\(101\) 6.35126i 0.631974i −0.948764 0.315987i \(-0.897664\pi\)
0.948764 0.315987i \(-0.102336\pi\)
\(102\) 0 0
\(103\) 0.950287i 0.0936346i −0.998903 0.0468173i \(-0.985092\pi\)
0.998903 0.0468173i \(-0.0149079\pi\)
\(104\) −1.46033 −0.143197
\(105\) 0 0
\(106\) 2.65543i 0.257918i
\(107\) 2.41401 0.233371 0.116685 0.993169i \(-0.462773\pi\)
0.116685 + 0.993169i \(0.462773\pi\)
\(108\) 0 0
\(109\) −13.0502 −1.24998 −0.624992 0.780631i \(-0.714898\pi\)
−0.624992 + 0.780631i \(0.714898\pi\)
\(110\) 0.488613 4.08453i 0.0465874 0.389445i
\(111\) 0 0
\(112\) 3.51276i 0.331925i
\(113\) 12.5345i 1.17914i 0.807716 + 0.589572i \(0.200703\pi\)
−0.807716 + 0.589572i \(0.799297\pi\)
\(114\) 0 0
\(115\) −3.08058 −0.287266
\(116\) −5.89617 −0.547446
\(117\) 0 0
\(118\) 0.285318i 0.0262657i
\(119\) 13.4867 1.23633
\(120\) 0 0
\(121\) −10.6896 2.59463i −0.971783 0.235875i
\(122\) 7.00823i 0.634495i
\(123\) 0 0
\(124\) 4.18521i 0.375843i
\(125\) 10.4951 0.938707
\(126\) 0 0
\(127\) −11.9882 −1.06378 −0.531891 0.846813i \(-0.678519\pi\)
−0.531891 + 0.846813i \(0.678519\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 1.81127 0.158859
\(131\) 20.6588i 1.80496i 0.430727 + 0.902482i \(0.358257\pi\)
−0.430727 + 0.902482i \(0.641743\pi\)
\(132\) 0 0
\(133\) 6.18496 + 14.0070i 0.536304 + 1.21456i
\(134\) 8.14823i 0.703900i
\(135\) 0 0
\(136\) 3.83935i 0.329221i
\(137\) 18.7527 1.60215 0.801076 0.598562i \(-0.204261\pi\)
0.801076 + 0.598562i \(0.204261\pi\)
\(138\) 0 0
\(139\) 1.91200i 0.162174i 0.996707 + 0.0810870i \(0.0258392\pi\)
−0.996707 + 0.0810870i \(0.974161\pi\)
\(140\) 4.35693i 0.368228i
\(141\) 0 0
\(142\) 15.0087i 1.25950i
\(143\) 0.575288 4.80909i 0.0481080 0.402156i
\(144\) 0 0
\(145\) 7.31310 0.607320
\(146\) 16.4472i 1.36118i
\(147\) 0 0
\(148\) 0.866253i 0.0712055i
\(149\) 16.0335i 1.31352i 0.754101 + 0.656759i \(0.228073\pi\)
−0.754101 + 0.656759i \(0.771927\pi\)
\(150\) 0 0
\(151\) −10.6889 −0.869850 −0.434925 0.900467i \(-0.643225\pi\)
−0.434925 + 0.900467i \(0.643225\pi\)
\(152\) −3.98747 + 1.76071i −0.323426 + 0.142812i
\(153\) 0 0
\(154\) 11.5680 + 1.38383i 0.932180 + 0.111512i
\(155\) 5.19097i 0.416949i
\(156\) 0 0
\(157\) −2.56348 −0.204588 −0.102294 0.994754i \(-0.532618\pi\)
−0.102294 + 0.994754i \(0.532618\pi\)
\(158\) 6.48850 0.516197
\(159\) 0 0
\(160\) −1.24031 −0.0980553
\(161\) 8.72470i 0.687603i
\(162\) 0 0
\(163\) 23.7821 1.86275 0.931377 0.364055i \(-0.118608\pi\)
0.931377 + 0.364055i \(0.118608\pi\)
\(164\) 11.4391 0.893244
\(165\) 0 0
\(166\) 10.0557i 0.780472i
\(167\) −20.9462 −1.62087 −0.810434 0.585830i \(-0.800769\pi\)
−0.810434 + 0.585830i \(0.800769\pi\)
\(168\) 0 0
\(169\) −10.8674 −0.835956
\(170\) 4.76199i 0.365228i
\(171\) 0 0
\(172\) 0.0872418i 0.00665213i
\(173\) −11.9048 −0.905107 −0.452554 0.891737i \(-0.649487\pi\)
−0.452554 + 0.891737i \(0.649487\pi\)
\(174\) 0 0
\(175\) 12.1599i 0.919200i
\(176\) −0.393943 + 3.29315i −0.0296946 + 0.248230i
\(177\) 0 0
\(178\) 9.47873i 0.710461i
\(179\) 13.5138i 1.01007i −0.863098 0.505036i \(-0.831479\pi\)
0.863098 0.505036i \(-0.168521\pi\)
\(180\) 0 0
\(181\) 15.6841i 1.16579i −0.812547 0.582896i \(-0.801920\pi\)
0.812547 0.582896i \(-0.198080\pi\)
\(182\) 5.12980i 0.380246i
\(183\) 0 0
\(184\) 2.48371 0.183102
\(185\) 1.07442i 0.0789933i
\(186\) 0 0
\(187\) −12.6435 1.51249i −0.924587 0.110604i
\(188\) −9.68535 −0.706377
\(189\) 0 0
\(190\) 4.94571 2.18383i 0.358799 0.158432i
\(191\) −4.63919 −0.335680 −0.167840 0.985814i \(-0.553679\pi\)
−0.167840 + 0.985814i \(0.553679\pi\)
\(192\) 0 0
\(193\) 13.7842 0.992207 0.496103 0.868264i \(-0.334764\pi\)
0.496103 + 0.868264i \(0.334764\pi\)
\(194\) 7.60274i 0.545845i
\(195\) 0 0
\(196\) −5.33951 −0.381394
\(197\) 11.9744i 0.853139i 0.904455 + 0.426569i \(0.140278\pi\)
−0.904455 + 0.426569i \(0.859722\pi\)
\(198\) 0 0
\(199\) 7.07676 0.501658 0.250829 0.968031i \(-0.419297\pi\)
0.250829 + 0.968031i \(0.419297\pi\)
\(200\) −3.46162 −0.244774
\(201\) 0 0
\(202\) 6.35126i 0.446873i
\(203\) 20.7119i 1.45369i
\(204\) 0 0
\(205\) −14.1881 −0.990938
\(206\) 0.950287i 0.0662096i
\(207\) 0 0
\(208\) −1.46033 −0.101256
\(209\) −4.22744 13.8249i −0.292418 0.956291i
\(210\) 0 0
\(211\) −4.48799 −0.308966 −0.154483 0.987995i \(-0.549371\pi\)
−0.154483 + 0.987995i \(0.549371\pi\)
\(212\) 2.65543i 0.182376i
\(213\) 0 0
\(214\) 2.41401 0.165018
\(215\) 0.108207i 0.00737967i
\(216\) 0 0
\(217\) 14.7017 0.998013
\(218\) −13.0502 −0.883873
\(219\) 0 0
\(220\) 0.488613 4.08453i 0.0329423 0.275379i
\(221\) 5.60673i 0.377149i
\(222\) 0 0
\(223\) 21.1024i 1.41312i −0.707653 0.706561i \(-0.750246\pi\)
0.707653 0.706561i \(-0.249754\pi\)
\(224\) 3.51276i 0.234706i
\(225\) 0 0
\(226\) 12.5345i 0.833780i
\(227\) −22.0436 −1.46308 −0.731542 0.681796i \(-0.761199\pi\)
−0.731542 + 0.681796i \(0.761199\pi\)
\(228\) 0 0
\(229\) −21.3204 −1.40889 −0.704445 0.709759i \(-0.748804\pi\)
−0.704445 + 0.709759i \(0.748804\pi\)
\(230\) −3.08058 −0.203128
\(231\) 0 0
\(232\) −5.89617 −0.387102
\(233\) 15.5808i 1.02073i 0.859957 + 0.510367i \(0.170490\pi\)
−0.859957 + 0.510367i \(0.829510\pi\)
\(234\) 0 0
\(235\) 12.0129 0.783633
\(236\) 0.285318i 0.0185726i
\(237\) 0 0
\(238\) 13.4867 0.874215
\(239\) 13.0572i 0.844602i −0.906456 0.422301i \(-0.861223\pi\)
0.906456 0.422301i \(-0.138777\pi\)
\(240\) 0 0
\(241\) 22.5139 1.45025 0.725124 0.688618i \(-0.241782\pi\)
0.725124 + 0.688618i \(0.241782\pi\)
\(242\) −10.6896 2.59463i −0.687155 0.166789i
\(243\) 0 0
\(244\) 7.00823i 0.448656i
\(245\) 6.62267 0.423107
\(246\) 0 0
\(247\) 5.82303 2.57122i 0.370510 0.163603i
\(248\) 4.18521i 0.265761i
\(249\) 0 0
\(250\) 10.4951 0.663766
\(251\) −11.1642 −0.704679 −0.352339 0.935872i \(-0.614614\pi\)
−0.352339 + 0.935872i \(0.614614\pi\)
\(252\) 0 0
\(253\) −0.978443 + 8.17923i −0.0615142 + 0.514224i
\(254\) −11.9882 −0.752208
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 14.7993i 0.923153i 0.887100 + 0.461576i \(0.152716\pi\)
−0.887100 + 0.461576i \(0.847284\pi\)
\(258\) 0 0
\(259\) 3.04294 0.189079
\(260\) 1.81127 0.112330
\(261\) 0 0
\(262\) 20.6588i 1.27630i
\(263\) 21.0066i 1.29532i −0.761929 0.647661i \(-0.775747\pi\)
0.761929 0.647661i \(-0.224253\pi\)
\(264\) 0 0
\(265\) 3.29357i 0.202322i
\(266\) 6.18496 + 14.0070i 0.379224 + 0.858826i
\(267\) 0 0
\(268\) 8.14823i 0.497732i
\(269\) 10.6393i 0.648691i 0.945939 + 0.324346i \(0.105144\pi\)
−0.945939 + 0.324346i \(0.894856\pi\)
\(270\) 0 0
\(271\) 3.47948i 0.211363i 0.994400 + 0.105682i \(0.0337024\pi\)
−0.994400 + 0.105682i \(0.966298\pi\)
\(272\) 3.83935i 0.232795i
\(273\) 0 0
\(274\) 18.7527 1.13289
\(275\) 1.36368 11.3996i 0.0822332 0.687424i
\(276\) 0 0
\(277\) 12.0892i 0.726369i −0.931717 0.363184i \(-0.881690\pi\)
0.931717 0.363184i \(-0.118310\pi\)
\(278\) 1.91200i 0.114674i
\(279\) 0 0
\(280\) 4.35693i 0.260376i
\(281\) −24.0267 −1.43331 −0.716656 0.697427i \(-0.754328\pi\)
−0.716656 + 0.697427i \(0.754328\pi\)
\(282\) 0 0
\(283\) 14.5867i 0.867091i 0.901132 + 0.433546i \(0.142738\pi\)
−0.901132 + 0.433546i \(0.857262\pi\)
\(284\) 15.0087i 0.890602i
\(285\) 0 0
\(286\) 0.575288 4.80909i 0.0340175 0.284367i
\(287\) 40.1829i 2.37192i
\(288\) 0 0
\(289\) 2.25940 0.132906
\(290\) 7.31310 0.429440
\(291\) 0 0
\(292\) 16.4472i 0.962501i
\(293\) −6.21249 −0.362938 −0.181469 0.983397i \(-0.558085\pi\)
−0.181469 + 0.983397i \(0.558085\pi\)
\(294\) 0 0
\(295\) 0.353884i 0.0206039i
\(296\) 0.866253i 0.0503499i
\(297\) 0 0
\(298\) 16.0335i 0.928797i
\(299\) −3.62705 −0.209758
\(300\) 0 0
\(301\) 0.306460 0.0176641
\(302\) −10.6889 −0.615077
\(303\) 0 0
\(304\) −3.98747 + 1.76071i −0.228697 + 0.100984i
\(305\) 8.69240i 0.497725i
\(306\) 0 0
\(307\) −19.4830 −1.11195 −0.555976 0.831198i \(-0.687655\pi\)
−0.555976 + 0.831198i \(0.687655\pi\)
\(308\) 11.5680 + 1.38383i 0.659151 + 0.0788511i
\(309\) 0 0
\(310\) 5.19097i 0.294827i
\(311\) −32.6639 −1.85220 −0.926100 0.377278i \(-0.876860\pi\)
−0.926100 + 0.377278i \(0.876860\pi\)
\(312\) 0 0
\(313\) 23.9814 1.35551 0.677755 0.735288i \(-0.262953\pi\)
0.677755 + 0.735288i \(0.262953\pi\)
\(314\) −2.56348 −0.144666
\(315\) 0 0
\(316\) 6.48850 0.365007
\(317\) 8.59009i 0.482467i −0.970467 0.241234i \(-0.922448\pi\)
0.970467 0.241234i \(-0.0775520\pi\)
\(318\) 0 0
\(319\) 2.32276 19.4169i 0.130049 1.08714i
\(320\) −1.24031 −0.0693356
\(321\) 0 0
\(322\) 8.72470i 0.486209i
\(323\) −6.75998 15.3093i −0.376136 0.851831i
\(324\) 0 0
\(325\) 5.05512 0.280408
\(326\) 23.7821 1.31717
\(327\) 0 0
\(328\) 11.4391 0.631619
\(329\) 34.0223i 1.87571i
\(330\) 0 0
\(331\) 2.34762i 0.129037i −0.997917 0.0645183i \(-0.979449\pi\)
0.997917 0.0645183i \(-0.0205511\pi\)
\(332\) 10.0557i 0.551877i
\(333\) 0 0
\(334\) −20.9462 −1.14613
\(335\) 10.1064i 0.552169i
\(336\) 0 0
\(337\) −3.48485 −0.189832 −0.0949159 0.995485i \(-0.530258\pi\)
−0.0949159 + 0.995485i \(0.530258\pi\)
\(338\) −10.8674 −0.591110
\(339\) 0 0
\(340\) 4.76199i 0.258255i
\(341\) −13.7825 1.64874i −0.746364 0.0892841i
\(342\) 0 0
\(343\) 5.83290i 0.314947i
\(344\) 0.0872418i 0.00470376i
\(345\) 0 0
\(346\) −11.9048 −0.640007
\(347\) 10.4391i 0.560400i 0.959942 + 0.280200i \(0.0904008\pi\)
−0.959942 + 0.280200i \(0.909599\pi\)
\(348\) 0 0
\(349\) 9.20478i 0.492720i 0.969178 + 0.246360i \(0.0792346\pi\)
−0.969178 + 0.246360i \(0.920765\pi\)
\(350\) 12.1599i 0.649972i
\(351\) 0 0
\(352\) −0.393943 + 3.29315i −0.0209973 + 0.175525i
\(353\) 11.1530 0.593615 0.296808 0.954937i \(-0.404078\pi\)
0.296808 + 0.954937i \(0.404078\pi\)
\(354\) 0 0
\(355\) 18.6155i 0.988007i
\(356\) 9.47873i 0.502372i
\(357\) 0 0
\(358\) 13.5138i 0.714229i
\(359\) 7.51000i 0.396363i −0.980165 0.198181i \(-0.936496\pi\)
0.980165 0.198181i \(-0.0635035\pi\)
\(360\) 0 0
\(361\) 12.7998 14.0416i 0.673673 0.739029i
\(362\) 15.6841i 0.824339i
\(363\) 0 0
\(364\) 5.12980i 0.268875i
\(365\) 20.3997i 1.06777i
\(366\) 0 0
\(367\) 22.6374 1.18166 0.590831 0.806796i \(-0.298800\pi\)
0.590831 + 0.806796i \(0.298800\pi\)
\(368\) 2.48371 0.129473
\(369\) 0 0
\(370\) 1.07442i 0.0558567i
\(371\) 9.32791 0.484281
\(372\) 0 0
\(373\) 7.75500 0.401539 0.200769 0.979639i \(-0.435656\pi\)
0.200769 + 0.979639i \(0.435656\pi\)
\(374\) −12.6435 1.51249i −0.653782 0.0782088i
\(375\) 0 0
\(376\) −9.68535 −0.499484
\(377\) 8.61037 0.443456
\(378\) 0 0
\(379\) 8.63502i 0.443551i −0.975098 0.221776i \(-0.928815\pi\)
0.975098 0.221776i \(-0.0711852\pi\)
\(380\) 4.94571 2.18383i 0.253709 0.112028i
\(381\) 0 0
\(382\) −4.63919 −0.237362
\(383\) 9.49540i 0.485192i −0.970127 0.242596i \(-0.922001\pi\)
0.970127 0.242596i \(-0.0779990\pi\)
\(384\) 0 0
\(385\) −14.3480 1.71638i −0.731242 0.0874750i
\(386\) 13.7842 0.701596
\(387\) 0 0
\(388\) 7.60274i 0.385971i
\(389\) −13.9837 −0.709003 −0.354502 0.935055i \(-0.615349\pi\)
−0.354502 + 0.935055i \(0.615349\pi\)
\(390\) 0 0
\(391\) 9.53585i 0.482248i
\(392\) −5.33951 −0.269686
\(393\) 0 0
\(394\) 11.9744i 0.603260i
\(395\) −8.04777 −0.404927
\(396\) 0 0
\(397\) −5.11408 −0.256668 −0.128334 0.991731i \(-0.540963\pi\)
−0.128334 + 0.991731i \(0.540963\pi\)
\(398\) 7.07676 0.354726
\(399\) 0 0
\(400\) −3.46162 −0.173081
\(401\) 19.3832i 0.967948i −0.875082 0.483974i \(-0.839193\pi\)
0.875082 0.483974i \(-0.160807\pi\)
\(402\) 0 0
\(403\) 6.11180i 0.304450i
\(404\) 6.35126i 0.315987i
\(405\) 0 0
\(406\) 20.7119i 1.02791i
\(407\) −2.85270 0.341255i −0.141403 0.0169154i
\(408\) 0 0
\(409\) −3.13095 −0.154815 −0.0774077 0.997000i \(-0.524664\pi\)
−0.0774077 + 0.997000i \(0.524664\pi\)
\(410\) −14.1881 −0.700699
\(411\) 0 0
\(412\) 0.950287i 0.0468173i
\(413\) −1.00226 −0.0493178
\(414\) 0 0
\(415\) 12.4722i 0.612236i
\(416\) −1.46033 −0.0715987
\(417\) 0 0
\(418\) −4.22744 13.8249i −0.206771 0.676200i
\(419\) 13.3636 0.652854 0.326427 0.945222i \(-0.394155\pi\)
0.326427 + 0.945222i \(0.394155\pi\)
\(420\) 0 0
\(421\) 9.51090i 0.463533i −0.972771 0.231767i \(-0.925549\pi\)
0.972771 0.231767i \(-0.0744505\pi\)
\(422\) −4.48799 −0.218472
\(423\) 0 0
\(424\) 2.65543i 0.128959i
\(425\) 13.2904i 0.644678i
\(426\) 0 0
\(427\) 24.6183 1.19136
\(428\) 2.41401 0.116685
\(429\) 0 0
\(430\) 0.108207i 0.00521821i
\(431\) 35.6693 1.71813 0.859064 0.511868i \(-0.171046\pi\)
0.859064 + 0.511868i \(0.171046\pi\)
\(432\) 0 0
\(433\) 8.16673i 0.392468i 0.980557 + 0.196234i \(0.0628712\pi\)
−0.980557 + 0.196234i \(0.937129\pi\)
\(434\) 14.7017 0.705702
\(435\) 0 0
\(436\) −13.0502 −0.624992
\(437\) −9.90373 + 4.37310i −0.473760 + 0.209194i
\(438\) 0 0
\(439\) −4.92870 −0.235234 −0.117617 0.993059i \(-0.537526\pi\)
−0.117617 + 0.993059i \(0.537526\pi\)
\(440\) 0.488613 4.08453i 0.0232937 0.194722i
\(441\) 0 0
\(442\) 5.60673i 0.266685i
\(443\) −29.5995 −1.40631 −0.703156 0.711035i \(-0.748227\pi\)
−0.703156 + 0.711035i \(0.748227\pi\)
\(444\) 0 0
\(445\) 11.7566i 0.557316i
\(446\) 21.1024i 0.999227i
\(447\) 0 0
\(448\) 3.51276i 0.165963i
\(449\) 3.96730i 0.187228i −0.995609 0.0936142i \(-0.970158\pi\)
0.995609 0.0936142i \(-0.0298420\pi\)
\(450\) 0 0
\(451\) −4.50636 + 37.6707i −0.212196 + 1.77384i
\(452\) 12.5345i 0.589572i
\(453\) 0 0
\(454\) −22.0436 −1.03456
\(455\) 6.36256i 0.298281i
\(456\) 0 0
\(457\) 0.864501i 0.0404397i −0.999796 0.0202198i \(-0.993563\pi\)
0.999796 0.0202198i \(-0.00643661\pi\)
\(458\) −21.3204 −0.996236
\(459\) 0 0
\(460\) −3.08058 −0.143633
\(461\) 21.5097i 1.00181i −0.865503 0.500904i \(-0.833001\pi\)
0.865503 0.500904i \(-0.166999\pi\)
\(462\) 0 0
\(463\) 13.6859 0.636039 0.318019 0.948084i \(-0.396982\pi\)
0.318019 + 0.948084i \(0.396982\pi\)
\(464\) −5.89617 −0.273723
\(465\) 0 0
\(466\) 15.5808i 0.721768i
\(467\) 23.7719 1.10003 0.550017 0.835154i \(-0.314621\pi\)
0.550017 + 0.835154i \(0.314621\pi\)
\(468\) 0 0
\(469\) −28.6228 −1.32168
\(470\) 12.0129 0.554112
\(471\) 0 0
\(472\) 0.285318i 0.0131328i
\(473\) −0.287300 0.0343683i −0.0132101 0.00158026i
\(474\) 0 0
\(475\) 13.8031 6.09492i 0.633330 0.279654i
\(476\) 13.4867 0.618163
\(477\) 0 0
\(478\) 13.0572i 0.597224i
\(479\) 24.9680i 1.14082i 0.821361 + 0.570408i \(0.193215\pi\)
−0.821361 + 0.570408i \(0.806785\pi\)
\(480\) 0 0
\(481\) 1.26502i 0.0576798i
\(482\) 22.5139 1.02548
\(483\) 0 0
\(484\) −10.6896 2.59463i −0.485892 0.117938i
\(485\) 9.42978i 0.428184i
\(486\) 0 0
\(487\) 38.9273i 1.76397i −0.471281 0.881983i \(-0.656208\pi\)
0.471281 0.881983i \(-0.343792\pi\)
\(488\) 7.00823i 0.317248i
\(489\) 0 0
\(490\) 6.62267 0.299182
\(491\) 6.50352i 0.293500i 0.989174 + 0.146750i \(0.0468812\pi\)
−0.989174 + 0.146750i \(0.953119\pi\)
\(492\) 0 0
\(493\) 22.6375i 1.01954i
\(494\) 5.82303 2.57122i 0.261990 0.115685i
\(495\) 0 0
\(496\) 4.18521i 0.187921i
\(497\) 52.7220 2.36491
\(498\) 0 0
\(499\) 0.684772 0.0306546 0.0153273 0.999883i \(-0.495121\pi\)
0.0153273 + 0.999883i \(0.495121\pi\)
\(500\) 10.4951 0.469353
\(501\) 0 0
\(502\) −11.1642 −0.498283
\(503\) 25.8805i 1.15396i 0.816760 + 0.576978i \(0.195768\pi\)
−0.816760 + 0.576978i \(0.804232\pi\)
\(504\) 0 0
\(505\) 7.87755i 0.350546i
\(506\) −0.978443 + 8.17923i −0.0434971 + 0.363611i
\(507\) 0 0
\(508\) −11.9882 −0.531891
\(509\) 29.7825i 1.32008i 0.751228 + 0.660042i \(0.229462\pi\)
−0.751228 + 0.660042i \(0.770538\pi\)
\(510\) 0 0
\(511\) 57.7752 2.55583
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 14.7993i 0.652768i
\(515\) 1.17865i 0.0519377i
\(516\) 0 0
\(517\) 3.81548 31.8953i 0.167805 1.40275i
\(518\) 3.04294 0.133699
\(519\) 0 0
\(520\) 1.81127 0.0794294
\(521\) 13.0835i 0.573198i −0.958051 0.286599i \(-0.907475\pi\)
0.958051 0.286599i \(-0.0925247\pi\)
\(522\) 0 0
\(523\) 15.4307 0.674736 0.337368 0.941373i \(-0.390463\pi\)
0.337368 + 0.941373i \(0.390463\pi\)
\(524\) 20.6588i 0.902482i
\(525\) 0 0
\(526\) 21.0066i 0.915931i
\(527\) −16.0685 −0.699954
\(528\) 0 0
\(529\) −16.8312 −0.731790
\(530\) 3.29357i 0.143063i
\(531\) 0 0
\(532\) 6.18496 + 14.0070i 0.268152 + 0.607282i
\(533\) −16.7049 −0.723570
\(534\) 0 0
\(535\) −2.99412 −0.129447
\(536\) 8.14823i 0.351950i
\(537\) 0 0
\(538\) 10.6393i 0.458694i
\(539\) 2.10347 17.5838i 0.0906027 0.757388i
\(540\) 0 0
\(541\) 4.87397i 0.209548i 0.994496 + 0.104774i \(0.0334120\pi\)
−0.994496 + 0.104774i \(0.966588\pi\)
\(542\) 3.47948i 0.149456i
\(543\) 0 0
\(544\) 3.83935i 0.164611i
\(545\) 16.1864 0.693348
\(546\) 0 0
\(547\) 38.3889 1.64139 0.820694 0.571367i \(-0.193587\pi\)
0.820694 + 0.571367i \(0.193587\pi\)
\(548\) 18.7527 0.801076
\(549\) 0 0
\(550\) 1.36368 11.3996i 0.0581477 0.486082i
\(551\) 23.5108 10.3814i 1.00159 0.442265i
\(552\) 0 0
\(553\) 22.7926i 0.969239i
\(554\) 12.0892i 0.513620i
\(555\) 0 0
\(556\) 1.91200i 0.0810870i
\(557\) 23.8274i 1.00960i −0.863236 0.504800i \(-0.831566\pi\)
0.863236 0.504800i \(-0.168434\pi\)
\(558\) 0 0
\(559\) 0.127402i 0.00538853i
\(560\) 4.35693i 0.184114i
\(561\) 0 0
\(562\) −24.0267 −1.01350
\(563\) 9.81809 0.413783 0.206892 0.978364i \(-0.433665\pi\)
0.206892 + 0.978364i \(0.433665\pi\)
\(564\) 0 0
\(565\) 15.5467i 0.654053i
\(566\) 14.5867i 0.613126i
\(567\) 0 0
\(568\) 15.0087i 0.629751i
\(569\) 31.9095 1.33772 0.668859 0.743389i \(-0.266783\pi\)
0.668859 + 0.743389i \(0.266783\pi\)
\(570\) 0 0
\(571\) 34.9981i 1.46463i −0.680968 0.732313i \(-0.738441\pi\)
0.680968 0.732313i \(-0.261559\pi\)
\(572\) 0.575288 4.80909i 0.0240540 0.201078i
\(573\) 0 0
\(574\) 40.1829i 1.67720i
\(575\) −8.59768 −0.358548
\(576\) 0 0
\(577\) 43.8833 1.82689 0.913443 0.406966i \(-0.133413\pi\)
0.913443 + 0.406966i \(0.133413\pi\)
\(578\) 2.25940 0.0939785
\(579\) 0 0
\(580\) 7.31310 0.303660
\(581\) 35.3232 1.46545
\(582\) 0 0
\(583\) −8.74472 1.04609i −0.362169 0.0433246i
\(584\) 16.4472i 0.680591i
\(585\) 0 0
\(586\) −6.21249 −0.256636
\(587\) 33.2220 1.37122 0.685609 0.727970i \(-0.259536\pi\)
0.685609 + 0.727970i \(0.259536\pi\)
\(588\) 0 0
\(589\) −7.36894 16.6884i −0.303632 0.687633i
\(590\) 0.353884i 0.0145692i
\(591\) 0 0
\(592\) 0.866253i 0.0356028i
\(593\) 12.4613i 0.511725i 0.966713 + 0.255863i \(0.0823595\pi\)
−0.966713 + 0.255863i \(0.917641\pi\)
\(594\) 0 0
\(595\) −16.7278 −0.685772
\(596\) 16.0335i 0.656759i
\(597\) 0 0
\(598\) −3.62705 −0.148321
\(599\) 7.41888i 0.303127i 0.988448 + 0.151564i \(0.0484308\pi\)
−0.988448 + 0.151564i \(0.951569\pi\)
\(600\) 0 0
\(601\) −8.62434 −0.351794 −0.175897 0.984409i \(-0.556283\pi\)
−0.175897 + 0.984409i \(0.556283\pi\)
\(602\) 0.306460 0.0124904
\(603\) 0 0
\(604\) −10.6889 −0.434925
\(605\) 13.2585 + 3.21815i 0.539033 + 0.130836i
\(606\) 0 0
\(607\) 1.64452 0.0667489 0.0333744 0.999443i \(-0.489375\pi\)
0.0333744 + 0.999443i \(0.489375\pi\)
\(608\) −3.98747 + 1.76071i −0.161713 + 0.0714062i
\(609\) 0 0
\(610\) 8.69240i 0.351945i
\(611\) 14.1438 0.572198
\(612\) 0 0
\(613\) 45.0831i 1.82089i 0.413629 + 0.910445i \(0.364261\pi\)
−0.413629 + 0.910445i \(0.635739\pi\)
\(614\) −19.4830 −0.786269
\(615\) 0 0
\(616\) 11.5680 + 1.38383i 0.466090 + 0.0557561i
\(617\) −7.39187 −0.297586 −0.148793 0.988868i \(-0.547539\pi\)
−0.148793 + 0.988868i \(0.547539\pi\)
\(618\) 0 0
\(619\) −17.9405 −0.721091 −0.360545 0.932742i \(-0.617409\pi\)
−0.360545 + 0.932742i \(0.617409\pi\)
\(620\) 5.19097i 0.208474i
\(621\) 0 0
\(622\) −32.6639 −1.30970
\(623\) −33.2966 −1.33400
\(624\) 0 0
\(625\) 4.29096 0.171638
\(626\) 23.9814 0.958490
\(627\) 0 0
\(628\) −2.56348 −0.102294
\(629\) −3.32585 −0.132610
\(630\) 0 0
\(631\) −5.87651 −0.233940 −0.116970 0.993135i \(-0.537318\pi\)
−0.116970 + 0.993135i \(0.537318\pi\)
\(632\) 6.48850 0.258099
\(633\) 0 0
\(634\) 8.59009i 0.341156i
\(635\) 14.8691 0.590064
\(636\) 0 0
\(637\) 7.79746 0.308947
\(638\) 2.32276 19.4169i 0.0919588 0.768724i
\(639\) 0 0
\(640\) −1.24031 −0.0490277
\(641\) 0.654202i 0.0258394i −0.999917 0.0129197i \(-0.995887\pi\)
0.999917 0.0129197i \(-0.00411259\pi\)
\(642\) 0 0
\(643\) −21.0249 −0.829142 −0.414571 0.910017i \(-0.636068\pi\)
−0.414571 + 0.910017i \(0.636068\pi\)
\(644\) 8.72470i 0.343801i
\(645\) 0 0
\(646\) −6.75998 15.3093i −0.265968 0.602336i
\(647\) 12.6223 0.496235 0.248117 0.968730i \(-0.420188\pi\)
0.248117 + 0.968730i \(0.420188\pi\)
\(648\) 0 0
\(649\) 0.939594 + 0.112399i 0.0368823 + 0.00441205i
\(650\) 5.05512 0.198278
\(651\) 0 0
\(652\) 23.7821 0.931377
\(653\) −31.4754 −1.23173 −0.615865 0.787852i \(-0.711193\pi\)
−0.615865 + 0.787852i \(0.711193\pi\)
\(654\) 0 0
\(655\) 25.6233i 1.00119i
\(656\) 11.4391 0.446622
\(657\) 0 0
\(658\) 34.0223i 1.32633i
\(659\) 4.52269 0.176179 0.0880894 0.996113i \(-0.471924\pi\)
0.0880894 + 0.996113i \(0.471924\pi\)
\(660\) 0 0
\(661\) 49.6747i 1.93212i 0.258312 + 0.966061i \(0.416834\pi\)
−0.258312 + 0.966061i \(0.583166\pi\)
\(662\) 2.34762i 0.0912427i
\(663\) 0 0
\(664\) 10.0557i 0.390236i
\(665\) −7.67129 17.3731i −0.297480 0.673700i
\(666\) 0 0
\(667\) −14.6444 −0.567033
\(668\) −20.9462 −0.810434
\(669\) 0 0
\(670\) 10.1064i 0.390443i
\(671\) −23.0791 2.76085i −0.890959 0.106581i
\(672\) 0 0
\(673\) 22.3215 0.860429 0.430215 0.902727i \(-0.358438\pi\)
0.430215 + 0.902727i \(0.358438\pi\)
\(674\) −3.48485 −0.134231
\(675\) 0 0
\(676\) −10.8674 −0.417978
\(677\) −14.3875 −0.552956 −0.276478 0.961020i \(-0.589167\pi\)
−0.276478 + 0.961020i \(0.589167\pi\)
\(678\) 0 0
\(679\) −26.7066 −1.02491
\(680\) 4.76199i 0.182614i
\(681\) 0 0
\(682\) −13.7825 1.64874i −0.527759 0.0631334i
\(683\) 49.0000i 1.87493i −0.348077 0.937466i \(-0.613165\pi\)
0.348077 0.937466i \(-0.386835\pi\)
\(684\) 0 0
\(685\) −23.2592 −0.888690
\(686\) 5.83290i 0.222701i
\(687\) 0 0
\(688\) 0.0872418i 0.00332606i
\(689\) 3.87781i 0.147733i
\(690\) 0 0
\(691\) 32.3554 1.23086 0.615429 0.788193i \(-0.288983\pi\)
0.615429 + 0.788193i \(0.288983\pi\)
\(692\) −11.9048 −0.452554
\(693\) 0 0
\(694\) 10.4391i 0.396263i
\(695\) 2.37148i 0.0899554i
\(696\) 0 0
\(697\) 43.9187i 1.66354i
\(698\) 9.20478i 0.348406i
\(699\) 0 0
\(700\) 12.1599i 0.459600i
\(701\) 13.6693i 0.516284i −0.966107 0.258142i \(-0.916890\pi\)
0.966107 0.258142i \(-0.0831102\pi\)
\(702\) 0 0
\(703\) −1.52522 3.45416i −0.0575248 0.130276i
\(704\) −0.393943 + 3.29315i −0.0148473 + 0.124115i
\(705\) 0 0
\(706\) 11.1530 0.419750
\(707\) −22.3105 −0.839072
\(708\) 0 0
\(709\) −37.1934 −1.39683 −0.698413 0.715695i \(-0.746110\pi\)
−0.698413 + 0.715695i \(0.746110\pi\)
\(710\) 18.6155i 0.698626i
\(711\) 0 0
\(712\) 9.47873i 0.355231i
\(713\) 10.3949i 0.389291i
\(714\) 0 0
\(715\) −0.713537 + 5.96477i −0.0266848 + 0.223070i
\(716\) 13.5138i 0.505036i
\(717\) 0 0
\(718\) 7.51000i 0.280271i
\(719\) 8.36848 0.312092 0.156046 0.987750i \(-0.450125\pi\)
0.156046 + 0.987750i \(0.450125\pi\)
\(720\) 0 0
\(721\) −3.33813 −0.124319
\(722\) 12.7998 14.0416i 0.476359 0.522573i
\(723\) 0 0
\(724\) 15.6841i 0.582896i
\(725\) 20.4103 0.758020
\(726\) 0 0
\(727\) −41.2999 −1.53173 −0.765864 0.643003i \(-0.777688\pi\)
−0.765864 + 0.643003i \(0.777688\pi\)
\(728\) 5.12980i 0.190123i
\(729\) 0 0
\(730\) 20.3997i 0.755027i
\(731\) −0.334952 −0.0123886
\(732\) 0 0
\(733\) 26.2954i 0.971244i 0.874169 + 0.485622i \(0.161407\pi\)
−0.874169 + 0.485622i \(0.838593\pi\)
\(734\) 22.6374 0.835561
\(735\) 0 0
\(736\) 2.48371 0.0915509
\(737\) 26.8333 + 3.20994i 0.988418 + 0.118240i
\(738\) 0 0
\(739\) 19.6684i 0.723512i 0.932273 + 0.361756i \(0.117823\pi\)
−0.932273 + 0.361756i \(0.882177\pi\)
\(740\) 1.07442i 0.0394966i
\(741\) 0 0
\(742\) 9.32791 0.342438
\(743\) −22.1725 −0.813429 −0.406715 0.913555i \(-0.633326\pi\)
−0.406715 + 0.913555i \(0.633326\pi\)
\(744\) 0 0
\(745\) 19.8866i 0.728588i
\(746\) 7.75500 0.283931
\(747\) 0 0
\(748\) −12.6435 1.51249i −0.462293 0.0553020i
\(749\) 8.47983i 0.309846i
\(750\) 0 0
\(751\) 25.8074i 0.941725i −0.882207 0.470862i \(-0.843943\pi\)
0.882207 0.470862i \(-0.156057\pi\)
\(752\) −9.68535 −0.353188
\(753\) 0 0
\(754\) 8.61037 0.313571
\(755\) 13.2576 0.482492
\(756\) 0 0
\(757\) −35.4702 −1.28919 −0.644593 0.764526i \(-0.722973\pi\)
−0.644593 + 0.764526i \(0.722973\pi\)
\(758\) 8.63502i 0.313638i
\(759\) 0 0
\(760\) 4.94571 2.18383i 0.179400 0.0792159i
\(761\) 6.33445i 0.229623i 0.993387 + 0.114812i \(0.0366265\pi\)
−0.993387 + 0.114812i \(0.963374\pi\)
\(762\) 0 0
\(763\) 45.8424i 1.65961i
\(764\) −4.63919 −0.167840
\(765\) 0 0
\(766\) 9.49540i 0.343083i
\(767\) 0.416659i 0.0150447i
\(768\) 0 0
\(769\) 30.6965i 1.10694i −0.832868 0.553472i \(-0.813302\pi\)
0.832868 0.553472i \(-0.186698\pi\)
\(770\) −14.3480 1.71638i −0.517066 0.0618541i
\(771\) 0 0
\(772\) 13.7842 0.496103
\(773\) 9.20215i 0.330978i 0.986212 + 0.165489i \(0.0529203\pi\)
−0.986212 + 0.165489i \(0.947080\pi\)
\(774\) 0 0
\(775\) 14.4876i 0.520411i
\(776\) 7.60274i 0.272923i
\(777\) 0 0
\(778\) −13.9837 −0.501341
\(779\) −45.6131 + 20.1410i −1.63426 + 0.721625i
\(780\) 0 0
\(781\) −49.4258 5.91258i −1.76859 0.211569i
\(782\) 9.53585i 0.341001i
\(783\) 0 0
\(784\) −5.33951 −0.190697
\(785\) 3.17952 0.113482
\(786\) 0 0
\(787\) 15.7616 0.561839 0.280919 0.959731i \(-0.409361\pi\)
0.280919 + 0.959731i \(0.409361\pi\)
\(788\) 11.9744i 0.426569i
\(789\) 0 0
\(790\) −8.04777 −0.286327
\(791\) 44.0306 1.56555
\(792\) 0 0
\(793\) 10.2343i 0.363432i
\(794\) −5.11408 −0.181492
\(795\) 0 0
\(796\) 7.07676 0.250829
\(797\) 34.8417i 1.23416i 0.786902 + 0.617078i \(0.211684\pi\)
−0.786902 + 0.617078i \(0.788316\pi\)
\(798\) 0 0
\(799\) 37.1854i 1.31553i
\(800\) −3.46162 −0.122387
\(801\) 0 0
\(802\) 19.3832i 0.684443i
\(803\) −54.1631 6.47928i −1.91137 0.228649i
\(804\) 0 0
\(805\) 10.8214i 0.381403i
\(806\) 6.11180i 0.215279i
\(807\) 0 0
\(808\) 6.35126i 0.223437i
\(809\) 18.3477i 0.645069i −0.946558 0.322535i \(-0.895465\pi\)
0.946558 0.322535i \(-0.104535\pi\)
\(810\) 0 0
\(811\) −38.1546 −1.33979 −0.669895 0.742456i \(-0.733661\pi\)
−0.669895 + 0.742456i \(0.733661\pi\)
\(812\) 20.7119i 0.726844i
\(813\) 0 0
\(814\) −2.85270 0.341255i −0.0999870 0.0119610i
\(815\) −29.4972 −1.03324
\(816\) 0 0
\(817\) −0.153608 0.347874i −0.00537405 0.0121706i
\(818\) −3.13095 −0.109471
\(819\) 0 0
\(820\) −14.1881 −0.495469
\(821\) 1.50930i 0.0526749i −0.999653 0.0263375i \(-0.991616\pi\)
0.999653 0.0263375i \(-0.00838445\pi\)
\(822\) 0 0
\(823\) 43.1342 1.50357 0.751783 0.659411i \(-0.229194\pi\)
0.751783 + 0.659411i \(0.229194\pi\)
\(824\) 0.950287i 0.0331048i
\(825\) 0 0
\(826\) −1.00226 −0.0348729
\(827\) 6.47290 0.225085 0.112542 0.993647i \(-0.464101\pi\)
0.112542 + 0.993647i \(0.464101\pi\)
\(828\) 0 0
\(829\) 0.483782i 0.0168024i −0.999965 0.00840122i \(-0.997326\pi\)
0.999965 0.00840122i \(-0.00267422\pi\)
\(830\) 12.4722i 0.432916i
\(831\) 0 0
\(832\) −1.46033 −0.0506279
\(833\) 20.5003i 0.710292i
\(834\) 0 0
\(835\) 25.9799 0.899071
\(836\) −4.22744 13.8249i −0.146209 0.478145i
\(837\) 0 0
\(838\) 13.3636 0.461638
\(839\) 10.4365i 0.360306i 0.983639 + 0.180153i \(0.0576593\pi\)
−0.983639 + 0.180153i \(0.942341\pi\)
\(840\) 0 0
\(841\) 5.76482 0.198787
\(842\) 9.51090i 0.327767i
\(843\) 0 0
\(844\) −4.48799 −0.154483
\(845\) 13.4790 0.463692
\(846\) 0 0
\(847\) −9.11431 + 37.5501i −0.313171 + 1.29024i
\(848\) 2.65543i 0.0911879i
\(849\) 0 0
\(850\) 13.2904i 0.455856i
\(851\) 2.15152i 0.0737533i
\(852\) 0 0
\(853\) 31.0469i 1.06302i −0.847051 0.531512i \(-0.821624\pi\)
0.847051 0.531512i \(-0.178376\pi\)
\(854\) 24.6183 0.842419
\(855\) 0 0
\(856\) 2.41401 0.0825090
\(857\) 31.0251 1.05980 0.529898 0.848062i \(-0.322230\pi\)
0.529898 + 0.848062i \(0.322230\pi\)
\(858\) 0 0
\(859\) 0.450113 0.0153576 0.00767882 0.999971i \(-0.497556\pi\)
0.00767882 + 0.999971i \(0.497556\pi\)
\(860\) 0.108207i 0.00368983i
\(861\) 0 0
\(862\) 35.6693 1.21490
\(863\) 11.8108i 0.402044i −0.979587 0.201022i \(-0.935574\pi\)
0.979587 0.201022i \(-0.0644263\pi\)
\(864\) 0 0
\(865\) 14.7657 0.502049
\(866\) 8.16673i 0.277517i
\(867\) 0 0
\(868\) 14.7017 0.499007
\(869\) −2.55610 + 21.3676i −0.0867098 + 0.724846i
\(870\) 0 0
\(871\) 11.8991i 0.403186i
\(872\) −13.0502 −0.441936
\(873\) 0 0
\(874\) −9.90373 + 4.37310i −0.334999 + 0.147922i
\(875\) 36.8667i 1.24632i
\(876\) 0 0
\(877\) −26.0537 −0.879772 −0.439886 0.898054i \(-0.644981\pi\)
−0.439886 + 0.898054i \(0.644981\pi\)
\(878\) −4.92870 −0.166336
\(879\) 0 0
\(880\) 0.488613 4.08453i 0.0164711 0.137690i
\(881\) −44.2433 −1.49059 −0.745297 0.666732i \(-0.767692\pi\)
−0.745297 + 0.666732i \(0.767692\pi\)
\(882\) 0 0
\(883\) 8.43478 0.283853 0.141926 0.989877i \(-0.454670\pi\)
0.141926 + 0.989877i \(0.454670\pi\)
\(884\) 5.60673i 0.188575i
\(885\) 0 0
\(886\) −29.5995 −0.994413
\(887\) −8.25836 −0.277288 −0.138644 0.990342i \(-0.544274\pi\)
−0.138644 + 0.990342i \(0.544274\pi\)
\(888\) 0 0
\(889\) 42.1118i 1.41238i
\(890\) 11.7566i 0.394082i
\(891\) 0 0
\(892\) 21.1024i 0.706561i
\(893\) 38.6200 17.0531i 1.29237 0.570660i
\(894\) 0 0
\(895\) 16.7614i 0.560272i
\(896\) 3.51276i 0.117353i
\(897\) 0 0
\(898\) 3.96730i 0.132390i
\(899\) 24.6767i 0.823014i
\(900\) 0 0
\(901\) −10.1951 −0.339649
\(902\) −4.50636 + 37.6707i −0.150045 + 1.25430i
\(903\) 0 0
\(904\) 12.5345i 0.416890i
\(905\) 19.4532i 0.646647i
\(906\) 0 0
\(907\) 25.1764i 0.835969i 0.908454 + 0.417984i \(0.137263\pi\)
−0.908454 + 0.417984i \(0.862737\pi\)
\(908\) −22.0436 −0.731542
\(909\) 0 0
\(910\) 6.36256i 0.210917i
\(911\) 38.9230i 1.28958i −0.764361 0.644789i \(-0.776945\pi\)
0.764361 0.644789i \(-0.223055\pi\)
\(912\) 0 0
\(913\) −33.1148 3.96137i −1.09594 0.131102i
\(914\) 0.864501i 0.0285952i
\(915\) 0 0
\(916\) −21.3204 −0.704445
\(917\) 72.5694 2.39645
\(918\) 0 0
\(919\) 16.0625i 0.529854i −0.964268 0.264927i \(-0.914652\pi\)
0.964268 0.264927i \(-0.0853478\pi\)
\(920\) −3.08058 −0.101564
\(921\) 0 0
\(922\) 21.5097i 0.708385i
\(923\) 21.9177i 0.721429i
\(924\) 0 0
\(925\) 2.99864i 0.0985947i
\(926\) 13.6859 0.449747
\(927\) 0 0
\(928\) −5.89617 −0.193551
\(929\) −48.5133 −1.59167 −0.795835 0.605513i \(-0.792968\pi\)
−0.795835 + 0.605513i \(0.792968\pi\)
\(930\) 0 0
\(931\) 21.2911 9.40134i 0.697789 0.308116i
\(932\) 15.5808i 0.510367i
\(933\) 0 0
\(934\) 23.7719 0.777841
\(935\) 15.6819 + 1.87596i 0.512854 + 0.0613503i
\(936\) 0 0
\(937\) 54.1045i 1.76752i 0.467944 + 0.883758i \(0.344995\pi\)
−0.467944 + 0.883758i \(0.655005\pi\)
\(938\) −28.6228 −0.934568
\(939\) 0 0
\(940\) 12.0129 0.391816
\(941\) 15.7291 0.512755 0.256377 0.966577i \(-0.417471\pi\)
0.256377 + 0.966577i \(0.417471\pi\)
\(942\) 0 0
\(943\) 28.4115 0.925205
\(944\) 0.285318i 0.00928631i
\(945\) 0 0
\(946\) −0.287300 0.0343683i −0.00934093 0.00111741i
\(947\) 17.4786 0.567979 0.283989 0.958827i \(-0.408342\pi\)
0.283989 + 0.958827i \(0.408342\pi\)
\(948\) 0 0
\(949\) 24.0184i 0.779671i
\(950\) 13.8031 6.09492i 0.447832 0.197745i
\(951\) 0 0
\(952\) 13.4867 0.437107
\(953\) −23.2275 −0.752412 −0.376206 0.926536i \(-0.622771\pi\)
−0.376206 + 0.926536i \(0.622771\pi\)
\(954\) 0 0
\(955\) 5.75405 0.186197
\(956\) 13.0572i 0.422301i
\(957\) 0 0
\(958\) 24.9680i 0.806679i
\(959\) 65.8739i 2.12718i
\(960\) 0 0
\(961\) 13.4840 0.434968
\(962\) 1.26502i 0.0407858i
\(963\) 0 0
\(964\) 22.5139 0.725124
\(965\) −17.0967 −0.550362
\(966\) 0 0
\(967\) 9.79540i 0.314999i 0.987519 + 0.157499i \(0.0503432\pi\)
−0.987519 + 0.157499i \(0.949657\pi\)
\(968\) −10.6896 2.59463i −0.343577 0.0833944i
\(969\) 0 0
\(970\) 9.42978i 0.302772i
\(971\) 42.9936i 1.37973i −0.723938 0.689865i \(-0.757670\pi\)
0.723938 0.689865i \(-0.242330\pi\)
\(972\) 0 0
\(973\) 6.71642 0.215318
\(974\) 38.9273i 1.24731i
\(975\) 0 0
\(976\) 7.00823i 0.224328i
\(977\) 25.7784i 0.824723i 0.911020 + 0.412361i \(0.135296\pi\)
−0.911020 + 0.412361i \(0.864704\pi\)
\(978\) 0 0
\(979\) 31.2149 + 3.73409i 0.997631 + 0.119342i
\(980\) 6.62267 0.211553
\(981\) 0 0
\(982\) 6.50352i 0.207536i
\(983\) 1.72387i 0.0549829i −0.999622 0.0274914i \(-0.991248\pi\)
0.999622 0.0274914i \(-0.00875190\pi\)
\(984\) 0 0
\(985\) 14.8520i 0.473223i
\(986\) 22.6375i 0.720923i
\(987\) 0 0
\(988\) 5.82303 2.57122i 0.185255 0.0818015i
\(989\) 0.216684i 0.00689014i
\(990\) 0 0
\(991\) 18.7121i 0.594409i −0.954814 0.297204i \(-0.903946\pi\)
0.954814 0.297204i \(-0.0960543\pi\)
\(992\) 4.18521i 0.132881i
\(993\) 0 0
\(994\) 52.7220 1.67224
\(995\) −8.77739 −0.278262
\(996\) 0 0
\(997\) 56.9988i 1.80517i −0.430512 0.902585i \(-0.641667\pi\)
0.430512 0.902585i \(-0.358333\pi\)
\(998\) 0.684772 0.0216761
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3762.2.g.l.2089.7 20
3.2 odd 2 1254.2.g.a.835.7 20
11.10 odd 2 3762.2.g.k.2089.8 20
19.18 odd 2 3762.2.g.k.2089.7 20
33.32 even 2 1254.2.g.b.835.7 yes 20
57.56 even 2 1254.2.g.b.835.17 yes 20
209.208 even 2 inner 3762.2.g.l.2089.8 20
627.626 odd 2 1254.2.g.a.835.17 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1254.2.g.a.835.7 20 3.2 odd 2
1254.2.g.a.835.17 yes 20 627.626 odd 2
1254.2.g.b.835.7 yes 20 33.32 even 2
1254.2.g.b.835.17 yes 20 57.56 even 2
3762.2.g.k.2089.7 20 19.18 odd 2
3762.2.g.k.2089.8 20 11.10 odd 2
3762.2.g.l.2089.7 20 1.1 even 1 trivial
3762.2.g.l.2089.8 20 209.208 even 2 inner