Properties

Label 378.2.g.h
Level 378378
Weight 22
Character orbit 378.g
Analytic conductor 3.0183.018
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,2,Mod(109,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.109"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 378=2337 378 = 2 \cdot 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 378.g (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,-2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.018345196403.01834519640
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,7)\Q(\sqrt{-3}, \sqrt{7})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+7x2+49 x^{4} + 7x^{2} + 49 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2+1)q2+β2q4+(β2+β11)q5β3q7q8+(β3β2+β1)q10+(β3β2+β1)q11+(β32)q13++(7β2+7)q98+O(q100) q + (\beta_{2} + 1) q^{2} + \beta_{2} q^{4} + ( - \beta_{2} + \beta_1 - 1) q^{5} - \beta_{3} q^{7} - q^{8} + (\beta_{3} - \beta_{2} + \beta_1) q^{10} + (\beta_{3} - \beta_{2} + \beta_1) q^{11} + ( - \beta_{3} - 2) q^{13}+ \cdots + (7 \beta_{2} + 7) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q22q42q54q8+2q10+2q118q132q16+2q174q19+4q20+4q22+8q236q254q2620q29+4q31+2q32+4q34++14q98+O(q100) 4 q + 2 q^{2} - 2 q^{4} - 2 q^{5} - 4 q^{8} + 2 q^{10} + 2 q^{11} - 8 q^{13} - 2 q^{16} + 2 q^{17} - 4 q^{19} + 4 q^{20} + 4 q^{22} + 8 q^{23} - 6 q^{25} - 4 q^{26} - 20 q^{29} + 4 q^{31} + 2 q^{32} + 4 q^{34}+ \cdots + 14 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+7x2+49 x^{4} + 7x^{2} + 49 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/7 ( \nu^{2} ) / 7 Copy content Toggle raw display
β3\beta_{3}== (ν3)/7 ( \nu^{3} ) / 7 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 7β2 7\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 7β3 7\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/378Z)×\left(\mathbb{Z}/378\mathbb{Z}\right)^\times.

nn 2929 325325
χ(n)\chi(n) 11 1β2-1 - \beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
109.1
−1.32288 2.29129i
1.32288 + 2.29129i
−1.32288 + 2.29129i
1.32288 2.29129i
0.500000 + 0.866025i 0 −0.500000 + 0.866025i −1.82288 3.15731i 0 −2.64575 −1.00000 0 1.82288 3.15731i
109.2 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0.822876 + 1.42526i 0 2.64575 −1.00000 0 −0.822876 + 1.42526i
163.1 0.500000 0.866025i 0 −0.500000 0.866025i −1.82288 + 3.15731i 0 −2.64575 −1.00000 0 1.82288 + 3.15731i
163.2 0.500000 0.866025i 0 −0.500000 0.866025i 0.822876 1.42526i 0 2.64575 −1.00000 0 −0.822876 1.42526i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 378.2.g.h yes 4
3.b odd 2 1 378.2.g.g 4
7.c even 3 1 inner 378.2.g.h yes 4
7.c even 3 1 2646.2.a.bi 2
7.d odd 6 1 2646.2.a.bf 2
9.c even 3 1 1134.2.e.q 4
9.c even 3 1 1134.2.h.t 4
9.d odd 6 1 1134.2.e.t 4
9.d odd 6 1 1134.2.h.q 4
21.g even 6 1 2646.2.a.bo 2
21.h odd 6 1 378.2.g.g 4
21.h odd 6 1 2646.2.a.bl 2
63.g even 3 1 1134.2.e.q 4
63.h even 3 1 1134.2.h.t 4
63.j odd 6 1 1134.2.h.q 4
63.n odd 6 1 1134.2.e.t 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.2.g.g 4 3.b odd 2 1
378.2.g.g 4 21.h odd 6 1
378.2.g.h yes 4 1.a even 1 1 trivial
378.2.g.h yes 4 7.c even 3 1 inner
1134.2.e.q 4 9.c even 3 1
1134.2.e.q 4 63.g even 3 1
1134.2.e.t 4 9.d odd 6 1
1134.2.e.t 4 63.n odd 6 1
1134.2.h.q 4 9.d odd 6 1
1134.2.h.q 4 63.j odd 6 1
1134.2.h.t 4 9.c even 3 1
1134.2.h.t 4 63.h even 3 1
2646.2.a.bf 2 7.d odd 6 1
2646.2.a.bi 2 7.c even 3 1
2646.2.a.bl 2 21.h odd 6 1
2646.2.a.bo 2 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(378,[χ])S_{2}^{\mathrm{new}}(378, [\chi]):

T54+2T53+10T5212T5+36 T_{5}^{4} + 2T_{5}^{3} + 10T_{5}^{2} - 12T_{5} + 36 Copy content Toggle raw display
T1142T113+10T112+12T11+36 T_{11}^{4} - 2T_{11}^{3} + 10T_{11}^{2} + 12T_{11} + 36 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4+2T3++36 T^{4} + 2 T^{3} + \cdots + 36 Copy content Toggle raw display
77 (T27)2 (T^{2} - 7)^{2} Copy content Toggle raw display
1111 T42T3++36 T^{4} - 2 T^{3} + \cdots + 36 Copy content Toggle raw display
1313 (T2+4T3)2 (T^{2} + 4 T - 3)^{2} Copy content Toggle raw display
1717 T42T3++36 T^{4} - 2 T^{3} + \cdots + 36 Copy content Toggle raw display
1919 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
2323 T48T3++144 T^{4} - 8 T^{3} + \cdots + 144 Copy content Toggle raw display
2929 (T2+10T+18)2 (T^{2} + 10 T + 18)^{2} Copy content Toggle raw display
3131 T44T3++9 T^{4} - 4 T^{3} + \cdots + 9 Copy content Toggle raw display
3737 T48T3++2209 T^{4} - 8 T^{3} + \cdots + 2209 Copy content Toggle raw display
4141 (T2+6T54)2 (T^{2} + 6 T - 54)^{2} Copy content Toggle raw display
4343 (T5)4 (T - 5)^{4} Copy content Toggle raw display
4747 T4+6T3++2916 T^{4} + 6 T^{3} + \cdots + 2916 Copy content Toggle raw display
5353 (T26T+36)2 (T^{2} - 6 T + 36)^{2} Copy content Toggle raw display
5959 T422T3++12996 T^{4} - 22 T^{3} + \cdots + 12996 Copy content Toggle raw display
6161 T4+20T3++8649 T^{4} + 20 T^{3} + \cdots + 8649 Copy content Toggle raw display
6767 T4+6T3++361 T^{4} + 6 T^{3} + \cdots + 361 Copy content Toggle raw display
7171 (T2+26T+162)2 (T^{2} + 26 T + 162)^{2} Copy content Toggle raw display
7373 T4+112T2+12544 T^{4} + 112 T^{2} + 12544 Copy content Toggle raw display
7979 T44T3++29241 T^{4} - 4 T^{3} + \cdots + 29241 Copy content Toggle raw display
8383 (T216T+36)2 (T^{2} - 16 T + 36)^{2} Copy content Toggle raw display
8989 T4+6T3++2916 T^{4} + 6 T^{3} + \cdots + 2916 Copy content Toggle raw display
9797 (T26T103)2 (T^{2} - 6 T - 103)^{2} Copy content Toggle raw display
show more
show less