gp: [N,k,chi] = [378,2,Mod(109,378)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(378, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("378.109");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,2,0,-2,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 7 x 2 + 49 x^{4} + 7x^{2} + 49 x 4 + 7 x 2 + 4 9
x^4 + 7*x^2 + 49
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 2 ) / 7 ( \nu^{2} ) / 7 ( ν 2 ) / 7
(v^2) / 7
β 3 \beta_{3} β 3 = = =
( ν 3 ) / 7 ( \nu^{3} ) / 7 ( ν 3 ) / 7
(v^3) / 7
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
7 β 2 7\beta_{2} 7 β 2
7*b2
ν 3 \nu^{3} ν 3 = = =
7 β 3 7\beta_{3} 7 β 3
7*b3
Character values
We give the values of χ \chi χ on generators for ( Z / 378 Z ) × \left(\mathbb{Z}/378\mathbb{Z}\right)^\times ( Z / 3 7 8 Z ) × .
n n n
29 29 2 9
325 325 3 2 5
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 − β 2 -1 - \beta_{2} − 1 − β 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 378 , [ χ ] ) S_{2}^{\mathrm{new}}(378, [\chi]) S 2 n e w ( 3 7 8 , [ χ ] ) :
T 5 4 + 2 T 5 3 + 10 T 5 2 − 12 T 5 + 36 T_{5}^{4} + 2T_{5}^{3} + 10T_{5}^{2} - 12T_{5} + 36 T 5 4 + 2 T 5 3 + 1 0 T 5 2 − 1 2 T 5 + 3 6
T5^4 + 2*T5^3 + 10*T5^2 - 12*T5 + 36
T 11 4 − 2 T 11 3 + 10 T 11 2 + 12 T 11 + 36 T_{11}^{4} - 2T_{11}^{3} + 10T_{11}^{2} + 12T_{11} + 36 T 1 1 4 − 2 T 1 1 3 + 1 0 T 1 1 2 + 1 2 T 1 1 + 3 6
T11^4 - 2*T11^3 + 10*T11^2 + 12*T11 + 36
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 − T + 1 ) 2 (T^{2} - T + 1)^{2} ( T 2 − T + 1 ) 2
(T^2 - T + 1)^2
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
T 4 + 2 T 3 + ⋯ + 36 T^{4} + 2 T^{3} + \cdots + 36 T 4 + 2 T 3 + ⋯ + 3 6
T^4 + 2*T^3 + 10*T^2 - 12*T + 36
7 7 7
( T 2 − 7 ) 2 (T^{2} - 7)^{2} ( T 2 − 7 ) 2
(T^2 - 7)^2
11 11 1 1
T 4 − 2 T 3 + ⋯ + 36 T^{4} - 2 T^{3} + \cdots + 36 T 4 − 2 T 3 + ⋯ + 3 6
T^4 - 2*T^3 + 10*T^2 + 12*T + 36
13 13 1 3
( T 2 + 4 T − 3 ) 2 (T^{2} + 4 T - 3)^{2} ( T 2 + 4 T − 3 ) 2
(T^2 + 4*T - 3)^2
17 17 1 7
T 4 − 2 T 3 + ⋯ + 36 T^{4} - 2 T^{3} + \cdots + 36 T 4 − 2 T 3 + ⋯ + 3 6
T^4 - 2*T^3 + 10*T^2 + 12*T + 36
19 19 1 9
( T 2 + 2 T + 4 ) 2 (T^{2} + 2 T + 4)^{2} ( T 2 + 2 T + 4 ) 2
(T^2 + 2*T + 4)^2
23 23 2 3
T 4 − 8 T 3 + ⋯ + 144 T^{4} - 8 T^{3} + \cdots + 144 T 4 − 8 T 3 + ⋯ + 1 4 4
T^4 - 8*T^3 + 76*T^2 + 96*T + 144
29 29 2 9
( T 2 + 10 T + 18 ) 2 (T^{2} + 10 T + 18)^{2} ( T 2 + 1 0 T + 1 8 ) 2
(T^2 + 10*T + 18)^2
31 31 3 1
T 4 − 4 T 3 + ⋯ + 9 T^{4} - 4 T^{3} + \cdots + 9 T 4 − 4 T 3 + ⋯ + 9
T^4 - 4*T^3 + 19*T^2 + 12*T + 9
37 37 3 7
T 4 − 8 T 3 + ⋯ + 2209 T^{4} - 8 T^{3} + \cdots + 2209 T 4 − 8 T 3 + ⋯ + 2 2 0 9
T^4 - 8*T^3 + 111*T^2 + 376*T + 2209
41 41 4 1
( T 2 + 6 T − 54 ) 2 (T^{2} + 6 T - 54)^{2} ( T 2 + 6 T − 5 4 ) 2
(T^2 + 6*T - 54)^2
43 43 4 3
( T − 5 ) 4 (T - 5)^{4} ( T − 5 ) 4
(T - 5)^4
47 47 4 7
T 4 + 6 T 3 + ⋯ + 2916 T^{4} + 6 T^{3} + \cdots + 2916 T 4 + 6 T 3 + ⋯ + 2 9 1 6
T^4 + 6*T^3 + 90*T^2 - 324*T + 2916
53 53 5 3
( T 2 − 6 T + 36 ) 2 (T^{2} - 6 T + 36)^{2} ( T 2 − 6 T + 3 6 ) 2
(T^2 - 6*T + 36)^2
59 59 5 9
T 4 − 22 T 3 + ⋯ + 12996 T^{4} - 22 T^{3} + \cdots + 12996 T 4 − 2 2 T 3 + ⋯ + 1 2 9 9 6
T^4 - 22*T^3 + 370*T^2 - 2508*T + 12996
61 61 6 1
T 4 + 20 T 3 + ⋯ + 8649 T^{4} + 20 T^{3} + \cdots + 8649 T 4 + 2 0 T 3 + ⋯ + 8 6 4 9
T^4 + 20*T^3 + 307*T^2 + 1860*T + 8649
67 67 6 7
T 4 + 6 T 3 + ⋯ + 361 T^{4} + 6 T^{3} + \cdots + 361 T 4 + 6 T 3 + ⋯ + 3 6 1
T^4 + 6*T^3 + 55*T^2 - 114*T + 361
71 71 7 1
( T 2 + 26 T + 162 ) 2 (T^{2} + 26 T + 162)^{2} ( T 2 + 2 6 T + 1 6 2 ) 2
(T^2 + 26*T + 162)^2
73 73 7 3
T 4 + 112 T 2 + 12544 T^{4} + 112 T^{2} + 12544 T 4 + 1 1 2 T 2 + 1 2 5 4 4
T^4 + 112*T^2 + 12544
79 79 7 9
T 4 − 4 T 3 + ⋯ + 29241 T^{4} - 4 T^{3} + \cdots + 29241 T 4 − 4 T 3 + ⋯ + 2 9 2 4 1
T^4 - 4*T^3 + 187*T^2 + 684*T + 29241
83 83 8 3
( T 2 − 16 T + 36 ) 2 (T^{2} - 16 T + 36)^{2} ( T 2 − 1 6 T + 3 6 ) 2
(T^2 - 16*T + 36)^2
89 89 8 9
T 4 + 6 T 3 + ⋯ + 2916 T^{4} + 6 T^{3} + \cdots + 2916 T 4 + 6 T 3 + ⋯ + 2 9 1 6
T^4 + 6*T^3 + 90*T^2 - 324*T + 2916
97 97 9 7
( T 2 − 6 T − 103 ) 2 (T^{2} - 6 T - 103)^{2} ( T 2 − 6 T − 1 0 3 ) 2
(T^2 - 6*T - 103)^2
show more
show less