Properties

Label 2646.2.a.bf
Level 26462646
Weight 22
Character orbit 2646.a
Self dual yes
Analytic conductor 21.12821.128
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2646,2,Mod(1,2646)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2646, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2646.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2646=23372 2646 = 2 \cdot 3^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2646.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 21.128416374821.1284163748
Analytic rank: 11
Dimension: 22
Coefficient field: Q(7)\Q(\sqrt{7})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x27 x^{2} - 7 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 378)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=7\beta = \sqrt{7}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq2+q4+(β1)q5q8+(β+1)q10+(β1)q11+(β+2)q13+q16+(β+1)q172q19+(β1)q20+(β+1)q22++(4β3)q97+O(q100) q - q^{2} + q^{4} + (\beta - 1) q^{5} - q^{8} + ( - \beta + 1) q^{10} + (\beta - 1) q^{11} + ( - \beta + 2) q^{13} + q^{16} + ( - \beta + 1) q^{17} - 2 q^{19} + (\beta - 1) q^{20} + ( - \beta + 1) q^{22}+ \cdots + (4 \beta - 3) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q2+2q42q52q8+2q102q11+4q13+2q16+2q174q192q20+2q228q23+6q254q2610q29+4q312q322q34+6q97+O(q100) 2 q - 2 q^{2} + 2 q^{4} - 2 q^{5} - 2 q^{8} + 2 q^{10} - 2 q^{11} + 4 q^{13} + 2 q^{16} + 2 q^{17} - 4 q^{19} - 2 q^{20} + 2 q^{22} - 8 q^{23} + 6 q^{25} - 4 q^{26} - 10 q^{29} + 4 q^{31} - 2 q^{32} - 2 q^{34}+ \cdots - 6 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.64575
2.64575
−1.00000 0 1.00000 −3.64575 0 0 −1.00000 0 3.64575
1.2 −1.00000 0 1.00000 1.64575 0 0 −1.00000 0 −1.64575
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2646.2.a.bf 2
3.b odd 2 1 2646.2.a.bo 2
7.b odd 2 1 2646.2.a.bi 2
7.d odd 6 2 378.2.g.h yes 4
21.c even 2 1 2646.2.a.bl 2
21.g even 6 2 378.2.g.g 4
63.i even 6 2 1134.2.e.t 4
63.k odd 6 2 1134.2.h.t 4
63.s even 6 2 1134.2.h.q 4
63.t odd 6 2 1134.2.e.q 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.2.g.g 4 21.g even 6 2
378.2.g.h yes 4 7.d odd 6 2
1134.2.e.q 4 63.t odd 6 2
1134.2.e.t 4 63.i even 6 2
1134.2.h.q 4 63.s even 6 2
1134.2.h.t 4 63.k odd 6 2
2646.2.a.bf 2 1.a even 1 1 trivial
2646.2.a.bi 2 7.b odd 2 1
2646.2.a.bl 2 21.c even 2 1
2646.2.a.bo 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(2646))S_{2}^{\mathrm{new}}(\Gamma_0(2646)):

T52+2T56 T_{5}^{2} + 2T_{5} - 6 Copy content Toggle raw display
T112+2T116 T_{11}^{2} + 2T_{11} - 6 Copy content Toggle raw display
T1324T133 T_{13}^{2} - 4T_{13} - 3 Copy content Toggle raw display
T1722T176 T_{17}^{2} - 2T_{17} - 6 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+2T6 T^{2} + 2T - 6 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+2T6 T^{2} + 2T - 6 Copy content Toggle raw display
1313 T24T3 T^{2} - 4T - 3 Copy content Toggle raw display
1717 T22T6 T^{2} - 2T - 6 Copy content Toggle raw display
1919 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
2323 T2+8T12 T^{2} + 8T - 12 Copy content Toggle raw display
2929 T2+10T+18 T^{2} + 10T + 18 Copy content Toggle raw display
3131 T24T3 T^{2} - 4T - 3 Copy content Toggle raw display
3737 T2+8T47 T^{2} + 8T - 47 Copy content Toggle raw display
4141 T26T54 T^{2} - 6T - 54 Copy content Toggle raw display
4343 (T5)2 (T - 5)^{2} Copy content Toggle raw display
4747 T2+6T54 T^{2} + 6T - 54 Copy content Toggle raw display
5353 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
5959 T222T+114 T^{2} - 22T + 114 Copy content Toggle raw display
6161 T2+20T+93 T^{2} + 20T + 93 Copy content Toggle raw display
6767 T26T19 T^{2} - 6T - 19 Copy content Toggle raw display
7171 T2+26T+162 T^{2} + 26T + 162 Copy content Toggle raw display
7373 T2112 T^{2} - 112 Copy content Toggle raw display
7979 T2+4T171 T^{2} + 4T - 171 Copy content Toggle raw display
8383 T2+16T+36 T^{2} + 16T + 36 Copy content Toggle raw display
8989 T2+6T54 T^{2} + 6T - 54 Copy content Toggle raw display
9797 T2+6T103 T^{2} + 6T - 103 Copy content Toggle raw display
show more
show less