Properties

Label 2646.2.a.bf
Level $2646$
Weight $2$
Character orbit 2646.a
Self dual yes
Analytic conductor $21.128$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2646,2,Mod(1,2646)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2646, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2646.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.1284163748\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 378)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{7}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + (\beta - 1) q^{5} - q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + q^{4} + (\beta - 1) q^{5} - q^{8} + ( - \beta + 1) q^{10} + (\beta - 1) q^{11} + ( - \beta + 2) q^{13} + q^{16} + ( - \beta + 1) q^{17} - 2 q^{19} + (\beta - 1) q^{20} + ( - \beta + 1) q^{22} + ( - 2 \beta - 4) q^{23} + ( - 2 \beta + 3) q^{25} + (\beta - 2) q^{26} + ( - \beta - 5) q^{29} + ( - \beta + 2) q^{31} - q^{32} + (\beta - 1) q^{34} + (3 \beta - 4) q^{37} + 2 q^{38} + ( - \beta + 1) q^{40} + ( - 3 \beta + 3) q^{41} + 5 q^{43} + (\beta - 1) q^{44} + (2 \beta + 4) q^{46} + ( - 3 \beta - 3) q^{47} + (2 \beta - 3) q^{50} + ( - \beta + 2) q^{52} - 6 q^{53} + ( - 2 \beta + 8) q^{55} + (\beta + 5) q^{58} + (\beta + 11) q^{59} + ( - \beta - 10) q^{61} + (\beta - 2) q^{62} + q^{64} + (3 \beta - 9) q^{65} + (2 \beta + 3) q^{67} + ( - \beta + 1) q^{68} + (\beta - 13) q^{71} + 4 \beta q^{73} + ( - 3 \beta + 4) q^{74} - 2 q^{76} + ( - 5 \beta - 2) q^{79} + (\beta - 1) q^{80} + (3 \beta - 3) q^{82} + (2 \beta - 8) q^{83} + (2 \beta - 8) q^{85} - 5 q^{86} + ( - \beta + 1) q^{88} + ( - 3 \beta - 3) q^{89} + ( - 2 \beta - 4) q^{92} + (3 \beta + 3) q^{94} + ( - 2 \beta + 2) q^{95} + (4 \beta - 3) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{5} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{5} - 2 q^{8} + 2 q^{10} - 2 q^{11} + 4 q^{13} + 2 q^{16} + 2 q^{17} - 4 q^{19} - 2 q^{20} + 2 q^{22} - 8 q^{23} + 6 q^{25} - 4 q^{26} - 10 q^{29} + 4 q^{31} - 2 q^{32} - 2 q^{34} - 8 q^{37} + 4 q^{38} + 2 q^{40} + 6 q^{41} + 10 q^{43} - 2 q^{44} + 8 q^{46} - 6 q^{47} - 6 q^{50} + 4 q^{52} - 12 q^{53} + 16 q^{55} + 10 q^{58} + 22 q^{59} - 20 q^{61} - 4 q^{62} + 2 q^{64} - 18 q^{65} + 6 q^{67} + 2 q^{68} - 26 q^{71} + 8 q^{74} - 4 q^{76} - 4 q^{79} - 2 q^{80} - 6 q^{82} - 16 q^{83} - 16 q^{85} - 10 q^{86} + 2 q^{88} - 6 q^{89} - 8 q^{92} + 6 q^{94} + 4 q^{95} - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.64575
2.64575
−1.00000 0 1.00000 −3.64575 0 0 −1.00000 0 3.64575
1.2 −1.00000 0 1.00000 1.64575 0 0 −1.00000 0 −1.64575
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2646.2.a.bf 2
3.b odd 2 1 2646.2.a.bo 2
7.b odd 2 1 2646.2.a.bi 2
7.d odd 6 2 378.2.g.h yes 4
21.c even 2 1 2646.2.a.bl 2
21.g even 6 2 378.2.g.g 4
63.i even 6 2 1134.2.e.t 4
63.k odd 6 2 1134.2.h.t 4
63.s even 6 2 1134.2.h.q 4
63.t odd 6 2 1134.2.e.q 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.2.g.g 4 21.g even 6 2
378.2.g.h yes 4 7.d odd 6 2
1134.2.e.q 4 63.t odd 6 2
1134.2.e.t 4 63.i even 6 2
1134.2.h.q 4 63.s even 6 2
1134.2.h.t 4 63.k odd 6 2
2646.2.a.bf 2 1.a even 1 1 trivial
2646.2.a.bi 2 7.b odd 2 1
2646.2.a.bl 2 21.c even 2 1
2646.2.a.bo 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2646))\):

\( T_{5}^{2} + 2T_{5} - 6 \) Copy content Toggle raw display
\( T_{11}^{2} + 2T_{11} - 6 \) Copy content Toggle raw display
\( T_{13}^{2} - 4T_{13} - 3 \) Copy content Toggle raw display
\( T_{17}^{2} - 2T_{17} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 2T - 6 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2T - 6 \) Copy content Toggle raw display
$13$ \( T^{2} - 4T - 3 \) Copy content Toggle raw display
$17$ \( T^{2} - 2T - 6 \) Copy content Toggle raw display
$19$ \( (T + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 8T - 12 \) Copy content Toggle raw display
$29$ \( T^{2} + 10T + 18 \) Copy content Toggle raw display
$31$ \( T^{2} - 4T - 3 \) Copy content Toggle raw display
$37$ \( T^{2} + 8T - 47 \) Copy content Toggle raw display
$41$ \( T^{2} - 6T - 54 \) Copy content Toggle raw display
$43$ \( (T - 5)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 6T - 54 \) Copy content Toggle raw display
$53$ \( (T + 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 22T + 114 \) Copy content Toggle raw display
$61$ \( T^{2} + 20T + 93 \) Copy content Toggle raw display
$67$ \( T^{2} - 6T - 19 \) Copy content Toggle raw display
$71$ \( T^{2} + 26T + 162 \) Copy content Toggle raw display
$73$ \( T^{2} - 112 \) Copy content Toggle raw display
$79$ \( T^{2} + 4T - 171 \) Copy content Toggle raw display
$83$ \( T^{2} + 16T + 36 \) Copy content Toggle raw display
$89$ \( T^{2} + 6T - 54 \) Copy content Toggle raw display
$97$ \( T^{2} + 6T - 103 \) Copy content Toggle raw display
show more
show less