Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [378,2,Mod(43,378)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(378, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([4, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("378.43");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 378 = 2 \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 378.u (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.01834519640\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
43.1 | −0.766044 | − | 0.642788i | −1.71357 | + | 0.252371i | 0.173648 | + | 0.984808i | 3.65119 | + | 1.32893i | 1.47489 | + | 0.908132i | −0.173648 | + | 0.984808i | 0.500000 | − | 0.866025i | 2.87262 | − | 0.864908i | −1.94276 | − | 3.36496i |
43.2 | −0.766044 | − | 0.642788i | −0.762464 | + | 1.55520i | 0.173648 | + | 0.984808i | −1.51130 | − | 0.550067i | 1.58375 | − | 0.701250i | −0.173648 | + | 0.984808i | 0.500000 | − | 0.866025i | −1.83730 | − | 2.37157i | 0.804144 | + | 1.39282i |
43.3 | −0.766044 | − | 0.642788i | 0.217603 | − | 1.71833i | 0.173648 | + | 0.984808i | −3.75298 | − | 1.36597i | −1.27121 | + | 1.17644i | −0.173648 | + | 0.984808i | 0.500000 | − | 0.866025i | −2.90530 | − | 0.747827i | 1.99692 | + | 3.45877i |
43.4 | −0.766044 | − | 0.642788i | 0.992383 | + | 1.41957i | 0.173648 | + | 0.984808i | 0.999746 | + | 0.363878i | 0.152272 | − | 1.72534i | −0.173648 | + | 0.984808i | 0.500000 | − | 0.866025i | −1.03035 | + | 2.81751i | −0.531954 | − | 0.921371i |
85.1 | 0.939693 | + | 0.342020i | −1.33338 | − | 1.10549i | 0.766044 | + | 0.642788i | −0.412508 | + | 2.33945i | −0.874866 | − | 1.49486i | −0.766044 | + | 0.642788i | 0.500000 | + | 0.866025i | 0.555794 | + | 2.94807i | −1.18777 | + | 2.05728i |
85.2 | 0.939693 | + | 0.342020i | −0.0350640 | + | 1.73170i | 0.766044 | + | 0.642788i | −0.00462235 | + | 0.0262146i | −0.625224 | + | 1.61527i | −0.766044 | + | 0.642788i | 0.500000 | + | 0.866025i | −2.99754 | − | 0.121440i | −0.0133095 | + | 0.0230528i |
85.3 | 0.939693 | + | 0.342020i | 0.0792099 | − | 1.73024i | 0.766044 | + | 0.642788i | 0.488347 | − | 2.76955i | 0.666209 | − | 1.59880i | −0.766044 | + | 0.642788i | 0.500000 | + | 0.866025i | −2.98745 | − | 0.274104i | 1.40614 | − | 2.43551i |
85.4 | 0.939693 | + | 0.342020i | 1.72892 | − | 0.104015i | 0.766044 | + | 0.642788i | −0.163613 | + | 0.927896i | 1.66023 | + | 0.493585i | −0.766044 | + | 0.642788i | 0.500000 | + | 0.866025i | 2.97836 | − | 0.359668i | −0.471105 | + | 0.815978i |
169.1 | 0.939693 | − | 0.342020i | −1.33338 | + | 1.10549i | 0.766044 | − | 0.642788i | −0.412508 | − | 2.33945i | −0.874866 | + | 1.49486i | −0.766044 | − | 0.642788i | 0.500000 | − | 0.866025i | 0.555794 | − | 2.94807i | −1.18777 | − | 2.05728i |
169.2 | 0.939693 | − | 0.342020i | −0.0350640 | − | 1.73170i | 0.766044 | − | 0.642788i | −0.00462235 | − | 0.0262146i | −0.625224 | − | 1.61527i | −0.766044 | − | 0.642788i | 0.500000 | − | 0.866025i | −2.99754 | + | 0.121440i | −0.0133095 | − | 0.0230528i |
169.3 | 0.939693 | − | 0.342020i | 0.0792099 | + | 1.73024i | 0.766044 | − | 0.642788i | 0.488347 | + | 2.76955i | 0.666209 | + | 1.59880i | −0.766044 | − | 0.642788i | 0.500000 | − | 0.866025i | −2.98745 | + | 0.274104i | 1.40614 | + | 2.43551i |
169.4 | 0.939693 | − | 0.342020i | 1.72892 | + | 0.104015i | 0.766044 | − | 0.642788i | −0.163613 | − | 0.927896i | 1.66023 | − | 0.493585i | −0.766044 | − | 0.642788i | 0.500000 | − | 0.866025i | 2.97836 | + | 0.359668i | −0.471105 | − | 0.815978i |
211.1 | −0.766044 | + | 0.642788i | −1.71357 | − | 0.252371i | 0.173648 | − | 0.984808i | 3.65119 | − | 1.32893i | 1.47489 | − | 0.908132i | −0.173648 | − | 0.984808i | 0.500000 | + | 0.866025i | 2.87262 | + | 0.864908i | −1.94276 | + | 3.36496i |
211.2 | −0.766044 | + | 0.642788i | −0.762464 | − | 1.55520i | 0.173648 | − | 0.984808i | −1.51130 | + | 0.550067i | 1.58375 | + | 0.701250i | −0.173648 | − | 0.984808i | 0.500000 | + | 0.866025i | −1.83730 | + | 2.37157i | 0.804144 | − | 1.39282i |
211.3 | −0.766044 | + | 0.642788i | 0.217603 | + | 1.71833i | 0.173648 | − | 0.984808i | −3.75298 | + | 1.36597i | −1.27121 | − | 1.17644i | −0.173648 | − | 0.984808i | 0.500000 | + | 0.866025i | −2.90530 | + | 0.747827i | 1.99692 | − | 3.45877i |
211.4 | −0.766044 | + | 0.642788i | 0.992383 | − | 1.41957i | 0.173648 | − | 0.984808i | 0.999746 | − | 0.363878i | 0.152272 | + | 1.72534i | −0.173648 | − | 0.984808i | 0.500000 | + | 0.866025i | −1.03035 | − | 2.81751i | −0.531954 | + | 0.921371i |
295.1 | −0.173648 | + | 0.984808i | −1.63475 | + | 0.572349i | −0.939693 | − | 0.342020i | 0.789233 | − | 0.662245i | −0.279782 | − | 1.70930i | 0.939693 | − | 0.342020i | 0.500000 | − | 0.866025i | 2.34483 | − | 1.87130i | 0.515135 | + | 0.892241i |
295.2 | −0.173648 | + | 0.984808i | −1.49215 | − | 0.879480i | −0.939693 | − | 0.342020i | −2.11377 | + | 1.77366i | 1.12523 | − | 1.31676i | 0.939693 | − | 0.342020i | 0.500000 | − | 0.866025i | 1.45303 | + | 2.62463i | −1.37966 | − | 2.38965i |
295.3 | −0.173648 | + | 0.984808i | 1.13330 | + | 1.30982i | −0.939693 | − | 0.342020i | 2.14766 | − | 1.80210i | −1.48672 | + | 0.888630i | 0.939693 | − | 0.342020i | 0.500000 | − | 0.866025i | −0.431280 | + | 2.96884i | 1.40179 | + | 2.42797i |
295.4 | −0.173648 | + | 0.984808i | 1.31996 | − | 1.12148i | −0.939693 | − | 0.342020i | 1.38261 | − | 1.16015i | 0.875229 | + | 1.49465i | 0.939693 | − | 0.342020i | 0.500000 | − | 0.866025i | 0.484585 | − | 2.96060i | 0.902434 | + | 1.56306i |
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 378.2.u.c | ✓ | 24 |
27.e | even | 9 | 1 | inner | 378.2.u.c | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
378.2.u.c | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
378.2.u.c | ✓ | 24 | 27.e | even | 9 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{24} - 3 T_{5}^{23} - 12 T_{5}^{22} + 53 T_{5}^{21} + 24 T_{5}^{20} - 408 T_{5}^{19} + 2017 T_{5}^{18} + \cdots + 4096 \) acting on \(S_{2}^{\mathrm{new}}(378, [\chi])\).