Properties

Label 3825.2.a.be.1.1
Level $3825$
Weight $2$
Character 3825.1
Self dual yes
Analytic conductor $30.543$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3825,2,Mod(1,3825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3825.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.5427787731\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 765)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.66908\) of defining polynomial
Character \(\chi\) \(=\) 3825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.66908 q^{2} +5.12398 q^{4} -0.454904 q^{7} -8.33816 q^{8} -1.54510 q^{11} -2.00000 q^{13} +1.21417 q^{14} +12.0072 q^{16} -1.00000 q^{17} +3.54510 q^{19} +4.12398 q^{22} +5.33816 q^{26} -2.33092 q^{28} -9.79306 q^{29} -0.909808 q^{31} -15.3719 q^{32} +2.66908 q^{34} +7.79306 q^{37} -9.46214 q^{38} +6.70287 q^{41} +8.67632 q^{43} -7.91705 q^{44} +12.0410 q^{47} -6.79306 q^{49} -10.2480 q^{52} +0.883254 q^{53} +3.79306 q^{56} +26.1385 q^{58} +3.09019 q^{59} +9.58612 q^{61} +2.42835 q^{62} +17.0145 q^{64} -15.7665 q^{67} -5.12398 q^{68} -13.5861 q^{71} -1.11675 q^{73} -20.8003 q^{74} +18.1650 q^{76} +0.702870 q^{77} +8.00000 q^{79} -17.8905 q^{82} -5.81962 q^{83} -23.1578 q^{86} +12.8833 q^{88} -13.7665 q^{89} +0.909808 q^{91} -32.1385 q^{94} -15.5861 q^{97} +18.1312 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} - 9 q^{8} - 6 q^{11} - 6 q^{13} - 3 q^{14} + 12 q^{16} - 3 q^{17} + 12 q^{19} + 3 q^{22} - 15 q^{28} - 12 q^{29} - 18 q^{32} + 6 q^{37} - 3 q^{38} - 6 q^{43} + 3 q^{44} - 3 q^{49} - 12 q^{52}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.66908 −1.88732 −0.943662 0.330911i \(-0.892644\pi\)
−0.943662 + 0.330911i \(0.892644\pi\)
\(3\) 0 0
\(4\) 5.12398 2.56199
\(5\) 0 0
\(6\) 0 0
\(7\) −0.454904 −0.171938 −0.0859688 0.996298i \(-0.527399\pi\)
−0.0859688 + 0.996298i \(0.527399\pi\)
\(8\) −8.33816 −2.94798
\(9\) 0 0
\(10\) 0 0
\(11\) −1.54510 −0.465864 −0.232932 0.972493i \(-0.574832\pi\)
−0.232932 + 0.972493i \(0.574832\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 1.21417 0.324502
\(15\) 0 0
\(16\) 12.0072 3.00181
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 3.54510 0.813301 0.406650 0.913584i \(-0.366697\pi\)
0.406650 + 0.913584i \(0.366697\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.12398 0.879236
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 5.33816 1.04690
\(27\) 0 0
\(28\) −2.33092 −0.440503
\(29\) −9.79306 −1.81853 −0.909263 0.416222i \(-0.863354\pi\)
−0.909263 + 0.416222i \(0.863354\pi\)
\(30\) 0 0
\(31\) −0.909808 −0.163406 −0.0817032 0.996657i \(-0.526036\pi\)
−0.0817032 + 0.996657i \(0.526036\pi\)
\(32\) −15.3719 −2.71740
\(33\) 0 0
\(34\) 2.66908 0.457743
\(35\) 0 0
\(36\) 0 0
\(37\) 7.79306 1.28117 0.640586 0.767887i \(-0.278692\pi\)
0.640586 + 0.767887i \(0.278692\pi\)
\(38\) −9.46214 −1.53496
\(39\) 0 0
\(40\) 0 0
\(41\) 6.70287 1.04681 0.523406 0.852083i \(-0.324661\pi\)
0.523406 + 0.852083i \(0.324661\pi\)
\(42\) 0 0
\(43\) 8.67632 1.32313 0.661563 0.749890i \(-0.269893\pi\)
0.661563 + 0.749890i \(0.269893\pi\)
\(44\) −7.91705 −1.19354
\(45\) 0 0
\(46\) 0 0
\(47\) 12.0410 1.75636 0.878182 0.478326i \(-0.158756\pi\)
0.878182 + 0.478326i \(0.158756\pi\)
\(48\) 0 0
\(49\) −6.79306 −0.970437
\(50\) 0 0
\(51\) 0 0
\(52\) −10.2480 −1.42114
\(53\) 0.883254 0.121324 0.0606621 0.998158i \(-0.480679\pi\)
0.0606621 + 0.998158i \(0.480679\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.79306 0.506869
\(57\) 0 0
\(58\) 26.1385 3.43215
\(59\) 3.09019 0.402309 0.201154 0.979560i \(-0.435531\pi\)
0.201154 + 0.979560i \(0.435531\pi\)
\(60\) 0 0
\(61\) 9.58612 1.22738 0.613689 0.789548i \(-0.289685\pi\)
0.613689 + 0.789548i \(0.289685\pi\)
\(62\) 2.42835 0.308401
\(63\) 0 0
\(64\) 17.0145 2.12681
\(65\) 0 0
\(66\) 0 0
\(67\) −15.7665 −1.92619 −0.963093 0.269170i \(-0.913251\pi\)
−0.963093 + 0.269170i \(0.913251\pi\)
\(68\) −5.12398 −0.621374
\(69\) 0 0
\(70\) 0 0
\(71\) −13.5861 −1.61238 −0.806188 0.591659i \(-0.798473\pi\)
−0.806188 + 0.591659i \(0.798473\pi\)
\(72\) 0 0
\(73\) −1.11675 −0.130705 −0.0653526 0.997862i \(-0.520817\pi\)
−0.0653526 + 0.997862i \(0.520817\pi\)
\(74\) −20.8003 −2.41799
\(75\) 0 0
\(76\) 18.1650 2.08367
\(77\) 0.702870 0.0800995
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −17.8905 −1.97567
\(83\) −5.81962 −0.638786 −0.319393 0.947622i \(-0.603479\pi\)
−0.319393 + 0.947622i \(0.603479\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −23.1578 −2.49717
\(87\) 0 0
\(88\) 12.8833 1.37336
\(89\) −13.7665 −1.45925 −0.729623 0.683849i \(-0.760305\pi\)
−0.729623 + 0.683849i \(0.760305\pi\)
\(90\) 0 0
\(91\) 0.909808 0.0953738
\(92\) 0 0
\(93\) 0 0
\(94\) −32.1385 −3.31483
\(95\) 0 0
\(96\) 0 0
\(97\) −15.5861 −1.58253 −0.791266 0.611473i \(-0.790577\pi\)
−0.791266 + 0.611473i \(0.790577\pi\)
\(98\) 18.1312 1.83153
\(99\) 0 0
\(100\) 0 0
\(101\) 5.81962 0.579073 0.289537 0.957167i \(-0.406499\pi\)
0.289537 + 0.957167i \(0.406499\pi\)
\(102\) 0 0
\(103\) 5.58612 0.550417 0.275209 0.961385i \(-0.411253\pi\)
0.275209 + 0.961385i \(0.411253\pi\)
\(104\) 16.6763 1.63525
\(105\) 0 0
\(106\) −2.35748 −0.228978
\(107\) −8.90981 −0.861344 −0.430672 0.902509i \(-0.641723\pi\)
−0.430672 + 0.902509i \(0.641723\pi\)
\(108\) 0 0
\(109\) −11.7665 −1.12703 −0.563514 0.826107i \(-0.690551\pi\)
−0.563514 + 0.826107i \(0.690551\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −5.46214 −0.516124
\(113\) 13.5861 1.27808 0.639038 0.769176i \(-0.279333\pi\)
0.639038 + 0.769176i \(0.279333\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −50.1795 −4.65905
\(117\) 0 0
\(118\) −8.24797 −0.759287
\(119\) 0.454904 0.0417010
\(120\) 0 0
\(121\) −8.61268 −0.782971
\(122\) −25.5861 −2.31646
\(123\) 0 0
\(124\) −4.66184 −0.418646
\(125\) 0 0
\(126\) 0 0
\(127\) −15.7665 −1.39905 −0.699526 0.714607i \(-0.746605\pi\)
−0.699526 + 0.714607i \(0.746605\pi\)
\(128\) −14.6691 −1.29658
\(129\) 0 0
\(130\) 0 0
\(131\) 7.76651 0.678563 0.339281 0.940685i \(-0.389816\pi\)
0.339281 + 0.940685i \(0.389816\pi\)
\(132\) 0 0
\(133\) −1.61268 −0.139837
\(134\) 42.0821 3.63534
\(135\) 0 0
\(136\) 8.33816 0.714991
\(137\) 3.61268 0.308652 0.154326 0.988020i \(-0.450679\pi\)
0.154326 + 0.988020i \(0.450679\pi\)
\(138\) 0 0
\(139\) 4.90981 0.416444 0.208222 0.978082i \(-0.433232\pi\)
0.208222 + 0.978082i \(0.433232\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 36.2624 3.04308
\(143\) 3.09019 0.258415
\(144\) 0 0
\(145\) 0 0
\(146\) 2.98068 0.246683
\(147\) 0 0
\(148\) 39.9315 3.28235
\(149\) 13.7665 1.12780 0.563898 0.825844i \(-0.309301\pi\)
0.563898 + 0.825844i \(0.309301\pi\)
\(150\) 0 0
\(151\) 8.04103 0.654370 0.327185 0.944960i \(-0.393900\pi\)
0.327185 + 0.944960i \(0.393900\pi\)
\(152\) −29.5596 −2.39760
\(153\) 0 0
\(154\) −1.87602 −0.151174
\(155\) 0 0
\(156\) 0 0
\(157\) −17.1722 −1.37049 −0.685247 0.728310i \(-0.740306\pi\)
−0.685247 + 0.728310i \(0.740306\pi\)
\(158\) −21.3526 −1.69872
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −8.40180 −0.658079 −0.329040 0.944316i \(-0.606725\pi\)
−0.329040 + 0.944316i \(0.606725\pi\)
\(164\) 34.3454 2.68192
\(165\) 0 0
\(166\) 15.5330 1.20560
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 44.4573 3.38984
\(173\) −13.9469 −1.06036 −0.530181 0.847884i \(-0.677876\pi\)
−0.530181 + 0.847884i \(0.677876\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −18.5523 −1.39843
\(177\) 0 0
\(178\) 36.7439 2.75407
\(179\) −21.3526 −1.59597 −0.797985 0.602677i \(-0.794101\pi\)
−0.797985 + 0.602677i \(0.794101\pi\)
\(180\) 0 0
\(181\) −11.7665 −0.874598 −0.437299 0.899316i \(-0.644065\pi\)
−0.437299 + 0.899316i \(0.644065\pi\)
\(182\) −2.42835 −0.180001
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.54510 0.112989
\(188\) 61.6980 4.49979
\(189\) 0 0
\(190\) 0 0
\(191\) 15.1722 1.09783 0.548913 0.835880i \(-0.315042\pi\)
0.548913 + 0.835880i \(0.315042\pi\)
\(192\) 0 0
\(193\) 11.5861 0.833987 0.416994 0.908909i \(-0.363084\pi\)
0.416994 + 0.908909i \(0.363084\pi\)
\(194\) 41.6006 2.98675
\(195\) 0 0
\(196\) −34.8075 −2.48625
\(197\) 0.180384 0.0128518 0.00642590 0.999979i \(-0.497955\pi\)
0.00642590 + 0.999979i \(0.497955\pi\)
\(198\) 0 0
\(199\) −22.2624 −1.57814 −0.789071 0.614302i \(-0.789438\pi\)
−0.789071 + 0.614302i \(0.789438\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −15.5330 −1.09290
\(203\) 4.45490 0.312673
\(204\) 0 0
\(205\) 0 0
\(206\) −14.9098 −1.03882
\(207\) 0 0
\(208\) −24.0145 −1.66510
\(209\) −5.47751 −0.378888
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 4.52578 0.310832
\(213\) 0 0
\(214\) 23.7810 1.62563
\(215\) 0 0
\(216\) 0 0
\(217\) 0.413875 0.0280957
\(218\) 31.4057 2.12707
\(219\) 0 0
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) −21.2254 −1.42136 −0.710678 0.703518i \(-0.751611\pi\)
−0.710678 + 0.703518i \(0.751611\pi\)
\(224\) 6.99276 0.467224
\(225\) 0 0
\(226\) −36.2624 −2.41214
\(227\) −0.360767 −0.0239450 −0.0119725 0.999928i \(-0.503811\pi\)
−0.0119725 + 0.999928i \(0.503811\pi\)
\(228\) 0 0
\(229\) 8.88325 0.587022 0.293511 0.955956i \(-0.405176\pi\)
0.293511 + 0.955956i \(0.405176\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 81.6561 5.36099
\(233\) −19.7665 −1.29495 −0.647474 0.762088i \(-0.724174\pi\)
−0.647474 + 0.762088i \(0.724174\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 15.8341 1.03071
\(237\) 0 0
\(238\) −1.21417 −0.0787033
\(239\) 18.2624 1.18130 0.590650 0.806928i \(-0.298872\pi\)
0.590650 + 0.806928i \(0.298872\pi\)
\(240\) 0 0
\(241\) 15.7665 1.01561 0.507805 0.861472i \(-0.330457\pi\)
0.507805 + 0.861472i \(0.330457\pi\)
\(242\) 22.9879 1.47772
\(243\) 0 0
\(244\) 49.1191 3.14453
\(245\) 0 0
\(246\) 0 0
\(247\) −7.09019 −0.451138
\(248\) 7.58612 0.481719
\(249\) 0 0
\(250\) 0 0
\(251\) −8.90981 −0.562382 −0.281191 0.959652i \(-0.590729\pi\)
−0.281191 + 0.959652i \(0.590729\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 42.0821 2.64046
\(255\) 0 0
\(256\) 5.12398 0.320249
\(257\) −21.1722 −1.32069 −0.660344 0.750963i \(-0.729590\pi\)
−0.660344 + 0.750963i \(0.729590\pi\)
\(258\) 0 0
\(259\) −3.54510 −0.220282
\(260\) 0 0
\(261\) 0 0
\(262\) −20.7294 −1.28067
\(263\) 3.13122 0.193079 0.0965397 0.995329i \(-0.469223\pi\)
0.0965397 + 0.995329i \(0.469223\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 4.30437 0.263918
\(267\) 0 0
\(268\) −80.7873 −4.93487
\(269\) 3.97345 0.242265 0.121133 0.992636i \(-0.461347\pi\)
0.121133 + 0.992636i \(0.461347\pi\)
\(270\) 0 0
\(271\) −25.3526 −1.54006 −0.770031 0.638006i \(-0.779759\pi\)
−0.770031 + 0.638006i \(0.779759\pi\)
\(272\) −12.0072 −0.728046
\(273\) 0 0
\(274\) −9.64252 −0.582526
\(275\) 0 0
\(276\) 0 0
\(277\) 11.5861 0.696143 0.348071 0.937468i \(-0.386837\pi\)
0.348071 + 0.937468i \(0.386837\pi\)
\(278\) −13.1047 −0.785966
\(279\) 0 0
\(280\) 0 0
\(281\) 6.18038 0.368691 0.184345 0.982862i \(-0.440984\pi\)
0.184345 + 0.982862i \(0.440984\pi\)
\(282\) 0 0
\(283\) −1.77859 −0.105726 −0.0528630 0.998602i \(-0.516835\pi\)
−0.0528630 + 0.998602i \(0.516835\pi\)
\(284\) −69.6151 −4.13089
\(285\) 0 0
\(286\) −8.24797 −0.487712
\(287\) −3.04916 −0.179986
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) −5.72219 −0.334866
\(293\) −20.8301 −1.21691 −0.608455 0.793588i \(-0.708210\pi\)
−0.608455 + 0.793588i \(0.708210\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −64.9798 −3.77687
\(297\) 0 0
\(298\) −36.7439 −2.12852
\(299\) 0 0
\(300\) 0 0
\(301\) −3.94689 −0.227495
\(302\) −21.4621 −1.23501
\(303\) 0 0
\(304\) 42.5668 2.44137
\(305\) 0 0
\(306\) 0 0
\(307\) −0.233492 −0.0133261 −0.00666304 0.999978i \(-0.502121\pi\)
−0.00666304 + 0.999978i \(0.502121\pi\)
\(308\) 3.60150 0.205214
\(309\) 0 0
\(310\) 0 0
\(311\) 2.95084 0.167327 0.0836633 0.996494i \(-0.473338\pi\)
0.0836633 + 0.996494i \(0.473338\pi\)
\(312\) 0 0
\(313\) 16.3421 0.923710 0.461855 0.886955i \(-0.347184\pi\)
0.461855 + 0.886955i \(0.347184\pi\)
\(314\) 45.8341 2.58657
\(315\) 0 0
\(316\) 40.9919 2.30597
\(317\) 15.3526 0.862290 0.431145 0.902283i \(-0.358110\pi\)
0.431145 + 0.902283i \(0.358110\pi\)
\(318\) 0 0
\(319\) 15.1312 0.847186
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.54510 −0.197254
\(324\) 0 0
\(325\) 0 0
\(326\) 22.4251 1.24201
\(327\) 0 0
\(328\) −55.8896 −3.08599
\(329\) −5.47751 −0.301985
\(330\) 0 0
\(331\) 3.18433 0.175027 0.0875133 0.996163i \(-0.472108\pi\)
0.0875133 + 0.996163i \(0.472108\pi\)
\(332\) −29.8196 −1.63656
\(333\) 0 0
\(334\) −32.0289 −1.75255
\(335\) 0 0
\(336\) 0 0
\(337\) −4.64976 −0.253289 −0.126644 0.991948i \(-0.540421\pi\)
−0.126644 + 0.991948i \(0.540421\pi\)
\(338\) 24.0217 1.30661
\(339\) 0 0
\(340\) 0 0
\(341\) 1.40574 0.0761251
\(342\) 0 0
\(343\) 6.27452 0.338792
\(344\) −72.3445 −3.90055
\(345\) 0 0
\(346\) 37.2254 2.00125
\(347\) −20.9919 −1.12690 −0.563451 0.826149i \(-0.690527\pi\)
−0.563451 + 0.826149i \(0.690527\pi\)
\(348\) 0 0
\(349\) −18.6498 −0.998299 −0.499149 0.866516i \(-0.666354\pi\)
−0.499149 + 0.866516i \(0.666354\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 23.7511 1.26594
\(353\) 19.1457 1.01902 0.509511 0.860464i \(-0.329826\pi\)
0.509511 + 0.860464i \(0.329826\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −70.5394 −3.73858
\(357\) 0 0
\(358\) 56.9919 3.01211
\(359\) 3.09019 0.163094 0.0815470 0.996669i \(-0.474014\pi\)
0.0815470 + 0.996669i \(0.474014\pi\)
\(360\) 0 0
\(361\) −6.43229 −0.338542
\(362\) 31.4057 1.65065
\(363\) 0 0
\(364\) 4.66184 0.244347
\(365\) 0 0
\(366\) 0 0
\(367\) −35.5330 −1.85481 −0.927404 0.374061i \(-0.877965\pi\)
−0.927404 + 0.374061i \(0.877965\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.401796 −0.0208602
\(372\) 0 0
\(373\) 23.7665 1.23058 0.615292 0.788300i \(-0.289038\pi\)
0.615292 + 0.788300i \(0.289038\pi\)
\(374\) −4.12398 −0.213246
\(375\) 0 0
\(376\) −100.400 −5.17773
\(377\) 19.5861 1.00874
\(378\) 0 0
\(379\) −10.2624 −0.527146 −0.263573 0.964639i \(-0.584901\pi\)
−0.263573 + 0.964639i \(0.584901\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −40.4959 −2.07195
\(383\) −36.0410 −1.84161 −0.920805 0.390023i \(-0.872467\pi\)
−0.920805 + 0.390023i \(0.872467\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −30.9243 −1.57400
\(387\) 0 0
\(388\) −79.8630 −4.05443
\(389\) −19.2254 −0.974764 −0.487382 0.873189i \(-0.662048\pi\)
−0.487382 + 0.873189i \(0.662048\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 56.6416 2.86083
\(393\) 0 0
\(394\) −0.481458 −0.0242555
\(395\) 0 0
\(396\) 0 0
\(397\) 1.61268 0.0809380 0.0404690 0.999181i \(-0.487115\pi\)
0.0404690 + 0.999181i \(0.487115\pi\)
\(398\) 59.4202 2.97847
\(399\) 0 0
\(400\) 0 0
\(401\) 20.4694 1.02219 0.511096 0.859524i \(-0.329240\pi\)
0.511096 + 0.859524i \(0.329240\pi\)
\(402\) 0 0
\(403\) 1.81962 0.0906415
\(404\) 29.8196 1.48358
\(405\) 0 0
\(406\) −11.8905 −0.590115
\(407\) −12.0410 −0.596852
\(408\) 0 0
\(409\) −36.9122 −1.82519 −0.912595 0.408864i \(-0.865925\pi\)
−0.912595 + 0.408864i \(0.865925\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 28.6232 1.41016
\(413\) −1.40574 −0.0691720
\(414\) 0 0
\(415\) 0 0
\(416\) 30.7439 1.50734
\(417\) 0 0
\(418\) 14.6199 0.715083
\(419\) 1.90586 0.0931075 0.0465538 0.998916i \(-0.485176\pi\)
0.0465538 + 0.998916i \(0.485176\pi\)
\(420\) 0 0
\(421\) −16.5225 −0.805257 −0.402628 0.915364i \(-0.631903\pi\)
−0.402628 + 0.915364i \(0.631903\pi\)
\(422\) −53.3816 −2.59857
\(423\) 0 0
\(424\) −7.36471 −0.357662
\(425\) 0 0
\(426\) 0 0
\(427\) −4.36077 −0.211032
\(428\) −45.6537 −2.20676
\(429\) 0 0
\(430\) 0 0
\(431\) 18.4018 0.886383 0.443192 0.896427i \(-0.353846\pi\)
0.443192 + 0.896427i \(0.353846\pi\)
\(432\) 0 0
\(433\) 2.05311 0.0986661 0.0493330 0.998782i \(-0.484290\pi\)
0.0493330 + 0.998782i \(0.484290\pi\)
\(434\) −1.10467 −0.0530257
\(435\) 0 0
\(436\) −60.2914 −2.88743
\(437\) 0 0
\(438\) 0 0
\(439\) −9.81962 −0.468665 −0.234332 0.972157i \(-0.575290\pi\)
−0.234332 + 0.972157i \(0.575290\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −5.33816 −0.253910
\(443\) 0.360767 0.0171406 0.00857029 0.999963i \(-0.497272\pi\)
0.00857029 + 0.999963i \(0.497272\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 56.6522 2.68256
\(447\) 0 0
\(448\) −7.73995 −0.365678
\(449\) 9.53302 0.449891 0.224945 0.974371i \(-0.427780\pi\)
0.224945 + 0.974371i \(0.427780\pi\)
\(450\) 0 0
\(451\) −10.3566 −0.487672
\(452\) 69.6151 3.27442
\(453\) 0 0
\(454\) 0.962916 0.0451919
\(455\) 0 0
\(456\) 0 0
\(457\) −3.76651 −0.176190 −0.0880949 0.996112i \(-0.528078\pi\)
−0.0880949 + 0.996112i \(0.528078\pi\)
\(458\) −23.7101 −1.10790
\(459\) 0 0
\(460\) 0 0
\(461\) −9.35263 −0.435596 −0.217798 0.975994i \(-0.569887\pi\)
−0.217798 + 0.975994i \(0.569887\pi\)
\(462\) 0 0
\(463\) −15.4057 −0.715965 −0.357983 0.933728i \(-0.616535\pi\)
−0.357983 + 0.933728i \(0.616535\pi\)
\(464\) −117.588 −5.45887
\(465\) 0 0
\(466\) 52.7584 2.44398
\(467\) −28.8977 −1.33723 −0.668614 0.743610i \(-0.733112\pi\)
−0.668614 + 0.743610i \(0.733112\pi\)
\(468\) 0 0
\(469\) 7.17225 0.331184
\(470\) 0 0
\(471\) 0 0
\(472\) −25.7665 −1.18600
\(473\) −13.4057 −0.616397
\(474\) 0 0
\(475\) 0 0
\(476\) 2.33092 0.106838
\(477\) 0 0
\(478\) −48.7439 −2.22949
\(479\) −31.4057 −1.43496 −0.717482 0.696577i \(-0.754706\pi\)
−0.717482 + 0.696577i \(0.754706\pi\)
\(480\) 0 0
\(481\) −15.5861 −0.710666
\(482\) −42.0821 −1.91679
\(483\) 0 0
\(484\) −44.1312 −2.00596
\(485\) 0 0
\(486\) 0 0
\(487\) −16.9919 −0.769975 −0.384987 0.922922i \(-0.625794\pi\)
−0.384987 + 0.922922i \(0.625794\pi\)
\(488\) −79.9306 −3.61829
\(489\) 0 0
\(490\) 0 0
\(491\) 9.27058 0.418375 0.209188 0.977876i \(-0.432918\pi\)
0.209188 + 0.977876i \(0.432918\pi\)
\(492\) 0 0
\(493\) 9.79306 0.441057
\(494\) 18.9243 0.851444
\(495\) 0 0
\(496\) −10.9243 −0.490515
\(497\) 6.18038 0.277228
\(498\) 0 0
\(499\) −31.6151 −1.41529 −0.707643 0.706571i \(-0.750241\pi\)
−0.707643 + 0.706571i \(0.750241\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 23.7810 1.06140
\(503\) −36.0821 −1.60882 −0.804410 0.594075i \(-0.797518\pi\)
−0.804410 + 0.594075i \(0.797518\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −80.7873 −3.58436
\(509\) −29.8196 −1.32173 −0.660866 0.750504i \(-0.729811\pi\)
−0.660866 + 0.750504i \(0.729811\pi\)
\(510\) 0 0
\(511\) 0.508012 0.0224731
\(512\) 15.6618 0.692162
\(513\) 0 0
\(514\) 56.5104 2.49257
\(515\) 0 0
\(516\) 0 0
\(517\) −18.6045 −0.818227
\(518\) 9.46214 0.415743
\(519\) 0 0
\(520\) 0 0
\(521\) 20.4694 0.896780 0.448390 0.893838i \(-0.351998\pi\)
0.448390 + 0.893838i \(0.351998\pi\)
\(522\) 0 0
\(523\) −6.49593 −0.284047 −0.142024 0.989863i \(-0.545361\pi\)
−0.142024 + 0.989863i \(0.545361\pi\)
\(524\) 39.7955 1.73847
\(525\) 0 0
\(526\) −8.35748 −0.364403
\(527\) 0.909808 0.0396319
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) −8.26334 −0.358261
\(533\) −13.4057 −0.580667
\(534\) 0 0
\(535\) 0 0
\(536\) 131.464 5.67836
\(537\) 0 0
\(538\) −10.6054 −0.457233
\(539\) 10.4959 0.452092
\(540\) 0 0
\(541\) 5.53302 0.237883 0.118941 0.992901i \(-0.462050\pi\)
0.118941 + 0.992901i \(0.462050\pi\)
\(542\) 67.6682 2.90660
\(543\) 0 0
\(544\) 15.3719 0.659067
\(545\) 0 0
\(546\) 0 0
\(547\) −28.9508 −1.23785 −0.618924 0.785451i \(-0.712431\pi\)
−0.618924 + 0.785451i \(0.712431\pi\)
\(548\) 18.5113 0.790764
\(549\) 0 0
\(550\) 0 0
\(551\) −34.7173 −1.47901
\(552\) 0 0
\(553\) −3.63923 −0.154756
\(554\) −30.9243 −1.31385
\(555\) 0 0
\(556\) 25.1578 1.06693
\(557\) −17.6392 −0.747398 −0.373699 0.927550i \(-0.621911\pi\)
−0.373699 + 0.927550i \(0.621911\pi\)
\(558\) 0 0
\(559\) −17.3526 −0.733938
\(560\) 0 0
\(561\) 0 0
\(562\) −16.4959 −0.695839
\(563\) −4.81567 −0.202956 −0.101478 0.994838i \(-0.532357\pi\)
−0.101478 + 0.994838i \(0.532357\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.74719 0.199539
\(567\) 0 0
\(568\) 113.283 4.75326
\(569\) −19.5861 −0.821093 −0.410547 0.911840i \(-0.634662\pi\)
−0.410547 + 0.911840i \(0.634662\pi\)
\(570\) 0 0
\(571\) 37.9017 1.58614 0.793068 0.609133i \(-0.208483\pi\)
0.793068 + 0.609133i \(0.208483\pi\)
\(572\) 15.8341 0.662057
\(573\) 0 0
\(574\) 8.13846 0.339693
\(575\) 0 0
\(576\) 0 0
\(577\) 31.3526 1.30523 0.652614 0.757691i \(-0.273673\pi\)
0.652614 + 0.757691i \(0.273673\pi\)
\(578\) −2.66908 −0.111019
\(579\) 0 0
\(580\) 0 0
\(581\) 2.64737 0.109831
\(582\) 0 0
\(583\) −1.36471 −0.0565206
\(584\) 9.31160 0.385317
\(585\) 0 0
\(586\) 55.5973 2.29670
\(587\) 7.62715 0.314806 0.157403 0.987534i \(-0.449688\pi\)
0.157403 + 0.987534i \(0.449688\pi\)
\(588\) 0 0
\(589\) −3.22536 −0.132899
\(590\) 0 0
\(591\) 0 0
\(592\) 93.5731 3.84583
\(593\) 21.4323 0.880119 0.440059 0.897969i \(-0.354957\pi\)
0.440059 + 0.897969i \(0.354957\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 70.5394 2.88940
\(597\) 0 0
\(598\) 0 0
\(599\) −39.5330 −1.61528 −0.807638 0.589679i \(-0.799254\pi\)
−0.807638 + 0.589679i \(0.799254\pi\)
\(600\) 0 0
\(601\) −43.7134 −1.78311 −0.891553 0.452916i \(-0.850384\pi\)
−0.891553 + 0.452916i \(0.850384\pi\)
\(602\) 10.5346 0.429357
\(603\) 0 0
\(604\) 41.2021 1.67649
\(605\) 0 0
\(606\) 0 0
\(607\) 17.7255 0.719455 0.359728 0.933057i \(-0.382870\pi\)
0.359728 + 0.933057i \(0.382870\pi\)
\(608\) −54.4950 −2.21007
\(609\) 0 0
\(610\) 0 0
\(611\) −24.0821 −0.974256
\(612\) 0 0
\(613\) 28.1804 1.13819 0.569097 0.822270i \(-0.307293\pi\)
0.569097 + 0.822270i \(0.307293\pi\)
\(614\) 0.623208 0.0251506
\(615\) 0 0
\(616\) −5.86064 −0.236132
\(617\) 10.4139 0.419247 0.209623 0.977782i \(-0.432776\pi\)
0.209623 + 0.977782i \(0.432776\pi\)
\(618\) 0 0
\(619\) 28.9919 1.16528 0.582641 0.812730i \(-0.302019\pi\)
0.582641 + 0.812730i \(0.302019\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −7.87602 −0.315800
\(623\) 6.26244 0.250899
\(624\) 0 0
\(625\) 0 0
\(626\) −43.6184 −1.74334
\(627\) 0 0
\(628\) −87.9903 −3.51120
\(629\) −7.79306 −0.310730
\(630\) 0 0
\(631\) −3.59820 −0.143242 −0.0716211 0.997432i \(-0.522817\pi\)
−0.0716211 + 0.997432i \(0.522817\pi\)
\(632\) −66.7053 −2.65339
\(633\) 0 0
\(634\) −40.9774 −1.62742
\(635\) 0 0
\(636\) 0 0
\(637\) 13.5861 0.538302
\(638\) −40.3864 −1.59891
\(639\) 0 0
\(640\) 0 0
\(641\) 35.1167 1.38703 0.693514 0.720443i \(-0.256062\pi\)
0.693514 + 0.720443i \(0.256062\pi\)
\(642\) 0 0
\(643\) −35.1312 −1.38544 −0.692720 0.721207i \(-0.743588\pi\)
−0.692720 + 0.721207i \(0.743588\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 9.46214 0.372283
\(647\) −5.45885 −0.214610 −0.107305 0.994226i \(-0.534222\pi\)
−0.107305 + 0.994226i \(0.534222\pi\)
\(648\) 0 0
\(649\) −4.77464 −0.187421
\(650\) 0 0
\(651\) 0 0
\(652\) −43.0507 −1.68599
\(653\) −4.23349 −0.165669 −0.0828347 0.996563i \(-0.526397\pi\)
−0.0828347 + 0.996563i \(0.526397\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 80.4830 3.14233
\(657\) 0 0
\(658\) 14.6199 0.569944
\(659\) 18.2624 0.711404 0.355702 0.934599i \(-0.384242\pi\)
0.355702 + 0.934599i \(0.384242\pi\)
\(660\) 0 0
\(661\) −30.2890 −1.17811 −0.589053 0.808095i \(-0.700499\pi\)
−0.589053 + 0.808095i \(0.700499\pi\)
\(662\) −8.49922 −0.330332
\(663\) 0 0
\(664\) 48.5249 1.88313
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 61.4878 2.37903
\(669\) 0 0
\(670\) 0 0
\(671\) −14.8115 −0.571791
\(672\) 0 0
\(673\) 20.4139 0.786897 0.393449 0.919347i \(-0.371282\pi\)
0.393449 + 0.919347i \(0.371282\pi\)
\(674\) 12.4106 0.478038
\(675\) 0 0
\(676\) −46.1158 −1.77369
\(677\) −18.5249 −0.711969 −0.355985 0.934492i \(-0.615854\pi\)
−0.355985 + 0.934492i \(0.615854\pi\)
\(678\) 0 0
\(679\) 7.09019 0.272097
\(680\) 0 0
\(681\) 0 0
\(682\) −3.75203 −0.143673
\(683\) −3.09019 −0.118243 −0.0591215 0.998251i \(-0.518830\pi\)
−0.0591215 + 0.998251i \(0.518830\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −16.7472 −0.639411
\(687\) 0 0
\(688\) 104.179 3.97177
\(689\) −1.76651 −0.0672986
\(690\) 0 0
\(691\) 20.8036 0.791406 0.395703 0.918379i \(-0.370501\pi\)
0.395703 + 0.918379i \(0.370501\pi\)
\(692\) −71.4636 −2.71664
\(693\) 0 0
\(694\) 56.0289 2.12683
\(695\) 0 0
\(696\) 0 0
\(697\) −6.70287 −0.253889
\(698\) 49.7777 1.88411
\(699\) 0 0
\(700\) 0 0
\(701\) −2.64737 −0.0999897 −0.0499948 0.998749i \(-0.515920\pi\)
−0.0499948 + 0.998749i \(0.515920\pi\)
\(702\) 0 0
\(703\) 27.6272 1.04198
\(704\) −26.2890 −0.990804
\(705\) 0 0
\(706\) −51.1014 −1.92323
\(707\) −2.64737 −0.0995645
\(708\) 0 0
\(709\) 37.4799 1.40759 0.703794 0.710404i \(-0.251488\pi\)
0.703794 + 0.710404i \(0.251488\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 114.787 4.30184
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −109.411 −4.08886
\(717\) 0 0
\(718\) −8.24797 −0.307811
\(719\) −17.5982 −0.656302 −0.328151 0.944625i \(-0.606426\pi\)
−0.328151 + 0.944625i \(0.606426\pi\)
\(720\) 0 0
\(721\) −2.54115 −0.0946374
\(722\) 17.1683 0.638938
\(723\) 0 0
\(724\) −60.2914 −2.24071
\(725\) 0 0
\(726\) 0 0
\(727\) 17.5861 0.652233 0.326117 0.945330i \(-0.394260\pi\)
0.326117 + 0.945330i \(0.394260\pi\)
\(728\) −7.58612 −0.281160
\(729\) 0 0
\(730\) 0 0
\(731\) −8.67632 −0.320905
\(732\) 0 0
\(733\) −34.9919 −1.29245 −0.646227 0.763145i \(-0.723654\pi\)
−0.646227 + 0.763145i \(0.723654\pi\)
\(734\) 94.8404 3.50062
\(735\) 0 0
\(736\) 0 0
\(737\) 24.3608 0.897340
\(738\) 0 0
\(739\) 32.5249 1.19645 0.598224 0.801329i \(-0.295873\pi\)
0.598224 + 0.801329i \(0.295873\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.07243 0.0393700
\(743\) −6.18038 −0.226736 −0.113368 0.993553i \(-0.536164\pi\)
−0.113368 + 0.993553i \(0.536164\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −63.4347 −2.32251
\(747\) 0 0
\(748\) 7.91705 0.289476
\(749\) 4.05311 0.148097
\(750\) 0 0
\(751\) −52.4428 −1.91367 −0.956833 0.290639i \(-0.906132\pi\)
−0.956833 + 0.290639i \(0.906132\pi\)
\(752\) 144.579 5.27227
\(753\) 0 0
\(754\) −52.2769 −1.90381
\(755\) 0 0
\(756\) 0 0
\(757\) 49.1722 1.78720 0.893598 0.448868i \(-0.148173\pi\)
0.893598 + 0.448868i \(0.148173\pi\)
\(758\) 27.3913 0.994896
\(759\) 0 0
\(760\) 0 0
\(761\) 22.2335 0.805963 0.402982 0.915208i \(-0.367974\pi\)
0.402982 + 0.915208i \(0.367974\pi\)
\(762\) 0 0
\(763\) 5.35263 0.193778
\(764\) 77.7423 2.81262
\(765\) 0 0
\(766\) 96.1964 3.47572
\(767\) −6.18038 −0.223161
\(768\) 0 0
\(769\) −7.61268 −0.274520 −0.137260 0.990535i \(-0.543830\pi\)
−0.137260 + 0.990535i \(0.543830\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 59.3671 2.13667
\(773\) 53.8220 1.93584 0.967922 0.251252i \(-0.0808424\pi\)
0.967922 + 0.251252i \(0.0808424\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 129.960 4.66528
\(777\) 0 0
\(778\) 51.3140 1.83970
\(779\) 23.7623 0.851373
\(780\) 0 0
\(781\) 20.9919 0.751148
\(782\) 0 0
\(783\) 0 0
\(784\) −81.5659 −2.91307
\(785\) 0 0
\(786\) 0 0
\(787\) 15.6803 0.558941 0.279470 0.960154i \(-0.409841\pi\)
0.279470 + 0.960154i \(0.409841\pi\)
\(788\) 0.924283 0.0329262
\(789\) 0 0
\(790\) 0 0
\(791\) −6.18038 −0.219749
\(792\) 0 0
\(793\) −19.1722 −0.680827
\(794\) −4.30437 −0.152756
\(795\) 0 0
\(796\) −114.072 −4.04319
\(797\) −12.5225 −0.443569 −0.221785 0.975096i \(-0.571188\pi\)
−0.221785 + 0.975096i \(0.571188\pi\)
\(798\) 0 0
\(799\) −12.0410 −0.425981
\(800\) 0 0
\(801\) 0 0
\(802\) −54.6344 −1.92921
\(803\) 1.72548 0.0608909
\(804\) 0 0
\(805\) 0 0
\(806\) −4.85670 −0.171070
\(807\) 0 0
\(808\) −48.5249 −1.70710
\(809\) −36.7053 −1.29049 −0.645244 0.763976i \(-0.723244\pi\)
−0.645244 + 0.763976i \(0.723244\pi\)
\(810\) 0 0
\(811\) 50.3445 1.76783 0.883917 0.467643i \(-0.154897\pi\)
0.883917 + 0.467643i \(0.154897\pi\)
\(812\) 22.8269 0.801066
\(813\) 0 0
\(814\) 32.1385 1.12645
\(815\) 0 0
\(816\) 0 0
\(817\) 30.7584 1.07610
\(818\) 98.5216 3.44473
\(819\) 0 0
\(820\) 0 0
\(821\) −32.8115 −1.14513 −0.572564 0.819860i \(-0.694051\pi\)
−0.572564 + 0.819860i \(0.694051\pi\)
\(822\) 0 0
\(823\) 53.0860 1.85046 0.925231 0.379405i \(-0.123871\pi\)
0.925231 + 0.379405i \(0.123871\pi\)
\(824\) −46.5780 −1.62262
\(825\) 0 0
\(826\) 3.75203 0.130550
\(827\) 27.5330 0.957417 0.478708 0.877974i \(-0.341105\pi\)
0.478708 + 0.877974i \(0.341105\pi\)
\(828\) 0 0
\(829\) −38.2359 −1.32799 −0.663994 0.747738i \(-0.731140\pi\)
−0.663994 + 0.747738i \(0.731140\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −34.0289 −1.17974
\(833\) 6.79306 0.235366
\(834\) 0 0
\(835\) 0 0
\(836\) −28.0667 −0.970707
\(837\) 0 0
\(838\) −5.08690 −0.175724
\(839\) −30.4839 −1.05242 −0.526210 0.850355i \(-0.676387\pi\)
−0.526210 + 0.850355i \(0.676387\pi\)
\(840\) 0 0
\(841\) 66.9041 2.30704
\(842\) 44.0998 1.51978
\(843\) 0 0
\(844\) 102.480 3.52750
\(845\) 0 0
\(846\) 0 0
\(847\) 3.91794 0.134622
\(848\) 10.6054 0.364192
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 50.7584 1.73793 0.868967 0.494870i \(-0.164784\pi\)
0.868967 + 0.494870i \(0.164784\pi\)
\(854\) 11.6392 0.398286
\(855\) 0 0
\(856\) 74.2914 2.53923
\(857\) 50.9919 1.74185 0.870924 0.491417i \(-0.163521\pi\)
0.870924 + 0.491417i \(0.163521\pi\)
\(858\) 0 0
\(859\) 6.27452 0.214084 0.107042 0.994255i \(-0.465862\pi\)
0.107042 + 0.994255i \(0.465862\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −49.1158 −1.67289
\(863\) −3.04916 −0.103795 −0.0518974 0.998652i \(-0.516527\pi\)
−0.0518974 + 0.998652i \(0.516527\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −5.47991 −0.186215
\(867\) 0 0
\(868\) 2.12069 0.0719809
\(869\) −12.3608 −0.419310
\(870\) 0 0
\(871\) 31.5330 1.06846
\(872\) 98.1110 3.32246
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −31.3792 −1.05960 −0.529800 0.848123i \(-0.677733\pi\)
−0.529800 + 0.848123i \(0.677733\pi\)
\(878\) 26.2093 0.884522
\(879\) 0 0
\(880\) 0 0
\(881\) −44.9943 −1.51590 −0.757948 0.652315i \(-0.773798\pi\)
−0.757948 + 0.652315i \(0.773798\pi\)
\(882\) 0 0
\(883\) −2.96292 −0.0997101 −0.0498550 0.998756i \(-0.515876\pi\)
−0.0498550 + 0.998756i \(0.515876\pi\)
\(884\) 10.2480 0.344676
\(885\) 0 0
\(886\) −0.962916 −0.0323498
\(887\) −21.3526 −0.716951 −0.358476 0.933539i \(-0.616703\pi\)
−0.358476 + 0.933539i \(0.616703\pi\)
\(888\) 0 0
\(889\) 7.17225 0.240550
\(890\) 0 0
\(891\) 0 0
\(892\) −108.758 −3.64150
\(893\) 42.6866 1.42845
\(894\) 0 0
\(895\) 0 0
\(896\) 6.67302 0.222930
\(897\) 0 0
\(898\) −25.4444 −0.849090
\(899\) 8.90981 0.297159
\(900\) 0 0
\(901\) −0.883254 −0.0294255
\(902\) 27.6425 0.920395
\(903\) 0 0
\(904\) −113.283 −3.76775
\(905\) 0 0
\(906\) 0 0
\(907\) −34.7705 −1.15453 −0.577267 0.816555i \(-0.695881\pi\)
−0.577267 + 0.816555i \(0.695881\pi\)
\(908\) −1.84857 −0.0613468
\(909\) 0 0
\(910\) 0 0
\(911\) −2.50801 −0.0830942 −0.0415471 0.999137i \(-0.513229\pi\)
−0.0415471 + 0.999137i \(0.513229\pi\)
\(912\) 0 0
\(913\) 8.99187 0.297587
\(914\) 10.0531 0.332527
\(915\) 0 0
\(916\) 45.5176 1.50395
\(917\) −3.53302 −0.116670
\(918\) 0 0
\(919\) −15.5982 −0.514537 −0.257269 0.966340i \(-0.582823\pi\)
−0.257269 + 0.966340i \(0.582823\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 24.9629 0.822110
\(923\) 27.1722 0.894385
\(924\) 0 0
\(925\) 0 0
\(926\) 41.1191 1.35126
\(927\) 0 0
\(928\) 150.538 4.94167
\(929\) 27.6947 0.908635 0.454317 0.890840i \(-0.349883\pi\)
0.454317 + 0.890840i \(0.349883\pi\)
\(930\) 0 0
\(931\) −24.0821 −0.789258
\(932\) −101.283 −3.31764
\(933\) 0 0
\(934\) 77.1303 2.52378
\(935\) 0 0
\(936\) 0 0
\(937\) −42.9388 −1.40275 −0.701374 0.712793i \(-0.747430\pi\)
−0.701374 + 0.712793i \(0.747430\pi\)
\(938\) −19.1433 −0.625051
\(939\) 0 0
\(940\) 0 0
\(941\) 17.6392 0.575023 0.287511 0.957777i \(-0.407172\pi\)
0.287511 + 0.957777i \(0.407172\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 37.1047 1.20765
\(945\) 0 0
\(946\) 35.7810 1.16334
\(947\) −17.4588 −0.567336 −0.283668 0.958923i \(-0.591551\pi\)
−0.283668 + 0.958923i \(0.591551\pi\)
\(948\) 0 0
\(949\) 2.23349 0.0725022
\(950\) 0 0
\(951\) 0 0
\(952\) −3.79306 −0.122934
\(953\) −56.9122 −1.84357 −0.921784 0.387705i \(-0.873268\pi\)
−0.921784 + 0.387705i \(0.873268\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 93.5764 3.02648
\(957\) 0 0
\(958\) 83.8244 2.70824
\(959\) −1.64342 −0.0530689
\(960\) 0 0
\(961\) −30.1722 −0.973298
\(962\) 41.6006 1.34126
\(963\) 0 0
\(964\) 80.7873 2.60198
\(965\) 0 0
\(966\) 0 0
\(967\) 17.5041 0.562893 0.281446 0.959577i \(-0.409186\pi\)
0.281446 + 0.959577i \(0.409186\pi\)
\(968\) 71.8139 2.30819
\(969\) 0 0
\(970\) 0 0
\(971\) 51.1722 1.64220 0.821098 0.570788i \(-0.193362\pi\)
0.821098 + 0.570788i \(0.193362\pi\)
\(972\) 0 0
\(973\) −2.23349 −0.0716025
\(974\) 45.3526 1.45319
\(975\) 0 0
\(976\) 115.103 3.68435
\(977\) 44.4507 1.42210 0.711052 0.703139i \(-0.248219\pi\)
0.711052 + 0.703139i \(0.248219\pi\)
\(978\) 0 0
\(979\) 21.2706 0.679811
\(980\) 0 0
\(981\) 0 0
\(982\) −24.7439 −0.789610
\(983\) 3.45096 0.110069 0.0550343 0.998484i \(-0.482473\pi\)
0.0550343 + 0.998484i \(0.482473\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −26.1385 −0.832418
\(987\) 0 0
\(988\) −36.3300 −1.15581
\(989\) 0 0
\(990\) 0 0
\(991\) −48.9919 −1.55628 −0.778139 0.628092i \(-0.783836\pi\)
−0.778139 + 0.628092i \(0.783836\pi\)
\(992\) 13.9855 0.444041
\(993\) 0 0
\(994\) −16.4959 −0.523219
\(995\) 0 0
\(996\) 0 0
\(997\) −36.6787 −1.16163 −0.580813 0.814037i \(-0.697265\pi\)
−0.580813 + 0.814037i \(0.697265\pi\)
\(998\) 84.3831 2.67110
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3825.2.a.be.1.1 3
3.2 odd 2 3825.2.a.bf.1.3 3
5.4 even 2 765.2.a.k.1.3 3
15.14 odd 2 765.2.a.l.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
765.2.a.k.1.3 3 5.4 even 2
765.2.a.l.1.1 yes 3 15.14 odd 2
3825.2.a.be.1.1 3 1.1 even 1 trivial
3825.2.a.bf.1.3 3 3.2 odd 2