Properties

Label 3825.2.a.u
Level $3825$
Weight $2$
Character orbit 3825.a
Self dual yes
Analytic conductor $30.543$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3825,2,Mod(1,3825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3825.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.5427787731\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1275)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + ( - \beta + 3) q^{7} - 2 \beta q^{8} + (2 \beta + 2) q^{11} + (2 \beta + 3) q^{13} + (3 \beta - 2) q^{14} - 4 q^{16} + q^{17} + ( - 2 \beta + 3) q^{19} + (2 \beta + 4) q^{22} + ( - \beta - 2) q^{23} + \cdots + (4 \beta - 12) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{7} + 4 q^{11} + 6 q^{13} - 4 q^{14} - 8 q^{16} + 2 q^{17} + 6 q^{19} + 8 q^{22} - 4 q^{23} + 8 q^{26} + 4 q^{29} + 2 q^{31} + 4 q^{37} - 8 q^{38} + 6 q^{43} - 4 q^{46} + 8 q^{49} - 20 q^{53}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−1.41421 0 0 0 0 4.41421 2.82843 0 0
1.2 1.41421 0 0 0 0 1.58579 −2.82843 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3825.2.a.u 2
3.b odd 2 1 1275.2.a.k 2
5.b even 2 1 3825.2.a.t 2
15.d odd 2 1 1275.2.a.l yes 2
15.e even 4 2 1275.2.b.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1275.2.a.k 2 3.b odd 2 1
1275.2.a.l yes 2 15.d odd 2 1
1275.2.b.g 4 15.e even 4 2
3825.2.a.t 2 5.b even 2 1
3825.2.a.u 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3825))\):

\( T_{2}^{2} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} - 6T_{7} + 7 \) Copy content Toggle raw display
\( T_{11}^{2} - 4T_{11} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 6T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$13$ \( T^{2} - 6T + 1 \) Copy content Toggle raw display
$17$ \( (T - 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 6T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} + 4T + 2 \) Copy content Toggle raw display
$29$ \( T^{2} - 4T - 14 \) Copy content Toggle raw display
$31$ \( T^{2} - 2T - 1 \) Copy content Toggle raw display
$37$ \( T^{2} - 4T - 28 \) Copy content Toggle raw display
$41$ \( T^{2} - 18 \) Copy content Toggle raw display
$43$ \( T^{2} - 6T - 23 \) Copy content Toggle raw display
$47$ \( T^{2} - 98 \) Copy content Toggle raw display
$53$ \( T^{2} + 20T + 98 \) Copy content Toggle raw display
$59$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$61$ \( T^{2} - 10T - 73 \) Copy content Toggle raw display
$67$ \( T^{2} - 6T + 1 \) Copy content Toggle raw display
$71$ \( T^{2} - 8T - 2 \) Copy content Toggle raw display
$73$ \( T^{2} - 16T + 56 \) Copy content Toggle raw display
$79$ \( (T - 6)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 8T - 2 \) Copy content Toggle raw display
$89$ \( T^{2} - 12T - 126 \) Copy content Toggle raw display
$97$ \( T^{2} - 2T - 337 \) Copy content Toggle raw display
show more
show less