Properties

Label 383.1.b.a.382.2
Level $383$
Weight $1$
Character 383.382
Self dual yes
Analytic conductor $0.191$
Analytic rank $0$
Dimension $8$
Projective image $D_{17}$
CM discriminant -383
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [383,1,Mod(382,383)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(383, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("383.382");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 383 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 383.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.191141899838\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{34})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 7x^{6} + 6x^{5} + 15x^{4} - 10x^{3} - 10x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{17}\)
Projective field: Galois closure of 17.1.463009808974713123841.1

Embedding invariants

Embedding label 382.2
Root \(-0.184537\) of defining polynomial
Character \(\chi\) \(=\) 383.382

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.70043 q^{2} +1.86494 q^{3} +1.89148 q^{4} -3.17122 q^{6} -0.547326 q^{7} -1.51590 q^{8} +2.47802 q^{9} +3.52750 q^{12} +0.930692 q^{14} +0.686207 q^{16} -1.96595 q^{17} -4.21371 q^{18} +0.184537 q^{19} -1.02073 q^{21} -1.20527 q^{23} -2.82706 q^{24} +1.00000 q^{25} +2.75642 q^{27} -1.03525 q^{28} +0.891477 q^{29} -1.96595 q^{31} +0.349047 q^{32} +3.34296 q^{34} +4.68711 q^{36} -0.313793 q^{38} +1.73569 q^{42} +1.47802 q^{43} +2.04948 q^{46} +1.27974 q^{48} -0.700434 q^{49} -1.70043 q^{50} -3.66638 q^{51} -4.68711 q^{54} +0.829690 q^{56} +0.344151 q^{57} -1.51590 q^{58} +3.34296 q^{62} -1.35628 q^{63} -1.27974 q^{64} -1.20527 q^{67} -3.71854 q^{68} -2.24776 q^{69} +1.47802 q^{71} -3.75642 q^{72} -1.20527 q^{73} +1.86494 q^{75} +0.349047 q^{76} +2.66255 q^{81} -1.93069 q^{84} -2.51327 q^{86} +1.66255 q^{87} -2.27974 q^{92} -3.66638 q^{93} +0.650953 q^{96} +1.19104 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - q^{3} + 7 q^{4} - 2 q^{6} - q^{7} - 2 q^{8} + 7 q^{9} - 3 q^{12} - 2 q^{14} + 6 q^{16} - q^{17} - 3 q^{18} - q^{19} - 2 q^{21} - q^{23} - 4 q^{24} + 8 q^{25} - 2 q^{27} - 3 q^{28} - q^{29}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/383\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.70043 −1.70043 −0.850217 0.526432i \(-0.823529\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(3\) 1.86494 1.86494 0.932472 0.361242i \(-0.117647\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(4\) 1.89148 1.89148
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) −3.17122 −3.17122
\(7\) −0.547326 −0.547326 −0.273663 0.961826i \(-0.588235\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(8\) −1.51590 −1.51590
\(9\) 2.47802 2.47802
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 3.52750 3.52750
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0.930692 0.930692
\(15\) 0 0
\(16\) 0.686207 0.686207
\(17\) −1.96595 −1.96595 −0.982973 0.183750i \(-0.941176\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(18\) −4.21371 −4.21371
\(19\) 0.184537 0.184537 0.0922684 0.995734i \(-0.470588\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(20\) 0 0
\(21\) −1.02073 −1.02073
\(22\) 0 0
\(23\) −1.20527 −1.20527 −0.602635 0.798017i \(-0.705882\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(24\) −2.82706 −2.82706
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) 2.75642 2.75642
\(28\) −1.03525 −1.03525
\(29\) 0.891477 0.891477 0.445738 0.895163i \(-0.352941\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(30\) 0 0
\(31\) −1.96595 −1.96595 −0.982973 0.183750i \(-0.941176\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(32\) 0.349047 0.349047
\(33\) 0 0
\(34\) 3.34296 3.34296
\(35\) 0 0
\(36\) 4.68711 4.68711
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) −0.313793 −0.313793
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 1.73569 1.73569
\(43\) 1.47802 1.47802 0.739009 0.673696i \(-0.235294\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 2.04948 2.04948
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 1.27974 1.27974
\(49\) −0.700434 −0.700434
\(50\) −1.70043 −1.70043
\(51\) −3.66638 −3.66638
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −4.68711 −4.68711
\(55\) 0 0
\(56\) 0.829690 0.829690
\(57\) 0.344151 0.344151
\(58\) −1.51590 −1.51590
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 3.34296 3.34296
\(63\) −1.35628 −1.35628
\(64\) −1.27974 −1.27974
\(65\) 0 0
\(66\) 0 0
\(67\) −1.20527 −1.20527 −0.602635 0.798017i \(-0.705882\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(68\) −3.71854 −3.71854
\(69\) −2.24776 −2.24776
\(70\) 0 0
\(71\) 1.47802 1.47802 0.739009 0.673696i \(-0.235294\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(72\) −3.75642 −3.75642
\(73\) −1.20527 −1.20527 −0.602635 0.798017i \(-0.705882\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(74\) 0 0
\(75\) 1.86494 1.86494
\(76\) 0.349047 0.349047
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 2.66255 2.66255
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) −1.93069 −1.93069
\(85\) 0 0
\(86\) −2.51327 −2.51327
\(87\) 1.66255 1.66255
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.27974 −2.27974
\(93\) −3.66638 −3.66638
\(94\) 0 0
\(95\) 0 0
\(96\) 0.650953 0.650953
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 1.19104 1.19104
\(99\) 0 0
\(100\) 1.89148 1.89148
\(101\) −0.547326 −0.547326 −0.273663 0.961826i \(-0.588235\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(102\) 6.23444 6.23444
\(103\) −1.70043 −1.70043 −0.850217 0.526432i \(-0.823529\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 5.21371 5.21371
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.375579 −0.375579
\(113\) 0.184537 0.184537 0.0922684 0.995734i \(-0.470588\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(114\) −0.585206 −0.585206
\(115\) 0 0
\(116\) 1.68621 1.68621
\(117\) 0 0
\(118\) 0 0
\(119\) 1.07601 1.07601
\(120\) 0 0
\(121\) 1.00000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) −3.71854 −3.71854
\(125\) 0 0
\(126\) 2.30627 2.30627
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 1.82706 1.82706
\(129\) 2.75642 2.75642
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) −0.101002 −0.101002
\(134\) 2.04948 2.04948
\(135\) 0 0
\(136\) 2.98017 2.98017
\(137\) −0.547326 −0.547326 −0.273663 0.961826i \(-0.588235\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(138\) 3.82217 3.82217
\(139\) −1.70043 −1.70043 −0.850217 0.526432i \(-0.823529\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2.51327 −2.51327
\(143\) 0 0
\(144\) 1.70043 1.70043
\(145\) 0 0
\(146\) 2.04948 2.04948
\(147\) −1.30627 −1.30627
\(148\) 0 0
\(149\) 1.86494 1.86494 0.932472 0.361242i \(-0.117647\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(150\) −3.17122 −3.17122
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) −0.279739 −0.279739
\(153\) −4.87165 −4.87165
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.659675 0.659675
\(162\) −4.52750 −4.52750
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 1.54733 1.54733
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) 0.457285 0.457285
\(172\) 2.79564 2.79564
\(173\) 1.47802 1.47802 0.739009 0.673696i \(-0.235294\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(174\) −2.82706 −2.82706
\(175\) −0.547326 −0.547326
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.82706 1.82706
\(185\) 0 0
\(186\) 6.23444 6.23444
\(187\) 0 0
\(188\) 0 0
\(189\) −1.50866 −1.50866
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −2.38664 −2.38664
\(193\) 1.86494 1.86494 0.932472 0.361242i \(-0.117647\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.32486 −1.32486
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −1.51590 −1.51590
\(201\) −2.24776 −2.24776
\(202\) 0.930692 0.930692
\(203\) −0.487928 −0.487928
\(204\) −6.93487 −6.93487
\(205\) 0 0
\(206\) 2.89148 2.89148
\(207\) −2.98668 −2.98668
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 2.75642 2.75642
\(214\) 0 0
\(215\) 0 0
\(216\) −4.17845 −4.17845
\(217\) 1.07601 1.07601
\(218\) 0 0
\(219\) −2.24776 −2.24776
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.891477 0.891477 0.445738 0.895163i \(-0.352941\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(224\) −0.191042 −0.191042
\(225\) 2.47802 2.47802
\(226\) −0.313793 −0.313793
\(227\) 0.891477 0.891477 0.445738 0.895163i \(-0.352941\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(228\) 0.650953 0.650953
\(229\) 1.47802 1.47802 0.739009 0.673696i \(-0.235294\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.35139 −1.35139
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) −1.82969 −1.82969
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −1.70043 −1.70043
\(243\) 2.20910 2.20910
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 2.98017 2.98017
\(249\) 0 0
\(250\) 0 0
\(251\) −0.547326 −0.547326 −0.273663 0.961826i \(-0.588235\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(252\) −2.56538 −2.56538
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −1.82706 −1.82706
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) −4.68711 −4.68711
\(259\) 0 0
\(260\) 0 0
\(261\) 2.20910 2.20910
\(262\) 0 0
\(263\) −1.96595 −1.96595 −0.982973 0.183750i \(-0.941176\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.171747 0.171747
\(267\) 0 0
\(268\) −2.27974 −2.27974
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) −1.34905 −1.34905
\(273\) 0 0
\(274\) 0.930692 0.930692
\(275\) 0 0
\(276\) −4.25159 −4.25159
\(277\) 1.47802 1.47802 0.739009 0.673696i \(-0.235294\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(278\) 2.89148 2.89148
\(279\) −4.87165 −4.87165
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 2.79564 2.79564
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.864944 0.864944
\(289\) 2.86494 2.86494
\(290\) 0 0
\(291\) 0 0
\(292\) −2.27974 −2.27974
\(293\) 0.184537 0.184537 0.0922684 0.995734i \(-0.470588\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(294\) 2.22123 2.22123
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −3.17122 −3.17122
\(299\) 0 0
\(300\) 3.52750 3.52750
\(301\) −0.808958 −0.808958
\(302\) 0 0
\(303\) −1.02073 −1.02073
\(304\) 0.126630 0.126630
\(305\) 0 0
\(306\) 8.28392 8.28392
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) −3.17122 −3.17122
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0.184537 0.184537 0.0922684 0.995734i \(-0.470588\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.20527 −1.20527 −0.602635 0.798017i \(-0.705882\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) −1.12173 −1.12173
\(323\) −0.362789 −0.362789
\(324\) 5.03616 5.03616
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.891477 0.891477 0.445738 0.895163i \(-0.352941\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −0.700434 −0.700434
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −1.70043 −1.70043
\(339\) 0.344151 0.344151
\(340\) 0 0
\(341\) 0 0
\(342\) −0.777584 −0.777584
\(343\) 0.930692 0.930692
\(344\) −2.24052 −2.24052
\(345\) 0 0
\(346\) −2.51327 −2.51327
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 3.14468 3.14468
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0.930692 0.930692
\(351\) 0 0
\(352\) 0 0
\(353\) 1.86494 1.86494 0.932472 0.361242i \(-0.117647\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2.00671 2.00671
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −0.965946 −0.965946
\(362\) 0 0
\(363\) 1.86494 1.86494
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) −0.827065 −0.827065
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −6.93487 −6.93487
\(373\) −1.70043 −1.70043 −0.850217 0.526432i \(-0.823529\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 2.56538 2.56538
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.00000 1.00000
\(384\) 3.40737 3.40737
\(385\) 0 0
\(386\) −3.17122 −3.17122
\(387\) 3.66255 3.66255
\(388\) 0 0
\(389\) 1.86494 1.86494 0.932472 0.361242i \(-0.117647\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(390\) 0 0
\(391\) 2.36949 2.36949
\(392\) 1.06179 1.06179
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.184537 0.184537 0.0922684 0.995734i \(-0.470588\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(398\) 0 0
\(399\) −0.188363 −0.188363
\(400\) 0.686207 0.686207
\(401\) −1.20527 −1.20527 −0.602635 0.798017i \(-0.705882\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(402\) 3.82217 3.82217
\(403\) 0 0
\(404\) −1.03525 −1.03525
\(405\) 0 0
\(406\) 0.829690 0.829690
\(407\) 0 0
\(408\) 5.55786 5.55786
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) −1.02073 −1.02073
\(412\) −3.21633 −3.21633
\(413\) 0 0
\(414\) 5.07865 5.07865
\(415\) 0 0
\(416\) 0 0
\(417\) −3.17122 −3.17122
\(418\) 0 0
\(419\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(420\) 0 0
\(421\) −1.96595 −1.96595 −0.982973 0.183750i \(-0.941176\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.96595 −1.96595
\(426\) −4.68711 −4.68711
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.70043 −1.70043 −0.850217 0.526432i \(-0.823529\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(432\) 1.89148 1.89148
\(433\) 0.891477 0.891477 0.445738 0.895163i \(-0.352941\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(434\) −1.82969 −1.82969
\(435\) 0 0
\(436\) 0 0
\(437\) −0.222416 −0.222416
\(438\) 3.82217 3.82217
\(439\) −1.20527 −1.20527 −0.602635 0.798017i \(-0.705882\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(440\) 0 0
\(441\) −1.73569 −1.73569
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1.51590 −1.51590
\(447\) 3.47802 3.47802
\(448\) 0.700434 0.700434
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −4.21371 −4.21371
\(451\) 0 0
\(452\) 0.349047 0.349047
\(453\) 0 0
\(454\) −1.51590 −1.51590
\(455\) 0 0
\(456\) −0.521697 −0.521697
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) −2.51327 −2.51327
\(459\) −5.41898 −5.41898
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0.611738 0.611738
\(465\) 0 0
\(466\) 0 0
\(467\) −1.70043 −1.70043 −0.850217 0.526432i \(-0.823529\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(468\) 0 0
\(469\) 0.659675 0.659675
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.184537 0.184537
\(476\) 2.03525 2.03525
\(477\) 0 0
\(478\) 0 0
\(479\) 0.184537 0.184537 0.0922684 0.995734i \(-0.470588\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 1.23026 1.23026
\(484\) 1.89148 1.89148
\(485\) 0 0
\(486\) −3.75642 −3.75642
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.96595 −1.96595 −0.982973 0.183750i \(-0.941176\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(492\) 0 0
\(493\) −1.75260 −1.75260
\(494\) 0 0
\(495\) 0 0
\(496\) −1.34905 −1.34905
\(497\) −0.808958 −0.808958
\(498\) 0 0
\(499\) −1.96595 −1.96595 −0.982973 0.183750i \(-0.941176\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.930692 0.930692
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 2.05599 2.05599
\(505\) 0 0
\(506\) 0 0
\(507\) 1.86494 1.86494
\(508\) 0 0
\(509\) −1.70043 −1.70043 −0.850217 0.526432i \(-0.823529\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(510\) 0 0
\(511\) 0.659675 0.659675
\(512\) 1.27974 1.27974
\(513\) 0.508661 0.508661
\(514\) 0 0
\(515\) 0 0
\(516\) 5.21371 5.21371
\(517\) 0 0
\(518\) 0 0
\(519\) 2.75642 2.75642
\(520\) 0 0
\(521\) 0.184537 0.184537 0.0922684 0.995734i \(-0.470588\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(522\) −3.75642 −3.75642
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) −1.02073 −1.02073
\(526\) 3.34296 3.34296
\(527\) 3.86494 3.86494
\(528\) 0 0
\(529\) 0.452674 0.452674
\(530\) 0 0
\(531\) 0 0
\(532\) −0.191042 −0.191042
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 1.82706 1.82706
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.686207 −0.686207
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −1.03525 −1.03525
\(549\) 0 0
\(550\) 0 0
\(551\) 0.164510 0.164510
\(552\) 3.40737 3.40737
\(553\) 0 0
\(554\) −2.51327 −2.51327
\(555\) 0 0
\(556\) −3.21633 −3.21633
\(557\) 1.47802 1.47802 0.739009 0.673696i \(-0.235294\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(558\) 8.28392 8.28392
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1.45729 −1.45729
\(568\) −2.24052 −2.24052
\(569\) −0.547326 −0.547326 −0.273663 0.961826i \(-0.588235\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.20527 −1.20527
\(576\) −3.17122 −3.17122
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −4.87165 −4.87165
\(579\) 3.47802 3.47802
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 1.82706 1.82706
\(585\) 0 0
\(586\) −0.313793 −0.313793
\(587\) 1.47802 1.47802 0.739009 0.673696i \(-0.235294\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(588\) −2.47078 −2.47078
\(589\) −0.362789 −0.362789
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.52750 3.52750
\(597\) 0 0
\(598\) 0 0
\(599\) 0.891477 0.891477 0.445738 0.895163i \(-0.352941\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(600\) −2.82706 −2.82706
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 1.37558 1.37558
\(603\) −2.98668 −2.98668
\(604\) 0 0
\(605\) 0 0
\(606\) 1.73569 1.73569
\(607\) 1.86494 1.86494 0.932472 0.361242i \(-0.117647\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(608\) 0.0644120 0.0644120
\(609\) −0.909959 −0.909959
\(610\) 0 0
\(611\) 0 0
\(612\) −9.21461 −9.21461
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 5.39244 5.39244
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) −3.32223 −3.32223
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) −0.313793 −0.313793
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.86494 1.86494 0.932472 0.361242i \(-0.117647\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 2.04948 2.04948
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 3.66255 3.66255
\(640\) 0 0
\(641\) −1.70043 −1.70043 −0.850217 0.526432i \(-0.823529\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(642\) 0 0
\(643\) −1.70043 −1.70043 −0.850217 0.526432i \(-0.823529\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(644\) 1.24776 1.24776
\(645\) 0 0
\(646\) 0.616899 0.616899
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −4.03616 −4.03616
\(649\) 0 0
\(650\) 0 0
\(651\) 2.00671 2.00671
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −2.98668 −2.98668
\(658\) 0 0
\(659\) −1.20527 −1.20527 −0.602635 0.798017i \(-0.705882\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(660\) 0 0
\(661\) 1.86494 1.86494 0.932472 0.361242i \(-0.117647\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(662\) −1.51590 −1.51590
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.07447 −1.07447
\(668\) 0 0
\(669\) 1.66255 1.66255
\(670\) 0 0
\(671\) 0 0
\(672\) −0.356284 −0.356284
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 2.75642 2.75642
\(676\) 1.89148 1.89148
\(677\) −0.547326 −0.547326 −0.273663 0.961826i \(-0.588235\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(678\) −0.585206 −0.585206
\(679\) 0 0
\(680\) 0 0
\(681\) 1.66255 1.66255
\(682\) 0 0
\(683\) −0.547326 −0.547326 −0.273663 0.961826i \(-0.588235\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(684\) 0.864944 0.864944
\(685\) 0 0
\(686\) −1.58258 −1.58258
\(687\) 2.75642 2.75642
\(688\) 1.01423 1.01423
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 2.79564 2.79564
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) −2.52026 −2.52026
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.03525 −1.03525
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −3.17122 −3.17122
\(707\) 0.299566 0.299566
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.36949 2.36949
\(714\) −3.41227 −3.41227
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.86494 1.86494 0.932472 0.361242i \(-0.117647\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(720\) 0 0
\(721\) 0.930692 0.930692
\(722\) 1.64253 1.64253
\(723\) 0 0
\(724\) 0 0
\(725\) 0.891477 0.891477
\(726\) −3.17122 −3.17122
\(727\) 0.184537 0.184537 0.0922684 0.995734i \(-0.470588\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(728\) 0 0
\(729\) 1.45729 1.45729
\(730\) 0 0
\(731\) −2.90570 −2.90570
\(732\) 0 0
\(733\) 0.891477 0.891477 0.445738 0.895163i \(-0.352941\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −0.420696 −0.420696
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 5.55786 5.55786
\(745\) 0 0
\(746\) 2.89148 2.89148
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.70043 −1.70043 −0.850217 0.526432i \(-0.823529\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(752\) 0 0
\(753\) −1.02073 −1.02073
\(754\) 0 0
\(755\) 0 0
\(756\) −2.85360 −2.85360
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.891477 0.891477 0.445738 0.895163i \(-0.352941\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −1.70043 −1.70043
\(767\) 0 0
\(768\) −3.40737 −3.40737
\(769\) −0.547326 −0.547326 −0.273663 0.961826i \(-0.588235\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3.52750 3.52750
\(773\) 1.86494 1.86494 0.932472 0.361242i \(-0.117647\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(774\) −6.22793 −6.22793
\(775\) −1.96595 −1.96595
\(776\) 0 0
\(777\) 0 0
\(778\) −3.17122 −3.17122
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −4.02917 −4.02917
\(783\) 2.45729 2.45729
\(784\) −0.480643 −0.480643
\(785\) 0 0
\(786\) 0 0
\(787\) −1.96595 −1.96595 −0.982973 0.183750i \(-0.941176\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(788\) 0 0
\(789\) −3.66638 −3.66638
\(790\) 0 0
\(791\) −0.101002 −0.101002
\(792\) 0 0
\(793\) 0 0
\(794\) −0.313793 −0.313793
\(795\) 0 0
\(796\) 0 0
\(797\) −1.20527 −1.20527 −0.602635 0.798017i \(-0.705882\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(798\) 0.320298 0.320298
\(799\) 0 0
\(800\) 0.349047 0.349047
\(801\) 0 0
\(802\) 2.04948 2.04948
\(803\) 0 0
\(804\) −4.25159 −4.25159
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0.829690 0.829690
\(809\) −1.70043 −1.70043 −0.850217 0.526432i \(-0.823529\pi\)
−0.850217 + 0.526432i \(0.823529\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) −0.922905 −0.922905
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −2.51590 −2.51590
\(817\) 0.272749 0.272749
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.96595 −1.96595 −0.982973 0.183750i \(-0.941176\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(822\) 1.73569 1.73569
\(823\) 0.184537 0.184537 0.0922684 0.995734i \(-0.470588\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(824\) 2.57768 2.57768
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) −5.64923 −5.64923
\(829\) 1.47802 1.47802 0.739009 0.673696i \(-0.235294\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(830\) 0 0
\(831\) 2.75642 2.75642
\(832\) 0 0
\(833\) 1.37702 1.37702
\(834\) 5.39244 5.39244
\(835\) 0 0
\(836\) 0 0
\(837\) −5.41898 −5.41898
\(838\) −3.40087 −3.40087
\(839\) −1.96595 −1.96595 −0.982973 0.183750i \(-0.941176\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(840\) 0 0
\(841\) −0.205269 −0.205269
\(842\) 3.34296 3.34296
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −0.547326 −0.547326
\(848\) 0 0
\(849\) 0 0
\(850\) 3.34296 3.34296
\(851\) 0 0
\(852\) 5.21371 5.21371
\(853\) 0.891477 0.891477 0.445738 0.895163i \(-0.352941\pi\)
0.445738 + 0.895163i \(0.352941\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) −1.20527 −1.20527 −0.602635 0.798017i \(-0.705882\pi\)
−0.602635 + 0.798017i \(0.705882\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 2.89148 2.89148
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0.962120 0.962120
\(865\) 0 0
\(866\) −1.51590 −1.51590
\(867\) 5.34296 5.34296
\(868\) 2.03525 2.03525
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0.378205 0.378205
\(875\) 0 0
\(876\) −4.25159 −4.25159
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 2.04948 2.04948
\(879\) 0.344151 0.344151
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 2.95142 2.95142
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −0.547326 −0.547326 −0.273663 0.961826i \(-0.588235\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 1.68621 1.68621
\(893\) 0 0
\(894\) −5.91414 −5.91414
\(895\) 0 0
\(896\) −1.00000 −1.00000
\(897\) 0 0
\(898\) 0 0
\(899\) −1.75260 −1.75260
\(900\) 4.68711 4.68711
\(901\) 0 0
\(902\) 0 0
\(903\) −1.50866 −1.50866
\(904\) −0.279739 −0.279739
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 1.68621 1.68621
\(909\) −1.35628 −1.35628
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0.236159 0.236159
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 2.79564 2.79564
\(917\) 0 0
\(918\) 9.21461 9.21461
\(919\) 1.86494 1.86494 0.932472 0.361242i \(-0.117647\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −4.21371 −4.21371
\(928\) 0.311167 0.311167
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −0.129256 −0.129256
\(932\) 0 0
\(933\) 0 0
\(934\) 2.89148 2.89148
\(935\) 0 0
\(936\) 0 0
\(937\) −1.96595 −1.96595 −0.982973 0.183750i \(-0.941176\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(938\) −1.12173 −1.12173
\(939\) 0.344151 0.344151
\(940\) 0 0
\(941\) −1.96595 −1.96595 −0.982973 0.183750i \(-0.941176\pi\)
−0.982973 + 0.183750i \(0.941176\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −0.313793 −0.313793
\(951\) −2.24776 −2.24776
\(952\) −1.63113 −1.63113
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) −0.313793 −0.313793
\(959\) 0.299566 0.299566
\(960\) 0 0
\(961\) 2.86494 2.86494
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) −2.09197 −2.09197
\(967\) 1.86494 1.86494 0.932472 0.361242i \(-0.117647\pi\)
0.932472 + 0.361242i \(0.117647\pi\)
\(968\) −1.51590 −1.51590
\(969\) −0.676582 −0.676582
\(970\) 0 0
\(971\) 0.184537 0.184537 0.0922684 0.995734i \(-0.470588\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(972\) 4.17845 4.17845
\(973\) 0.930692 0.930692
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 3.34296 3.34296
\(983\) 1.47802 1.47802 0.739009 0.673696i \(-0.235294\pi\)
0.739009 + 0.673696i \(0.235294\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 2.98017 2.98017
\(987\) 0 0
\(988\) 0 0
\(989\) −1.78141 −1.78141
\(990\) 0 0
\(991\) 0.184537 0.184537 0.0922684 0.995734i \(-0.470588\pi\)
0.0922684 + 0.995734i \(0.470588\pi\)
\(992\) −0.686207 −0.686207
\(993\) 1.66255 1.66255
\(994\) 1.37558 1.37558
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 3.34296 3.34296
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 383.1.b.a.382.2 8
3.2 odd 2 3447.1.d.a.1531.7 8
383.382 odd 2 CM 383.1.b.a.382.2 8
1149.1148 even 2 3447.1.d.a.1531.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
383.1.b.a.382.2 8 1.1 even 1 trivial
383.1.b.a.382.2 8 383.382 odd 2 CM
3447.1.d.a.1531.7 8 3.2 odd 2
3447.1.d.a.1531.7 8 1149.1148 even 2