Properties

Label 383.2.a.c.1.23
Level $383$
Weight $2$
Character 383.1
Self dual yes
Analytic conductor $3.058$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [383,2,Mod(1,383)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(383, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("383.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 383 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 383.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.05827039742\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.23
Character \(\chi\) \(=\) 383.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.58110 q^{2} +2.57388 q^{3} +4.66207 q^{4} -4.25360 q^{5} +6.64345 q^{6} -1.55327 q^{7} +6.87105 q^{8} +3.62488 q^{9} -10.9790 q^{10} -1.50526 q^{11} +11.9996 q^{12} -0.166872 q^{13} -4.00915 q^{14} -10.9483 q^{15} +8.41073 q^{16} -7.68231 q^{17} +9.35616 q^{18} +7.82416 q^{19} -19.8306 q^{20} -3.99795 q^{21} -3.88523 q^{22} +1.82098 q^{23} +17.6853 q^{24} +13.0931 q^{25} -0.430713 q^{26} +1.60836 q^{27} -7.24147 q^{28} +2.12508 q^{29} -28.2586 q^{30} -5.38423 q^{31} +7.96681 q^{32} -3.87438 q^{33} -19.8288 q^{34} +6.60701 q^{35} +16.8994 q^{36} +3.94801 q^{37} +20.1949 q^{38} -0.429510 q^{39} -29.2267 q^{40} -0.332492 q^{41} -10.3191 q^{42} +4.68328 q^{43} -7.01764 q^{44} -15.4188 q^{45} +4.70013 q^{46} -1.24434 q^{47} +21.6482 q^{48} -4.58734 q^{49} +33.7947 q^{50} -19.7734 q^{51} -0.777969 q^{52} -9.61215 q^{53} +4.15133 q^{54} +6.40280 q^{55} -10.6726 q^{56} +20.1385 q^{57} +5.48504 q^{58} +15.2225 q^{59} -51.0416 q^{60} -4.86732 q^{61} -13.8972 q^{62} -5.63043 q^{63} +3.74166 q^{64} +0.709808 q^{65} -10.0001 q^{66} +9.31251 q^{67} -35.8154 q^{68} +4.68699 q^{69} +17.0533 q^{70} +7.05460 q^{71} +24.9067 q^{72} +8.88768 q^{73} +10.1902 q^{74} +33.7002 q^{75} +36.4767 q^{76} +2.33809 q^{77} -1.10861 q^{78} -0.129066 q^{79} -35.7759 q^{80} -6.73490 q^{81} -0.858194 q^{82} +3.08459 q^{83} -18.6387 q^{84} +32.6775 q^{85} +12.0880 q^{86} +5.46971 q^{87} -10.3428 q^{88} -9.24888 q^{89} -39.7974 q^{90} +0.259198 q^{91} +8.48953 q^{92} -13.8584 q^{93} -3.21177 q^{94} -33.2808 q^{95} +20.5056 q^{96} -10.1487 q^{97} -11.8404 q^{98} -5.45640 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 5 q^{2} + 2 q^{3} + 29 q^{4} + 3 q^{5} + q^{6} + 17 q^{7} + 15 q^{8} + 34 q^{9} + q^{10} - 7 q^{12} + 28 q^{13} - 8 q^{14} - 2 q^{15} + 35 q^{16} + 16 q^{17} + 19 q^{18} + 13 q^{19} - 4 q^{20}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.58110 1.82511 0.912556 0.408952i \(-0.134106\pi\)
0.912556 + 0.408952i \(0.134106\pi\)
\(3\) 2.57388 1.48603 0.743016 0.669274i \(-0.233395\pi\)
0.743016 + 0.669274i \(0.233395\pi\)
\(4\) 4.66207 2.33103
\(5\) −4.25360 −1.90227 −0.951134 0.308777i \(-0.900080\pi\)
−0.951134 + 0.308777i \(0.900080\pi\)
\(6\) 6.64345 2.71218
\(7\) −1.55327 −0.587083 −0.293541 0.955946i \(-0.594834\pi\)
−0.293541 + 0.955946i \(0.594834\pi\)
\(8\) 6.87105 2.42928
\(9\) 3.62488 1.20829
\(10\) −10.9790 −3.47185
\(11\) −1.50526 −0.453854 −0.226927 0.973912i \(-0.572868\pi\)
−0.226927 + 0.973912i \(0.572868\pi\)
\(12\) 11.9996 3.46399
\(13\) −0.166872 −0.0462820 −0.0231410 0.999732i \(-0.507367\pi\)
−0.0231410 + 0.999732i \(0.507367\pi\)
\(14\) −4.00915 −1.07149
\(15\) −10.9483 −2.82683
\(16\) 8.41073 2.10268
\(17\) −7.68231 −1.86323 −0.931617 0.363442i \(-0.881601\pi\)
−0.931617 + 0.363442i \(0.881601\pi\)
\(18\) 9.35616 2.20527
\(19\) 7.82416 1.79498 0.897492 0.441030i \(-0.145387\pi\)
0.897492 + 0.441030i \(0.145387\pi\)
\(20\) −19.8306 −4.43425
\(21\) −3.99795 −0.872424
\(22\) −3.88523 −0.828335
\(23\) 1.82098 0.379701 0.189850 0.981813i \(-0.439200\pi\)
0.189850 + 0.981813i \(0.439200\pi\)
\(24\) 17.6853 3.61000
\(25\) 13.0931 2.61863
\(26\) −0.430713 −0.0844698
\(27\) 1.60836 0.309529
\(28\) −7.24147 −1.36851
\(29\) 2.12508 0.394618 0.197309 0.980341i \(-0.436780\pi\)
0.197309 + 0.980341i \(0.436780\pi\)
\(30\) −28.2586 −5.15929
\(31\) −5.38423 −0.967037 −0.483518 0.875334i \(-0.660641\pi\)
−0.483518 + 0.875334i \(0.660641\pi\)
\(32\) 7.96681 1.40835
\(33\) −3.87438 −0.674442
\(34\) −19.8288 −3.40061
\(35\) 6.60701 1.11679
\(36\) 16.8994 2.81657
\(37\) 3.94801 0.649049 0.324525 0.945877i \(-0.394796\pi\)
0.324525 + 0.945877i \(0.394796\pi\)
\(38\) 20.1949 3.27605
\(39\) −0.429510 −0.0687766
\(40\) −29.2267 −4.62115
\(41\) −0.332492 −0.0519265 −0.0259632 0.999663i \(-0.508265\pi\)
−0.0259632 + 0.999663i \(0.508265\pi\)
\(42\) −10.3191 −1.59227
\(43\) 4.68328 0.714194 0.357097 0.934067i \(-0.383767\pi\)
0.357097 + 0.934067i \(0.383767\pi\)
\(44\) −7.01764 −1.05795
\(45\) −15.4188 −2.29850
\(46\) 4.70013 0.692996
\(47\) −1.24434 −0.181506 −0.0907531 0.995873i \(-0.528927\pi\)
−0.0907531 + 0.995873i \(0.528927\pi\)
\(48\) 21.6482 3.12465
\(49\) −4.58734 −0.655334
\(50\) 33.7947 4.77929
\(51\) −19.7734 −2.76882
\(52\) −0.777969 −0.107885
\(53\) −9.61215 −1.32033 −0.660165 0.751120i \(-0.729514\pi\)
−0.660165 + 0.751120i \(0.729514\pi\)
\(54\) 4.15133 0.564924
\(55\) 6.40280 0.863353
\(56\) −10.6726 −1.42619
\(57\) 20.1385 2.66740
\(58\) 5.48504 0.720222
\(59\) 15.2225 1.98181 0.990903 0.134580i \(-0.0429685\pi\)
0.990903 + 0.134580i \(0.0429685\pi\)
\(60\) −51.0416 −6.58944
\(61\) −4.86732 −0.623197 −0.311599 0.950214i \(-0.600864\pi\)
−0.311599 + 0.950214i \(0.600864\pi\)
\(62\) −13.8972 −1.76495
\(63\) −5.63043 −0.709367
\(64\) 3.74166 0.467708
\(65\) 0.709808 0.0880408
\(66\) −10.0001 −1.23093
\(67\) 9.31251 1.13770 0.568852 0.822440i \(-0.307388\pi\)
0.568852 + 0.822440i \(0.307388\pi\)
\(68\) −35.8154 −4.34326
\(69\) 4.68699 0.564248
\(70\) 17.0533 2.03826
\(71\) 7.05460 0.837227 0.418614 0.908164i \(-0.362516\pi\)
0.418614 + 0.908164i \(0.362516\pi\)
\(72\) 24.9067 2.93529
\(73\) 8.88768 1.04022 0.520112 0.854098i \(-0.325890\pi\)
0.520112 + 0.854098i \(0.325890\pi\)
\(74\) 10.1902 1.18459
\(75\) 33.7002 3.89136
\(76\) 36.4767 4.18417
\(77\) 2.33809 0.266450
\(78\) −1.10861 −0.125525
\(79\) −0.129066 −0.0145211 −0.00726053 0.999974i \(-0.502311\pi\)
−0.00726053 + 0.999974i \(0.502311\pi\)
\(80\) −35.7759 −3.99987
\(81\) −6.73490 −0.748323
\(82\) −0.858194 −0.0947716
\(83\) 3.08459 0.338577 0.169289 0.985567i \(-0.445853\pi\)
0.169289 + 0.985567i \(0.445853\pi\)
\(84\) −18.6387 −2.03365
\(85\) 32.6775 3.54437
\(86\) 12.0880 1.30348
\(87\) 5.46971 0.586415
\(88\) −10.3428 −1.10254
\(89\) −9.24888 −0.980379 −0.490189 0.871616i \(-0.663072\pi\)
−0.490189 + 0.871616i \(0.663072\pi\)
\(90\) −39.7974 −4.19501
\(91\) 0.259198 0.0271714
\(92\) 8.48953 0.885095
\(93\) −13.8584 −1.43705
\(94\) −3.21177 −0.331269
\(95\) −33.2808 −3.41454
\(96\) 20.5056 2.09285
\(97\) −10.1487 −1.03044 −0.515222 0.857057i \(-0.672291\pi\)
−0.515222 + 0.857057i \(0.672291\pi\)
\(98\) −11.8404 −1.19606
\(99\) −5.45640 −0.548388
\(100\) 61.0411 6.10411
\(101\) −6.98437 −0.694971 −0.347485 0.937685i \(-0.612964\pi\)
−0.347485 + 0.937685i \(0.612964\pi\)
\(102\) −51.0370 −5.05341
\(103\) 10.6733 1.05167 0.525837 0.850586i \(-0.323752\pi\)
0.525837 + 0.850586i \(0.323752\pi\)
\(104\) −1.14659 −0.112432
\(105\) 17.0057 1.65958
\(106\) −24.8099 −2.40975
\(107\) 6.46852 0.625336 0.312668 0.949862i \(-0.398777\pi\)
0.312668 + 0.949862i \(0.398777\pi\)
\(108\) 7.49827 0.721521
\(109\) −5.24266 −0.502156 −0.251078 0.967967i \(-0.580785\pi\)
−0.251078 + 0.967967i \(0.580785\pi\)
\(110\) 16.5262 1.57572
\(111\) 10.1617 0.964508
\(112\) −13.0642 −1.23445
\(113\) 4.72006 0.444026 0.222013 0.975044i \(-0.428737\pi\)
0.222013 + 0.975044i \(0.428737\pi\)
\(114\) 51.9793 4.86831
\(115\) −7.74573 −0.722293
\(116\) 9.90727 0.919867
\(117\) −0.604891 −0.0559222
\(118\) 39.2909 3.61702
\(119\) 11.9327 1.09387
\(120\) −75.2262 −6.86718
\(121\) −8.73418 −0.794016
\(122\) −12.5630 −1.13740
\(123\) −0.855795 −0.0771644
\(124\) −25.1017 −2.25420
\(125\) −34.4250 −3.07906
\(126\) −14.5327 −1.29467
\(127\) −10.1154 −0.897599 −0.448800 0.893632i \(-0.648148\pi\)
−0.448800 + 0.893632i \(0.648148\pi\)
\(128\) −6.27603 −0.554728
\(129\) 12.0542 1.06132
\(130\) 1.83208 0.160684
\(131\) −3.14047 −0.274385 −0.137192 0.990544i \(-0.543808\pi\)
−0.137192 + 0.990544i \(0.543808\pi\)
\(132\) −18.0626 −1.57215
\(133\) −12.1531 −1.05380
\(134\) 24.0365 2.07644
\(135\) −6.84131 −0.588806
\(136\) −52.7856 −4.52632
\(137\) 8.77278 0.749509 0.374755 0.927124i \(-0.377727\pi\)
0.374755 + 0.927124i \(0.377727\pi\)
\(138\) 12.0976 1.02982
\(139\) −13.3382 −1.13133 −0.565667 0.824634i \(-0.691381\pi\)
−0.565667 + 0.824634i \(0.691381\pi\)
\(140\) 30.8023 2.60327
\(141\) −3.20279 −0.269724
\(142\) 18.2086 1.52803
\(143\) 0.251187 0.0210053
\(144\) 30.4879 2.54065
\(145\) −9.03925 −0.750669
\(146\) 22.9400 1.89852
\(147\) −11.8073 −0.973848
\(148\) 18.4059 1.51296
\(149\) −5.16087 −0.422795 −0.211397 0.977400i \(-0.567801\pi\)
−0.211397 + 0.977400i \(0.567801\pi\)
\(150\) 86.9835 7.10217
\(151\) 7.15492 0.582259 0.291130 0.956684i \(-0.405969\pi\)
0.291130 + 0.956684i \(0.405969\pi\)
\(152\) 53.7602 4.36053
\(153\) −27.8474 −2.25133
\(154\) 6.03484 0.486301
\(155\) 22.9024 1.83956
\(156\) −2.00240 −0.160320
\(157\) 18.9675 1.51377 0.756887 0.653546i \(-0.226719\pi\)
0.756887 + 0.653546i \(0.226719\pi\)
\(158\) −0.333132 −0.0265025
\(159\) −24.7406 −1.96205
\(160\) −33.8877 −2.67905
\(161\) −2.82848 −0.222916
\(162\) −17.3834 −1.36577
\(163\) −2.08285 −0.163142 −0.0815708 0.996668i \(-0.525994\pi\)
−0.0815708 + 0.996668i \(0.525994\pi\)
\(164\) −1.55010 −0.121042
\(165\) 16.4801 1.28297
\(166\) 7.96162 0.617941
\(167\) 8.65764 0.669948 0.334974 0.942227i \(-0.391272\pi\)
0.334974 + 0.942227i \(0.391272\pi\)
\(168\) −27.4701 −2.11937
\(169\) −12.9722 −0.997858
\(170\) 84.3438 6.46887
\(171\) 28.3616 2.16887
\(172\) 21.8338 1.66481
\(173\) −0.0384860 −0.00292603 −0.00146302 0.999999i \(-0.500466\pi\)
−0.00146302 + 0.999999i \(0.500466\pi\)
\(174\) 14.1179 1.07027
\(175\) −20.3372 −1.53735
\(176\) −12.6604 −0.954312
\(177\) 39.1810 2.94503
\(178\) −23.8723 −1.78930
\(179\) −11.9385 −0.892327 −0.446163 0.894951i \(-0.647210\pi\)
−0.446163 + 0.894951i \(0.647210\pi\)
\(180\) −71.8834 −5.35787
\(181\) −23.4257 −1.74122 −0.870611 0.491972i \(-0.836276\pi\)
−0.870611 + 0.491972i \(0.836276\pi\)
\(182\) 0.669016 0.0495908
\(183\) −12.5279 −0.926091
\(184\) 12.5121 0.922401
\(185\) −16.7933 −1.23467
\(186\) −35.7699 −2.62277
\(187\) 11.5639 0.845636
\(188\) −5.80121 −0.423097
\(189\) −2.49822 −0.181719
\(190\) −85.9011 −6.23192
\(191\) 13.4857 0.975794 0.487897 0.872901i \(-0.337764\pi\)
0.487897 + 0.872901i \(0.337764\pi\)
\(192\) 9.63060 0.695029
\(193\) 25.9852 1.87045 0.935226 0.354051i \(-0.115196\pi\)
0.935226 + 0.354051i \(0.115196\pi\)
\(194\) −26.1948 −1.88068
\(195\) 1.82696 0.130832
\(196\) −21.3865 −1.52761
\(197\) −11.3574 −0.809183 −0.404592 0.914497i \(-0.632586\pi\)
−0.404592 + 0.914497i \(0.632586\pi\)
\(198\) −14.0835 −1.00087
\(199\) −16.7821 −1.18965 −0.594827 0.803853i \(-0.702780\pi\)
−0.594827 + 0.803853i \(0.702780\pi\)
\(200\) 89.9636 6.36139
\(201\) 23.9693 1.69067
\(202\) −18.0273 −1.26840
\(203\) −3.30084 −0.231673
\(204\) −92.1847 −6.45422
\(205\) 1.41429 0.0987781
\(206\) 27.5489 1.91942
\(207\) 6.60083 0.458789
\(208\) −1.40352 −0.0973164
\(209\) −11.7774 −0.814661
\(210\) 43.8933 3.02893
\(211\) 7.33286 0.504815 0.252407 0.967621i \(-0.418778\pi\)
0.252407 + 0.967621i \(0.418778\pi\)
\(212\) −44.8125 −3.07774
\(213\) 18.1577 1.24415
\(214\) 16.6959 1.14131
\(215\) −19.9208 −1.35859
\(216\) 11.0511 0.751933
\(217\) 8.36319 0.567731
\(218\) −13.5318 −0.916491
\(219\) 22.8758 1.54581
\(220\) 29.8503 2.01250
\(221\) 1.28196 0.0862342
\(222\) 26.2284 1.76034
\(223\) 3.77173 0.252574 0.126287 0.991994i \(-0.459694\pi\)
0.126287 + 0.991994i \(0.459694\pi\)
\(224\) −12.3746 −0.826816
\(225\) 47.4610 3.16407
\(226\) 12.1829 0.810397
\(227\) 2.68713 0.178351 0.0891757 0.996016i \(-0.471577\pi\)
0.0891757 + 0.996016i \(0.471577\pi\)
\(228\) 93.8869 6.21781
\(229\) −5.12320 −0.338550 −0.169275 0.985569i \(-0.554143\pi\)
−0.169275 + 0.985569i \(0.554143\pi\)
\(230\) −19.9925 −1.31827
\(231\) 6.01797 0.395953
\(232\) 14.6016 0.958639
\(233\) −16.4945 −1.08059 −0.540295 0.841476i \(-0.681687\pi\)
−0.540295 + 0.841476i \(0.681687\pi\)
\(234\) −1.56128 −0.102064
\(235\) 5.29294 0.345273
\(236\) 70.9685 4.61965
\(237\) −0.332201 −0.0215788
\(238\) 30.7996 1.99644
\(239\) −6.38220 −0.412830 −0.206415 0.978465i \(-0.566180\pi\)
−0.206415 + 0.978465i \(0.566180\pi\)
\(240\) −92.0830 −5.94393
\(241\) 4.11739 0.265225 0.132612 0.991168i \(-0.457663\pi\)
0.132612 + 0.991168i \(0.457663\pi\)
\(242\) −22.5438 −1.44917
\(243\) −22.1599 −1.42156
\(244\) −22.6918 −1.45269
\(245\) 19.5127 1.24662
\(246\) −2.20889 −0.140834
\(247\) −1.30563 −0.0830755
\(248\) −36.9954 −2.34921
\(249\) 7.93936 0.503137
\(250\) −88.8542 −5.61963
\(251\) −19.6004 −1.23717 −0.618583 0.785719i \(-0.712293\pi\)
−0.618583 + 0.785719i \(0.712293\pi\)
\(252\) −26.2494 −1.65356
\(253\) −2.74106 −0.172329
\(254\) −26.1089 −1.63822
\(255\) 84.1080 5.26705
\(256\) −23.6824 −1.48015
\(257\) 19.4944 1.21603 0.608014 0.793926i \(-0.291966\pi\)
0.608014 + 0.793926i \(0.291966\pi\)
\(258\) 31.1131 1.93702
\(259\) −6.13235 −0.381045
\(260\) 3.30917 0.205226
\(261\) 7.70316 0.476814
\(262\) −8.10587 −0.500782
\(263\) 8.00691 0.493727 0.246864 0.969050i \(-0.420600\pi\)
0.246864 + 0.969050i \(0.420600\pi\)
\(264\) −26.6210 −1.63841
\(265\) 40.8863 2.51162
\(266\) −31.3682 −1.92331
\(267\) −23.8055 −1.45687
\(268\) 43.4155 2.65203
\(269\) 6.64635 0.405235 0.202617 0.979258i \(-0.435055\pi\)
0.202617 + 0.979258i \(0.435055\pi\)
\(270\) −17.6581 −1.07464
\(271\) 16.7286 1.01619 0.508095 0.861301i \(-0.330350\pi\)
0.508095 + 0.861301i \(0.330350\pi\)
\(272\) −64.6138 −3.91779
\(273\) 0.667146 0.0403775
\(274\) 22.6434 1.36794
\(275\) −19.7086 −1.18847
\(276\) 21.8511 1.31528
\(277\) 13.7869 0.828373 0.414186 0.910192i \(-0.364066\pi\)
0.414186 + 0.910192i \(0.364066\pi\)
\(278\) −34.4273 −2.06481
\(279\) −19.5172 −1.16846
\(280\) 45.3971 2.71300
\(281\) 24.5323 1.46347 0.731737 0.681587i \(-0.238710\pi\)
0.731737 + 0.681587i \(0.238710\pi\)
\(282\) −8.26673 −0.492276
\(283\) −22.6649 −1.34729 −0.673644 0.739056i \(-0.735272\pi\)
−0.673644 + 0.739056i \(0.735272\pi\)
\(284\) 32.8890 1.95160
\(285\) −85.6610 −5.07412
\(286\) 0.648338 0.0383370
\(287\) 0.516451 0.0304851
\(288\) 28.8787 1.70169
\(289\) 42.0179 2.47164
\(290\) −23.3312 −1.37006
\(291\) −26.1216 −1.53127
\(292\) 41.4349 2.42480
\(293\) 2.60088 0.151945 0.0759725 0.997110i \(-0.475794\pi\)
0.0759725 + 0.997110i \(0.475794\pi\)
\(294\) −30.4757 −1.77738
\(295\) −64.7506 −3.76993
\(296\) 27.1270 1.57673
\(297\) −2.42100 −0.140481
\(298\) −13.3207 −0.771647
\(299\) −0.303871 −0.0175733
\(300\) 157.113 9.07090
\(301\) −7.27443 −0.419291
\(302\) 18.4676 1.06269
\(303\) −17.9770 −1.03275
\(304\) 65.8069 3.77428
\(305\) 20.7037 1.18549
\(306\) −71.8769 −4.10893
\(307\) −18.3612 −1.04793 −0.523964 0.851741i \(-0.675547\pi\)
−0.523964 + 0.851741i \(0.675547\pi\)
\(308\) 10.9003 0.621104
\(309\) 27.4719 1.56282
\(310\) 59.1133 3.35741
\(311\) 9.92640 0.562874 0.281437 0.959580i \(-0.409189\pi\)
0.281437 + 0.959580i \(0.409189\pi\)
\(312\) −2.95118 −0.167078
\(313\) −2.26752 −0.128168 −0.0640838 0.997945i \(-0.520412\pi\)
−0.0640838 + 0.997945i \(0.520412\pi\)
\(314\) 48.9571 2.76281
\(315\) 23.9496 1.34941
\(316\) −0.601714 −0.0338491
\(317\) 23.9947 1.34767 0.673837 0.738880i \(-0.264645\pi\)
0.673837 + 0.738880i \(0.264645\pi\)
\(318\) −63.8578 −3.58097
\(319\) −3.19881 −0.179099
\(320\) −15.9155 −0.889706
\(321\) 16.6492 0.929269
\(322\) −7.30059 −0.406846
\(323\) −60.1076 −3.34447
\(324\) −31.3986 −1.74436
\(325\) −2.18488 −0.121195
\(326\) −5.37604 −0.297752
\(327\) −13.4940 −0.746220
\(328\) −2.28457 −0.126144
\(329\) 1.93281 0.106559
\(330\) 42.5366 2.34156
\(331\) −2.07464 −0.114032 −0.0570162 0.998373i \(-0.518159\pi\)
−0.0570162 + 0.998373i \(0.518159\pi\)
\(332\) 14.3805 0.789235
\(333\) 14.3111 0.784241
\(334\) 22.3462 1.22273
\(335\) −39.6117 −2.16422
\(336\) −33.6257 −1.83443
\(337\) 1.88017 0.102419 0.0512097 0.998688i \(-0.483692\pi\)
0.0512097 + 0.998688i \(0.483692\pi\)
\(338\) −33.4824 −1.82120
\(339\) 12.1489 0.659837
\(340\) 152.345 8.26205
\(341\) 8.10470 0.438894
\(342\) 73.2040 3.95842
\(343\) 17.9983 0.971818
\(344\) 32.1791 1.73498
\(345\) −19.9366 −1.07335
\(346\) −0.0993360 −0.00534034
\(347\) −28.8389 −1.54815 −0.774076 0.633093i \(-0.781785\pi\)
−0.774076 + 0.633093i \(0.781785\pi\)
\(348\) 25.5002 1.36695
\(349\) 0.147924 0.00791819 0.00395910 0.999992i \(-0.498740\pi\)
0.00395910 + 0.999992i \(0.498740\pi\)
\(350\) −52.4924 −2.80584
\(351\) −0.268390 −0.0143256
\(352\) −11.9922 −0.639184
\(353\) −2.49447 −0.132767 −0.0663836 0.997794i \(-0.521146\pi\)
−0.0663836 + 0.997794i \(0.521146\pi\)
\(354\) 101.130 5.37500
\(355\) −30.0075 −1.59263
\(356\) −43.1189 −2.28530
\(357\) 30.7135 1.62553
\(358\) −30.8145 −1.62860
\(359\) 13.3856 0.706467 0.353234 0.935535i \(-0.385082\pi\)
0.353234 + 0.935535i \(0.385082\pi\)
\(360\) −105.943 −5.58370
\(361\) 42.2174 2.22197
\(362\) −60.4641 −3.17792
\(363\) −22.4808 −1.17993
\(364\) 1.20840 0.0633374
\(365\) −37.8046 −1.97879
\(366\) −32.3358 −1.69022
\(367\) 21.8109 1.13852 0.569260 0.822158i \(-0.307230\pi\)
0.569260 + 0.822158i \(0.307230\pi\)
\(368\) 15.3158 0.798390
\(369\) −1.20524 −0.0627424
\(370\) −43.3451 −2.25340
\(371\) 14.9303 0.775143
\(372\) −64.6087 −3.34981
\(373\) −13.9236 −0.720935 −0.360467 0.932772i \(-0.617383\pi\)
−0.360467 + 0.932772i \(0.617383\pi\)
\(374\) 29.8476 1.54338
\(375\) −88.6058 −4.57559
\(376\) −8.54995 −0.440930
\(377\) −0.354617 −0.0182637
\(378\) −6.44815 −0.331657
\(379\) 11.6065 0.596187 0.298094 0.954537i \(-0.403649\pi\)
0.298094 + 0.954537i \(0.403649\pi\)
\(380\) −155.158 −7.95941
\(381\) −26.0359 −1.33386
\(382\) 34.8080 1.78093
\(383\) 1.00000 0.0510976
\(384\) −16.1538 −0.824344
\(385\) −9.94530 −0.506859
\(386\) 67.0702 3.41378
\(387\) 16.9763 0.862955
\(388\) −47.3139 −2.40200
\(389\) −11.0407 −0.559786 −0.279893 0.960031i \(-0.590299\pi\)
−0.279893 + 0.960031i \(0.590299\pi\)
\(390\) 4.71557 0.238782
\(391\) −13.9893 −0.707471
\(392\) −31.5199 −1.59199
\(393\) −8.08322 −0.407744
\(394\) −29.3146 −1.47685
\(395\) 0.548995 0.0276229
\(396\) −25.4381 −1.27831
\(397\) −11.4621 −0.575265 −0.287633 0.957741i \(-0.592868\pi\)
−0.287633 + 0.957741i \(0.592868\pi\)
\(398\) −43.3164 −2.17125
\(399\) −31.2806 −1.56599
\(400\) 110.123 5.50614
\(401\) −17.0940 −0.853635 −0.426817 0.904338i \(-0.640365\pi\)
−0.426817 + 0.904338i \(0.640365\pi\)
\(402\) 61.8672 3.08565
\(403\) 0.898479 0.0447564
\(404\) −32.5616 −1.62000
\(405\) 28.6476 1.42351
\(406\) −8.51978 −0.422830
\(407\) −5.94280 −0.294574
\(408\) −135.864 −6.72626
\(409\) 15.8540 0.783929 0.391965 0.919980i \(-0.371796\pi\)
0.391965 + 0.919980i \(0.371796\pi\)
\(410\) 3.65041 0.180281
\(411\) 22.5801 1.11379
\(412\) 49.7597 2.45149
\(413\) −23.6448 −1.16348
\(414\) 17.0374 0.837342
\(415\) −13.1206 −0.644065
\(416\) −1.32944 −0.0651811
\(417\) −34.3311 −1.68120
\(418\) −30.3987 −1.48685
\(419\) 13.9445 0.681234 0.340617 0.940202i \(-0.389364\pi\)
0.340617 + 0.940202i \(0.389364\pi\)
\(420\) 79.2816 3.86855
\(421\) −22.0016 −1.07229 −0.536147 0.844125i \(-0.680121\pi\)
−0.536147 + 0.844125i \(0.680121\pi\)
\(422\) 18.9268 0.921343
\(423\) −4.51059 −0.219312
\(424\) −66.0456 −3.20746
\(425\) −100.585 −4.87911
\(426\) 46.8669 2.27071
\(427\) 7.56029 0.365868
\(428\) 30.1567 1.45768
\(429\) 0.646525 0.0312145
\(430\) −51.4176 −2.47958
\(431\) −33.5644 −1.61674 −0.808370 0.588675i \(-0.799650\pi\)
−0.808370 + 0.588675i \(0.799650\pi\)
\(432\) 13.5275 0.650840
\(433\) −24.2287 −1.16436 −0.582178 0.813061i \(-0.697799\pi\)
−0.582178 + 0.813061i \(0.697799\pi\)
\(434\) 21.5862 1.03617
\(435\) −23.2660 −1.11552
\(436\) −24.4416 −1.17054
\(437\) 14.2476 0.681557
\(438\) 59.0448 2.82127
\(439\) 9.16240 0.437297 0.218649 0.975804i \(-0.429835\pi\)
0.218649 + 0.975804i \(0.429835\pi\)
\(440\) 43.9940 2.09733
\(441\) −16.6285 −0.791835
\(442\) 3.30887 0.157387
\(443\) 1.91989 0.0912170 0.0456085 0.998959i \(-0.485477\pi\)
0.0456085 + 0.998959i \(0.485477\pi\)
\(444\) 47.3746 2.24830
\(445\) 39.3410 1.86494
\(446\) 9.73521 0.460976
\(447\) −13.2835 −0.628286
\(448\) −5.81183 −0.274583
\(449\) −17.4866 −0.825243 −0.412621 0.910903i \(-0.635387\pi\)
−0.412621 + 0.910903i \(0.635387\pi\)
\(450\) 122.501 5.77477
\(451\) 0.500488 0.0235671
\(452\) 22.0052 1.03504
\(453\) 18.4159 0.865256
\(454\) 6.93576 0.325511
\(455\) −1.10253 −0.0516872
\(456\) 138.372 6.47989
\(457\) 24.5140 1.14672 0.573359 0.819304i \(-0.305640\pi\)
0.573359 + 0.819304i \(0.305640\pi\)
\(458\) −13.2235 −0.617892
\(459\) −12.3559 −0.576724
\(460\) −36.1111 −1.68369
\(461\) 11.9651 0.557268 0.278634 0.960397i \(-0.410118\pi\)
0.278634 + 0.960397i \(0.410118\pi\)
\(462\) 15.5330 0.722659
\(463\) −12.5200 −0.581852 −0.290926 0.956745i \(-0.593963\pi\)
−0.290926 + 0.956745i \(0.593963\pi\)
\(464\) 17.8735 0.829756
\(465\) 58.9481 2.73365
\(466\) −42.5739 −1.97220
\(467\) 33.4951 1.54997 0.774985 0.631980i \(-0.217758\pi\)
0.774985 + 0.631980i \(0.217758\pi\)
\(468\) −2.82004 −0.130356
\(469\) −14.4649 −0.667926
\(470\) 13.6616 0.630163
\(471\) 48.8202 2.24952
\(472\) 104.595 4.81437
\(473\) −7.04958 −0.324140
\(474\) −0.857442 −0.0393836
\(475\) 102.443 4.70039
\(476\) 55.6312 2.54985
\(477\) −34.8429 −1.59535
\(478\) −16.4731 −0.753461
\(479\) 26.2231 1.19816 0.599082 0.800687i \(-0.295532\pi\)
0.599082 + 0.800687i \(0.295532\pi\)
\(480\) −87.2229 −3.98116
\(481\) −0.658813 −0.0300393
\(482\) 10.6274 0.484065
\(483\) −7.28019 −0.331260
\(484\) −40.7193 −1.85088
\(485\) 43.1685 1.96018
\(486\) −57.1969 −2.59451
\(487\) −32.4390 −1.46995 −0.734976 0.678093i \(-0.762807\pi\)
−0.734976 + 0.678093i \(0.762807\pi\)
\(488\) −33.4437 −1.51392
\(489\) −5.36102 −0.242434
\(490\) 50.3642 2.27522
\(491\) −37.1110 −1.67479 −0.837397 0.546595i \(-0.815924\pi\)
−0.837397 + 0.546595i \(0.815924\pi\)
\(492\) −3.98977 −0.179873
\(493\) −16.3255 −0.735265
\(494\) −3.36997 −0.151622
\(495\) 23.2093 1.04318
\(496\) −45.2853 −2.03337
\(497\) −10.9577 −0.491521
\(498\) 20.4923 0.918281
\(499\) 5.79833 0.259569 0.129784 0.991542i \(-0.458571\pi\)
0.129784 + 0.991542i \(0.458571\pi\)
\(500\) −160.491 −7.17740
\(501\) 22.2838 0.995565
\(502\) −50.5906 −2.25797
\(503\) 10.9238 0.487067 0.243533 0.969893i \(-0.421693\pi\)
0.243533 + 0.969893i \(0.421693\pi\)
\(504\) −38.6870 −1.72325
\(505\) 29.7087 1.32202
\(506\) −7.07494 −0.314519
\(507\) −33.3888 −1.48285
\(508\) −47.1588 −2.09233
\(509\) −7.86855 −0.348767 −0.174384 0.984678i \(-0.555793\pi\)
−0.174384 + 0.984678i \(0.555793\pi\)
\(510\) 217.091 9.61295
\(511\) −13.8050 −0.610697
\(512\) −48.5745 −2.14671
\(513\) 12.5840 0.555599
\(514\) 50.3170 2.21939
\(515\) −45.4001 −2.00057
\(516\) 56.1976 2.47396
\(517\) 1.87307 0.0823773
\(518\) −15.8282 −0.695451
\(519\) −0.0990584 −0.00434818
\(520\) 4.87713 0.213876
\(521\) −14.6913 −0.643637 −0.321818 0.946801i \(-0.604294\pi\)
−0.321818 + 0.946801i \(0.604294\pi\)
\(522\) 19.8826 0.870238
\(523\) 8.37124 0.366049 0.183024 0.983108i \(-0.441411\pi\)
0.183024 + 0.983108i \(0.441411\pi\)
\(524\) −14.6411 −0.639600
\(525\) −52.3457 −2.28455
\(526\) 20.6666 0.901107
\(527\) 41.3633 1.80182
\(528\) −32.5863 −1.41814
\(529\) −19.6840 −0.855827
\(530\) 105.531 4.58400
\(531\) 55.1798 2.39460
\(532\) −56.6584 −2.45645
\(533\) 0.0554836 0.00240326
\(534\) −61.4444 −2.65896
\(535\) −27.5145 −1.18956
\(536\) 63.9868 2.76381
\(537\) −30.7284 −1.32603
\(538\) 17.1549 0.739599
\(539\) 6.90516 0.297426
\(540\) −31.8947 −1.37253
\(541\) 45.2764 1.94658 0.973292 0.229573i \(-0.0737328\pi\)
0.973292 + 0.229573i \(0.0737328\pi\)
\(542\) 43.1782 1.85466
\(543\) −60.2951 −2.58751
\(544\) −61.2035 −2.62408
\(545\) 22.3002 0.955236
\(546\) 1.72197 0.0736935
\(547\) 33.4144 1.42870 0.714348 0.699790i \(-0.246723\pi\)
0.714348 + 0.699790i \(0.246723\pi\)
\(548\) 40.8993 1.74713
\(549\) −17.6434 −0.753004
\(550\) −50.8699 −2.16910
\(551\) 16.6270 0.708333
\(552\) 32.2046 1.37072
\(553\) 0.200475 0.00852506
\(554\) 35.5853 1.51187
\(555\) −43.2239 −1.83475
\(556\) −62.1838 −2.63718
\(557\) −19.5238 −0.827252 −0.413626 0.910447i \(-0.635738\pi\)
−0.413626 + 0.910447i \(0.635738\pi\)
\(558\) −50.3757 −2.13258
\(559\) −0.781510 −0.0330543
\(560\) 55.5698 2.34825
\(561\) 29.7641 1.25664
\(562\) 63.3202 2.67100
\(563\) 6.70777 0.282699 0.141349 0.989960i \(-0.454856\pi\)
0.141349 + 0.989960i \(0.454856\pi\)
\(564\) −14.9316 −0.628735
\(565\) −20.0773 −0.844657
\(566\) −58.5003 −2.45895
\(567\) 10.4612 0.439327
\(568\) 48.4725 2.03386
\(569\) 1.49454 0.0626543 0.0313271 0.999509i \(-0.490027\pi\)
0.0313271 + 0.999509i \(0.490027\pi\)
\(570\) −221.099 −9.26084
\(571\) 30.9339 1.29454 0.647271 0.762260i \(-0.275910\pi\)
0.647271 + 0.762260i \(0.275910\pi\)
\(572\) 1.17105 0.0489640
\(573\) 34.7107 1.45006
\(574\) 1.33301 0.0556388
\(575\) 23.8423 0.994294
\(576\) 13.5631 0.565128
\(577\) 27.8334 1.15872 0.579359 0.815072i \(-0.303303\pi\)
0.579359 + 0.815072i \(0.303303\pi\)
\(578\) 108.452 4.51102
\(579\) 66.8828 2.77955
\(580\) −42.1416 −1.74983
\(581\) −4.79121 −0.198773
\(582\) −67.4223 −2.79475
\(583\) 14.4688 0.599238
\(584\) 61.0677 2.52700
\(585\) 2.57297 0.106379
\(586\) 6.71313 0.277317
\(587\) −16.6001 −0.685159 −0.342580 0.939489i \(-0.611301\pi\)
−0.342580 + 0.939489i \(0.611301\pi\)
\(588\) −55.0463 −2.27007
\(589\) −42.1271 −1.73582
\(590\) −167.128 −6.88054
\(591\) −29.2327 −1.20247
\(592\) 33.2057 1.36474
\(593\) −8.39100 −0.344577 −0.172288 0.985047i \(-0.555116\pi\)
−0.172288 + 0.985047i \(0.555116\pi\)
\(594\) −6.24885 −0.256393
\(595\) −50.7571 −2.08084
\(596\) −24.0603 −0.985548
\(597\) −43.1953 −1.76787
\(598\) −0.784321 −0.0320733
\(599\) −9.91342 −0.405051 −0.202526 0.979277i \(-0.564915\pi\)
−0.202526 + 0.979277i \(0.564915\pi\)
\(600\) 231.556 9.45323
\(601\) 9.98252 0.407195 0.203598 0.979055i \(-0.434737\pi\)
0.203598 + 0.979055i \(0.434737\pi\)
\(602\) −18.7760 −0.765253
\(603\) 33.7567 1.37468
\(604\) 33.3567 1.35727
\(605\) 37.1517 1.51043
\(606\) −46.4003 −1.88488
\(607\) −13.6457 −0.553860 −0.276930 0.960890i \(-0.589317\pi\)
−0.276930 + 0.960890i \(0.589317\pi\)
\(608\) 62.3336 2.52796
\(609\) −8.49597 −0.344274
\(610\) 53.4382 2.16365
\(611\) 0.207646 0.00840047
\(612\) −129.826 −5.24792
\(613\) −4.77723 −0.192951 −0.0964753 0.995335i \(-0.530757\pi\)
−0.0964753 + 0.995335i \(0.530757\pi\)
\(614\) −47.3920 −1.91258
\(615\) 3.64021 0.146787
\(616\) 16.0651 0.647283
\(617\) 41.7811 1.68204 0.841021 0.541002i \(-0.181955\pi\)
0.841021 + 0.541002i \(0.181955\pi\)
\(618\) 70.9076 2.85232
\(619\) 2.02804 0.0815138 0.0407569 0.999169i \(-0.487023\pi\)
0.0407569 + 0.999169i \(0.487023\pi\)
\(620\) 106.772 4.28809
\(621\) 2.92879 0.117528
\(622\) 25.6210 1.02731
\(623\) 14.3660 0.575563
\(624\) −3.61249 −0.144615
\(625\) 80.9644 3.23858
\(626\) −5.85268 −0.233920
\(627\) −30.3137 −1.21061
\(628\) 88.4279 3.52866
\(629\) −30.3298 −1.20933
\(630\) 61.8163 2.46282
\(631\) −34.8608 −1.38779 −0.693893 0.720079i \(-0.744106\pi\)
−0.693893 + 0.720079i \(0.744106\pi\)
\(632\) −0.886819 −0.0352758
\(633\) 18.8739 0.750171
\(634\) 61.9326 2.45966
\(635\) 43.0270 1.70747
\(636\) −115.342 −4.57361
\(637\) 0.765499 0.0303302
\(638\) −8.25644 −0.326876
\(639\) 25.5721 1.01161
\(640\) 26.6957 1.05524
\(641\) 13.2080 0.521683 0.260842 0.965382i \(-0.416000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(642\) 42.9733 1.69602
\(643\) −25.7071 −1.01379 −0.506894 0.862008i \(-0.669207\pi\)
−0.506894 + 0.862008i \(0.669207\pi\)
\(644\) −13.1866 −0.519624
\(645\) −51.2739 −2.01891
\(646\) −155.144 −6.10404
\(647\) 5.44019 0.213876 0.106938 0.994266i \(-0.465895\pi\)
0.106938 + 0.994266i \(0.465895\pi\)
\(648\) −46.2759 −1.81789
\(649\) −22.9139 −0.899451
\(650\) −5.63939 −0.221195
\(651\) 21.5259 0.843666
\(652\) −9.71039 −0.380288
\(653\) −16.6654 −0.652167 −0.326084 0.945341i \(-0.605729\pi\)
−0.326084 + 0.945341i \(0.605729\pi\)
\(654\) −34.8293 −1.36194
\(655\) 13.3583 0.521953
\(656\) −2.79650 −0.109185
\(657\) 32.2167 1.25689
\(658\) 4.98876 0.194482
\(659\) 8.50057 0.331135 0.165568 0.986198i \(-0.447054\pi\)
0.165568 + 0.986198i \(0.447054\pi\)
\(660\) 76.8311 2.99065
\(661\) −7.81643 −0.304024 −0.152012 0.988379i \(-0.548575\pi\)
−0.152012 + 0.988379i \(0.548575\pi\)
\(662\) −5.35484 −0.208122
\(663\) 3.29962 0.128147
\(664\) 21.1944 0.822500
\(665\) 51.6943 2.00462
\(666\) 36.9382 1.43133
\(667\) 3.86973 0.149837
\(668\) 40.3625 1.56167
\(669\) 9.70800 0.375333
\(670\) −102.242 −3.94994
\(671\) 7.32661 0.282841
\(672\) −31.8509 −1.22868
\(673\) 0.334170 0.0128813 0.00644065 0.999979i \(-0.497950\pi\)
0.00644065 + 0.999979i \(0.497950\pi\)
\(674\) 4.85290 0.186927
\(675\) 21.0584 0.810540
\(676\) −60.4770 −2.32604
\(677\) 9.17504 0.352625 0.176313 0.984334i \(-0.443583\pi\)
0.176313 + 0.984334i \(0.443583\pi\)
\(678\) 31.3575 1.20428
\(679\) 15.7637 0.604956
\(680\) 224.529 8.61028
\(681\) 6.91637 0.265036
\(682\) 20.9190 0.801030
\(683\) −20.6041 −0.788392 −0.394196 0.919026i \(-0.628977\pi\)
−0.394196 + 0.919026i \(0.628977\pi\)
\(684\) 132.224 5.05570
\(685\) −37.3159 −1.42577
\(686\) 46.4554 1.77368
\(687\) −13.1865 −0.503097
\(688\) 39.3899 1.50172
\(689\) 1.60400 0.0611076
\(690\) −51.4583 −1.95898
\(691\) −31.4224 −1.19537 −0.597683 0.801733i \(-0.703912\pi\)
−0.597683 + 0.801733i \(0.703912\pi\)
\(692\) −0.179424 −0.00682068
\(693\) 8.47528 0.321949
\(694\) −74.4360 −2.82555
\(695\) 56.7356 2.15210
\(696\) 37.5827 1.42457
\(697\) 2.55430 0.0967512
\(698\) 0.381807 0.0144516
\(699\) −42.4549 −1.60579
\(700\) −94.8135 −3.58361
\(701\) −17.3859 −0.656655 −0.328328 0.944564i \(-0.606485\pi\)
−0.328328 + 0.944564i \(0.606485\pi\)
\(702\) −0.692741 −0.0261458
\(703\) 30.8899 1.16503
\(704\) −5.63219 −0.212271
\(705\) 13.6234 0.513087
\(706\) −6.43847 −0.242315
\(707\) 10.8486 0.408005
\(708\) 182.665 6.86496
\(709\) 38.2186 1.43533 0.717665 0.696389i \(-0.245211\pi\)
0.717665 + 0.696389i \(0.245211\pi\)
\(710\) −77.4522 −2.90673
\(711\) −0.467848 −0.0175457
\(712\) −63.5495 −2.38162
\(713\) −9.80459 −0.367185
\(714\) 79.2745 2.96677
\(715\) −1.06845 −0.0399577
\(716\) −55.6582 −2.08004
\(717\) −16.4270 −0.613479
\(718\) 34.5497 1.28938
\(719\) −19.7424 −0.736268 −0.368134 0.929773i \(-0.620003\pi\)
−0.368134 + 0.929773i \(0.620003\pi\)
\(720\) −129.683 −4.83301
\(721\) −16.5786 −0.617419
\(722\) 108.967 4.05534
\(723\) 10.5977 0.394132
\(724\) −109.212 −4.05885
\(725\) 27.8240 1.03336
\(726\) −58.0250 −2.15351
\(727\) −22.2866 −0.826564 −0.413282 0.910603i \(-0.635618\pi\)
−0.413282 + 0.910603i \(0.635618\pi\)
\(728\) 1.78097 0.0660070
\(729\) −36.8324 −1.36416
\(730\) −97.5775 −3.61150
\(731\) −35.9784 −1.33071
\(732\) −58.4060 −2.15875
\(733\) 26.6840 0.985596 0.492798 0.870144i \(-0.335974\pi\)
0.492798 + 0.870144i \(0.335974\pi\)
\(734\) 56.2960 2.07792
\(735\) 50.2234 1.85252
\(736\) 14.5074 0.534750
\(737\) −14.0178 −0.516352
\(738\) −3.11085 −0.114512
\(739\) 26.9464 0.991240 0.495620 0.868540i \(-0.334941\pi\)
0.495620 + 0.868540i \(0.334941\pi\)
\(740\) −78.2914 −2.87805
\(741\) −3.36055 −0.123453
\(742\) 38.5366 1.41472
\(743\) 10.8798 0.399140 0.199570 0.979884i \(-0.436046\pi\)
0.199570 + 0.979884i \(0.436046\pi\)
\(744\) −95.2218 −3.49100
\(745\) 21.9523 0.804269
\(746\) −35.9381 −1.31579
\(747\) 11.1812 0.409100
\(748\) 53.9117 1.97121
\(749\) −10.0474 −0.367124
\(750\) −228.700 −8.35096
\(751\) 46.3601 1.69170 0.845852 0.533417i \(-0.179092\pi\)
0.845852 + 0.533417i \(0.179092\pi\)
\(752\) −10.4658 −0.381650
\(753\) −50.4492 −1.83847
\(754\) −0.915301 −0.0333333
\(755\) −30.4342 −1.10761
\(756\) −11.6469 −0.423593
\(757\) 41.1991 1.49741 0.748704 0.662905i \(-0.230676\pi\)
0.748704 + 0.662905i \(0.230676\pi\)
\(758\) 29.9576 1.08811
\(759\) −7.05516 −0.256086
\(760\) −228.675 −8.29490
\(761\) −9.29105 −0.336800 −0.168400 0.985719i \(-0.553860\pi\)
−0.168400 + 0.985719i \(0.553860\pi\)
\(762\) −67.2013 −2.43445
\(763\) 8.14330 0.294807
\(764\) 62.8714 2.27461
\(765\) 118.452 4.28263
\(766\) 2.58110 0.0932589
\(767\) −2.54022 −0.0917219
\(768\) −60.9557 −2.19955
\(769\) −26.4255 −0.952928 −0.476464 0.879194i \(-0.658082\pi\)
−0.476464 + 0.879194i \(0.658082\pi\)
\(770\) −25.6698 −0.925075
\(771\) 50.1764 1.80706
\(772\) 121.145 4.36009
\(773\) 28.5566 1.02711 0.513554 0.858057i \(-0.328329\pi\)
0.513554 + 0.858057i \(0.328329\pi\)
\(774\) 43.8176 1.57499
\(775\) −70.4965 −2.53231
\(776\) −69.7323 −2.50324
\(777\) −15.7839 −0.566246
\(778\) −28.4971 −1.02167
\(779\) −2.60147 −0.0932072
\(780\) 8.51742 0.304973
\(781\) −10.6190 −0.379979
\(782\) −36.1078 −1.29121
\(783\) 3.41789 0.122145
\(784\) −38.5829 −1.37796
\(785\) −80.6804 −2.87961
\(786\) −20.8636 −0.744179
\(787\) 31.1708 1.11112 0.555559 0.831477i \(-0.312504\pi\)
0.555559 + 0.831477i \(0.312504\pi\)
\(788\) −52.9491 −1.88623
\(789\) 20.6088 0.733694
\(790\) 1.41701 0.0504150
\(791\) −7.33155 −0.260680
\(792\) −37.4912 −1.33219
\(793\) 0.812221 0.0288428
\(794\) −29.5848 −1.04992
\(795\) 105.237 3.73235
\(796\) −78.2395 −2.77313
\(797\) 23.3338 0.826524 0.413262 0.910612i \(-0.364389\pi\)
0.413262 + 0.910612i \(0.364389\pi\)
\(798\) −80.7382 −2.85810
\(799\) 9.55943 0.338188
\(800\) 104.311 3.68793
\(801\) −33.5260 −1.18458
\(802\) −44.1214 −1.55798
\(803\) −13.3783 −0.472110
\(804\) 111.747 3.94100
\(805\) 12.0312 0.424046
\(806\) 2.31906 0.0816855
\(807\) 17.1069 0.602192
\(808\) −47.9900 −1.68828
\(809\) 29.6986 1.04415 0.522074 0.852900i \(-0.325159\pi\)
0.522074 + 0.852900i \(0.325159\pi\)
\(810\) 73.9423 2.59807
\(811\) −26.5649 −0.932820 −0.466410 0.884569i \(-0.654453\pi\)
−0.466410 + 0.884569i \(0.654453\pi\)
\(812\) −15.3887 −0.540038
\(813\) 43.0575 1.51009
\(814\) −15.3390 −0.537630
\(815\) 8.85962 0.310339
\(816\) −166.308 −5.82196
\(817\) 36.6427 1.28197
\(818\) 40.9207 1.43076
\(819\) 0.939562 0.0328309
\(820\) 6.59350 0.230255
\(821\) −35.1382 −1.22633 −0.613165 0.789955i \(-0.710104\pi\)
−0.613165 + 0.789955i \(0.710104\pi\)
\(822\) 58.2815 2.03280
\(823\) −3.41873 −0.119169 −0.0595847 0.998223i \(-0.518978\pi\)
−0.0595847 + 0.998223i \(0.518978\pi\)
\(824\) 73.3370 2.55481
\(825\) −50.7277 −1.76611
\(826\) −61.0295 −2.12349
\(827\) −23.0916 −0.802974 −0.401487 0.915865i \(-0.631506\pi\)
−0.401487 + 0.915865i \(0.631506\pi\)
\(828\) 30.7735 1.06945
\(829\) 49.9112 1.73349 0.866743 0.498754i \(-0.166209\pi\)
0.866743 + 0.498754i \(0.166209\pi\)
\(830\) −33.8655 −1.17549
\(831\) 35.4858 1.23099
\(832\) −0.624379 −0.0216465
\(833\) 35.2413 1.22104
\(834\) −88.6119 −3.06838
\(835\) −36.8262 −1.27442
\(836\) −54.9071 −1.89900
\(837\) −8.65977 −0.299326
\(838\) 35.9922 1.24333
\(839\) −5.90244 −0.203775 −0.101887 0.994796i \(-0.532488\pi\)
−0.101887 + 0.994796i \(0.532488\pi\)
\(840\) 116.847 4.03160
\(841\) −24.4840 −0.844277
\(842\) −56.7884 −1.95706
\(843\) 63.1433 2.17477
\(844\) 34.1863 1.17674
\(845\) 55.1784 1.89819
\(846\) −11.6423 −0.400270
\(847\) 13.5666 0.466153
\(848\) −80.8453 −2.77624
\(849\) −58.3368 −2.00211
\(850\) −259.621 −8.90492
\(851\) 7.18926 0.246444
\(852\) 84.6525 2.90015
\(853\) −25.5062 −0.873315 −0.436657 0.899628i \(-0.643838\pi\)
−0.436657 + 0.899628i \(0.643838\pi\)
\(854\) 19.5139 0.667750
\(855\) −120.639 −4.12576
\(856\) 44.4456 1.51912
\(857\) −29.6954 −1.01437 −0.507187 0.861836i \(-0.669315\pi\)
−0.507187 + 0.861836i \(0.669315\pi\)
\(858\) 1.66875 0.0569700
\(859\) 45.1715 1.54123 0.770616 0.637300i \(-0.219949\pi\)
0.770616 + 0.637300i \(0.219949\pi\)
\(860\) −92.8722 −3.16692
\(861\) 1.32928 0.0453019
\(862\) −86.6330 −2.95073
\(863\) 9.41843 0.320607 0.160303 0.987068i \(-0.448753\pi\)
0.160303 + 0.987068i \(0.448753\pi\)
\(864\) 12.8135 0.435924
\(865\) 0.163704 0.00556610
\(866\) −62.5366 −2.12508
\(867\) 108.149 3.67293
\(868\) 38.9898 1.32340
\(869\) 0.194278 0.00659044
\(870\) −60.0518 −2.03595
\(871\) −1.55400 −0.0526552
\(872\) −36.0226 −1.21988
\(873\) −36.7878 −1.24508
\(874\) 36.7746 1.24392
\(875\) 53.4714 1.80766
\(876\) 106.649 3.60333
\(877\) −50.5960 −1.70851 −0.854253 0.519857i \(-0.825985\pi\)
−0.854253 + 0.519857i \(0.825985\pi\)
\(878\) 23.6490 0.798117
\(879\) 6.69436 0.225795
\(880\) 53.8522 1.81536
\(881\) −2.72131 −0.0916833 −0.0458416 0.998949i \(-0.514597\pi\)
−0.0458416 + 0.998949i \(0.514597\pi\)
\(882\) −42.9199 −1.44519
\(883\) −38.9747 −1.31160 −0.655801 0.754934i \(-0.727669\pi\)
−0.655801 + 0.754934i \(0.727669\pi\)
\(884\) 5.97660 0.201015
\(885\) −166.661 −5.60223
\(886\) 4.95544 0.166481
\(887\) 43.2030 1.45061 0.725307 0.688426i \(-0.241698\pi\)
0.725307 + 0.688426i \(0.241698\pi\)
\(888\) 69.8218 2.34306
\(889\) 15.7120 0.526965
\(890\) 101.543 3.40373
\(891\) 10.1378 0.339629
\(892\) 17.5841 0.588758
\(893\) −9.73593 −0.325801
\(894\) −34.2859 −1.14669
\(895\) 50.7817 1.69745
\(896\) 9.74840 0.325671
\(897\) −0.782129 −0.0261145
\(898\) −45.1346 −1.50616
\(899\) −11.4419 −0.381610
\(900\) 221.266 7.37554
\(901\) 73.8435 2.46008
\(902\) 1.29181 0.0430125
\(903\) −18.7235 −0.623080
\(904\) 32.4318 1.07867
\(905\) 99.6438 3.31227
\(906\) 47.5333 1.57919
\(907\) −6.38275 −0.211936 −0.105968 0.994370i \(-0.533794\pi\)
−0.105968 + 0.994370i \(0.533794\pi\)
\(908\) 12.5276 0.415743
\(909\) −25.3175 −0.839728
\(910\) −2.84573 −0.0943350
\(911\) 48.1594 1.59559 0.797797 0.602927i \(-0.205999\pi\)
0.797797 + 0.602927i \(0.205999\pi\)
\(912\) 169.379 5.60871
\(913\) −4.64312 −0.153665
\(914\) 63.2731 2.09289
\(915\) 53.2888 1.76167
\(916\) −23.8847 −0.789172
\(917\) 4.87802 0.161086
\(918\) −31.8918 −1.05259
\(919\) −32.2668 −1.06439 −0.532193 0.846623i \(-0.678632\pi\)
−0.532193 + 0.846623i \(0.678632\pi\)
\(920\) −53.2213 −1.75466
\(921\) −47.2595 −1.55725
\(922\) 30.8830 1.01708
\(923\) −1.17722 −0.0387486
\(924\) 28.0562 0.922980
\(925\) 51.6918 1.69962
\(926\) −32.3153 −1.06195
\(927\) 38.6895 1.27073
\(928\) 16.9301 0.555759
\(929\) −46.6399 −1.53020 −0.765102 0.643909i \(-0.777312\pi\)
−0.765102 + 0.643909i \(0.777312\pi\)
\(930\) 152.151 4.98922
\(931\) −35.8921 −1.17631
\(932\) −76.8984 −2.51889
\(933\) 25.5494 0.836450
\(934\) 86.4542 2.82887
\(935\) −49.1883 −1.60863
\(936\) −4.15624 −0.135851
\(937\) −8.11948 −0.265252 −0.132626 0.991166i \(-0.542341\pi\)
−0.132626 + 0.991166i \(0.542341\pi\)
\(938\) −37.3353 −1.21904
\(939\) −5.83632 −0.190461
\(940\) 24.6760 0.804844
\(941\) −36.2879 −1.18295 −0.591476 0.806322i \(-0.701455\pi\)
−0.591476 + 0.806322i \(0.701455\pi\)
\(942\) 126.010 4.10562
\(943\) −0.605461 −0.0197165
\(944\) 128.033 4.16711
\(945\) 10.6264 0.345678
\(946\) −18.1957 −0.591592
\(947\) −27.6412 −0.898217 −0.449109 0.893477i \(-0.648258\pi\)
−0.449109 + 0.893477i \(0.648258\pi\)
\(948\) −1.54874 −0.0503008
\(949\) −1.48311 −0.0481437
\(950\) 264.415 8.57874
\(951\) 61.7595 2.00269
\(952\) 81.9905 2.65733
\(953\) 9.40326 0.304602 0.152301 0.988334i \(-0.451332\pi\)
0.152301 + 0.988334i \(0.451332\pi\)
\(954\) −89.9328 −2.91168
\(955\) −57.3630 −1.85622
\(956\) −29.7542 −0.962320
\(957\) −8.23336 −0.266147
\(958\) 67.6844 2.18678
\(959\) −13.6265 −0.440024
\(960\) −40.9648 −1.32213
\(961\) −2.01003 −0.0648396
\(962\) −1.70046 −0.0548251
\(963\) 23.4476 0.755588
\(964\) 19.1956 0.618248
\(965\) −110.531 −3.55810
\(966\) −18.7909 −0.604586
\(967\) 11.7730 0.378595 0.189297 0.981920i \(-0.439379\pi\)
0.189297 + 0.981920i \(0.439379\pi\)
\(968\) −60.0130 −1.92889
\(969\) −154.710 −4.97000
\(970\) 111.422 3.57755
\(971\) −18.4018 −0.590542 −0.295271 0.955414i \(-0.595410\pi\)
−0.295271 + 0.955414i \(0.595410\pi\)
\(972\) −103.311 −3.31370
\(973\) 20.7179 0.664187
\(974\) −83.7283 −2.68283
\(975\) −5.62362 −0.180100
\(976\) −40.9378 −1.31039
\(977\) 23.1625 0.741035 0.370517 0.928826i \(-0.379180\pi\)
0.370517 + 0.928826i \(0.379180\pi\)
\(978\) −13.8373 −0.442468
\(979\) 13.9220 0.444949
\(980\) 90.9696 2.90592
\(981\) −19.0040 −0.606751
\(982\) −95.7870 −3.05669
\(983\) 33.3799 1.06465 0.532327 0.846539i \(-0.321318\pi\)
0.532327 + 0.846539i \(0.321318\pi\)
\(984\) −5.88021 −0.187454
\(985\) 48.3100 1.53928
\(986\) −42.1378 −1.34194
\(987\) 4.97482 0.158350
\(988\) −6.08695 −0.193652
\(989\) 8.52817 0.271180
\(990\) 59.9056 1.90392
\(991\) −13.1016 −0.416185 −0.208093 0.978109i \(-0.566726\pi\)
−0.208093 + 0.978109i \(0.566726\pi\)
\(992\) −42.8952 −1.36192
\(993\) −5.33988 −0.169456
\(994\) −28.2830 −0.897082
\(995\) 71.3846 2.26304
\(996\) 37.0138 1.17283
\(997\) 31.4260 0.995272 0.497636 0.867386i \(-0.334202\pi\)
0.497636 + 0.867386i \(0.334202\pi\)
\(998\) 14.9660 0.473742
\(999\) 6.34981 0.200899
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 383.2.a.c.1.23 24
3.2 odd 2 3447.2.a.j.1.2 24
4.3 odd 2 6128.2.a.p.1.4 24
5.4 even 2 9575.2.a.e.1.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
383.2.a.c.1.23 24 1.1 even 1 trivial
3447.2.a.j.1.2 24 3.2 odd 2
6128.2.a.p.1.4 24 4.3 odd 2
9575.2.a.e.1.2 24 5.4 even 2