Properties

Label 3447.2.a.j.1.2
Level $3447$
Weight $2$
Character 3447.1
Self dual yes
Analytic conductor $27.524$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3447,2,Mod(1,3447)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3447, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3447.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3447 = 3^{2} \cdot 383 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3447.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.5244335767\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 383)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Character \(\chi\) \(=\) 3447.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.58110 q^{2} +4.66207 q^{4} +4.25360 q^{5} -1.55327 q^{7} -6.87105 q^{8} -10.9790 q^{10} +1.50526 q^{11} -0.166872 q^{13} +4.00915 q^{14} +8.41073 q^{16} +7.68231 q^{17} +7.82416 q^{19} +19.8306 q^{20} -3.88523 q^{22} -1.82098 q^{23} +13.0931 q^{25} +0.430713 q^{26} -7.24147 q^{28} -2.12508 q^{29} -5.38423 q^{31} -7.96681 q^{32} -19.8288 q^{34} -6.60701 q^{35} +3.94801 q^{37} -20.1949 q^{38} -29.2267 q^{40} +0.332492 q^{41} +4.68328 q^{43} +7.01764 q^{44} +4.70013 q^{46} +1.24434 q^{47} -4.58734 q^{49} -33.7947 q^{50} -0.777969 q^{52} +9.61215 q^{53} +6.40280 q^{55} +10.6726 q^{56} +5.48504 q^{58} -15.2225 q^{59} -4.86732 q^{61} +13.8972 q^{62} +3.74166 q^{64} -0.709808 q^{65} +9.31251 q^{67} +35.8154 q^{68} +17.0533 q^{70} -7.05460 q^{71} +8.88768 q^{73} -10.1902 q^{74} +36.4767 q^{76} -2.33809 q^{77} -0.129066 q^{79} +35.7759 q^{80} -0.858194 q^{82} -3.08459 q^{83} +32.6775 q^{85} -12.0880 q^{86} -10.3428 q^{88} +9.24888 q^{89} +0.259198 q^{91} -8.48953 q^{92} -3.21177 q^{94} +33.2808 q^{95} -10.1487 q^{97} +11.8404 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 5 q^{2} + 29 q^{4} - 3 q^{5} + 17 q^{7} - 15 q^{8} + q^{10} + 28 q^{13} + 8 q^{14} + 35 q^{16} - 16 q^{17} + 13 q^{19} + 4 q^{20} + 12 q^{22} - 7 q^{23} + 67 q^{25} + 14 q^{26} + 39 q^{28} + 2 q^{29}+ \cdots + 29 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.58110 −1.82511 −0.912556 0.408952i \(-0.865894\pi\)
−0.912556 + 0.408952i \(0.865894\pi\)
\(3\) 0 0
\(4\) 4.66207 2.33103
\(5\) 4.25360 1.90227 0.951134 0.308777i \(-0.0999198\pi\)
0.951134 + 0.308777i \(0.0999198\pi\)
\(6\) 0 0
\(7\) −1.55327 −0.587083 −0.293541 0.955946i \(-0.594834\pi\)
−0.293541 + 0.955946i \(0.594834\pi\)
\(8\) −6.87105 −2.42928
\(9\) 0 0
\(10\) −10.9790 −3.47185
\(11\) 1.50526 0.453854 0.226927 0.973912i \(-0.427132\pi\)
0.226927 + 0.973912i \(0.427132\pi\)
\(12\) 0 0
\(13\) −0.166872 −0.0462820 −0.0231410 0.999732i \(-0.507367\pi\)
−0.0231410 + 0.999732i \(0.507367\pi\)
\(14\) 4.00915 1.07149
\(15\) 0 0
\(16\) 8.41073 2.10268
\(17\) 7.68231 1.86323 0.931617 0.363442i \(-0.118399\pi\)
0.931617 + 0.363442i \(0.118399\pi\)
\(18\) 0 0
\(19\) 7.82416 1.79498 0.897492 0.441030i \(-0.145387\pi\)
0.897492 + 0.441030i \(0.145387\pi\)
\(20\) 19.8306 4.43425
\(21\) 0 0
\(22\) −3.88523 −0.828335
\(23\) −1.82098 −0.379701 −0.189850 0.981813i \(-0.560800\pi\)
−0.189850 + 0.981813i \(0.560800\pi\)
\(24\) 0 0
\(25\) 13.0931 2.61863
\(26\) 0.430713 0.0844698
\(27\) 0 0
\(28\) −7.24147 −1.36851
\(29\) −2.12508 −0.394618 −0.197309 0.980341i \(-0.563220\pi\)
−0.197309 + 0.980341i \(0.563220\pi\)
\(30\) 0 0
\(31\) −5.38423 −0.967037 −0.483518 0.875334i \(-0.660641\pi\)
−0.483518 + 0.875334i \(0.660641\pi\)
\(32\) −7.96681 −1.40835
\(33\) 0 0
\(34\) −19.8288 −3.40061
\(35\) −6.60701 −1.11679
\(36\) 0 0
\(37\) 3.94801 0.649049 0.324525 0.945877i \(-0.394796\pi\)
0.324525 + 0.945877i \(0.394796\pi\)
\(38\) −20.1949 −3.27605
\(39\) 0 0
\(40\) −29.2267 −4.62115
\(41\) 0.332492 0.0519265 0.0259632 0.999663i \(-0.491735\pi\)
0.0259632 + 0.999663i \(0.491735\pi\)
\(42\) 0 0
\(43\) 4.68328 0.714194 0.357097 0.934067i \(-0.383767\pi\)
0.357097 + 0.934067i \(0.383767\pi\)
\(44\) 7.01764 1.05795
\(45\) 0 0
\(46\) 4.70013 0.692996
\(47\) 1.24434 0.181506 0.0907531 0.995873i \(-0.471073\pi\)
0.0907531 + 0.995873i \(0.471073\pi\)
\(48\) 0 0
\(49\) −4.58734 −0.655334
\(50\) −33.7947 −4.77929
\(51\) 0 0
\(52\) −0.777969 −0.107885
\(53\) 9.61215 1.32033 0.660165 0.751120i \(-0.270486\pi\)
0.660165 + 0.751120i \(0.270486\pi\)
\(54\) 0 0
\(55\) 6.40280 0.863353
\(56\) 10.6726 1.42619
\(57\) 0 0
\(58\) 5.48504 0.720222
\(59\) −15.2225 −1.98181 −0.990903 0.134580i \(-0.957032\pi\)
−0.990903 + 0.134580i \(0.957032\pi\)
\(60\) 0 0
\(61\) −4.86732 −0.623197 −0.311599 0.950214i \(-0.600864\pi\)
−0.311599 + 0.950214i \(0.600864\pi\)
\(62\) 13.8972 1.76495
\(63\) 0 0
\(64\) 3.74166 0.467708
\(65\) −0.709808 −0.0880408
\(66\) 0 0
\(67\) 9.31251 1.13770 0.568852 0.822440i \(-0.307388\pi\)
0.568852 + 0.822440i \(0.307388\pi\)
\(68\) 35.8154 4.34326
\(69\) 0 0
\(70\) 17.0533 2.03826
\(71\) −7.05460 −0.837227 −0.418614 0.908164i \(-0.637484\pi\)
−0.418614 + 0.908164i \(0.637484\pi\)
\(72\) 0 0
\(73\) 8.88768 1.04022 0.520112 0.854098i \(-0.325890\pi\)
0.520112 + 0.854098i \(0.325890\pi\)
\(74\) −10.1902 −1.18459
\(75\) 0 0
\(76\) 36.4767 4.18417
\(77\) −2.33809 −0.266450
\(78\) 0 0
\(79\) −0.129066 −0.0145211 −0.00726053 0.999974i \(-0.502311\pi\)
−0.00726053 + 0.999974i \(0.502311\pi\)
\(80\) 35.7759 3.99987
\(81\) 0 0
\(82\) −0.858194 −0.0947716
\(83\) −3.08459 −0.338577 −0.169289 0.985567i \(-0.554147\pi\)
−0.169289 + 0.985567i \(0.554147\pi\)
\(84\) 0 0
\(85\) 32.6775 3.54437
\(86\) −12.0880 −1.30348
\(87\) 0 0
\(88\) −10.3428 −1.10254
\(89\) 9.24888 0.980379 0.490189 0.871616i \(-0.336928\pi\)
0.490189 + 0.871616i \(0.336928\pi\)
\(90\) 0 0
\(91\) 0.259198 0.0271714
\(92\) −8.48953 −0.885095
\(93\) 0 0
\(94\) −3.21177 −0.331269
\(95\) 33.2808 3.41454
\(96\) 0 0
\(97\) −10.1487 −1.03044 −0.515222 0.857057i \(-0.672291\pi\)
−0.515222 + 0.857057i \(0.672291\pi\)
\(98\) 11.8404 1.19606
\(99\) 0 0
\(100\) 61.0411 6.10411
\(101\) 6.98437 0.694971 0.347485 0.937685i \(-0.387036\pi\)
0.347485 + 0.937685i \(0.387036\pi\)
\(102\) 0 0
\(103\) 10.6733 1.05167 0.525837 0.850586i \(-0.323752\pi\)
0.525837 + 0.850586i \(0.323752\pi\)
\(104\) 1.14659 0.112432
\(105\) 0 0
\(106\) −24.8099 −2.40975
\(107\) −6.46852 −0.625336 −0.312668 0.949862i \(-0.601223\pi\)
−0.312668 + 0.949862i \(0.601223\pi\)
\(108\) 0 0
\(109\) −5.24266 −0.502156 −0.251078 0.967967i \(-0.580785\pi\)
−0.251078 + 0.967967i \(0.580785\pi\)
\(110\) −16.5262 −1.57572
\(111\) 0 0
\(112\) −13.0642 −1.23445
\(113\) −4.72006 −0.444026 −0.222013 0.975044i \(-0.571263\pi\)
−0.222013 + 0.975044i \(0.571263\pi\)
\(114\) 0 0
\(115\) −7.74573 −0.722293
\(116\) −9.90727 −0.919867
\(117\) 0 0
\(118\) 39.2909 3.61702
\(119\) −11.9327 −1.09387
\(120\) 0 0
\(121\) −8.73418 −0.794016
\(122\) 12.5630 1.13740
\(123\) 0 0
\(124\) −25.1017 −2.25420
\(125\) 34.4250 3.07906
\(126\) 0 0
\(127\) −10.1154 −0.897599 −0.448800 0.893632i \(-0.648148\pi\)
−0.448800 + 0.893632i \(0.648148\pi\)
\(128\) 6.27603 0.554728
\(129\) 0 0
\(130\) 1.83208 0.160684
\(131\) 3.14047 0.274385 0.137192 0.990544i \(-0.456192\pi\)
0.137192 + 0.990544i \(0.456192\pi\)
\(132\) 0 0
\(133\) −12.1531 −1.05380
\(134\) −24.0365 −2.07644
\(135\) 0 0
\(136\) −52.7856 −4.52632
\(137\) −8.77278 −0.749509 −0.374755 0.927124i \(-0.622273\pi\)
−0.374755 + 0.927124i \(0.622273\pi\)
\(138\) 0 0
\(139\) −13.3382 −1.13133 −0.565667 0.824634i \(-0.691381\pi\)
−0.565667 + 0.824634i \(0.691381\pi\)
\(140\) −30.8023 −2.60327
\(141\) 0 0
\(142\) 18.2086 1.52803
\(143\) −0.251187 −0.0210053
\(144\) 0 0
\(145\) −9.03925 −0.750669
\(146\) −22.9400 −1.89852
\(147\) 0 0
\(148\) 18.4059 1.51296
\(149\) 5.16087 0.422795 0.211397 0.977400i \(-0.432199\pi\)
0.211397 + 0.977400i \(0.432199\pi\)
\(150\) 0 0
\(151\) 7.15492 0.582259 0.291130 0.956684i \(-0.405969\pi\)
0.291130 + 0.956684i \(0.405969\pi\)
\(152\) −53.7602 −4.36053
\(153\) 0 0
\(154\) 6.03484 0.486301
\(155\) −22.9024 −1.83956
\(156\) 0 0
\(157\) 18.9675 1.51377 0.756887 0.653546i \(-0.226719\pi\)
0.756887 + 0.653546i \(0.226719\pi\)
\(158\) 0.333132 0.0265025
\(159\) 0 0
\(160\) −33.8877 −2.67905
\(161\) 2.82848 0.222916
\(162\) 0 0
\(163\) −2.08285 −0.163142 −0.0815708 0.996668i \(-0.525994\pi\)
−0.0815708 + 0.996668i \(0.525994\pi\)
\(164\) 1.55010 0.121042
\(165\) 0 0
\(166\) 7.96162 0.617941
\(167\) −8.65764 −0.669948 −0.334974 0.942227i \(-0.608728\pi\)
−0.334974 + 0.942227i \(0.608728\pi\)
\(168\) 0 0
\(169\) −12.9722 −0.997858
\(170\) −84.3438 −6.46887
\(171\) 0 0
\(172\) 21.8338 1.66481
\(173\) 0.0384860 0.00292603 0.00146302 0.999999i \(-0.499534\pi\)
0.00146302 + 0.999999i \(0.499534\pi\)
\(174\) 0 0
\(175\) −20.3372 −1.53735
\(176\) 12.6604 0.954312
\(177\) 0 0
\(178\) −23.8723 −1.78930
\(179\) 11.9385 0.892327 0.446163 0.894951i \(-0.352790\pi\)
0.446163 + 0.894951i \(0.352790\pi\)
\(180\) 0 0
\(181\) −23.4257 −1.74122 −0.870611 0.491972i \(-0.836276\pi\)
−0.870611 + 0.491972i \(0.836276\pi\)
\(182\) −0.669016 −0.0495908
\(183\) 0 0
\(184\) 12.5121 0.922401
\(185\) 16.7933 1.23467
\(186\) 0 0
\(187\) 11.5639 0.845636
\(188\) 5.80121 0.423097
\(189\) 0 0
\(190\) −85.9011 −6.23192
\(191\) −13.4857 −0.975794 −0.487897 0.872901i \(-0.662236\pi\)
−0.487897 + 0.872901i \(0.662236\pi\)
\(192\) 0 0
\(193\) 25.9852 1.87045 0.935226 0.354051i \(-0.115196\pi\)
0.935226 + 0.354051i \(0.115196\pi\)
\(194\) 26.1948 1.88068
\(195\) 0 0
\(196\) −21.3865 −1.52761
\(197\) 11.3574 0.809183 0.404592 0.914497i \(-0.367414\pi\)
0.404592 + 0.914497i \(0.367414\pi\)
\(198\) 0 0
\(199\) −16.7821 −1.18965 −0.594827 0.803853i \(-0.702780\pi\)
−0.594827 + 0.803853i \(0.702780\pi\)
\(200\) −89.9636 −6.36139
\(201\) 0 0
\(202\) −18.0273 −1.26840
\(203\) 3.30084 0.231673
\(204\) 0 0
\(205\) 1.41429 0.0987781
\(206\) −27.5489 −1.91942
\(207\) 0 0
\(208\) −1.40352 −0.0973164
\(209\) 11.7774 0.814661
\(210\) 0 0
\(211\) 7.33286 0.504815 0.252407 0.967621i \(-0.418778\pi\)
0.252407 + 0.967621i \(0.418778\pi\)
\(212\) 44.8125 3.07774
\(213\) 0 0
\(214\) 16.6959 1.14131
\(215\) 19.9208 1.35859
\(216\) 0 0
\(217\) 8.36319 0.567731
\(218\) 13.5318 0.916491
\(219\) 0 0
\(220\) 29.8503 2.01250
\(221\) −1.28196 −0.0862342
\(222\) 0 0
\(223\) 3.77173 0.252574 0.126287 0.991994i \(-0.459694\pi\)
0.126287 + 0.991994i \(0.459694\pi\)
\(224\) 12.3746 0.826816
\(225\) 0 0
\(226\) 12.1829 0.810397
\(227\) −2.68713 −0.178351 −0.0891757 0.996016i \(-0.528423\pi\)
−0.0891757 + 0.996016i \(0.528423\pi\)
\(228\) 0 0
\(229\) −5.12320 −0.338550 −0.169275 0.985569i \(-0.554143\pi\)
−0.169275 + 0.985569i \(0.554143\pi\)
\(230\) 19.9925 1.31827
\(231\) 0 0
\(232\) 14.6016 0.958639
\(233\) 16.4945 1.08059 0.540295 0.841476i \(-0.318313\pi\)
0.540295 + 0.841476i \(0.318313\pi\)
\(234\) 0 0
\(235\) 5.29294 0.345273
\(236\) −70.9685 −4.61965
\(237\) 0 0
\(238\) 30.7996 1.99644
\(239\) 6.38220 0.412830 0.206415 0.978465i \(-0.433820\pi\)
0.206415 + 0.978465i \(0.433820\pi\)
\(240\) 0 0
\(241\) 4.11739 0.265225 0.132612 0.991168i \(-0.457663\pi\)
0.132612 + 0.991168i \(0.457663\pi\)
\(242\) 22.5438 1.44917
\(243\) 0 0
\(244\) −22.6918 −1.45269
\(245\) −19.5127 −1.24662
\(246\) 0 0
\(247\) −1.30563 −0.0830755
\(248\) 36.9954 2.34921
\(249\) 0 0
\(250\) −88.8542 −5.61963
\(251\) 19.6004 1.23717 0.618583 0.785719i \(-0.287707\pi\)
0.618583 + 0.785719i \(0.287707\pi\)
\(252\) 0 0
\(253\) −2.74106 −0.172329
\(254\) 26.1089 1.63822
\(255\) 0 0
\(256\) −23.6824 −1.48015
\(257\) −19.4944 −1.21603 −0.608014 0.793926i \(-0.708034\pi\)
−0.608014 + 0.793926i \(0.708034\pi\)
\(258\) 0 0
\(259\) −6.13235 −0.381045
\(260\) −3.30917 −0.205226
\(261\) 0 0
\(262\) −8.10587 −0.500782
\(263\) −8.00691 −0.493727 −0.246864 0.969050i \(-0.579400\pi\)
−0.246864 + 0.969050i \(0.579400\pi\)
\(264\) 0 0
\(265\) 40.8863 2.51162
\(266\) 31.3682 1.92331
\(267\) 0 0
\(268\) 43.4155 2.65203
\(269\) −6.64635 −0.405235 −0.202617 0.979258i \(-0.564945\pi\)
−0.202617 + 0.979258i \(0.564945\pi\)
\(270\) 0 0
\(271\) 16.7286 1.01619 0.508095 0.861301i \(-0.330350\pi\)
0.508095 + 0.861301i \(0.330350\pi\)
\(272\) 64.6138 3.91779
\(273\) 0 0
\(274\) 22.6434 1.36794
\(275\) 19.7086 1.18847
\(276\) 0 0
\(277\) 13.7869 0.828373 0.414186 0.910192i \(-0.364066\pi\)
0.414186 + 0.910192i \(0.364066\pi\)
\(278\) 34.4273 2.06481
\(279\) 0 0
\(280\) 45.3971 2.71300
\(281\) −24.5323 −1.46347 −0.731737 0.681587i \(-0.761290\pi\)
−0.731737 + 0.681587i \(0.761290\pi\)
\(282\) 0 0
\(283\) −22.6649 −1.34729 −0.673644 0.739056i \(-0.735272\pi\)
−0.673644 + 0.739056i \(0.735272\pi\)
\(284\) −32.8890 −1.95160
\(285\) 0 0
\(286\) 0.648338 0.0383370
\(287\) −0.516451 −0.0304851
\(288\) 0 0
\(289\) 42.0179 2.47164
\(290\) 23.3312 1.37006
\(291\) 0 0
\(292\) 41.4349 2.42480
\(293\) −2.60088 −0.151945 −0.0759725 0.997110i \(-0.524206\pi\)
−0.0759725 + 0.997110i \(0.524206\pi\)
\(294\) 0 0
\(295\) −64.7506 −3.76993
\(296\) −27.1270 −1.57673
\(297\) 0 0
\(298\) −13.3207 −0.771647
\(299\) 0.303871 0.0175733
\(300\) 0 0
\(301\) −7.27443 −0.419291
\(302\) −18.4676 −1.06269
\(303\) 0 0
\(304\) 65.8069 3.77428
\(305\) −20.7037 −1.18549
\(306\) 0 0
\(307\) −18.3612 −1.04793 −0.523964 0.851741i \(-0.675547\pi\)
−0.523964 + 0.851741i \(0.675547\pi\)
\(308\) −10.9003 −0.621104
\(309\) 0 0
\(310\) 59.1133 3.35741
\(311\) −9.92640 −0.562874 −0.281437 0.959580i \(-0.590811\pi\)
−0.281437 + 0.959580i \(0.590811\pi\)
\(312\) 0 0
\(313\) −2.26752 −0.128168 −0.0640838 0.997945i \(-0.520412\pi\)
−0.0640838 + 0.997945i \(0.520412\pi\)
\(314\) −48.9571 −2.76281
\(315\) 0 0
\(316\) −0.601714 −0.0338491
\(317\) −23.9947 −1.34767 −0.673837 0.738880i \(-0.735355\pi\)
−0.673837 + 0.738880i \(0.735355\pi\)
\(318\) 0 0
\(319\) −3.19881 −0.179099
\(320\) 15.9155 0.889706
\(321\) 0 0
\(322\) −7.30059 −0.406846
\(323\) 60.1076 3.34447
\(324\) 0 0
\(325\) −2.18488 −0.121195
\(326\) 5.37604 0.297752
\(327\) 0 0
\(328\) −2.28457 −0.126144
\(329\) −1.93281 −0.106559
\(330\) 0 0
\(331\) −2.07464 −0.114032 −0.0570162 0.998373i \(-0.518159\pi\)
−0.0570162 + 0.998373i \(0.518159\pi\)
\(332\) −14.3805 −0.789235
\(333\) 0 0
\(334\) 22.3462 1.22273
\(335\) 39.6117 2.16422
\(336\) 0 0
\(337\) 1.88017 0.102419 0.0512097 0.998688i \(-0.483692\pi\)
0.0512097 + 0.998688i \(0.483692\pi\)
\(338\) 33.4824 1.82120
\(339\) 0 0
\(340\) 152.345 8.26205
\(341\) −8.10470 −0.438894
\(342\) 0 0
\(343\) 17.9983 0.971818
\(344\) −32.1791 −1.73498
\(345\) 0 0
\(346\) −0.0993360 −0.00534034
\(347\) 28.8389 1.54815 0.774076 0.633093i \(-0.218215\pi\)
0.774076 + 0.633093i \(0.218215\pi\)
\(348\) 0 0
\(349\) 0.147924 0.00791819 0.00395910 0.999992i \(-0.498740\pi\)
0.00395910 + 0.999992i \(0.498740\pi\)
\(350\) 52.4924 2.80584
\(351\) 0 0
\(352\) −11.9922 −0.639184
\(353\) 2.49447 0.132767 0.0663836 0.997794i \(-0.478854\pi\)
0.0663836 + 0.997794i \(0.478854\pi\)
\(354\) 0 0
\(355\) −30.0075 −1.59263
\(356\) 43.1189 2.28530
\(357\) 0 0
\(358\) −30.8145 −1.62860
\(359\) −13.3856 −0.706467 −0.353234 0.935535i \(-0.614918\pi\)
−0.353234 + 0.935535i \(0.614918\pi\)
\(360\) 0 0
\(361\) 42.2174 2.22197
\(362\) 60.4641 3.17792
\(363\) 0 0
\(364\) 1.20840 0.0633374
\(365\) 37.8046 1.97879
\(366\) 0 0
\(367\) 21.8109 1.13852 0.569260 0.822158i \(-0.307230\pi\)
0.569260 + 0.822158i \(0.307230\pi\)
\(368\) −15.3158 −0.798390
\(369\) 0 0
\(370\) −43.3451 −2.25340
\(371\) −14.9303 −0.775143
\(372\) 0 0
\(373\) −13.9236 −0.720935 −0.360467 0.932772i \(-0.617383\pi\)
−0.360467 + 0.932772i \(0.617383\pi\)
\(374\) −29.8476 −1.54338
\(375\) 0 0
\(376\) −8.54995 −0.440930
\(377\) 0.354617 0.0182637
\(378\) 0 0
\(379\) 11.6065 0.596187 0.298094 0.954537i \(-0.403649\pi\)
0.298094 + 0.954537i \(0.403649\pi\)
\(380\) 155.158 7.95941
\(381\) 0 0
\(382\) 34.8080 1.78093
\(383\) −1.00000 −0.0510976
\(384\) 0 0
\(385\) −9.94530 −0.506859
\(386\) −67.0702 −3.41378
\(387\) 0 0
\(388\) −47.3139 −2.40200
\(389\) 11.0407 0.559786 0.279893 0.960031i \(-0.409701\pi\)
0.279893 + 0.960031i \(0.409701\pi\)
\(390\) 0 0
\(391\) −13.9893 −0.707471
\(392\) 31.5199 1.59199
\(393\) 0 0
\(394\) −29.3146 −1.47685
\(395\) −0.548995 −0.0276229
\(396\) 0 0
\(397\) −11.4621 −0.575265 −0.287633 0.957741i \(-0.592868\pi\)
−0.287633 + 0.957741i \(0.592868\pi\)
\(398\) 43.3164 2.17125
\(399\) 0 0
\(400\) 110.123 5.50614
\(401\) 17.0940 0.853635 0.426817 0.904338i \(-0.359635\pi\)
0.426817 + 0.904338i \(0.359635\pi\)
\(402\) 0 0
\(403\) 0.898479 0.0447564
\(404\) 32.5616 1.62000
\(405\) 0 0
\(406\) −8.51978 −0.422830
\(407\) 5.94280 0.294574
\(408\) 0 0
\(409\) 15.8540 0.783929 0.391965 0.919980i \(-0.371796\pi\)
0.391965 + 0.919980i \(0.371796\pi\)
\(410\) −3.65041 −0.180281
\(411\) 0 0
\(412\) 49.7597 2.45149
\(413\) 23.6448 1.16348
\(414\) 0 0
\(415\) −13.1206 −0.644065
\(416\) 1.32944 0.0651811
\(417\) 0 0
\(418\) −30.3987 −1.48685
\(419\) −13.9445 −0.681234 −0.340617 0.940202i \(-0.610636\pi\)
−0.340617 + 0.940202i \(0.610636\pi\)
\(420\) 0 0
\(421\) −22.0016 −1.07229 −0.536147 0.844125i \(-0.680121\pi\)
−0.536147 + 0.844125i \(0.680121\pi\)
\(422\) −18.9268 −0.921343
\(423\) 0 0
\(424\) −66.0456 −3.20746
\(425\) 100.585 4.87911
\(426\) 0 0
\(427\) 7.56029 0.365868
\(428\) −30.1567 −1.45768
\(429\) 0 0
\(430\) −51.4176 −2.47958
\(431\) 33.5644 1.61674 0.808370 0.588675i \(-0.200350\pi\)
0.808370 + 0.588675i \(0.200350\pi\)
\(432\) 0 0
\(433\) −24.2287 −1.16436 −0.582178 0.813061i \(-0.697799\pi\)
−0.582178 + 0.813061i \(0.697799\pi\)
\(434\) −21.5862 −1.03617
\(435\) 0 0
\(436\) −24.4416 −1.17054
\(437\) −14.2476 −0.681557
\(438\) 0 0
\(439\) 9.16240 0.437297 0.218649 0.975804i \(-0.429835\pi\)
0.218649 + 0.975804i \(0.429835\pi\)
\(440\) −43.9940 −2.09733
\(441\) 0 0
\(442\) 3.30887 0.157387
\(443\) −1.91989 −0.0912170 −0.0456085 0.998959i \(-0.514523\pi\)
−0.0456085 + 0.998959i \(0.514523\pi\)
\(444\) 0 0
\(445\) 39.3410 1.86494
\(446\) −9.73521 −0.460976
\(447\) 0 0
\(448\) −5.81183 −0.274583
\(449\) 17.4866 0.825243 0.412621 0.910903i \(-0.364613\pi\)
0.412621 + 0.910903i \(0.364613\pi\)
\(450\) 0 0
\(451\) 0.500488 0.0235671
\(452\) −22.0052 −1.03504
\(453\) 0 0
\(454\) 6.93576 0.325511
\(455\) 1.10253 0.0516872
\(456\) 0 0
\(457\) 24.5140 1.14672 0.573359 0.819304i \(-0.305640\pi\)
0.573359 + 0.819304i \(0.305640\pi\)
\(458\) 13.2235 0.617892
\(459\) 0 0
\(460\) −36.1111 −1.68369
\(461\) −11.9651 −0.557268 −0.278634 0.960397i \(-0.589882\pi\)
−0.278634 + 0.960397i \(0.589882\pi\)
\(462\) 0 0
\(463\) −12.5200 −0.581852 −0.290926 0.956745i \(-0.593963\pi\)
−0.290926 + 0.956745i \(0.593963\pi\)
\(464\) −17.8735 −0.829756
\(465\) 0 0
\(466\) −42.5739 −1.97220
\(467\) −33.4951 −1.54997 −0.774985 0.631980i \(-0.782242\pi\)
−0.774985 + 0.631980i \(0.782242\pi\)
\(468\) 0 0
\(469\) −14.4649 −0.667926
\(470\) −13.6616 −0.630163
\(471\) 0 0
\(472\) 104.595 4.81437
\(473\) 7.04958 0.324140
\(474\) 0 0
\(475\) 102.443 4.70039
\(476\) −55.6312 −2.54985
\(477\) 0 0
\(478\) −16.4731 −0.753461
\(479\) −26.2231 −1.19816 −0.599082 0.800687i \(-0.704468\pi\)
−0.599082 + 0.800687i \(0.704468\pi\)
\(480\) 0 0
\(481\) −0.658813 −0.0300393
\(482\) −10.6274 −0.484065
\(483\) 0 0
\(484\) −40.7193 −1.85088
\(485\) −43.1685 −1.96018
\(486\) 0 0
\(487\) −32.4390 −1.46995 −0.734976 0.678093i \(-0.762807\pi\)
−0.734976 + 0.678093i \(0.762807\pi\)
\(488\) 33.4437 1.51392
\(489\) 0 0
\(490\) 50.3642 2.27522
\(491\) 37.1110 1.67479 0.837397 0.546595i \(-0.184076\pi\)
0.837397 + 0.546595i \(0.184076\pi\)
\(492\) 0 0
\(493\) −16.3255 −0.735265
\(494\) 3.36997 0.151622
\(495\) 0 0
\(496\) −45.2853 −2.03337
\(497\) 10.9577 0.491521
\(498\) 0 0
\(499\) 5.79833 0.259569 0.129784 0.991542i \(-0.458571\pi\)
0.129784 + 0.991542i \(0.458571\pi\)
\(500\) 160.491 7.17740
\(501\) 0 0
\(502\) −50.5906 −2.25797
\(503\) −10.9238 −0.487067 −0.243533 0.969893i \(-0.578307\pi\)
−0.243533 + 0.969893i \(0.578307\pi\)
\(504\) 0 0
\(505\) 29.7087 1.32202
\(506\) 7.07494 0.314519
\(507\) 0 0
\(508\) −47.1588 −2.09233
\(509\) 7.86855 0.348767 0.174384 0.984678i \(-0.444207\pi\)
0.174384 + 0.984678i \(0.444207\pi\)
\(510\) 0 0
\(511\) −13.8050 −0.610697
\(512\) 48.5745 2.14671
\(513\) 0 0
\(514\) 50.3170 2.21939
\(515\) 45.4001 2.00057
\(516\) 0 0
\(517\) 1.87307 0.0823773
\(518\) 15.8282 0.695451
\(519\) 0 0
\(520\) 4.87713 0.213876
\(521\) 14.6913 0.643637 0.321818 0.946801i \(-0.395706\pi\)
0.321818 + 0.946801i \(0.395706\pi\)
\(522\) 0 0
\(523\) 8.37124 0.366049 0.183024 0.983108i \(-0.441411\pi\)
0.183024 + 0.983108i \(0.441411\pi\)
\(524\) 14.6411 0.639600
\(525\) 0 0
\(526\) 20.6666 0.901107
\(527\) −41.3633 −1.80182
\(528\) 0 0
\(529\) −19.6840 −0.855827
\(530\) −105.531 −4.58400
\(531\) 0 0
\(532\) −56.6584 −2.45645
\(533\) −0.0554836 −0.00240326
\(534\) 0 0
\(535\) −27.5145 −1.18956
\(536\) −63.9868 −2.76381
\(537\) 0 0
\(538\) 17.1549 0.739599
\(539\) −6.90516 −0.297426
\(540\) 0 0
\(541\) 45.2764 1.94658 0.973292 0.229573i \(-0.0737328\pi\)
0.973292 + 0.229573i \(0.0737328\pi\)
\(542\) −43.1782 −1.85466
\(543\) 0 0
\(544\) −61.2035 −2.62408
\(545\) −22.3002 −0.955236
\(546\) 0 0
\(547\) 33.4144 1.42870 0.714348 0.699790i \(-0.246723\pi\)
0.714348 + 0.699790i \(0.246723\pi\)
\(548\) −40.8993 −1.74713
\(549\) 0 0
\(550\) −50.8699 −2.16910
\(551\) −16.6270 −0.708333
\(552\) 0 0
\(553\) 0.200475 0.00852506
\(554\) −35.5853 −1.51187
\(555\) 0 0
\(556\) −62.1838 −2.63718
\(557\) 19.5238 0.827252 0.413626 0.910447i \(-0.364262\pi\)
0.413626 + 0.910447i \(0.364262\pi\)
\(558\) 0 0
\(559\) −0.781510 −0.0330543
\(560\) −55.5698 −2.34825
\(561\) 0 0
\(562\) 63.3202 2.67100
\(563\) −6.70777 −0.282699 −0.141349 0.989960i \(-0.545144\pi\)
−0.141349 + 0.989960i \(0.545144\pi\)
\(564\) 0 0
\(565\) −20.0773 −0.844657
\(566\) 58.5003 2.45895
\(567\) 0 0
\(568\) 48.4725 2.03386
\(569\) −1.49454 −0.0626543 −0.0313271 0.999509i \(-0.509973\pi\)
−0.0313271 + 0.999509i \(0.509973\pi\)
\(570\) 0 0
\(571\) 30.9339 1.29454 0.647271 0.762260i \(-0.275910\pi\)
0.647271 + 0.762260i \(0.275910\pi\)
\(572\) −1.17105 −0.0489640
\(573\) 0 0
\(574\) 1.33301 0.0556388
\(575\) −23.8423 −0.994294
\(576\) 0 0
\(577\) 27.8334 1.15872 0.579359 0.815072i \(-0.303303\pi\)
0.579359 + 0.815072i \(0.303303\pi\)
\(578\) −108.452 −4.51102
\(579\) 0 0
\(580\) −42.1416 −1.74983
\(581\) 4.79121 0.198773
\(582\) 0 0
\(583\) 14.4688 0.599238
\(584\) −61.0677 −2.52700
\(585\) 0 0
\(586\) 6.71313 0.277317
\(587\) 16.6001 0.685159 0.342580 0.939489i \(-0.388699\pi\)
0.342580 + 0.939489i \(0.388699\pi\)
\(588\) 0 0
\(589\) −42.1271 −1.73582
\(590\) 167.128 6.88054
\(591\) 0 0
\(592\) 33.2057 1.36474
\(593\) 8.39100 0.344577 0.172288 0.985047i \(-0.444884\pi\)
0.172288 + 0.985047i \(0.444884\pi\)
\(594\) 0 0
\(595\) −50.7571 −2.08084
\(596\) 24.0603 0.985548
\(597\) 0 0
\(598\) −0.784321 −0.0320733
\(599\) 9.91342 0.405051 0.202526 0.979277i \(-0.435085\pi\)
0.202526 + 0.979277i \(0.435085\pi\)
\(600\) 0 0
\(601\) 9.98252 0.407195 0.203598 0.979055i \(-0.434737\pi\)
0.203598 + 0.979055i \(0.434737\pi\)
\(602\) 18.7760 0.765253
\(603\) 0 0
\(604\) 33.3567 1.35727
\(605\) −37.1517 −1.51043
\(606\) 0 0
\(607\) −13.6457 −0.553860 −0.276930 0.960890i \(-0.589317\pi\)
−0.276930 + 0.960890i \(0.589317\pi\)
\(608\) −62.3336 −2.52796
\(609\) 0 0
\(610\) 53.4382 2.16365
\(611\) −0.207646 −0.00840047
\(612\) 0 0
\(613\) −4.77723 −0.192951 −0.0964753 0.995335i \(-0.530757\pi\)
−0.0964753 + 0.995335i \(0.530757\pi\)
\(614\) 47.3920 1.91258
\(615\) 0 0
\(616\) 16.0651 0.647283
\(617\) −41.7811 −1.68204 −0.841021 0.541002i \(-0.818045\pi\)
−0.841021 + 0.541002i \(0.818045\pi\)
\(618\) 0 0
\(619\) 2.02804 0.0815138 0.0407569 0.999169i \(-0.487023\pi\)
0.0407569 + 0.999169i \(0.487023\pi\)
\(620\) −106.772 −4.28809
\(621\) 0 0
\(622\) 25.6210 1.02731
\(623\) −14.3660 −0.575563
\(624\) 0 0
\(625\) 80.9644 3.23858
\(626\) 5.85268 0.233920
\(627\) 0 0
\(628\) 88.4279 3.52866
\(629\) 30.3298 1.20933
\(630\) 0 0
\(631\) −34.8608 −1.38779 −0.693893 0.720079i \(-0.744106\pi\)
−0.693893 + 0.720079i \(0.744106\pi\)
\(632\) 0.886819 0.0352758
\(633\) 0 0
\(634\) 61.9326 2.45966
\(635\) −43.0270 −1.70747
\(636\) 0 0
\(637\) 0.765499 0.0303302
\(638\) 8.25644 0.326876
\(639\) 0 0
\(640\) 26.6957 1.05524
\(641\) −13.2080 −0.521683 −0.260842 0.965382i \(-0.584000\pi\)
−0.260842 + 0.965382i \(0.584000\pi\)
\(642\) 0 0
\(643\) −25.7071 −1.01379 −0.506894 0.862008i \(-0.669207\pi\)
−0.506894 + 0.862008i \(0.669207\pi\)
\(644\) 13.1866 0.519624
\(645\) 0 0
\(646\) −155.144 −6.10404
\(647\) −5.44019 −0.213876 −0.106938 0.994266i \(-0.534105\pi\)
−0.106938 + 0.994266i \(0.534105\pi\)
\(648\) 0 0
\(649\) −22.9139 −0.899451
\(650\) 5.63939 0.221195
\(651\) 0 0
\(652\) −9.71039 −0.380288
\(653\) 16.6654 0.652167 0.326084 0.945341i \(-0.394271\pi\)
0.326084 + 0.945341i \(0.394271\pi\)
\(654\) 0 0
\(655\) 13.3583 0.521953
\(656\) 2.79650 0.109185
\(657\) 0 0
\(658\) 4.98876 0.194482
\(659\) −8.50057 −0.331135 −0.165568 0.986198i \(-0.552946\pi\)
−0.165568 + 0.986198i \(0.552946\pi\)
\(660\) 0 0
\(661\) −7.81643 −0.304024 −0.152012 0.988379i \(-0.548575\pi\)
−0.152012 + 0.988379i \(0.548575\pi\)
\(662\) 5.35484 0.208122
\(663\) 0 0
\(664\) 21.1944 0.822500
\(665\) −51.6943 −2.00462
\(666\) 0 0
\(667\) 3.86973 0.149837
\(668\) −40.3625 −1.56167
\(669\) 0 0
\(670\) −102.242 −3.94994
\(671\) −7.32661 −0.282841
\(672\) 0 0
\(673\) 0.334170 0.0128813 0.00644065 0.999979i \(-0.497950\pi\)
0.00644065 + 0.999979i \(0.497950\pi\)
\(674\) −4.85290 −0.186927
\(675\) 0 0
\(676\) −60.4770 −2.32604
\(677\) −9.17504 −0.352625 −0.176313 0.984334i \(-0.556417\pi\)
−0.176313 + 0.984334i \(0.556417\pi\)
\(678\) 0 0
\(679\) 15.7637 0.604956
\(680\) −224.529 −8.61028
\(681\) 0 0
\(682\) 20.9190 0.801030
\(683\) 20.6041 0.788392 0.394196 0.919026i \(-0.371023\pi\)
0.394196 + 0.919026i \(0.371023\pi\)
\(684\) 0 0
\(685\) −37.3159 −1.42577
\(686\) −46.4554 −1.77368
\(687\) 0 0
\(688\) 39.3899 1.50172
\(689\) −1.60400 −0.0611076
\(690\) 0 0
\(691\) −31.4224 −1.19537 −0.597683 0.801733i \(-0.703912\pi\)
−0.597683 + 0.801733i \(0.703912\pi\)
\(692\) 0.179424 0.00682068
\(693\) 0 0
\(694\) −74.4360 −2.82555
\(695\) −56.7356 −2.15210
\(696\) 0 0
\(697\) 2.55430 0.0967512
\(698\) −0.381807 −0.0144516
\(699\) 0 0
\(700\) −94.8135 −3.58361
\(701\) 17.3859 0.656655 0.328328 0.944564i \(-0.393515\pi\)
0.328328 + 0.944564i \(0.393515\pi\)
\(702\) 0 0
\(703\) 30.8899 1.16503
\(704\) 5.63219 0.212271
\(705\) 0 0
\(706\) −6.43847 −0.242315
\(707\) −10.8486 −0.408005
\(708\) 0 0
\(709\) 38.2186 1.43533 0.717665 0.696389i \(-0.245211\pi\)
0.717665 + 0.696389i \(0.245211\pi\)
\(710\) 77.4522 2.90673
\(711\) 0 0
\(712\) −63.5495 −2.38162
\(713\) 9.80459 0.367185
\(714\) 0 0
\(715\) −1.06845 −0.0399577
\(716\) 55.6582 2.08004
\(717\) 0 0
\(718\) 34.5497 1.28938
\(719\) 19.7424 0.736268 0.368134 0.929773i \(-0.379997\pi\)
0.368134 + 0.929773i \(0.379997\pi\)
\(720\) 0 0
\(721\) −16.5786 −0.617419
\(722\) −108.967 −4.05534
\(723\) 0 0
\(724\) −109.212 −4.05885
\(725\) −27.8240 −1.03336
\(726\) 0 0
\(727\) −22.2866 −0.826564 −0.413282 0.910603i \(-0.635618\pi\)
−0.413282 + 0.910603i \(0.635618\pi\)
\(728\) −1.78097 −0.0660070
\(729\) 0 0
\(730\) −97.5775 −3.61150
\(731\) 35.9784 1.33071
\(732\) 0 0
\(733\) 26.6840 0.985596 0.492798 0.870144i \(-0.335974\pi\)
0.492798 + 0.870144i \(0.335974\pi\)
\(734\) −56.2960 −2.07792
\(735\) 0 0
\(736\) 14.5074 0.534750
\(737\) 14.0178 0.516352
\(738\) 0 0
\(739\) 26.9464 0.991240 0.495620 0.868540i \(-0.334941\pi\)
0.495620 + 0.868540i \(0.334941\pi\)
\(740\) 78.2914 2.87805
\(741\) 0 0
\(742\) 38.5366 1.41472
\(743\) −10.8798 −0.399140 −0.199570 0.979884i \(-0.563954\pi\)
−0.199570 + 0.979884i \(0.563954\pi\)
\(744\) 0 0
\(745\) 21.9523 0.804269
\(746\) 35.9381 1.31579
\(747\) 0 0
\(748\) 53.9117 1.97121
\(749\) 10.0474 0.367124
\(750\) 0 0
\(751\) 46.3601 1.69170 0.845852 0.533417i \(-0.179092\pi\)
0.845852 + 0.533417i \(0.179092\pi\)
\(752\) 10.4658 0.381650
\(753\) 0 0
\(754\) −0.915301 −0.0333333
\(755\) 30.4342 1.10761
\(756\) 0 0
\(757\) 41.1991 1.49741 0.748704 0.662905i \(-0.230676\pi\)
0.748704 + 0.662905i \(0.230676\pi\)
\(758\) −29.9576 −1.08811
\(759\) 0 0
\(760\) −228.675 −8.29490
\(761\) 9.29105 0.336800 0.168400 0.985719i \(-0.446140\pi\)
0.168400 + 0.985719i \(0.446140\pi\)
\(762\) 0 0
\(763\) 8.14330 0.294807
\(764\) −62.8714 −2.27461
\(765\) 0 0
\(766\) 2.58110 0.0932589
\(767\) 2.54022 0.0917219
\(768\) 0 0
\(769\) −26.4255 −0.952928 −0.476464 0.879194i \(-0.658082\pi\)
−0.476464 + 0.879194i \(0.658082\pi\)
\(770\) 25.6698 0.925075
\(771\) 0 0
\(772\) 121.145 4.36009
\(773\) −28.5566 −1.02711 −0.513554 0.858057i \(-0.671671\pi\)
−0.513554 + 0.858057i \(0.671671\pi\)
\(774\) 0 0
\(775\) −70.4965 −2.53231
\(776\) 69.7323 2.50324
\(777\) 0 0
\(778\) −28.4971 −1.02167
\(779\) 2.60147 0.0932072
\(780\) 0 0
\(781\) −10.6190 −0.379979
\(782\) 36.1078 1.29121
\(783\) 0 0
\(784\) −38.5829 −1.37796
\(785\) 80.6804 2.87961
\(786\) 0 0
\(787\) 31.1708 1.11112 0.555559 0.831477i \(-0.312504\pi\)
0.555559 + 0.831477i \(0.312504\pi\)
\(788\) 52.9491 1.88623
\(789\) 0 0
\(790\) 1.41701 0.0504150
\(791\) 7.33155 0.260680
\(792\) 0 0
\(793\) 0.812221 0.0288428
\(794\) 29.5848 1.04992
\(795\) 0 0
\(796\) −78.2395 −2.77313
\(797\) −23.3338 −0.826524 −0.413262 0.910612i \(-0.635611\pi\)
−0.413262 + 0.910612i \(0.635611\pi\)
\(798\) 0 0
\(799\) 9.55943 0.338188
\(800\) −104.311 −3.68793
\(801\) 0 0
\(802\) −44.1214 −1.55798
\(803\) 13.3783 0.472110
\(804\) 0 0
\(805\) 12.0312 0.424046
\(806\) −2.31906 −0.0816855
\(807\) 0 0
\(808\) −47.9900 −1.68828
\(809\) −29.6986 −1.04415 −0.522074 0.852900i \(-0.674841\pi\)
−0.522074 + 0.852900i \(0.674841\pi\)
\(810\) 0 0
\(811\) −26.5649 −0.932820 −0.466410 0.884569i \(-0.654453\pi\)
−0.466410 + 0.884569i \(0.654453\pi\)
\(812\) 15.3887 0.540038
\(813\) 0 0
\(814\) −15.3390 −0.537630
\(815\) −8.85962 −0.310339
\(816\) 0 0
\(817\) 36.6427 1.28197
\(818\) −40.9207 −1.43076
\(819\) 0 0
\(820\) 6.59350 0.230255
\(821\) 35.1382 1.22633 0.613165 0.789955i \(-0.289896\pi\)
0.613165 + 0.789955i \(0.289896\pi\)
\(822\) 0 0
\(823\) −3.41873 −0.119169 −0.0595847 0.998223i \(-0.518978\pi\)
−0.0595847 + 0.998223i \(0.518978\pi\)
\(824\) −73.3370 −2.55481
\(825\) 0 0
\(826\) −61.0295 −2.12349
\(827\) 23.0916 0.802974 0.401487 0.915865i \(-0.368494\pi\)
0.401487 + 0.915865i \(0.368494\pi\)
\(828\) 0 0
\(829\) 49.9112 1.73349 0.866743 0.498754i \(-0.166209\pi\)
0.866743 + 0.498754i \(0.166209\pi\)
\(830\) 33.8655 1.17549
\(831\) 0 0
\(832\) −0.624379 −0.0216465
\(833\) −35.2413 −1.22104
\(834\) 0 0
\(835\) −36.8262 −1.27442
\(836\) 54.9071 1.89900
\(837\) 0 0
\(838\) 35.9922 1.24333
\(839\) 5.90244 0.203775 0.101887 0.994796i \(-0.467512\pi\)
0.101887 + 0.994796i \(0.467512\pi\)
\(840\) 0 0
\(841\) −24.4840 −0.844277
\(842\) 56.7884 1.95706
\(843\) 0 0
\(844\) 34.1863 1.17674
\(845\) −55.1784 −1.89819
\(846\) 0 0
\(847\) 13.5666 0.466153
\(848\) 80.8453 2.77624
\(849\) 0 0
\(850\) −259.621 −8.90492
\(851\) −7.18926 −0.246444
\(852\) 0 0
\(853\) −25.5062 −0.873315 −0.436657 0.899628i \(-0.643838\pi\)
−0.436657 + 0.899628i \(0.643838\pi\)
\(854\) −19.5139 −0.667750
\(855\) 0 0
\(856\) 44.4456 1.51912
\(857\) 29.6954 1.01437 0.507187 0.861836i \(-0.330685\pi\)
0.507187 + 0.861836i \(0.330685\pi\)
\(858\) 0 0
\(859\) 45.1715 1.54123 0.770616 0.637300i \(-0.219949\pi\)
0.770616 + 0.637300i \(0.219949\pi\)
\(860\) 92.8722 3.16692
\(861\) 0 0
\(862\) −86.6330 −2.95073
\(863\) −9.41843 −0.320607 −0.160303 0.987068i \(-0.551247\pi\)
−0.160303 + 0.987068i \(0.551247\pi\)
\(864\) 0 0
\(865\) 0.163704 0.00556610
\(866\) 62.5366 2.12508
\(867\) 0 0
\(868\) 38.9898 1.32340
\(869\) −0.194278 −0.00659044
\(870\) 0 0
\(871\) −1.55400 −0.0526552
\(872\) 36.0226 1.21988
\(873\) 0 0
\(874\) 36.7746 1.24392
\(875\) −53.4714 −1.80766
\(876\) 0 0
\(877\) −50.5960 −1.70851 −0.854253 0.519857i \(-0.825985\pi\)
−0.854253 + 0.519857i \(0.825985\pi\)
\(878\) −23.6490 −0.798117
\(879\) 0 0
\(880\) 53.8522 1.81536
\(881\) 2.72131 0.0916833 0.0458416 0.998949i \(-0.485403\pi\)
0.0458416 + 0.998949i \(0.485403\pi\)
\(882\) 0 0
\(883\) −38.9747 −1.31160 −0.655801 0.754934i \(-0.727669\pi\)
−0.655801 + 0.754934i \(0.727669\pi\)
\(884\) −5.97660 −0.201015
\(885\) 0 0
\(886\) 4.95544 0.166481
\(887\) −43.2030 −1.45061 −0.725307 0.688426i \(-0.758302\pi\)
−0.725307 + 0.688426i \(0.758302\pi\)
\(888\) 0 0
\(889\) 15.7120 0.526965
\(890\) −101.543 −3.40373
\(891\) 0 0
\(892\) 17.5841 0.588758
\(893\) 9.73593 0.325801
\(894\) 0 0
\(895\) 50.7817 1.69745
\(896\) −9.74840 −0.325671
\(897\) 0 0
\(898\) −45.1346 −1.50616
\(899\) 11.4419 0.381610
\(900\) 0 0
\(901\) 73.8435 2.46008
\(902\) −1.29181 −0.0430125
\(903\) 0 0
\(904\) 32.4318 1.07867
\(905\) −99.6438 −3.31227
\(906\) 0 0
\(907\) −6.38275 −0.211936 −0.105968 0.994370i \(-0.533794\pi\)
−0.105968 + 0.994370i \(0.533794\pi\)
\(908\) −12.5276 −0.415743
\(909\) 0 0
\(910\) −2.84573 −0.0943350
\(911\) −48.1594 −1.59559 −0.797797 0.602927i \(-0.794001\pi\)
−0.797797 + 0.602927i \(0.794001\pi\)
\(912\) 0 0
\(913\) −4.64312 −0.153665
\(914\) −63.2731 −2.09289
\(915\) 0 0
\(916\) −23.8847 −0.789172
\(917\) −4.87802 −0.161086
\(918\) 0 0
\(919\) −32.2668 −1.06439 −0.532193 0.846623i \(-0.678632\pi\)
−0.532193 + 0.846623i \(0.678632\pi\)
\(920\) 53.2213 1.75466
\(921\) 0 0
\(922\) 30.8830 1.01708
\(923\) 1.17722 0.0387486
\(924\) 0 0
\(925\) 51.6918 1.69962
\(926\) 32.3153 1.06195
\(927\) 0 0
\(928\) 16.9301 0.555759
\(929\) 46.6399 1.53020 0.765102 0.643909i \(-0.222688\pi\)
0.765102 + 0.643909i \(0.222688\pi\)
\(930\) 0 0
\(931\) −35.8921 −1.17631
\(932\) 76.8984 2.51889
\(933\) 0 0
\(934\) 86.4542 2.82887
\(935\) 49.1883 1.60863
\(936\) 0 0
\(937\) −8.11948 −0.265252 −0.132626 0.991166i \(-0.542341\pi\)
−0.132626 + 0.991166i \(0.542341\pi\)
\(938\) 37.3353 1.21904
\(939\) 0 0
\(940\) 24.6760 0.804844
\(941\) 36.2879 1.18295 0.591476 0.806322i \(-0.298545\pi\)
0.591476 + 0.806322i \(0.298545\pi\)
\(942\) 0 0
\(943\) −0.605461 −0.0197165
\(944\) −128.033 −4.16711
\(945\) 0 0
\(946\) −18.1957 −0.591592
\(947\) 27.6412 0.898217 0.449109 0.893477i \(-0.351742\pi\)
0.449109 + 0.893477i \(0.351742\pi\)
\(948\) 0 0
\(949\) −1.48311 −0.0481437
\(950\) −264.415 −8.57874
\(951\) 0 0
\(952\) 81.9905 2.65733
\(953\) −9.40326 −0.304602 −0.152301 0.988334i \(-0.548668\pi\)
−0.152301 + 0.988334i \(0.548668\pi\)
\(954\) 0 0
\(955\) −57.3630 −1.85622
\(956\) 29.7542 0.962320
\(957\) 0 0
\(958\) 67.6844 2.18678
\(959\) 13.6265 0.440024
\(960\) 0 0
\(961\) −2.01003 −0.0648396
\(962\) 1.70046 0.0548251
\(963\) 0 0
\(964\) 19.1956 0.618248
\(965\) 110.531 3.55810
\(966\) 0 0
\(967\) 11.7730 0.378595 0.189297 0.981920i \(-0.439379\pi\)
0.189297 + 0.981920i \(0.439379\pi\)
\(968\) 60.0130 1.92889
\(969\) 0 0
\(970\) 111.422 3.57755
\(971\) 18.4018 0.590542 0.295271 0.955414i \(-0.404590\pi\)
0.295271 + 0.955414i \(0.404590\pi\)
\(972\) 0 0
\(973\) 20.7179 0.664187
\(974\) 83.7283 2.68283
\(975\) 0 0
\(976\) −40.9378 −1.31039
\(977\) −23.1625 −0.741035 −0.370517 0.928826i \(-0.620820\pi\)
−0.370517 + 0.928826i \(0.620820\pi\)
\(978\) 0 0
\(979\) 13.9220 0.444949
\(980\) −90.9696 −2.90592
\(981\) 0 0
\(982\) −95.7870 −3.05669
\(983\) −33.3799 −1.06465 −0.532327 0.846539i \(-0.678682\pi\)
−0.532327 + 0.846539i \(0.678682\pi\)
\(984\) 0 0
\(985\) 48.3100 1.53928
\(986\) 42.1378 1.34194
\(987\) 0 0
\(988\) −6.08695 −0.193652
\(989\) −8.52817 −0.271180
\(990\) 0 0
\(991\) −13.1016 −0.416185 −0.208093 0.978109i \(-0.566726\pi\)
−0.208093 + 0.978109i \(0.566726\pi\)
\(992\) 42.8952 1.36192
\(993\) 0 0
\(994\) −28.2830 −0.897082
\(995\) −71.3846 −2.26304
\(996\) 0 0
\(997\) 31.4260 0.995272 0.497636 0.867386i \(-0.334202\pi\)
0.497636 + 0.867386i \(0.334202\pi\)
\(998\) −14.9660 −0.473742
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3447.2.a.j.1.2 24
3.2 odd 2 383.2.a.c.1.23 24
12.11 even 2 6128.2.a.p.1.4 24
15.14 odd 2 9575.2.a.e.1.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
383.2.a.c.1.23 24 3.2 odd 2
3447.2.a.j.1.2 24 1.1 even 1 trivial
6128.2.a.p.1.4 24 12.11 even 2
9575.2.a.e.1.2 24 15.14 odd 2