Properties

Label 3840.1.dy.a.149.1
Level $3840$
Weight $1$
Character 3840.149
Analytic conductor $1.916$
Analytic rank $0$
Dimension $64$
Projective image $D_{64}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3840,1,Mod(29,3840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3840, base_ring=CyclotomicField(64))
 
chi = DirichletCharacter(H, H._module([0, 59, 32, 32]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3840.29");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3840.dy (of order \(64\), degree \(32\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.91640964851\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(2\) over \(\Q(\zeta_{64})\)
Coefficient field: \(\Q(\zeta_{128})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{64} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{64}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{64} + \cdots)\)

Embedding invariants

Embedding label 149.1
Root \(-0.941544 - 0.336890i\) of defining polynomial
Character \(\chi\) \(=\) 3840.149
Dual form 3840.1.dy.a.1469.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.857729 - 0.514103i) q^{2} +(0.941544 + 0.336890i) q^{3} +(0.471397 + 0.881921i) q^{4} +(-0.803208 - 0.595699i) q^{5} +(-0.634393 - 0.773010i) q^{6} +(0.0490677 - 0.998795i) q^{8} +(0.773010 + 0.634393i) q^{9} +O(q^{10})\) \(q+(-0.857729 - 0.514103i) q^{2} +(0.941544 + 0.336890i) q^{3} +(0.471397 + 0.881921i) q^{4} +(-0.803208 - 0.595699i) q^{5} +(-0.634393 - 0.773010i) q^{6} +(0.0490677 - 0.998795i) q^{8} +(0.773010 + 0.634393i) q^{9} +(0.382683 + 0.923880i) q^{10} +(0.146730 + 0.989177i) q^{12} +(-0.555570 - 0.831470i) q^{15} +(-0.555570 + 0.831470i) q^{16} +(-1.09911 + 1.64494i) q^{17} +(-0.336890 - 0.941544i) q^{18} +(0.0504517 - 0.0841735i) q^{19} +(0.146730 - 0.989177i) q^{20} +(-1.71098 + 0.914539i) q^{23} +(0.382683 - 0.923880i) q^{24} +(0.290285 + 0.956940i) q^{25} +(0.514103 + 0.857729i) q^{27} +(0.0490677 + 0.998795i) q^{30} +(-0.674993 + 1.62958i) q^{31} +(0.903989 - 0.427555i) q^{32} +(1.78841 - 0.845855i) q^{34} +(-0.195090 + 0.980785i) q^{36} +(-0.0865477 + 0.0462607i) q^{38} +(-0.634393 + 0.773010i) q^{40} +(-0.242980 - 0.970031i) q^{45} +(1.93773 + 0.0951944i) q^{46} +(1.77324 - 0.352719i) q^{47} +(-0.803208 + 0.595699i) q^{48} +(0.980785 + 0.195090i) q^{49} +(0.242980 - 0.970031i) q^{50} +(-1.58903 + 1.17850i) q^{51} +(-0.195798 - 0.00961895i) q^{53} -1.00000i q^{54} +(0.0758597 - 0.0622564i) q^{57} +(0.471397 - 0.881921i) q^{60} +(-1.21416 + 0.574257i) q^{61} +(1.41673 - 1.05072i) q^{62} +(-0.995185 - 0.0980171i) q^{64} +(-1.96883 - 0.193913i) q^{68} +(-1.91906 + 0.284666i) q^{69} +(0.671559 - 0.740951i) q^{72} +(-0.0490677 + 0.998795i) q^{75} +(0.0980171 + 0.00481527i) q^{76} +(0.216773 - 1.08979i) q^{79} +(0.941544 - 0.336890i) q^{80} +(0.195090 + 0.980785i) q^{81} +(1.49969 - 0.375652i) q^{83} +(1.86271 - 0.666487i) q^{85} +(-0.290285 + 0.956940i) q^{90} +(-1.61310 - 1.07784i) q^{92} +(-1.18452 + 1.30692i) q^{93} +(-1.70229 - 0.609090i) q^{94} +(-0.0906652 + 0.0375548i) q^{95} +(0.995185 - 0.0980171i) q^{96} +(-0.740951 - 0.671559i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q+O(q^{10}) \) Copy content Toggle raw display \( 64 q+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1537\) \(2561\) \(2821\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{13}{64}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.857729 0.514103i −0.857729 0.514103i
\(3\) 0.941544 + 0.336890i 0.941544 + 0.336890i
\(4\) 0.471397 + 0.881921i 0.471397 + 0.881921i
\(5\) −0.803208 0.595699i −0.803208 0.595699i
\(6\) −0.634393 0.773010i −0.634393 0.773010i
\(7\) 0 0 −0.995185 0.0980171i \(-0.968750\pi\)
0.995185 + 0.0980171i \(0.0312500\pi\)
\(8\) 0.0490677 0.998795i 0.0490677 0.998795i
\(9\) 0.773010 + 0.634393i 0.773010 + 0.634393i
\(10\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(11\) 0 0 −0.671559 0.740951i \(-0.734375\pi\)
0.671559 + 0.740951i \(0.265625\pi\)
\(12\) 0.146730 + 0.989177i 0.146730 + 0.989177i
\(13\) 0 0 0.146730 0.989177i \(-0.453125\pi\)
−0.146730 + 0.989177i \(0.546875\pi\)
\(14\) 0 0
\(15\) −0.555570 0.831470i −0.555570 0.831470i
\(16\) −0.555570 + 0.831470i −0.555570 + 0.831470i
\(17\) −1.09911 + 1.64494i −1.09911 + 1.64494i −0.427555 + 0.903989i \(0.640625\pi\)
−0.671559 + 0.740951i \(0.734375\pi\)
\(18\) −0.336890 0.941544i −0.336890 0.941544i
\(19\) 0.0504517 0.0841735i 0.0504517 0.0841735i −0.831470 0.555570i \(-0.812500\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(20\) 0.146730 0.989177i 0.146730 0.989177i
\(21\) 0 0
\(22\) 0 0
\(23\) −1.71098 + 0.914539i −1.71098 + 0.914539i −0.740951 + 0.671559i \(0.765625\pi\)
−0.970031 + 0.242980i \(0.921875\pi\)
\(24\) 0.382683 0.923880i 0.382683 0.923880i
\(25\) 0.290285 + 0.956940i 0.290285 + 0.956940i
\(26\) 0 0
\(27\) 0.514103 + 0.857729i 0.514103 + 0.857729i
\(28\) 0 0
\(29\) 0 0 0.998795 0.0490677i \(-0.0156250\pi\)
−0.998795 + 0.0490677i \(0.984375\pi\)
\(30\) 0.0490677 + 0.998795i 0.0490677 + 0.998795i
\(31\) −0.674993 + 1.62958i −0.674993 + 1.62958i 0.0980171 + 0.995185i \(0.468750\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(32\) 0.903989 0.427555i 0.903989 0.427555i
\(33\) 0 0
\(34\) 1.78841 0.845855i 1.78841 0.845855i
\(35\) 0 0
\(36\) −0.195090 + 0.980785i −0.195090 + 0.980785i
\(37\) 0 0 −0.970031 0.242980i \(-0.921875\pi\)
0.970031 + 0.242980i \(0.0781250\pi\)
\(38\) −0.0865477 + 0.0462607i −0.0865477 + 0.0462607i
\(39\) 0 0
\(40\) −0.634393 + 0.773010i −0.634393 + 0.773010i
\(41\) 0 0 0.290285 0.956940i \(-0.406250\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(42\) 0 0
\(43\) 0 0 −0.336890 0.941544i \(-0.609375\pi\)
0.336890 + 0.941544i \(0.390625\pi\)
\(44\) 0 0
\(45\) −0.242980 0.970031i −0.242980 0.970031i
\(46\) 1.93773 + 0.0951944i 1.93773 + 0.0951944i
\(47\) 1.77324 0.352719i 1.77324 0.352719i 0.803208 0.595699i \(-0.203125\pi\)
0.970031 + 0.242980i \(0.0781250\pi\)
\(48\) −0.803208 + 0.595699i −0.803208 + 0.595699i
\(49\) 0.980785 + 0.195090i 0.980785 + 0.195090i
\(50\) 0.242980 0.970031i 0.242980 0.970031i
\(51\) −1.58903 + 1.17850i −1.58903 + 1.17850i
\(52\) 0 0
\(53\) −0.195798 0.00961895i −0.195798 0.00961895i −0.0490677 0.998795i \(-0.515625\pi\)
−0.146730 + 0.989177i \(0.546875\pi\)
\(54\) 1.00000i 1.00000i
\(55\) 0 0
\(56\) 0 0
\(57\) 0.0758597 0.0622564i 0.0758597 0.0622564i
\(58\) 0 0
\(59\) 0 0 −0.146730 0.989177i \(-0.546875\pi\)
0.146730 + 0.989177i \(0.453125\pi\)
\(60\) 0.471397 0.881921i 0.471397 0.881921i
\(61\) −1.21416 + 0.574257i −1.21416 + 0.574257i −0.923880 0.382683i \(-0.875000\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(62\) 1.41673 1.05072i 1.41673 1.05072i
\(63\) 0 0
\(64\) −0.995185 0.0980171i −0.995185 0.0980171i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.427555 0.903989i \(-0.640625\pi\)
0.427555 + 0.903989i \(0.359375\pi\)
\(68\) −1.96883 0.193913i −1.96883 0.193913i
\(69\) −1.91906 + 0.284666i −1.91906 + 0.284666i
\(70\) 0 0
\(71\) 0 0 −0.634393 0.773010i \(-0.718750\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(72\) 0.671559 0.740951i 0.671559 0.740951i
\(73\) 0 0 0.995185 0.0980171i \(-0.0312500\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(74\) 0 0
\(75\) −0.0490677 + 0.998795i −0.0490677 + 0.998795i
\(76\) 0.0980171 + 0.00481527i 0.0980171 + 0.00481527i
\(77\) 0 0
\(78\) 0 0
\(79\) 0.216773 1.08979i 0.216773 1.08979i −0.707107 0.707107i \(-0.750000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(80\) 0.941544 0.336890i 0.941544 0.336890i
\(81\) 0.195090 + 0.980785i 0.195090 + 0.980785i
\(82\) 0 0
\(83\) 1.49969 0.375652i 1.49969 0.375652i 0.595699 0.803208i \(-0.296875\pi\)
0.903989 + 0.427555i \(0.140625\pi\)
\(84\) 0 0
\(85\) 1.86271 0.666487i 1.86271 0.666487i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.881921 0.471397i \(-0.843750\pi\)
0.881921 + 0.471397i \(0.156250\pi\)
\(90\) −0.290285 + 0.956940i −0.290285 + 0.956940i
\(91\) 0 0
\(92\) −1.61310 1.07784i −1.61310 1.07784i
\(93\) −1.18452 + 1.30692i −1.18452 + 1.30692i
\(94\) −1.70229 0.609090i −1.70229 0.609090i
\(95\) −0.0906652 + 0.0375548i −0.0906652 + 0.0375548i
\(96\) 0.995185 0.0980171i 0.995185 0.0980171i
\(97\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(98\) −0.740951 0.671559i −0.740951 0.671559i
\(99\) 0 0
\(100\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(101\) 0 0 0.857729 0.514103i \(-0.171875\pi\)
−0.857729 + 0.514103i \(0.828125\pi\)
\(102\) 1.96883 0.193913i 1.96883 0.193913i
\(103\) 0 0 0.956940 0.290285i \(-0.0937500\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.162997 + 0.108911i 0.162997 + 0.108911i
\(107\) −0.248225 + 0.524828i −0.248225 + 0.524828i −0.989177 0.146730i \(-0.953125\pi\)
0.740951 + 0.671559i \(0.234375\pi\)
\(108\) −0.514103 + 0.857729i −0.514103 + 0.857729i
\(109\) 0.577920 + 0.346392i 0.577920 + 0.346392i 0.773010 0.634393i \(-0.218750\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.710998 0.475074i 0.710998 0.475074i −0.146730 0.989177i \(-0.546875\pi\)
0.857729 + 0.514103i \(0.171875\pi\)
\(114\) −0.0970732 + 0.0143994i −0.0970732 + 0.0143994i
\(115\) 1.91906 + 0.284666i 1.91906 + 0.284666i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) −0.857729 + 0.514103i −0.857729 + 0.514103i
\(121\) −0.0980171 + 0.995185i −0.0980171 + 0.995185i
\(122\) 1.33665 + 0.131649i 1.33665 + 0.131649i
\(123\) 0 0
\(124\) −1.75535 + 0.172887i −1.75535 + 0.172887i
\(125\) 0.336890 0.941544i 0.336890 0.941544i
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0.803208 + 0.595699i 0.803208 + 0.595699i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.336890 0.941544i \(-0.390625\pi\)
−0.336890 + 0.941544i \(0.609375\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.0980171 0.995185i 0.0980171 0.995185i
\(136\) 1.58903 + 1.17850i 1.58903 + 1.17850i
\(137\) −1.19462 + 1.45565i −1.19462 + 1.45565i −0.336890 + 0.941544i \(0.609375\pi\)
−0.857729 + 0.514103i \(0.828125\pi\)
\(138\) 1.79238 + 0.742430i 1.79238 + 0.742430i
\(139\) 0.761850 0.690501i 0.761850 0.690501i −0.195090 0.980785i \(-0.562500\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(140\) 0 0
\(141\) 1.78841 + 0.265286i 1.78841 + 0.265286i
\(142\) 0 0
\(143\) 0 0
\(144\) −0.956940 + 0.290285i −0.956940 + 0.290285i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.857729 + 0.514103i 0.857729 + 0.514103i
\(148\) 0 0
\(149\) 0 0 0.427555 0.903989i \(-0.359375\pi\)
−0.427555 + 0.903989i \(0.640625\pi\)
\(150\) 0.555570 0.831470i 0.555570 0.831470i
\(151\) −0.598102 1.11897i −0.598102 1.11897i −0.980785 0.195090i \(-0.937500\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(152\) −0.0815966 0.0545211i −0.0815966 0.0545211i
\(153\) −1.89317 + 0.574286i −1.89317 + 0.574286i
\(154\) 0 0
\(155\) 1.51290 0.906796i 1.51290 0.906796i
\(156\) 0 0
\(157\) 0 0 −0.0490677 0.998795i \(-0.515625\pi\)
0.0490677 + 0.998795i \(0.484375\pi\)
\(158\) −0.746196 + 0.823301i −0.746196 + 0.823301i
\(159\) −0.181112 0.0750191i −0.181112 0.0750191i
\(160\) −0.980785 0.195090i −0.980785 0.195090i
\(161\) 0 0
\(162\) 0.336890 0.941544i 0.336890 0.941544i
\(163\) 0 0 0.671559 0.740951i \(-0.265625\pi\)
−0.671559 + 0.740951i \(0.734375\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −1.47945 0.448786i −1.47945 0.448786i
\(167\) −1.05072 0.561621i −1.05072 0.561621i −0.146730 0.989177i \(-0.546875\pi\)
−0.903989 + 0.427555i \(0.859375\pi\)
\(168\) 0 0
\(169\) −0.956940 0.290285i −0.956940 0.290285i
\(170\) −1.94034 0.385958i −1.94034 0.385958i
\(171\) 0.0923988 0.0330608i 0.0923988 0.0330608i
\(172\) 0 0
\(173\) 1.85652 0.465035i 1.85652 0.465035i 0.857729 0.514103i \(-0.171875\pi\)
0.998795 + 0.0490677i \(0.0156250\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.595699 0.803208i \(-0.703125\pi\)
0.595699 + 0.803208i \(0.296875\pi\)
\(180\) 0.740951 0.671559i 0.740951 0.671559i
\(181\) −0.0788231 + 1.60448i −0.0788231 + 1.60448i 0.555570 + 0.831470i \(0.312500\pi\)
−0.634393 + 0.773010i \(0.718750\pi\)
\(182\) 0 0
\(183\) −1.33665 + 0.131649i −1.33665 + 0.131649i
\(184\) 0.829484 + 1.75380i 0.829484 + 1.75380i
\(185\) 0 0
\(186\) 1.68789 0.512016i 1.68789 0.512016i
\(187\) 0 0
\(188\) 1.14697 + 1.39759i 1.14697 + 1.39759i
\(189\) 0 0
\(190\) 0.0970732 + 0.0143994i 0.0970732 + 0.0143994i
\(191\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(192\) −0.903989 0.427555i −0.903989 0.427555i
\(193\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.290285 + 0.956940i 0.290285 + 0.956940i
\(197\) 0.287822 + 1.94034i 0.287822 + 1.94034i 0.336890 + 0.941544i \(0.390625\pi\)
−0.0490677 + 0.998795i \(0.515625\pi\)
\(198\) 0 0
\(199\) −0.301614 + 0.247528i −0.301614 + 0.247528i −0.773010 0.634393i \(-0.781250\pi\)
0.471397 + 0.881921i \(0.343750\pi\)
\(200\) 0.970031 0.242980i 0.970031 0.242980i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −1.78841 0.845855i −1.78841 0.845855i
\(205\) 0 0
\(206\) 0 0
\(207\) −1.90278 0.378487i −1.90278 0.378487i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.163715 + 0.653587i 0.163715 + 0.653587i 0.995185 + 0.0980171i \(0.0312500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(212\) −0.0838155 0.177213i −0.0838155 0.177213i
\(213\) 0 0
\(214\) 0.482726 0.322547i 0.482726 0.322547i
\(215\) 0 0
\(216\) 0.881921 0.471397i 0.881921 0.471397i
\(217\) 0 0
\(218\) −0.317618 0.594221i −0.317618 0.594221i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(224\) 0 0
\(225\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(226\) −0.854080 + 0.0419583i −0.854080 + 0.0419583i
\(227\) −1.98797 + 0.0976628i −1.98797 + 0.0976628i −0.998795 0.0490677i \(-0.984375\pi\)
−0.989177 + 0.146730i \(0.953125\pi\)
\(228\) 0.0906652 + 0.0375548i 0.0906652 + 0.0375548i
\(229\) −0.881921 1.47140i −0.881921 1.47140i −0.881921 0.471397i \(-0.843750\pi\)
1.00000i \(-0.5\pi\)
\(230\) −1.49969 1.23076i −1.49969 1.23076i
\(231\) 0 0
\(232\) 0 0
\(233\) −1.51290 + 0.808661i −1.51290 + 0.808661i −0.998795 0.0490677i \(-0.984375\pi\)
−0.514103 + 0.857729i \(0.671875\pi\)
\(234\) 0 0
\(235\) −1.63439 0.773010i −1.63439 0.773010i
\(236\) 0 0
\(237\) 0.571240 0.953057i 0.571240 0.953057i
\(238\) 0 0
\(239\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(240\) 1.00000 1.00000
\(241\) −0.523788 0.783904i −0.523788 0.783904i 0.471397 0.881921i \(-0.343750\pi\)
−0.995185 + 0.0980171i \(0.968750\pi\)
\(242\) 0.595699 0.803208i 0.595699 0.803208i
\(243\) −0.146730 + 0.989177i −0.146730 + 0.989177i
\(244\) −1.07880 0.800094i −1.07880 0.800094i
\(245\) −0.671559 0.740951i −0.671559 0.740951i
\(246\) 0 0
\(247\) 0 0
\(248\) 1.59449 + 0.754140i 1.59449 + 0.754140i
\(249\) 1.53858 + 0.151537i 1.53858 + 0.151537i
\(250\) −0.773010 + 0.634393i −0.773010 + 0.634393i
\(251\) 0 0 −0.803208 0.595699i \(-0.796875\pi\)
0.803208 + 0.595699i \(0.203125\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 1.97835 1.97835
\(256\) −0.382683 0.923880i −0.382683 0.923880i
\(257\) 0.485960 0.485960 0.242980 0.970031i \(-0.421875\pi\)
0.242980 + 0.970031i \(0.421875\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.292048 0.0287642i −0.292048 0.0287642i −0.0490677 0.998795i \(-0.515625\pi\)
−0.242980 + 0.970031i \(0.578125\pi\)
\(264\) 0 0
\(265\) 0.151537 + 0.124363i 0.151537 + 0.124363i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.146730 0.989177i \(-0.453125\pi\)
−0.146730 + 0.989177i \(0.546875\pi\)
\(270\) −0.595699 + 0.803208i −0.595699 + 0.803208i
\(271\) −0.425215 0.636379i −0.425215 0.636379i 0.555570 0.831470i \(-0.312500\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(272\) −0.757083 1.82776i −0.757083 1.82776i
\(273\) 0 0
\(274\) 1.77301 0.634393i 1.77301 0.634393i
\(275\) 0 0
\(276\) −1.15569 1.55827i −1.15569 1.55827i
\(277\) 0 0 −0.903989 0.427555i \(-0.859375\pi\)
0.903989 + 0.427555i \(0.140625\pi\)
\(278\) −1.00845 + 0.200593i −1.00845 + 0.200593i
\(279\) −1.55557 + 0.831470i −1.55557 + 0.831470i
\(280\) 0 0
\(281\) 0 0 −0.290285 0.956940i \(-0.593750\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(282\) −1.39759 1.14697i −1.39759 1.14697i
\(283\) 0 0 −0.514103 0.857729i \(-0.671875\pi\)
0.514103 + 0.857729i \(0.328125\pi\)
\(284\) 0 0
\(285\) −0.0980171 + 0.00481527i −0.0980171 + 0.00481527i
\(286\) 0 0
\(287\) 0 0
\(288\) 0.970031 + 0.242980i 0.970031 + 0.242980i
\(289\) −1.11509 2.69207i −1.11509 2.69207i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.49969 + 0.375652i 1.49969 + 0.375652i 0.903989 0.427555i \(-0.140625\pi\)
0.595699 + 0.803208i \(0.296875\pi\)
\(294\) −0.471397 0.881921i −0.471397 0.881921i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −0.903989 + 0.427555i −0.903989 + 0.427555i
\(301\) 0 0
\(302\) −0.0622564 + 1.26726i −0.0622564 + 1.26726i
\(303\) 0 0
\(304\) 0.0419583 + 0.0887133i 0.0419583 + 0.0887133i
\(305\) 1.31731 + 0.262029i 1.31731 + 0.262029i
\(306\) 1.91906 + 0.480701i 1.91906 + 0.480701i
\(307\) 0 0 0.803208 0.595699i \(-0.203125\pi\)
−0.803208 + 0.595699i \(0.796875\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1.76384 −1.76384
\(311\) 0 0 −0.0980171 0.995185i \(-0.531250\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(312\) 0 0
\(313\) 0 0 0.773010 0.634393i \(-0.218750\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 1.06330 0.322547i 1.06330 0.322547i
\(317\) 1.50328 0.710998i 1.50328 0.710998i 0.514103 0.857729i \(-0.328125\pi\)
0.989177 + 0.146730i \(0.0468750\pi\)
\(318\) 0.116777 + 0.157456i 0.116777 + 0.157456i
\(319\) 0 0
\(320\) 0.740951 + 0.671559i 0.740951 + 0.671559i
\(321\) −0.410525 + 0.410525i −0.410525 + 0.410525i
\(322\) 0 0
\(323\) 0.0830083 + 0.175506i 0.0830083 + 0.175506i
\(324\) −0.773010 + 0.634393i −0.773010 + 0.634393i
\(325\) 0 0
\(326\) 0 0
\(327\) 0.427441 + 0.520839i 0.427441 + 0.520839i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.0584592 1.18996i 0.0584592 1.18996i −0.773010 0.634393i \(-0.781250\pi\)
0.831470 0.555570i \(-0.187500\pi\)
\(332\) 1.03824 + 1.14553i 1.03824 + 1.14553i
\(333\) 0 0
\(334\) 0.612501 + 1.02190i 0.612501 + 1.02190i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(338\) 0.671559 + 0.740951i 0.671559 + 0.740951i
\(339\) 0.829484 0.207775i 0.829484 0.207775i
\(340\) 1.46586 + 1.32858i 1.46586 + 1.32858i
\(341\) 0 0
\(342\) −0.0962497 0.0191453i −0.0962497 0.0191453i
\(343\) 0 0
\(344\) 0 0
\(345\) 1.71098 + 0.914539i 1.71098 + 0.914539i
\(346\) −1.83147 0.555570i −1.83147 0.555570i
\(347\) 0.404061 1.61310i 0.404061 1.61310i −0.336890 0.941544i \(-0.609375\pi\)
0.740951 0.671559i \(-0.234375\pi\)
\(348\) 0 0
\(349\) 1.34150 1.48012i 1.34150 1.48012i 0.634393 0.773010i \(-0.281250\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.36910 + 0.567099i 1.36910 + 0.567099i 0.941544 0.336890i \(-0.109375\pi\)
0.427555 + 0.903989i \(0.359375\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.956940 0.290285i \(-0.0937500\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(360\) −0.980785 + 0.195090i −0.980785 + 0.195090i
\(361\) 0.466857 + 0.873428i 0.466857 + 0.873428i
\(362\) 0.892476 1.33569i 0.892476 1.33569i
\(363\) −0.427555 + 0.903989i −0.427555 + 0.903989i
\(364\) 0 0
\(365\) 0 0
\(366\) 1.21416 + 0.574257i 1.21416 + 0.574257i
\(367\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(368\) 0.190159 1.93072i 0.190159 1.93072i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −1.71098 0.428579i −1.71098 0.428579i
\(373\) 0 0 0.740951 0.671559i \(-0.234375\pi\)
−0.740951 + 0.671559i \(0.765625\pi\)
\(374\) 0 0
\(375\) 0.634393 0.773010i 0.634393 0.773010i
\(376\) −0.265286 1.78841i −0.265286 1.78841i
\(377\) 0 0
\(378\) 0 0
\(379\) −0.956940 + 1.29028i −0.956940 + 1.29028i 1.00000i \(0.5\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(380\) −0.0758597 0.0622564i −0.0758597 0.0622564i
\(381\) 0 0
\(382\) 0 0
\(383\) 1.48190i 1.48190i 0.671559 + 0.740951i \(0.265625\pi\)
−0.671559 + 0.740951i \(0.734375\pi\)
\(384\) 0.555570 + 0.831470i 0.555570 + 0.831470i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.595699 0.803208i \(-0.296875\pi\)
−0.595699 + 0.803208i \(0.703125\pi\)
\(390\) 0 0
\(391\) 0.376202 3.81965i 0.376202 3.81965i
\(392\) 0.242980 0.970031i 0.242980 0.970031i
\(393\) 0 0
\(394\) 0.750661 1.81225i 0.750661 1.81225i
\(395\) −0.823301 + 0.746196i −0.823301 + 0.746196i
\(396\) 0 0
\(397\) 0 0 −0.989177 0.146730i \(-0.953125\pi\)
0.989177 + 0.146730i \(0.0468750\pi\)
\(398\) 0.385958 0.0572514i 0.385958 0.0572514i
\(399\) 0 0
\(400\) −0.956940 0.290285i −0.956940 0.290285i
\(401\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.427555 0.903989i 0.427555 0.903989i
\(406\) 0 0
\(407\) 0 0
\(408\) 1.09911 + 1.64494i 1.09911 + 1.64494i
\(409\) 1.21415 0.368309i 1.21415 0.368309i 0.382683 0.923880i \(-0.375000\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(410\) 0 0
\(411\) −1.61518 + 0.968101i −1.61518 + 0.968101i
\(412\) 0 0
\(413\) 0 0
\(414\) 1.43749 + 1.30287i 1.43749 + 1.30287i
\(415\) −1.42834 0.591637i −1.42834 0.591637i
\(416\) 0 0
\(417\) 0.949938 0.393477i 0.949938 0.393477i
\(418\) 0 0
\(419\) 0 0 0.671559 0.740951i \(-0.265625\pi\)
−0.671559 + 0.740951i \(0.734375\pi\)
\(420\) 0 0
\(421\) −0.249834 + 0.997391i −0.249834 + 0.997391i 0.707107 + 0.707107i \(0.250000\pi\)
−0.956940 + 0.290285i \(0.906250\pi\)
\(422\) 0.195588 0.644767i 0.195588 0.644767i
\(423\) 1.59449 + 0.852275i 1.59449 + 0.852275i
\(424\) −0.0192147 + 0.195090i −0.0192147 + 0.195090i
\(425\) −1.89317 0.574286i −1.89317 0.574286i
\(426\) 0 0
\(427\) 0 0
\(428\) −0.579870 + 0.0284872i −0.579870 + 0.0284872i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(432\) −0.998795 0.0490677i −0.998795 0.0490677i
\(433\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.0330608 + 0.672968i −0.0330608 + 0.672968i
\(437\) −0.00934193 + 0.190159i −0.00934193 + 0.190159i
\(438\) 0 0
\(439\) 1.95213 0.192268i 1.95213 0.192268i 0.956940 0.290285i \(-0.0937500\pi\)
0.995185 + 0.0980171i \(0.0312500\pi\)
\(440\) 0 0
\(441\) 0.634393 + 0.773010i 0.634393 + 0.773010i
\(442\) 0 0
\(443\) −0.932589 + 0.138337i −0.932589 + 0.138337i −0.595699 0.803208i \(-0.703125\pi\)
−0.336890 + 0.941544i \(0.609375\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(450\) 0.803208 0.595699i 0.803208 0.595699i
\(451\) 0 0
\(452\) 0.754140 + 0.403096i 0.754140 + 0.403096i
\(453\) −0.186170 1.25505i −0.186170 1.25505i
\(454\) 1.75535 + 0.938254i 1.75535 + 0.938254i
\(455\) 0 0
\(456\) −0.0584592 0.0788231i −0.0584592 0.0788231i
\(457\) 0 0 −0.0980171 0.995185i \(-0.531250\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(458\) 1.71546i 1.71546i
\(459\) −1.97597 0.0970732i −1.97597 0.0970732i
\(460\) 0.653587 + 1.82665i 0.653587 + 1.82665i
\(461\) 0 0 0.803208 0.595699i \(-0.203125\pi\)
−0.803208 + 0.595699i \(0.796875\pi\)
\(462\) 0 0
\(463\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(464\) 0 0
\(465\) 1.72995 0.344109i 1.72995 0.344109i
\(466\) 1.71339 + 0.0841735i 1.71339 + 0.0841735i
\(467\) 0.476623 + 1.90278i 0.476623 + 1.90278i 0.427555 + 0.903989i \(0.359375\pi\)
0.0490677 + 0.998795i \(0.484375\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 1.00446 + 1.50328i 1.00446 + 1.50328i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) −0.979938 + 0.523788i −0.979938 + 0.523788i
\(475\) 0.0951944 + 0.0238449i 0.0951944 + 0.0238449i
\(476\) 0 0
\(477\) −0.145252 0.131649i −0.145252 0.131649i
\(478\) 0 0
\(479\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(480\) −0.857729 0.514103i −0.857729 0.514103i
\(481\) 0 0
\(482\) 0.0462607 + 0.941658i 0.0462607 + 0.941658i
\(483\) 0 0
\(484\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(485\) 0 0
\(486\) 0.634393 0.773010i 0.634393 0.773010i
\(487\) 0 0 −0.290285 0.956940i \(-0.593750\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(488\) 0.513989 + 1.24088i 0.513989 + 1.24088i
\(489\) 0 0
\(490\) 0.195090 + 0.980785i 0.195090 + 0.980785i
\(491\) 0 0 −0.903989 0.427555i \(-0.859375\pi\)
0.903989 + 0.427555i \(0.140625\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −0.979938 1.46658i −0.979938 1.46658i
\(497\) 0 0
\(498\) −1.24178 0.920964i −1.24178 0.920964i
\(499\) 0.251710 1.69689i 0.251710 1.69689i −0.382683 0.923880i \(-0.625000\pi\)
0.634393 0.773010i \(-0.281250\pi\)
\(500\) 0.989177 0.146730i 0.989177 0.146730i
\(501\) −0.800094 0.882768i −0.800094 0.882768i
\(502\) 0 0
\(503\) −1.45565 1.19462i −1.45565 1.19462i −0.941544 0.336890i \(-0.890625\pi\)
−0.514103 0.857729i \(-0.671875\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.803208 0.595699i −0.803208 0.595699i
\(508\) 0 0
\(509\) 0 0 −0.941544 0.336890i \(-0.890625\pi\)
0.941544 + 0.336890i \(0.109375\pi\)
\(510\) −1.69689 1.01708i −1.69689 1.01708i
\(511\) 0 0
\(512\) −0.146730 + 0.989177i −0.146730 + 0.989177i
\(513\) 0.0981353 0.0981353
\(514\) −0.416822 0.249834i −0.416822 0.249834i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 1.90466 + 0.187593i 1.90466 + 0.187593i
\(520\) 0 0
\(521\) 0 0 −0.773010 0.634393i \(-0.781250\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(522\) 0 0
\(523\) 0 0 −0.671559 0.740951i \(-0.734375\pi\)
0.671559 + 0.740951i \(0.265625\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.235710 + 0.174814i 0.235710 + 0.174814i
\(527\) −1.93866 2.90142i −1.93866 2.90142i
\(528\) 0 0
\(529\) 1.53551 2.29805i 1.53551 2.29805i
\(530\) −0.0660420 0.184575i −0.0660420 0.184575i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.512016 0.273678i 0.512016 0.273678i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0.923880 0.382683i 0.923880 0.382683i
\(541\) 1.18996 0.0584592i 1.18996 0.0584592i 0.555570 0.831470i \(-0.312500\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(542\) 0.0375548 + 0.764445i 0.0375548 + 0.764445i
\(543\) −0.614748 + 1.48413i −0.614748 + 1.48413i
\(544\) −0.290285 + 1.95694i −0.290285 + 1.95694i
\(545\) −0.257844 0.622491i −0.257844 0.622491i
\(546\) 0 0
\(547\) 0 0 −0.740951 0.671559i \(-0.765625\pi\)
0.740951 + 0.671559i \(0.234375\pi\)
\(548\) −1.84691 0.367372i −1.84691 0.367372i
\(549\) −1.30287 0.326351i −1.30287 0.326351i
\(550\) 0 0
\(551\) 0 0
\(552\) 0.190159 + 1.93072i 0.190159 + 1.93072i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.968101 + 0.346392i 0.968101 + 0.346392i
\(557\) 0.308290 + 1.23076i 0.308290 + 1.23076i 0.903989 + 0.427555i \(0.140625\pi\)
−0.595699 + 0.803208i \(0.703125\pi\)
\(558\) 1.76172 + 0.0865477i 1.76172 + 0.0865477i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.57555 1.16851i 1.57555 1.16851i 0.671559 0.740951i \(-0.265625\pi\)
0.903989 0.427555i \(-0.140625\pi\)
\(564\) 0.609090 + 1.70229i 0.609090 + 1.70229i
\(565\) −0.854080 0.0419583i −0.854080 0.0419583i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.773010 0.634393i \(-0.218750\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(570\) 0.0865477 + 0.0462607i 0.0865477 + 0.0462607i
\(571\) −0.0713052 0.480701i −0.0713052 0.480701i −0.995185 0.0980171i \(-0.968750\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.37183 1.37183i −1.37183 1.37183i
\(576\) −0.707107 0.707107i −0.707107 0.707107i
\(577\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(578\) −0.427555 + 2.88234i −0.427555 + 2.88234i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −1.09320 1.09320i −1.09320 1.09320i
\(587\) 0.0939097 1.91158i 0.0939097 1.91158i −0.242980 0.970031i \(-0.578125\pi\)
0.336890 0.941544i \(-0.390625\pi\)
\(588\) −0.0490677 + 0.998795i −0.0490677 + 0.998795i
\(589\) 0.103113 + 0.139031i 0.103113 + 0.139031i
\(590\) 0 0
\(591\) −0.382683 + 1.92388i −0.382683 + 1.92388i
\(592\) 0 0
\(593\) 0.200593 + 1.00845i 0.200593 + 1.00845i 0.941544 + 0.336890i \(0.109375\pi\)
−0.740951 + 0.671559i \(0.765625\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.367372 + 0.131448i −0.367372 + 0.131448i
\(598\) 0 0
\(599\) 0 0 −0.956940 0.290285i \(-0.906250\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(600\) 0.995185 + 0.0980171i 0.995185 + 0.0980171i
\(601\) −1.11897 0.598102i −1.11897 0.598102i −0.195090 0.980785i \(-0.562500\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.704900 1.05496i 0.704900 1.05496i
\(605\) 0.671559 0.740951i 0.671559 0.740951i
\(606\) 0 0
\(607\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(608\) 0.00961895 0.0976628i 0.00961895 0.0976628i
\(609\) 0 0
\(610\) −0.995185 0.901983i −0.995185 0.901983i
\(611\) 0 0
\(612\) −1.39891 1.39891i −1.39891 1.39891i
\(613\) 0 0 0.857729 0.514103i \(-0.171875\pi\)
−0.857729 + 0.514103i \(0.828125\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.852275 + 1.59449i 0.852275 + 1.59449i 0.803208 + 0.595699i \(0.203125\pi\)
0.0490677 + 0.998795i \(0.484375\pi\)
\(618\) 0 0
\(619\) 0.805124 1.70229i 0.805124 1.70229i 0.0980171 0.995185i \(-0.468750\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(620\) 1.51290 + 0.906796i 1.51290 + 0.906796i
\(621\) −1.66405 0.997391i −1.66405 0.997391i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.17221 + 1.42834i −1.17221 + 1.42834i −0.290285 + 0.956940i \(0.593750\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(632\) −1.07784 0.269985i −1.07784 0.269985i
\(633\) −0.0660420 + 0.670535i −0.0660420 + 0.670535i
\(634\) −1.65493 0.162997i −1.65493 0.162997i
\(635\) 0 0
\(636\) −0.0192147 0.195090i −0.0192147 0.195090i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −0.290285 0.956940i −0.290285 0.956940i
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0.563170 0.141067i 0.563170 0.141067i
\(643\) 0 0 0.336890 0.941544i \(-0.390625\pi\)
−0.336890 + 0.941544i \(0.609375\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.0190297 0.193211i 0.0190297 0.193211i
\(647\) 0.195798 1.98797i 0.195798 1.98797i 0.0490677 0.998795i \(-0.484375\pi\)
0.146730 0.989177i \(-0.453125\pi\)
\(648\) 0.989177 0.146730i 0.989177 0.146730i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.574286 + 0.0851872i 0.574286 + 0.0851872i 0.427555 0.903989i \(-0.359375\pi\)
0.146730 + 0.989177i \(0.453125\pi\)
\(654\) −0.0988640 0.666487i −0.0988640 0.666487i
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.857729 0.514103i \(-0.828125\pi\)
0.857729 + 0.514103i \(0.171875\pi\)
\(660\) 0 0
\(661\) −0.805124 + 1.70229i −0.805124 + 1.70229i −0.0980171 + 0.995185i \(0.531250\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(662\) −0.661906 + 0.990612i −0.661906 + 0.990612i
\(663\) 0 0
\(664\) −0.301614 1.51631i −0.301614 1.51631i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 1.19140i 1.19140i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(674\) 0 0
\(675\) −0.671559 + 0.740951i −0.671559 + 0.740951i
\(676\) −0.195090 0.980785i −0.195090 0.980785i
\(677\) 0.229080 0.914539i 0.229080 0.914539i −0.740951 0.671559i \(-0.765625\pi\)
0.970031 0.242980i \(-0.0781250\pi\)
\(678\) −0.818289 0.248225i −0.818289 0.248225i
\(679\) 0 0
\(680\) −0.574286 1.89317i −0.574286 1.89317i
\(681\) −1.90466 0.577774i −1.90466 0.577774i
\(682\) 0 0
\(683\) 1.04619 0.374332i 1.04619 0.374332i 0.242980 0.970031i \(-0.421875\pi\)
0.803208 + 0.595699i \(0.203125\pi\)
\(684\) 0.0727135 + 0.0659037i 0.0727135 + 0.0659037i
\(685\) 1.82665 0.457553i 1.82665 0.457553i
\(686\) 0 0
\(687\) −0.334669 1.68250i −0.334669 1.68250i
\(688\) 0 0
\(689\) 0 0
\(690\) −0.997391 1.66405i −0.997391 1.66405i
\(691\) −0.956940 1.29028i −0.956940 1.29028i −0.956940 0.290285i \(-0.906250\pi\)
1.00000i \(-0.5\pi\)
\(692\) 1.28528 + 1.41809i 1.28528 + 1.41809i
\(693\) 0 0
\(694\) −1.17588 + 1.17588i −1.17588 + 1.17588i
\(695\) −1.02325 + 0.100782i −1.02325 + 0.100782i
\(696\) 0 0
\(697\) 0 0
\(698\) −1.91158 + 0.579870i −1.91158 + 0.579870i
\(699\) −1.69689 + 0.251710i −1.69689 + 0.251710i
\(700\) 0 0
\(701\) 0 0 −0.427555 0.903989i \(-0.640625\pi\)
0.427555 + 0.903989i \(0.359375\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −1.27843 1.27843i −1.27843 1.27843i
\(706\) −0.882768 1.19028i −0.882768 1.19028i
\(707\) 0 0
\(708\) 0 0
\(709\) 0.293107 + 1.97597i 0.293107 + 1.97597i 0.195090 + 0.980785i \(0.437500\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(710\) 0 0
\(711\) 0.858923 0.704900i 0.858923 0.704900i
\(712\) 0 0
\(713\) −0.335411 3.40549i −0.335411 3.40549i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(720\) 0.941544 + 0.336890i 0.941544 + 0.336890i
\(721\) 0 0
\(722\) 0.0485951 0.989177i 0.0485951 0.989177i
\(723\) −0.229080 0.914539i −0.229080 0.914539i
\(724\) −1.45218 + 0.686831i −1.45218 + 0.686831i
\(725\) 0 0
\(726\) 0.831470 0.555570i 0.831470 0.555570i
\(727\) 0 0 0.290285 0.956940i \(-0.406250\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(728\) 0 0
\(729\) −0.471397 + 0.881921i −0.471397 + 0.881921i
\(730\) 0 0
\(731\) 0 0
\(732\) −0.746196 1.11676i −0.746196 1.11676i
\(733\) 0 0 −0.740951 0.671559i \(-0.765625\pi\)
0.740951 + 0.671559i \(0.234375\pi\)
\(734\) 0 0
\(735\) −0.382683 0.923880i −0.382683 0.923880i
\(736\) −1.15569 + 1.55827i −1.15569 + 1.55827i
\(737\) 0 0
\(738\) 0 0
\(739\) −0.854080 + 0.0419583i −0.854080 + 0.0419583i −0.471397 0.881921i \(-0.656250\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.430174 1.41809i −0.430174 1.41809i −0.857729 0.514103i \(-0.828125\pi\)
0.427555 0.903989i \(-0.359375\pi\)
\(744\) 1.24723 + 1.24723i 1.24723 + 1.24723i
\(745\) 0 0
\(746\) 0 0
\(747\) 1.39759 + 0.661009i 1.39759 + 0.661009i
\(748\) 0 0
\(749\) 0 0
\(750\) −0.941544 + 0.336890i −0.941544 + 0.336890i
\(751\) −0.322547 + 0.482726i −0.322547 + 0.482726i −0.956940 0.290285i \(-0.906250\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(752\) −0.691883 + 1.67035i −0.691883 + 1.67035i
\(753\) 0 0
\(754\) 0 0
\(755\) −0.186170 + 1.25505i −0.186170 + 1.25505i
\(756\) 0 0
\(757\) 0 0 −0.671559 0.740951i \(-0.734375\pi\)
0.671559 + 0.740951i \(0.265625\pi\)
\(758\) 1.48413 0.614748i 1.48413 0.614748i
\(759\) 0 0
\(760\) 0.0330608 + 0.0923988i 0.0330608 + 0.0923988i
\(761\) 0 0 −0.995185 0.0980171i \(-0.968750\pi\)
0.995185 + 0.0980171i \(0.0312500\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.86271 + 0.666487i 1.86271 + 0.666487i
\(766\) 0.761850 1.27107i 0.761850 1.27107i
\(767\) 0 0
\(768\) −0.0490677 0.998795i −0.0490677 0.998795i
\(769\) −0.580569 −0.580569 −0.290285 0.956940i \(-0.593750\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(770\) 0 0
\(771\) 0.457553 + 0.163715i 0.457553 + 0.163715i
\(772\) 0 0
\(773\) 1.48413 + 1.10071i 1.48413 + 1.10071i 0.970031 + 0.242980i \(0.0781250\pi\)
0.514103 + 0.857729i \(0.328125\pi\)
\(774\) 0 0
\(775\) −1.75535 0.172887i −1.75535 0.172887i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −2.28637 + 3.08281i −2.28637 + 3.08281i
\(783\) 0 0
\(784\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.514103 0.857729i \(-0.328125\pi\)
−0.514103 + 0.857729i \(0.671875\pi\)
\(788\) −1.57555 + 1.16851i −1.57555 + 1.16851i
\(789\) −0.265286 0.125471i −0.265286 0.125471i
\(790\) 1.08979 0.216773i 1.08979 0.216773i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0.100782 + 0.168144i 0.100782 + 0.168144i
\(796\) −0.360480 0.149316i −0.360480 0.149316i
\(797\) −1.66094 + 0.0815966i −1.66094 + 0.0815966i −0.857729 0.514103i \(-0.828125\pi\)
−0.803208 + 0.595699i \(0.796875\pi\)
\(798\) 0 0
\(799\) −1.36879 + 3.30455i −1.36879 + 3.30455i
\(800\) 0.671559 + 0.740951i 0.671559 + 0.740951i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.290285 0.956940i \(-0.406250\pi\)
−0.290285 + 0.956940i \(0.593750\pi\)
\(810\) −0.831470 + 0.555570i −0.831470 + 0.555570i
\(811\) −0.499238 1.39528i −0.499238 1.39528i −0.881921 0.471397i \(-0.843750\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(812\) 0 0
\(813\) −0.185969 0.742430i −0.185969 0.742430i
\(814\) 0 0
\(815\) 0 0
\(816\) −0.0970732 1.97597i −0.0970732 1.97597i
\(817\) 0 0
\(818\) −1.23076 0.308290i −1.23076 0.308290i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.998795 0.0490677i \(-0.984375\pi\)
0.998795 + 0.0490677i \(0.0156250\pi\)
\(822\) 1.88309 1.88309
\(823\) 0 0 −0.0980171 0.995185i \(-0.531250\pi\)
0.0980171 + 0.995185i \(0.468750\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.244004 1.64494i −0.244004 1.64494i −0.671559 0.740951i \(-0.734375\pi\)
0.427555 0.903989i \(-0.359375\pi\)
\(828\) −0.563170 1.85652i −0.563170 1.85652i
\(829\) −0.265286 + 0.125471i −0.265286 + 0.125471i −0.555570 0.831470i \(-0.687500\pi\)
0.290285 + 0.956940i \(0.406250\pi\)
\(830\) 0.920964 + 1.24178i 0.920964 + 1.24178i
\(831\) 0 0
\(832\) 0 0
\(833\) −1.39891 + 1.39891i −1.39891 + 1.39891i
\(834\) −1.01708 0.150869i −1.01708 0.150869i
\(835\) 0.509389 + 1.07701i 0.509389 + 1.07701i
\(836\) 0 0
\(837\) −1.74475 + 0.258809i −1.74475 + 0.258809i
\(838\) 0 0
\(839\) 0 0 −0.634393 0.773010i \(-0.718750\pi\)
0.634393 + 0.773010i \(0.281250\pi\)
\(840\) 0 0
\(841\) 0.995185 0.0980171i 0.995185 0.0980171i
\(842\) 0.727051 0.727051i 0.727051 0.727051i
\(843\) 0 0
\(844\) −0.499238 + 0.452483i −0.499238 + 0.452483i
\(845\) 0.595699 + 0.803208i 0.595699 + 0.803208i
\(846\) −0.929487 1.55075i −0.929487 1.55075i
\(847\) 0 0
\(848\) 0.116777 0.157456i 0.116777 0.157456i
\(849\) 0 0
\(850\) 1.32858 + 1.46586i 1.32858 + 1.46586i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.941544 0.336890i \(-0.109375\pi\)
−0.941544 + 0.336890i \(0.890625\pi\)
\(854\) 0 0
\(855\) −0.0939097 0.0284872i −0.0939097 0.0284872i
\(856\) 0.512016 + 0.273678i 0.512016 + 0.273678i
\(857\) 1.18452 + 0.633141i 1.18452 + 0.633141i 0.941544 0.336890i \(-0.109375\pi\)
0.242980 + 0.970031i \(0.421875\pi\)
\(858\) 0 0
\(859\) 0.326351 1.30287i 0.326351 1.30287i −0.555570 0.831470i \(-0.687500\pi\)
0.881921 0.471397i \(-0.156250\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.949938 0.393477i 0.949938 0.393477i 0.146730 0.989177i \(-0.453125\pi\)
0.803208 + 0.595699i \(0.203125\pi\)
\(864\) 0.831470 + 0.555570i 0.831470 + 0.555570i
\(865\) −1.76820 0.732410i −1.76820 0.732410i
\(866\) 0 0
\(867\) −0.142977 2.91037i −0.142977 2.91037i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.374332 0.560227i 0.374332 0.560227i
\(873\) 0 0
\(874\) 0.105774 0.158302i 0.105774 0.158302i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.857729 0.514103i \(-0.828125\pi\)
0.857729 + 0.514103i \(0.171875\pi\)
\(878\) −1.77324 0.838679i −1.77324 0.838679i
\(879\) 1.28547 + 0.858923i 1.28547 + 0.858923i
\(880\) 0 0
\(881\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(882\) −0.146730 0.989177i −0.146730 0.989177i
\(883\) 0 0 −0.989177 0.146730i \(-0.953125\pi\)
0.989177 + 0.146730i \(0.0468750\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.871028 + 0.360791i 0.871028 + 0.360791i
\(887\) −1.08827 + 1.32607i −1.08827 + 1.32607i −0.146730 + 0.989177i \(0.546875\pi\)
−0.941544 + 0.336890i \(0.890625\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.0597732 0.167055i 0.0597732 0.167055i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.995185 + 0.0980171i −0.995185 + 0.0980171i
\(901\) 0.231027 0.311504i 0.231027 0.311504i
\(902\) 0 0
\(903\) 0 0
\(904\) −0.439614 0.733452i −0.439614 0.733452i
\(905\) 1.01910 1.24178i 1.01910 1.24178i
\(906\) −0.485544 + 1.17221i −0.485544 + 1.17221i
\(907\) 0 0 0.740951 0.671559i \(-0.234375\pi\)
−0.740951 + 0.671559i \(0.765625\pi\)
\(908\) −1.02325 1.70720i −1.02325 1.70720i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(912\) 0.00961895 + 0.0976628i 0.00961895 + 0.0976628i
\(913\) 0 0
\(914\) 0 0
\(915\) 1.15203 + 0.690501i 1.15203 + 0.690501i
\(916\) 0.881921 1.47140i 0.881921 1.47140i
\(917\) 0 0
\(918\) 1.64494 + 1.09911i 1.64494 + 1.09911i
\(919\) 0.938254 + 1.75535i 0.938254 + 1.75535i 0.555570 + 0.831470i \(0.312500\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(920\) 0.378487 1.90278i 0.378487 1.90278i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(930\) −1.66074 0.594221i −1.66074 0.594221i
\(931\) 0.0659037 0.0727135i 0.0659037 0.0727135i
\(932\) −1.42635 0.953057i −1.42635 0.953057i
\(933\) 0 0
\(934\) 0.569414 1.87711i 0.569414 1.87711i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.956940 0.290285i \(-0.906250\pi\)
0.956940 + 0.290285i \(0.0937500\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −0.0887133 1.80580i −0.0887133 1.80580i
\(941\) 0 0 0.970031 0.242980i \(-0.0781250\pi\)
−0.970031 + 0.242980i \(0.921875\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.755815 + 1.01910i 0.755815 + 1.01910i 0.998795 + 0.0490677i \(0.0156250\pi\)
−0.242980 + 0.970031i \(0.578125\pi\)
\(948\) 1.10980 + 0.0545211i 1.10980 + 0.0545211i
\(949\) 0 0
\(950\) −0.0693922 0.0693922i −0.0693922 0.0693922i
\(951\) 1.65493 0.162997i 1.65493 0.162997i
\(952\) 0 0
\(953\) −0.755815 0.920964i −0.755815 0.920964i 0.242980 0.970031i \(-0.421875\pi\)
−0.998795 + 0.0490677i \(0.984375\pi\)
\(954\) 0.0569057 + 0.187593i 0.0569057 + 0.187593i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0.471397 + 0.881921i 0.471397 + 0.881921i
\(961\) −1.49280 1.49280i −1.49280 1.49280i
\(962\) 0 0
\(963\) −0.524828 + 0.248225i −0.524828 + 0.248225i
\(964\) 0.444430 0.831470i 0.444430 0.831470i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.773010 0.634393i \(-0.218750\pi\)
−0.773010 + 0.634393i \(0.781250\pi\)
\(968\) 0.989177 + 0.146730i 0.989177 + 0.146730i
\(969\) 0.0190297 + 0.193211i 0.0190297 + 0.193211i
\(970\) 0 0
\(971\) 0 0 −0.998795 0.0490677i \(-0.984375\pi\)
0.998795 + 0.0490677i \(0.0156250\pi\)
\(972\) −0.941544 + 0.336890i −0.941544 + 0.336890i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0.197076 1.32858i 0.197076 1.32858i
\(977\) −0.476623 + 0.0948062i −0.476623 + 0.0948062i −0.427555 0.903989i \(-0.640625\pi\)
−0.0490677 + 0.998795i \(0.515625\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.336890 0.941544i 0.336890 0.941544i
\(981\) 0.226990 + 0.634393i 0.226990 + 0.634393i
\(982\) 0 0
\(983\) 0.0851872 0.280825i 0.0851872 0.280825i −0.903989 0.427555i \(-0.859375\pi\)
0.989177 + 0.146730i \(0.0468750\pi\)
\(984\) 0 0
\(985\) 0.924678 1.72995i 0.924678 1.72995i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0.292893 + 0.707107i 0.292893 + 0.707107i 1.00000 \(0\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(992\) 0.0865477 + 1.76172i 0.0865477 + 1.76172i
\(993\) 0.455929 1.10071i 0.455929 1.10071i
\(994\) 0 0
\(995\) 0.389711 0.0191453i 0.389711 0.0191453i
\(996\) 0.591637 + 1.42834i 0.591637 + 1.42834i
\(997\) 0 0 −0.514103 0.857729i \(-0.671875\pi\)
0.514103 + 0.857729i \(0.328125\pi\)
\(998\) −1.08827 + 1.32607i −1.08827 + 1.32607i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3840.1.dy.a.149.1 64
3.2 odd 2 inner 3840.1.dy.a.149.2 yes 64
5.4 even 2 inner 3840.1.dy.a.149.2 yes 64
15.14 odd 2 CM 3840.1.dy.a.149.1 64
256.189 even 64 inner 3840.1.dy.a.1469.1 yes 64
768.701 odd 64 inner 3840.1.dy.a.1469.2 yes 64
1280.189 even 64 inner 3840.1.dy.a.1469.2 yes 64
3840.1469 odd 64 inner 3840.1.dy.a.1469.1 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3840.1.dy.a.149.1 64 1.1 even 1 trivial
3840.1.dy.a.149.1 64 15.14 odd 2 CM
3840.1.dy.a.149.2 yes 64 3.2 odd 2 inner
3840.1.dy.a.149.2 yes 64 5.4 even 2 inner
3840.1.dy.a.1469.1 yes 64 256.189 even 64 inner
3840.1.dy.a.1469.1 yes 64 3840.1469 odd 64 inner
3840.1.dy.a.1469.2 yes 64 768.701 odd 64 inner
3840.1.dy.a.1469.2 yes 64 1280.189 even 64 inner