Properties

Label 3840.2.f.l.769.4
Level $3840$
Weight $2$
Character 3840.769
Analytic conductor $30.663$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3840,2,Mod(769,3840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3840.769");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3840.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.6625543762\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.180227832610816.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + x^{10} - 8x^{6} + 16x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 769.4
Root \(-1.37729 - 0.321037i\) of defining polynomial
Character \(\chi\) \(=\) 3840.769
Dual form 3840.2.f.l.769.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(0.726062 + 2.11491i) q^{5} -4.05705i q^{7} -1.00000 q^{9} +0.985939 q^{11} +4.94567i q^{13} +(2.11491 - 0.726062i) q^{15} -4.52323i q^{17} -2.60492 q^{19} -4.05705 q^{21} -3.53729i q^{23} +(-3.94567 + 3.07111i) q^{25} +1.00000i q^{27} -7.59434 q^{29} -3.28415 q^{31} -0.985939i q^{33} +(8.58028 - 2.94567i) q^{35} +0.945668i q^{37} +4.94567 q^{39} -0.568295 q^{41} -8.45963i q^{43} +(-0.726062 - 2.11491i) q^{45} -2.60492i q^{47} -9.45963 q^{49} -4.52323 q^{51} -0.229815i q^{53} +(0.715853 + 2.08517i) q^{55} +2.60492i q^{57} -9.10003 q^{59} +11.0183 q^{61} +4.05705i q^{63} +(-10.4596 + 3.59086i) q^{65} -8.45963i q^{67} -3.53729 q^{69} -1.43171 q^{71} -11.9507i q^{73} +(3.07111 + 3.94567i) q^{75} -4.00000i q^{77} +3.28415 q^{79} +1.00000 q^{81} +9.89134i q^{83} +(9.56622 - 3.28415i) q^{85} +7.59434i q^{87} -12.3510 q^{89} +20.0648 q^{91} +3.28415i q^{93} +(-1.89134 - 5.50917i) q^{95} +3.23797i q^{97} -0.985939 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{9} - 4 q^{25} - 32 q^{31} + 16 q^{39} + 8 q^{41} - 12 q^{49} + 16 q^{55} - 24 q^{65} - 32 q^{71} + 32 q^{79} + 12 q^{81} + 40 q^{89} + 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1537\) \(2561\) \(2821\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0.726062 + 2.11491i 0.324705 + 0.945815i
\(6\) 0 0
\(7\) 4.05705i 1.53342i −0.641994 0.766710i \(-0.721893\pi\)
0.641994 0.766710i \(-0.278107\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0.985939 0.297272 0.148636 0.988892i \(-0.452512\pi\)
0.148636 + 0.988892i \(0.452512\pi\)
\(12\) 0 0
\(13\) 4.94567i 1.37168i 0.727752 + 0.685841i \(0.240565\pi\)
−0.727752 + 0.685841i \(0.759435\pi\)
\(14\) 0 0
\(15\) 2.11491 0.726062i 0.546067 0.187468i
\(16\) 0 0
\(17\) 4.52323i 1.09704i −0.836136 0.548522i \(-0.815191\pi\)
0.836136 0.548522i \(-0.184809\pi\)
\(18\) 0 0
\(19\) −2.60492 −0.597610 −0.298805 0.954314i \(-0.596588\pi\)
−0.298805 + 0.954314i \(0.596588\pi\)
\(20\) 0 0
\(21\) −4.05705 −0.885320
\(22\) 0 0
\(23\) 3.53729i 0.737577i −0.929513 0.368788i \(-0.879773\pi\)
0.929513 0.368788i \(-0.120227\pi\)
\(24\) 0 0
\(25\) −3.94567 + 3.07111i −0.789134 + 0.614222i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −7.59434 −1.41023 −0.705117 0.709091i \(-0.749105\pi\)
−0.705117 + 0.709091i \(0.749105\pi\)
\(30\) 0 0
\(31\) −3.28415 −0.589850 −0.294925 0.955520i \(-0.595295\pi\)
−0.294925 + 0.955520i \(0.595295\pi\)
\(32\) 0 0
\(33\) 0.985939i 0.171630i
\(34\) 0 0
\(35\) 8.58028 2.94567i 1.45033 0.497909i
\(36\) 0 0
\(37\) 0.945668i 0.155467i 0.996974 + 0.0777334i \(0.0247683\pi\)
−0.996974 + 0.0777334i \(0.975232\pi\)
\(38\) 0 0
\(39\) 4.94567 0.791941
\(40\) 0 0
\(41\) −0.568295 −0.0887527 −0.0443763 0.999015i \(-0.514130\pi\)
−0.0443763 + 0.999015i \(0.514130\pi\)
\(42\) 0 0
\(43\) 8.45963i 1.29008i −0.764148 0.645041i \(-0.776840\pi\)
0.764148 0.645041i \(-0.223160\pi\)
\(44\) 0 0
\(45\) −0.726062 2.11491i −0.108235 0.315272i
\(46\) 0 0
\(47\) 2.60492i 0.379967i −0.981787 0.189984i \(-0.939157\pi\)
0.981787 0.189984i \(-0.0608435\pi\)
\(48\) 0 0
\(49\) −9.45963 −1.35138
\(50\) 0 0
\(51\) −4.52323 −0.633379
\(52\) 0 0
\(53\) 0.229815i 0.0315675i −0.999875 0.0157838i \(-0.994976\pi\)
0.999875 0.0157838i \(-0.00502434\pi\)
\(54\) 0 0
\(55\) 0.715853 + 2.08517i 0.0965256 + 0.281164i
\(56\) 0 0
\(57\) 2.60492i 0.345030i
\(58\) 0 0
\(59\) −9.10003 −1.18472 −0.592362 0.805672i \(-0.701804\pi\)
−0.592362 + 0.805672i \(0.701804\pi\)
\(60\) 0 0
\(61\) 11.0183 1.41075 0.705377 0.708832i \(-0.250778\pi\)
0.705377 + 0.708832i \(0.250778\pi\)
\(62\) 0 0
\(63\) 4.05705i 0.511140i
\(64\) 0 0
\(65\) −10.4596 + 3.59086i −1.29736 + 0.445392i
\(66\) 0 0
\(67\) 8.45963i 1.03351i −0.856134 0.516754i \(-0.827140\pi\)
0.856134 0.516754i \(-0.172860\pi\)
\(68\) 0 0
\(69\) −3.53729 −0.425840
\(70\) 0 0
\(71\) −1.43171 −0.169912 −0.0849561 0.996385i \(-0.527075\pi\)
−0.0849561 + 0.996385i \(0.527075\pi\)
\(72\) 0 0
\(73\) 11.9507i 1.39873i −0.714767 0.699363i \(-0.753467\pi\)
0.714767 0.699363i \(-0.246533\pi\)
\(74\) 0 0
\(75\) 3.07111 + 3.94567i 0.354621 + 0.455606i
\(76\) 0 0
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) 3.28415 0.369495 0.184748 0.982786i \(-0.440853\pi\)
0.184748 + 0.982786i \(0.440853\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 9.89134i 1.08572i 0.839825 + 0.542858i \(0.182658\pi\)
−0.839825 + 0.542858i \(0.817342\pi\)
\(84\) 0 0
\(85\) 9.56622 3.28415i 1.03760 0.356216i
\(86\) 0 0
\(87\) 7.59434i 0.814199i
\(88\) 0 0
\(89\) −12.3510 −1.30920 −0.654600 0.755976i \(-0.727163\pi\)
−0.654600 + 0.755976i \(0.727163\pi\)
\(90\) 0 0
\(91\) 20.0648 2.10336
\(92\) 0 0
\(93\) 3.28415i 0.340550i
\(94\) 0 0
\(95\) −1.89134 5.50917i −0.194047 0.565229i
\(96\) 0 0
\(97\) 3.23797i 0.328766i 0.986397 + 0.164383i \(0.0525633\pi\)
−0.986397 + 0.164383i \(0.947437\pi\)
\(98\) 0 0
\(99\) −0.985939 −0.0990906
\(100\) 0 0
\(101\) −4.35637 −0.433475 −0.216738 0.976230i \(-0.569542\pi\)
−0.216738 + 0.976230i \(0.569542\pi\)
\(102\) 0 0
\(103\) 15.0754i 1.48542i 0.669612 + 0.742711i \(0.266460\pi\)
−0.669612 + 0.742711i \(0.733540\pi\)
\(104\) 0 0
\(105\) −2.94567 8.58028i −0.287468 0.837350i
\(106\) 0 0
\(107\) 4.00000i 0.386695i −0.981130 0.193347i \(-0.938066\pi\)
0.981130 0.193347i \(-0.0619344\pi\)
\(108\) 0 0
\(109\) 4.17034 0.399446 0.199723 0.979852i \(-0.435996\pi\)
0.199723 + 0.979852i \(0.435996\pi\)
\(110\) 0 0
\(111\) 0.945668 0.0897588
\(112\) 0 0
\(113\) 1.28526i 0.120907i −0.998171 0.0604537i \(-0.980745\pi\)
0.998171 0.0604537i \(-0.0192548\pi\)
\(114\) 0 0
\(115\) 7.48105 2.56829i 0.697611 0.239495i
\(116\) 0 0
\(117\) 4.94567i 0.457227i
\(118\) 0 0
\(119\) −18.3510 −1.68223
\(120\) 0 0
\(121\) −10.0279 −0.911630
\(122\) 0 0
\(123\) 0.568295i 0.0512414i
\(124\) 0 0
\(125\) −9.35991 6.11491i −0.837176 0.546934i
\(126\) 0 0
\(127\) 1.15280i 0.102294i 0.998691 + 0.0511472i \(0.0162878\pi\)
−0.998691 + 0.0511472i \(0.983712\pi\)
\(128\) 0 0
\(129\) −8.45963 −0.744829
\(130\) 0 0
\(131\) −3.89019 −0.339887 −0.169944 0.985454i \(-0.554359\pi\)
−0.169944 + 0.985454i \(0.554359\pi\)
\(132\) 0 0
\(133\) 10.5683i 0.916387i
\(134\) 0 0
\(135\) −2.11491 + 0.726062i −0.182022 + 0.0624895i
\(136\) 0 0
\(137\) 17.5135i 1.49628i −0.663544 0.748138i \(-0.730948\pi\)
0.663544 0.748138i \(-0.269052\pi\)
\(138\) 0 0
\(139\) −16.8612 −1.43015 −0.715076 0.699047i \(-0.753608\pi\)
−0.715076 + 0.699047i \(0.753608\pi\)
\(140\) 0 0
\(141\) −2.60492 −0.219374
\(142\) 0 0
\(143\) 4.87613i 0.407762i
\(144\) 0 0
\(145\) −5.51396 16.0613i −0.457910 1.33382i
\(146\) 0 0
\(147\) 9.45963i 0.780217i
\(148\) 0 0
\(149\) 10.4986 0.860078 0.430039 0.902810i \(-0.358500\pi\)
0.430039 + 0.902810i \(0.358500\pi\)
\(150\) 0 0
\(151\) −4.71585 −0.383771 −0.191885 0.981417i \(-0.561460\pi\)
−0.191885 + 0.981417i \(0.561460\pi\)
\(152\) 0 0
\(153\) 4.52323i 0.365682i
\(154\) 0 0
\(155\) −2.38449 6.94567i −0.191527 0.557889i
\(156\) 0 0
\(157\) 8.94567i 0.713942i −0.934115 0.356971i \(-0.883809\pi\)
0.934115 0.356971i \(-0.116191\pi\)
\(158\) 0 0
\(159\) −0.229815 −0.0182255
\(160\) 0 0
\(161\) −14.3510 −1.13101
\(162\) 0 0
\(163\) 15.7827i 1.23619i −0.786102 0.618097i \(-0.787904\pi\)
0.786102 0.618097i \(-0.212096\pi\)
\(164\) 0 0
\(165\) 2.08517 0.715853i 0.162330 0.0557291i
\(166\) 0 0
\(167\) 5.50917i 0.426312i 0.977018 + 0.213156i \(0.0683743\pi\)
−0.977018 + 0.213156i \(0.931626\pi\)
\(168\) 0 0
\(169\) −11.4596 −0.881510
\(170\) 0 0
\(171\) 2.60492 0.199203
\(172\) 0 0
\(173\) 10.3385i 0.786020i 0.919534 + 0.393010i \(0.128566\pi\)
−0.919534 + 0.393010i \(0.871434\pi\)
\(174\) 0 0
\(175\) 12.4596 + 16.0078i 0.941860 + 1.21007i
\(176\) 0 0
\(177\) 9.10003i 0.684000i
\(178\) 0 0
\(179\) −16.1746 −1.20895 −0.604474 0.796625i \(-0.706617\pi\)
−0.604474 + 0.796625i \(0.706617\pi\)
\(180\) 0 0
\(181\) −8.11409 −0.603116 −0.301558 0.953448i \(-0.597507\pi\)
−0.301558 + 0.953448i \(0.597507\pi\)
\(182\) 0 0
\(183\) 11.0183i 0.814499i
\(184\) 0 0
\(185\) −2.00000 + 0.686614i −0.147043 + 0.0504808i
\(186\) 0 0
\(187\) 4.45963i 0.326120i
\(188\) 0 0
\(189\) 4.05705 0.295107
\(190\) 0 0
\(191\) −24.9193 −1.80309 −0.901547 0.432681i \(-0.857568\pi\)
−0.901547 + 0.432681i \(0.857568\pi\)
\(192\) 0 0
\(193\) 1.03951i 0.0748254i 0.999300 + 0.0374127i \(0.0119116\pi\)
−0.999300 + 0.0374127i \(0.988088\pi\)
\(194\) 0 0
\(195\) 3.59086 + 10.4596i 0.257147 + 0.749030i
\(196\) 0 0
\(197\) 9.66152i 0.688355i −0.938905 0.344177i \(-0.888158\pi\)
0.938905 0.344177i \(-0.111842\pi\)
\(198\) 0 0
\(199\) 23.0668 1.63516 0.817582 0.575813i \(-0.195314\pi\)
0.817582 + 0.575813i \(0.195314\pi\)
\(200\) 0 0
\(201\) −8.45963 −0.596696
\(202\) 0 0
\(203\) 30.8106i 2.16248i
\(204\) 0 0
\(205\) −0.412617 1.20189i −0.0288184 0.0839437i
\(206\) 0 0
\(207\) 3.53729i 0.245859i
\(208\) 0 0
\(209\) −2.56829 −0.177653
\(210\) 0 0
\(211\) 6.44154 0.443454 0.221727 0.975109i \(-0.428831\pi\)
0.221727 + 0.975109i \(0.428831\pi\)
\(212\) 0 0
\(213\) 1.43171i 0.0980988i
\(214\) 0 0
\(215\) 17.8913 6.14222i 1.22018 0.418896i
\(216\) 0 0
\(217\) 13.3239i 0.904488i
\(218\) 0 0
\(219\) −11.9507 −0.807554
\(220\) 0 0
\(221\) 22.3704 1.50480
\(222\) 0 0
\(223\) 17.9796i 1.20401i −0.798494 0.602003i \(-0.794370\pi\)
0.798494 0.602003i \(-0.205630\pi\)
\(224\) 0 0
\(225\) 3.94567 3.07111i 0.263045 0.204741i
\(226\) 0 0
\(227\) 7.02792i 0.466460i 0.972422 + 0.233230i \(0.0749295\pi\)
−0.972422 + 0.233230i \(0.925071\pi\)
\(228\) 0 0
\(229\) 4.17034 0.275584 0.137792 0.990461i \(-0.455999\pi\)
0.137792 + 0.990461i \(0.455999\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) 0 0
\(233\) 23.9894i 1.57160i 0.618483 + 0.785799i \(0.287748\pi\)
−0.618483 + 0.785799i \(0.712252\pi\)
\(234\) 0 0
\(235\) 5.50917 1.89134i 0.359379 0.123377i
\(236\) 0 0
\(237\) 3.28415i 0.213328i
\(238\) 0 0
\(239\) 8.91926 0.576939 0.288469 0.957489i \(-0.406854\pi\)
0.288469 + 0.957489i \(0.406854\pi\)
\(240\) 0 0
\(241\) −16.3510 −1.05326 −0.526629 0.850095i \(-0.676544\pi\)
−0.526629 + 0.850095i \(0.676544\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −6.86828 20.0062i −0.438798 1.27815i
\(246\) 0 0
\(247\) 12.8831i 0.819731i
\(248\) 0 0
\(249\) 9.89134 0.626838
\(250\) 0 0
\(251\) 4.22391 0.266611 0.133305 0.991075i \(-0.457441\pi\)
0.133305 + 0.991075i \(0.457441\pi\)
\(252\) 0 0
\(253\) 3.48755i 0.219261i
\(254\) 0 0
\(255\) −3.28415 9.56622i −0.205661 0.599060i
\(256\) 0 0
\(257\) 24.6952i 1.54044i −0.637777 0.770221i \(-0.720146\pi\)
0.637777 0.770221i \(-0.279854\pi\)
\(258\) 0 0
\(259\) 3.83662 0.238396
\(260\) 0 0
\(261\) 7.59434 0.470078
\(262\) 0 0
\(263\) 14.6628i 0.904145i −0.891981 0.452073i \(-0.850685\pi\)
0.891981 0.452073i \(-0.149315\pi\)
\(264\) 0 0
\(265\) 0.486038 0.166860i 0.0298571 0.0102501i
\(266\) 0 0
\(267\) 12.3510i 0.755867i
\(268\) 0 0
\(269\) 11.5381 0.703490 0.351745 0.936096i \(-0.385588\pi\)
0.351745 + 0.936096i \(0.385588\pi\)
\(270\) 0 0
\(271\) 5.63511 0.342309 0.171154 0.985244i \(-0.445250\pi\)
0.171154 + 0.985244i \(0.445250\pi\)
\(272\) 0 0
\(273\) 20.0648i 1.21438i
\(274\) 0 0
\(275\) −3.89019 + 3.02792i −0.234587 + 0.182591i
\(276\) 0 0
\(277\) 17.4053i 1.04578i −0.852399 0.522892i \(-0.824853\pi\)
0.852399 0.522892i \(-0.175147\pi\)
\(278\) 0 0
\(279\) 3.28415 0.196617
\(280\) 0 0
\(281\) −21.7827 −1.29945 −0.649723 0.760171i \(-0.725115\pi\)
−0.649723 + 0.760171i \(0.725115\pi\)
\(282\) 0 0
\(283\) 21.5962i 1.28376i −0.766804 0.641881i \(-0.778154\pi\)
0.766804 0.641881i \(-0.221846\pi\)
\(284\) 0 0
\(285\) −5.50917 + 1.89134i −0.326335 + 0.112033i
\(286\) 0 0
\(287\) 2.30560i 0.136095i
\(288\) 0 0
\(289\) −3.45963 −0.203508
\(290\) 0 0
\(291\) 3.23797 0.189813
\(292\) 0 0
\(293\) 32.0125i 1.87019i 0.354398 + 0.935095i \(0.384686\pi\)
−0.354398 + 0.935095i \(0.615314\pi\)
\(294\) 0 0
\(295\) −6.60719 19.2457i −0.384685 1.12053i
\(296\) 0 0
\(297\) 0.985939i 0.0572100i
\(298\) 0 0
\(299\) 17.4943 1.01172
\(300\) 0 0
\(301\) −34.3211 −1.97824
\(302\) 0 0
\(303\) 4.35637i 0.250267i
\(304\) 0 0
\(305\) 8.00000 + 23.3028i 0.458079 + 1.33431i
\(306\) 0 0
\(307\) 1.13659i 0.0648686i −0.999474 0.0324343i \(-0.989674\pi\)
0.999474 0.0324343i \(-0.0103260\pi\)
\(308\) 0 0
\(309\) 15.0754 0.857609
\(310\) 0 0
\(311\) −5.13659 −0.291269 −0.145635 0.989338i \(-0.546522\pi\)
−0.145635 + 0.989338i \(0.546522\pi\)
\(312\) 0 0
\(313\) 23.0762i 1.30434i −0.758071 0.652172i \(-0.773858\pi\)
0.758071 0.652172i \(-0.226142\pi\)
\(314\) 0 0
\(315\) −8.58028 + 2.94567i −0.483444 + 0.165970i
\(316\) 0 0
\(317\) 1.66152i 0.0933203i 0.998911 + 0.0466601i \(0.0148578\pi\)
−0.998911 + 0.0466601i \(0.985142\pi\)
\(318\) 0 0
\(319\) −7.48755 −0.419223
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) 11.7827i 0.655605i
\(324\) 0 0
\(325\) −15.1887 19.5140i −0.842516 1.08244i
\(326\) 0 0
\(327\) 4.17034i 0.230620i
\(328\) 0 0
\(329\) −10.5683 −0.582649
\(330\) 0 0
\(331\) −25.9077 −1.42402 −0.712008 0.702171i \(-0.752214\pi\)
−0.712008 + 0.702171i \(0.752214\pi\)
\(332\) 0 0
\(333\) 0.945668i 0.0518223i
\(334\) 0 0
\(335\) 17.8913 6.14222i 0.977508 0.335585i
\(336\) 0 0
\(337\) 8.00696i 0.436167i −0.975930 0.218083i \(-0.930020\pi\)
0.975930 0.218083i \(-0.0699805\pi\)
\(338\) 0 0
\(339\) −1.28526 −0.0698060
\(340\) 0 0
\(341\) −3.23797 −0.175346
\(342\) 0 0
\(343\) 9.97884i 0.538806i
\(344\) 0 0
\(345\) −2.56829 7.48105i −0.138272 0.402766i
\(346\) 0 0
\(347\) 23.0279i 1.23620i 0.786098 + 0.618102i \(0.212098\pi\)
−0.786098 + 0.618102i \(0.787902\pi\)
\(348\) 0 0
\(349\) −21.4380 −1.14755 −0.573776 0.819012i \(-0.694522\pi\)
−0.573776 + 0.819012i \(0.694522\pi\)
\(350\) 0 0
\(351\) −4.94567 −0.263980
\(352\) 0 0
\(353\) 4.52323i 0.240747i −0.992729 0.120374i \(-0.961591\pi\)
0.992729 0.120374i \(-0.0384093\pi\)
\(354\) 0 0
\(355\) −1.03951 3.02792i −0.0551713 0.160706i
\(356\) 0 0
\(357\) 18.3510i 0.971236i
\(358\) 0 0
\(359\) 10.3510 0.546303 0.273152 0.961971i \(-0.411934\pi\)
0.273152 + 0.961971i \(0.411934\pi\)
\(360\) 0 0
\(361\) −12.2144 −0.642862
\(362\) 0 0
\(363\) 10.0279i 0.526330i
\(364\) 0 0
\(365\) 25.2747 8.67696i 1.32294 0.454173i
\(366\) 0 0
\(367\) 0.485359i 0.0253355i 0.999920 + 0.0126678i \(0.00403238\pi\)
−0.999920 + 0.0126678i \(0.995968\pi\)
\(368\) 0 0
\(369\) 0.568295 0.0295842
\(370\) 0 0
\(371\) −0.932371 −0.0484063
\(372\) 0 0
\(373\) 30.0823i 1.55760i 0.627272 + 0.778800i \(0.284171\pi\)
−0.627272 + 0.778800i \(0.715829\pi\)
\(374\) 0 0
\(375\) −6.11491 + 9.35991i −0.315772 + 0.483344i
\(376\) 0 0
\(377\) 37.5591i 1.93439i
\(378\) 0 0
\(379\) 33.6881 1.73044 0.865220 0.501392i \(-0.167179\pi\)
0.865220 + 0.501392i \(0.167179\pi\)
\(380\) 0 0
\(381\) 1.15280 0.0590597
\(382\) 0 0
\(383\) 5.17545i 0.264453i −0.991220 0.132227i \(-0.957787\pi\)
0.991220 0.132227i \(-0.0422127\pi\)
\(384\) 0 0
\(385\) 8.45963 2.90425i 0.431143 0.148014i
\(386\) 0 0
\(387\) 8.45963i 0.430027i
\(388\) 0 0
\(389\) −16.6408 −0.843722 −0.421861 0.906660i \(-0.638623\pi\)
−0.421861 + 0.906660i \(0.638623\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) 3.89019i 0.196234i
\(394\) 0 0
\(395\) 2.38449 + 6.94567i 0.119977 + 0.349474i
\(396\) 0 0
\(397\) 20.4332i 1.02551i 0.858534 + 0.512757i \(0.171376\pi\)
−0.858534 + 0.512757i \(0.828624\pi\)
\(398\) 0 0
\(399\) 10.5683 0.529076
\(400\) 0 0
\(401\) −4.56829 −0.228130 −0.114065 0.993473i \(-0.536387\pi\)
−0.114065 + 0.993473i \(0.536387\pi\)
\(402\) 0 0
\(403\) 16.2423i 0.809087i
\(404\) 0 0
\(405\) 0.726062 + 2.11491i 0.0360783 + 0.105091i
\(406\) 0 0
\(407\) 0.932371i 0.0462159i
\(408\) 0 0
\(409\) 19.8913 0.983563 0.491782 0.870719i \(-0.336346\pi\)
0.491782 + 0.870719i \(0.336346\pi\)
\(410\) 0 0
\(411\) −17.5135 −0.863875
\(412\) 0 0
\(413\) 36.9193i 1.81668i
\(414\) 0 0
\(415\) −20.9193 + 7.18172i −1.02689 + 0.352537i
\(416\) 0 0
\(417\) 16.8612i 0.825698i
\(418\) 0 0
\(419\) 0.387288 0.0189203 0.00946013 0.999955i \(-0.496989\pi\)
0.00946013 + 0.999955i \(0.496989\pi\)
\(420\) 0 0
\(421\) 12.0578 0.587664 0.293832 0.955857i \(-0.405069\pi\)
0.293832 + 0.955857i \(0.405069\pi\)
\(422\) 0 0
\(423\) 2.60492i 0.126656i
\(424\) 0 0
\(425\) 13.8913 + 17.8472i 0.673829 + 0.865715i
\(426\) 0 0
\(427\) 44.7019i 2.16328i
\(428\) 0 0
\(429\) 4.87613 0.235422
\(430\) 0 0
\(431\) 40.4068 1.94633 0.973164 0.230113i \(-0.0739096\pi\)
0.973164 + 0.230113i \(0.0739096\pi\)
\(432\) 0 0
\(433\) 36.1859i 1.73898i 0.493949 + 0.869491i \(0.335553\pi\)
−0.493949 + 0.869491i \(0.664447\pi\)
\(434\) 0 0
\(435\) −16.0613 + 5.51396i −0.770082 + 0.264374i
\(436\) 0 0
\(437\) 9.21438i 0.440783i
\(438\) 0 0
\(439\) −25.4178 −1.21312 −0.606562 0.795036i \(-0.707452\pi\)
−0.606562 + 0.795036i \(0.707452\pi\)
\(440\) 0 0
\(441\) 9.45963 0.450459
\(442\) 0 0
\(443\) 7.02792i 0.333907i 0.985965 + 0.166953i \(0.0533929\pi\)
−0.985965 + 0.166953i \(0.946607\pi\)
\(444\) 0 0
\(445\) −8.96757 26.1212i −0.425103 1.23826i
\(446\) 0 0
\(447\) 10.4986i 0.496566i
\(448\) 0 0
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) 0 0
\(451\) −0.560304 −0.0263837
\(452\) 0 0
\(453\) 4.71585i 0.221570i
\(454\) 0 0
\(455\) 14.5683 + 42.4352i 0.682972 + 1.98939i
\(456\) 0 0
\(457\) 25.2747i 1.18230i 0.806562 + 0.591149i \(0.201326\pi\)
−0.806562 + 0.591149i \(0.798674\pi\)
\(458\) 0 0
\(459\) 4.52323 0.211126
\(460\) 0 0
\(461\) −41.0902 −1.91376 −0.956881 0.290479i \(-0.906185\pi\)
−0.956881 + 0.290479i \(0.906185\pi\)
\(462\) 0 0
\(463\) 13.2106i 0.613951i −0.951717 0.306975i \(-0.900683\pi\)
0.951717 0.306975i \(-0.0993169\pi\)
\(464\) 0 0
\(465\) −6.94567 + 2.38449i −0.322098 + 0.110578i
\(466\) 0 0
\(467\) 1.89134i 0.0875206i −0.999042 0.0437603i \(-0.986066\pi\)
0.999042 0.0437603i \(-0.0139338\pi\)
\(468\) 0 0
\(469\) −34.3211 −1.58480
\(470\) 0 0
\(471\) −8.94567 −0.412195
\(472\) 0 0
\(473\) 8.34068i 0.383505i
\(474\) 0 0
\(475\) 10.2782 8.00000i 0.471594 0.367065i
\(476\) 0 0
\(477\) 0.229815i 0.0105225i
\(478\) 0 0
\(479\) −31.4876 −1.43870 −0.719352 0.694646i \(-0.755561\pi\)
−0.719352 + 0.694646i \(0.755561\pi\)
\(480\) 0 0
\(481\) −4.67696 −0.213251
\(482\) 0 0
\(483\) 14.3510i 0.652992i
\(484\) 0 0
\(485\) −6.84800 + 2.35097i −0.310952 + 0.106752i
\(486\) 0 0
\(487\) 12.9964i 0.588922i 0.955664 + 0.294461i \(0.0951401\pi\)
−0.955664 + 0.294461i \(0.904860\pi\)
\(488\) 0 0
\(489\) −15.7827 −0.713717
\(490\) 0 0
\(491\) −14.9085 −0.672812 −0.336406 0.941717i \(-0.609212\pi\)
−0.336406 + 0.941717i \(0.609212\pi\)
\(492\) 0 0
\(493\) 34.3510i 1.54709i
\(494\) 0 0
\(495\) −0.715853 2.08517i −0.0321752 0.0937214i
\(496\) 0 0
\(497\) 5.80850i 0.260547i
\(498\) 0 0
\(499\) 35.6599 1.59636 0.798179 0.602420i \(-0.205797\pi\)
0.798179 + 0.602420i \(0.205797\pi\)
\(500\) 0 0
\(501\) 5.50917 0.246132
\(502\) 0 0
\(503\) 25.3090i 1.12847i 0.825613 + 0.564237i \(0.190830\pi\)
−0.825613 + 0.564237i \(0.809170\pi\)
\(504\) 0 0
\(505\) −3.16300 9.21332i −0.140751 0.409988i
\(506\) 0 0
\(507\) 11.4596i 0.508940i
\(508\) 0 0
\(509\) 13.7366 0.608862 0.304431 0.952534i \(-0.401534\pi\)
0.304431 + 0.952534i \(0.401534\pi\)
\(510\) 0 0
\(511\) −48.4846 −2.14483
\(512\) 0 0
\(513\) 2.60492i 0.115010i
\(514\) 0 0
\(515\) −31.8831 + 10.9457i −1.40494 + 0.482324i
\(516\) 0 0
\(517\) 2.56829i 0.112953i
\(518\) 0 0
\(519\) 10.3385 0.453809
\(520\) 0 0
\(521\) 30.9193 1.35460 0.677299 0.735708i \(-0.263150\pi\)
0.677299 + 0.735708i \(0.263150\pi\)
\(522\) 0 0
\(523\) 21.8385i 0.954932i −0.878650 0.477466i \(-0.841555\pi\)
0.878650 0.477466i \(-0.158445\pi\)
\(524\) 0 0
\(525\) 16.0078 12.4596i 0.698636 0.543783i
\(526\) 0 0
\(527\) 14.8550i 0.647092i
\(528\) 0 0
\(529\) 10.4876 0.455981
\(530\) 0 0
\(531\) 9.10003 0.394908
\(532\) 0 0
\(533\) 2.81060i 0.121740i
\(534\) 0 0
\(535\) 8.45963 2.90425i 0.365742 0.125562i
\(536\) 0 0
\(537\) 16.1746i 0.697986i
\(538\) 0 0
\(539\) −9.32662 −0.401726
\(540\) 0 0
\(541\) 24.3423 1.04656 0.523278 0.852162i \(-0.324709\pi\)
0.523278 + 0.852162i \(0.324709\pi\)
\(542\) 0 0
\(543\) 8.11409i 0.348209i
\(544\) 0 0
\(545\) 3.02792 + 8.81988i 0.129702 + 0.377802i
\(546\) 0 0
\(547\) 33.3789i 1.42718i −0.700564 0.713589i \(-0.747068\pi\)
0.700564 0.713589i \(-0.252932\pi\)
\(548\) 0 0
\(549\) −11.0183 −0.470251
\(550\) 0 0
\(551\) 19.7827 0.842770
\(552\) 0 0
\(553\) 13.3239i 0.566592i
\(554\) 0 0
\(555\) 0.686614 + 2.00000i 0.0291451 + 0.0848953i
\(556\) 0 0
\(557\) 30.5808i 1.29575i −0.761747 0.647875i \(-0.775658\pi\)
0.761747 0.647875i \(-0.224342\pi\)
\(558\) 0 0
\(559\) 41.8385 1.76958
\(560\) 0 0
\(561\) −4.45963 −0.188286
\(562\) 0 0
\(563\) 7.02792i 0.296192i 0.988973 + 0.148096i \(0.0473144\pi\)
−0.988973 + 0.148096i \(0.952686\pi\)
\(564\) 0 0
\(565\) 2.71821 0.933181i 0.114356 0.0392592i
\(566\) 0 0
\(567\) 4.05705i 0.170380i
\(568\) 0 0
\(569\) 24.3510 1.02085 0.510423 0.859924i \(-0.329489\pi\)
0.510423 + 0.859924i \(0.329489\pi\)
\(570\) 0 0
\(571\) −20.0992 −0.841125 −0.420563 0.907263i \(-0.638167\pi\)
−0.420563 + 0.907263i \(0.638167\pi\)
\(572\) 0 0
\(573\) 24.9193i 1.04102i
\(574\) 0 0
\(575\) 10.8634 + 13.9570i 0.453036 + 0.582047i
\(576\) 0 0
\(577\) 4.76899i 0.198536i 0.995061 + 0.0992678i \(0.0316501\pi\)
−0.995061 + 0.0992678i \(0.968350\pi\)
\(578\) 0 0
\(579\) 1.03951 0.0432004
\(580\) 0 0
\(581\) 40.1296 1.66486
\(582\) 0 0
\(583\) 0.226584i 0.00938413i
\(584\) 0 0
\(585\) 10.4596 3.59086i 0.432452 0.148464i
\(586\) 0 0
\(587\) 8.21733i 0.339165i −0.985516 0.169583i \(-0.945758\pi\)
0.985516 0.169583i \(-0.0542420\pi\)
\(588\) 0 0
\(589\) 8.55495 0.352501
\(590\) 0 0
\(591\) −9.66152 −0.397422
\(592\) 0 0
\(593\) 7.76120i 0.318714i −0.987221 0.159357i \(-0.949058\pi\)
0.987221 0.159357i \(-0.0509421\pi\)
\(594\) 0 0
\(595\) −13.3239 38.8106i −0.546228 1.59108i
\(596\) 0 0
\(597\) 23.0668i 0.944062i
\(598\) 0 0
\(599\) −5.64903 −0.230813 −0.115407 0.993318i \(-0.536817\pi\)
−0.115407 + 0.993318i \(0.536817\pi\)
\(600\) 0 0
\(601\) 37.7299 1.53903 0.769516 0.638627i \(-0.220497\pi\)
0.769516 + 0.638627i \(0.220497\pi\)
\(602\) 0 0
\(603\) 8.45963i 0.344503i
\(604\) 0 0
\(605\) −7.28090 21.2081i −0.296010 0.862233i
\(606\) 0 0
\(607\) 0.113292i 0.00459837i 0.999997 + 0.00229919i \(0.000731854\pi\)
−0.999997 + 0.00229919i \(0.999268\pi\)
\(608\) 0 0
\(609\) 30.8106 1.24851
\(610\) 0 0
\(611\) 12.8831 0.521194
\(612\) 0 0
\(613\) 0.703366i 0.0284087i 0.999899 + 0.0142044i \(0.00452154\pi\)
−0.999899 + 0.0142044i \(0.995478\pi\)
\(614\) 0 0
\(615\) −1.20189 + 0.412617i −0.0484649 + 0.0166383i
\(616\) 0 0
\(617\) 24.4809i 0.985564i 0.870153 + 0.492782i \(0.164020\pi\)
−0.870153 + 0.492782i \(0.835980\pi\)
\(618\) 0 0
\(619\) 39.4966 1.58750 0.793751 0.608243i \(-0.208126\pi\)
0.793751 + 0.608243i \(0.208126\pi\)
\(620\) 0 0
\(621\) 3.53729 0.141947
\(622\) 0 0
\(623\) 50.1084i 2.00755i
\(624\) 0 0
\(625\) 6.13659 24.2351i 0.245464 0.969406i
\(626\) 0 0
\(627\) 2.56829i 0.102568i
\(628\) 0 0
\(629\) 4.27748 0.170554
\(630\) 0 0
\(631\) −17.3400 −0.690294 −0.345147 0.938549i \(-0.612171\pi\)
−0.345147 + 0.938549i \(0.612171\pi\)
\(632\) 0 0
\(633\) 6.44154i 0.256028i
\(634\) 0 0
\(635\) −2.43806 + 0.837003i −0.0967516 + 0.0332155i
\(636\) 0 0
\(637\) 46.7842i 1.85366i
\(638\) 0 0
\(639\) 1.43171 0.0566374
\(640\) 0 0
\(641\) 38.7019 1.52863 0.764317 0.644840i \(-0.223076\pi\)
0.764317 + 0.644840i \(0.223076\pi\)
\(642\) 0 0
\(643\) 1.13659i 0.0448227i −0.999749 0.0224113i \(-0.992866\pi\)
0.999749 0.0224113i \(-0.00713435\pi\)
\(644\) 0 0
\(645\) −6.14222 17.8913i −0.241850 0.704471i
\(646\) 0 0
\(647\) 6.54868i 0.257455i 0.991680 + 0.128728i \(0.0410893\pi\)
−0.991680 + 0.128728i \(0.958911\pi\)
\(648\) 0 0
\(649\) −8.97208 −0.352185
\(650\) 0 0
\(651\) 13.3239 0.522206
\(652\) 0 0
\(653\) 8.74226i 0.342111i 0.985261 + 0.171056i \(0.0547178\pi\)
−0.985261 + 0.171056i \(0.945282\pi\)
\(654\) 0 0
\(655\) −2.82452 8.22739i −0.110363 0.321471i
\(656\) 0 0
\(657\) 11.9507i 0.466242i
\(658\) 0 0
\(659\) 35.5336 1.38419 0.692097 0.721804i \(-0.256687\pi\)
0.692097 + 0.721804i \(0.256687\pi\)
\(660\) 0 0
\(661\) 23.3028 0.906373 0.453186 0.891416i \(-0.350287\pi\)
0.453186 + 0.891416i \(0.350287\pi\)
\(662\) 0 0
\(663\) 22.3704i 0.868795i
\(664\) 0 0
\(665\) −22.3510 + 7.67324i −0.866733 + 0.297555i
\(666\) 0 0
\(667\) 26.8634i 1.04016i
\(668\) 0 0
\(669\) −17.9796 −0.695133
\(670\) 0 0
\(671\) 10.8634 0.419377
\(672\) 0 0
\(673\) 14.3634i 0.553670i −0.960917 0.276835i \(-0.910714\pi\)
0.960917 0.276835i \(-0.0892856\pi\)
\(674\) 0 0
\(675\) −3.07111 3.94567i −0.118207 0.151869i
\(676\) 0 0
\(677\) 24.3076i 0.934217i −0.884200 0.467109i \(-0.845296\pi\)
0.884200 0.467109i \(-0.154704\pi\)
\(678\) 0 0
\(679\) 13.1366 0.504136
\(680\) 0 0
\(681\) 7.02792 0.269311
\(682\) 0 0
\(683\) 38.5933i 1.47673i −0.674401 0.738365i \(-0.735598\pi\)
0.674401 0.738365i \(-0.264402\pi\)
\(684\) 0 0
\(685\) 37.0393 12.7159i 1.41520 0.485848i
\(686\) 0 0
\(687\) 4.17034i 0.159108i
\(688\) 0 0
\(689\) 1.13659 0.0433006
\(690\) 0 0
\(691\) 13.4090 0.510102 0.255051 0.966928i \(-0.417908\pi\)
0.255051 + 0.966928i \(0.417908\pi\)
\(692\) 0 0
\(693\) 4.00000i 0.151947i
\(694\) 0 0
\(695\) −12.2423 35.6599i −0.464377 1.35266i
\(696\) 0 0
\(697\) 2.57053i 0.0973657i
\(698\) 0 0
\(699\) 23.9894 0.907362
\(700\) 0 0
\(701\) −15.6013 −0.589253 −0.294626 0.955613i \(-0.595195\pi\)
−0.294626 + 0.955613i \(0.595195\pi\)
\(702\) 0 0
\(703\) 2.46339i 0.0929086i
\(704\) 0 0
\(705\) −1.89134 5.50917i −0.0712318 0.207487i
\(706\) 0 0
\(707\) 17.6740i 0.664699i
\(708\) 0 0
\(709\) 15.7873 0.592906 0.296453 0.955047i \(-0.404196\pi\)
0.296453 + 0.955047i \(0.404196\pi\)
\(710\) 0 0
\(711\) −3.28415 −0.123165
\(712\) 0 0
\(713\) 11.6170i 0.435060i
\(714\) 0 0
\(715\) −10.3126 + 3.54037i −0.385668 + 0.132402i
\(716\) 0 0
\(717\) 8.91926i 0.333096i
\(718\) 0 0
\(719\) −22.5683 −0.841655 −0.420828 0.907141i \(-0.638260\pi\)
−0.420828 + 0.907141i \(0.638260\pi\)
\(720\) 0 0
\(721\) 61.1616 2.27778
\(722\) 0 0
\(723\) 16.3510i 0.608099i
\(724\) 0 0
\(725\) 29.9647 23.3230i 1.11286 0.866196i
\(726\) 0 0
\(727\) 2.79096i 0.103511i 0.998660 + 0.0517554i \(0.0164816\pi\)
−0.998660 + 0.0517554i \(0.983518\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −38.2649 −1.41528
\(732\) 0 0
\(733\) 16.4860i 0.608926i 0.952524 + 0.304463i \(0.0984769\pi\)
−0.952524 + 0.304463i \(0.901523\pi\)
\(734\) 0 0
\(735\) −20.0062 + 6.86828i −0.737941 + 0.253340i
\(736\) 0 0
\(737\) 8.34068i 0.307233i
\(738\) 0 0
\(739\) −14.8894 −0.547714 −0.273857 0.961770i \(-0.588299\pi\)
−0.273857 + 0.961770i \(0.588299\pi\)
\(740\) 0 0
\(741\) −12.8831 −0.473272
\(742\) 0 0
\(743\) 41.4301i 1.51992i −0.649968 0.759961i \(-0.725218\pi\)
0.649968 0.759961i \(-0.274782\pi\)
\(744\) 0 0
\(745\) 7.62263 + 22.2035i 0.279271 + 0.813475i
\(746\) 0 0
\(747\) 9.89134i 0.361905i
\(748\) 0 0
\(749\) −16.2282 −0.592965
\(750\) 0 0
\(751\) 30.5544 1.11494 0.557472 0.830195i \(-0.311771\pi\)
0.557472 + 0.830195i \(0.311771\pi\)
\(752\) 0 0
\(753\) 4.22391i 0.153928i
\(754\) 0 0
\(755\) −3.42400 9.97359i −0.124612 0.362976i
\(756\) 0 0
\(757\) 0.433223i 0.0157457i 0.999969 + 0.00787287i \(0.00250604\pi\)
−0.999969 + 0.00787287i \(0.997494\pi\)
\(758\) 0 0
\(759\) −3.48755 −0.126590
\(760\) 0 0
\(761\) 14.9193 0.540823 0.270411 0.962745i \(-0.412840\pi\)
0.270411 + 0.962745i \(0.412840\pi\)
\(762\) 0 0
\(763\) 16.9193i 0.612518i
\(764\) 0 0
\(765\) −9.56622 + 3.28415i −0.345867 + 0.118739i
\(766\) 0 0
\(767\) 45.0057i 1.62506i
\(768\) 0 0
\(769\) 31.3789 1.13155 0.565776 0.824559i \(-0.308577\pi\)
0.565776 + 0.824559i \(0.308577\pi\)
\(770\) 0 0
\(771\) −24.6952 −0.889375
\(772\) 0 0
\(773\) 13.4192i 0.482656i 0.970444 + 0.241328i \(0.0775829\pi\)
−0.970444 + 0.241328i \(0.922417\pi\)
\(774\) 0 0
\(775\) 12.9582 10.0860i 0.465471 0.362299i
\(776\) 0 0
\(777\) 3.83662i 0.137638i
\(778\) 0 0
\(779\) 1.48036 0.0530395
\(780\) 0 0
\(781\) −1.41157 −0.0505101
\(782\) 0 0
\(783\) 7.59434i 0.271400i
\(784\) 0 0
\(785\) 18.9193 6.49511i 0.675257 0.231820i
\(786\) 0 0
\(787\) 36.4846i 1.30054i −0.759705 0.650268i \(-0.774657\pi\)
0.759705 0.650268i \(-0.225343\pi\)
\(788\) 0 0
\(789\) −14.6628 −0.522009
\(790\) 0 0
\(791\) −5.21438 −0.185402
\(792\) 0 0
\(793\) 54.4931i 1.93511i
\(794\) 0 0
\(795\) −0.166860 0.486038i −0.00591791 0.0172380i
\(796\) 0 0
\(797\) 26.0683i 0.923388i 0.887039 + 0.461694i \(0.152758\pi\)
−0.887039 + 0.461694i \(0.847242\pi\)
\(798\) 0 0
\(799\) −11.7827 −0.416841
\(800\) 0 0
\(801\) 12.3510 0.436400
\(802\) 0 0
\(803\) 11.7827i 0.415801i
\(804\) 0 0
\(805\) −10.4197 30.3510i −0.367246 1.06973i
\(806\) 0 0
\(807\) 11.5381i 0.406160i
\(808\) 0 0
\(809\) 35.6212 1.25237 0.626187 0.779673i \(-0.284615\pi\)
0.626187 + 0.779673i \(0.284615\pi\)
\(810\) 0 0
\(811\) 43.8935 1.54131 0.770654 0.637253i \(-0.219929\pi\)
0.770654 + 0.637253i \(0.219929\pi\)
\(812\) 0 0
\(813\) 5.63511i 0.197632i
\(814\) 0 0
\(815\) 33.3789 11.4592i 1.16921 0.401398i
\(816\) 0 0
\(817\) 22.0367i 0.770966i
\(818\) 0 0
\(819\) −20.0648 −0.701121
\(820\) 0 0
\(821\) −28.8058 −1.00533 −0.502665 0.864482i \(-0.667647\pi\)
−0.502665 + 0.864482i \(0.667647\pi\)
\(822\) 0 0
\(823\) 27.9585i 0.974571i −0.873243 0.487286i \(-0.837987\pi\)
0.873243 0.487286i \(-0.162013\pi\)
\(824\) 0 0
\(825\) 3.02792 + 3.89019i 0.105419 + 0.135439i
\(826\) 0 0
\(827\) 14.8634i 0.516851i 0.966031 + 0.258426i \(0.0832037\pi\)
−0.966031 + 0.258426i \(0.916796\pi\)
\(828\) 0 0
\(829\) 41.7678 1.45065 0.725327 0.688404i \(-0.241688\pi\)
0.725327 + 0.688404i \(0.241688\pi\)
\(830\) 0 0
\(831\) −17.4053 −0.603783
\(832\) 0 0
\(833\) 42.7881i 1.48252i
\(834\) 0 0
\(835\) −11.6514 + 4.00000i −0.403213 + 0.138426i
\(836\) 0 0
\(837\) 3.28415i 0.113517i
\(838\) 0 0
\(839\) −21.6490 −0.747408 −0.373704 0.927548i \(-0.621912\pi\)
−0.373704 + 0.927548i \(0.621912\pi\)
\(840\) 0 0
\(841\) 28.6740 0.988759
\(842\) 0 0
\(843\) 21.7827i 0.750235i
\(844\) 0 0
\(845\) −8.32040 24.2361i −0.286231 0.833746i
\(846\) 0 0
\(847\) 40.6838i 1.39791i
\(848\) 0 0
\(849\) −21.5962 −0.741180
\(850\) 0 0
\(851\) 3.34510 0.114669
\(852\) 0 0
\(853\) 49.1880i 1.68416i 0.539350 + 0.842082i \(0.318670\pi\)
−0.539350 + 0.842082i \(0.681330\pi\)
\(854\) 0 0
\(855\) 1.89134 + 5.50917i 0.0646823 + 0.188410i
\(856\) 0 0
\(857\) 2.65849i 0.0908123i −0.998969 0.0454062i \(-0.985542\pi\)
0.998969 0.0454062i \(-0.0144582\pi\)
\(858\) 0 0
\(859\) −4.57680 −0.156158 −0.0780792 0.996947i \(-0.524879\pi\)
−0.0780792 + 0.996947i \(0.524879\pi\)
\(860\) 0 0
\(861\) 2.30560 0.0785746
\(862\) 0 0
\(863\) 34.0218i 1.15812i −0.815287 0.579058i \(-0.803421\pi\)
0.815287 0.579058i \(-0.196579\pi\)
\(864\) 0 0
\(865\) −21.8649 + 7.50638i −0.743430 + 0.255224i
\(866\) 0 0
\(867\) 3.45963i 0.117495i
\(868\) 0 0
\(869\) 3.23797 0.109841
\(870\) 0 0
\(871\) 41.8385 1.41764
\(872\) 0 0
\(873\) 3.23797i 0.109589i
\(874\) 0 0
\(875\) −24.8085 + 37.9736i −0.838679 + 1.28374i
\(876\) 0 0
\(877\) 11.7563i 0.396981i 0.980103 + 0.198490i \(0.0636039\pi\)
−0.980103 + 0.198490i \(0.936396\pi\)
\(878\) 0 0
\(879\) 32.0125 1.07975
\(880\) 0 0
\(881\) 13.2702 0.447085 0.223543 0.974694i \(-0.428238\pi\)
0.223543 + 0.974694i \(0.428238\pi\)
\(882\) 0 0
\(883\) 17.1366i 0.576692i −0.957526 0.288346i \(-0.906895\pi\)
0.957526 0.288346i \(-0.0931054\pi\)
\(884\) 0 0
\(885\) −19.2457 + 6.60719i −0.646938 + 0.222098i
\(886\) 0 0
\(887\) 32.0883i 1.07742i −0.842492 0.538709i \(-0.818912\pi\)
0.842492 0.538709i \(-0.181088\pi\)
\(888\) 0 0
\(889\) 4.67696 0.156860
\(890\) 0 0
\(891\) 0.985939 0.0330302
\(892\) 0 0
\(893\) 6.78562i 0.227072i
\(894\) 0 0
\(895\) −11.7438 34.2078i −0.392551 1.14344i
\(896\) 0 0
\(897\) 17.4943i 0.584117i
\(898\) 0 0
\(899\) 24.9409 0.831827
\(900\) 0 0
\(901\) −1.03951 −0.0346310
\(902\) 0 0
\(903\) 34.3211i 1.14214i
\(904\) 0 0
\(905\) −5.89134 17.1606i −0.195835 0.570436i
\(906\) 0 0
\(907\) 40.4596i 1.34344i −0.740805 0.671720i \(-0.765556\pi\)
0.740805 0.671720i \(-0.234444\pi\)
\(908\) 0 0
\(909\) 4.35637 0.144492
\(910\) 0 0
\(911\) 16.0000 0.530104 0.265052 0.964234i \(-0.414611\pi\)
0.265052 + 0.964234i \(0.414611\pi\)
\(912\) 0 0
\(913\) 9.75225i 0.322752i
\(914\) 0 0
\(915\) 23.3028 8.00000i 0.770366 0.264472i
\(916\) 0 0
\(917\) 15.7827i 0.521190i
\(918\) 0 0
\(919\) 50.8495 1.67737 0.838685 0.544617i \(-0.183325\pi\)
0.838685 + 0.544617i \(0.183325\pi\)
\(920\) 0 0
\(921\) −1.13659 −0.0374519
\(922\) 0 0
\(923\) 7.08074i 0.233065i
\(924\) 0 0
\(925\) −2.90425 3.73129i −0.0954911 0.122684i
\(926\) 0 0
\(927\) 15.0754i 0.495141i
\(928\) 0 0
\(929\) −12.6461 −0.414904 −0.207452 0.978245i \(-0.566517\pi\)
−0.207452 + 0.978245i \(0.566517\pi\)
\(930\) 0 0
\(931\) 24.6416 0.807596
\(932\) 0 0
\(933\) 5.13659i 0.168164i
\(934\) 0 0
\(935\) 9.43171 3.23797i 0.308450 0.105893i
\(936\) 0 0
\(937\) 40.7971i 1.33278i −0.745603 0.666391i \(-0.767838\pi\)
0.745603 0.666391i \(-0.232162\pi\)
\(938\) 0 0
\(939\) −23.0762 −0.753063
\(940\) 0 0
\(941\) 14.1086 0.459928 0.229964 0.973199i \(-0.426139\pi\)
0.229964 + 0.973199i \(0.426139\pi\)
\(942\) 0 0
\(943\) 2.01022i 0.0654619i
\(944\) 0 0
\(945\) 2.94567 + 8.58028i 0.0958226 + 0.279117i
\(946\) 0 0
\(947\) 45.8385i 1.48955i 0.667315 + 0.744776i \(0.267444\pi\)
−0.667315 + 0.744776i \(0.732556\pi\)
\(948\) 0 0
\(949\) 59.1043 1.91861
\(950\) 0 0
\(951\) 1.66152 0.0538785
\(952\) 0 0
\(953\) 21.9104i 0.709747i 0.934914 + 0.354873i \(0.115476\pi\)
−0.934914 + 0.354873i \(0.884524\pi\)
\(954\) 0 0
\(955\) −18.0929 52.7019i −0.585473 1.70539i
\(956\) 0 0
\(957\) 7.48755i 0.242038i
\(958\) 0 0
\(959\) −71.0529 −2.29442
\(960\) 0 0
\(961\) −20.2144 −0.652077
\(962\) 0 0
\(963\) 4.00000i 0.128898i
\(964\) 0 0
\(965\) −2.19846 + 0.754747i −0.0707710 + 0.0242962i
\(966\) 0 0
\(967\) 14.0359i 0.451364i 0.974201 + 0.225682i \(0.0724610\pi\)
−0.974201 + 0.225682i \(0.927539\pi\)
\(968\) 0 0
\(969\) 11.7827 0.378514
\(970\) 0 0
\(971\) 21.6494 0.694762 0.347381 0.937724i \(-0.387071\pi\)
0.347381 + 0.937724i \(0.387071\pi\)
\(972\) 0 0
\(973\) 68.4068i 2.19302i
\(974\) 0 0
\(975\) −19.5140 + 15.1887i −0.624947 + 0.486427i
\(976\) 0 0
\(977\) 6.60225i 0.211225i −0.994407 0.105612i \(-0.966320\pi\)
0.994407 0.105612i \(-0.0336802\pi\)
\(978\) 0 0
\(979\) −12.1773 −0.389188
\(980\) 0 0
\(981\) −4.17034 −0.133149
\(982\) 0 0
\(983\) 53.8600i 1.71787i 0.512087 + 0.858934i \(0.328873\pi\)
−0.512087 + 0.858934i \(0.671127\pi\)
\(984\) 0 0
\(985\) 20.4332 7.01486i 0.651057 0.223512i
\(986\) 0 0
\(987\) 10.5683i 0.336393i
\(988\) 0 0
\(989\) −29.9242 −0.951534
\(990\) 0 0
\(991\) 29.7129 0.943861 0.471931 0.881636i \(-0.343557\pi\)
0.471931 + 0.881636i \(0.343557\pi\)
\(992\) 0 0
\(993\) 25.9077i 0.822156i
\(994\) 0 0
\(995\) 16.7479 + 48.7842i 0.530945 + 1.54656i
\(996\) 0 0
\(997\) 16.6506i 0.527328i −0.964615 0.263664i \(-0.915069\pi\)
0.964615 0.263664i \(-0.0849311\pi\)
\(998\) 0 0
\(999\) −0.945668 −0.0299196
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3840.2.f.l.769.4 12
4.3 odd 2 3840.2.f.m.769.10 12
5.4 even 2 inner 3840.2.f.l.769.10 12
8.3 odd 2 3840.2.f.m.769.3 12
8.5 even 2 inner 3840.2.f.l.769.9 12
16.3 odd 4 480.2.d.a.49.5 6
16.5 even 4 120.2.d.b.109.4 yes 6
16.11 odd 4 480.2.d.b.49.2 6
16.13 even 4 120.2.d.a.109.4 yes 6
20.19 odd 2 3840.2.f.m.769.4 12
40.19 odd 2 3840.2.f.m.769.9 12
40.29 even 2 inner 3840.2.f.l.769.3 12
48.5 odd 4 360.2.d.e.109.3 6
48.11 even 4 1440.2.d.f.1009.5 6
48.29 odd 4 360.2.d.f.109.3 6
48.35 even 4 1440.2.d.e.1009.2 6
80.3 even 4 2400.2.k.f.1201.1 12
80.13 odd 4 600.2.k.f.301.12 12
80.19 odd 4 480.2.d.b.49.1 6
80.27 even 4 2400.2.k.f.1201.6 12
80.29 even 4 120.2.d.b.109.3 yes 6
80.37 odd 4 600.2.k.f.301.2 12
80.43 even 4 2400.2.k.f.1201.7 12
80.53 odd 4 600.2.k.f.301.11 12
80.59 odd 4 480.2.d.a.49.6 6
80.67 even 4 2400.2.k.f.1201.12 12
80.69 even 4 120.2.d.a.109.3 6
80.77 odd 4 600.2.k.f.301.1 12
240.29 odd 4 360.2.d.e.109.4 6
240.53 even 4 1800.2.k.u.901.2 12
240.59 even 4 1440.2.d.e.1009.1 6
240.77 even 4 1800.2.k.u.901.12 12
240.83 odd 4 7200.2.k.u.3601.1 12
240.107 odd 4 7200.2.k.u.3601.12 12
240.149 odd 4 360.2.d.f.109.4 6
240.173 even 4 1800.2.k.u.901.1 12
240.179 even 4 1440.2.d.f.1009.6 6
240.197 even 4 1800.2.k.u.901.11 12
240.203 odd 4 7200.2.k.u.3601.2 12
240.227 odd 4 7200.2.k.u.3601.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.2.d.a.109.3 6 80.69 even 4
120.2.d.a.109.4 yes 6 16.13 even 4
120.2.d.b.109.3 yes 6 80.29 even 4
120.2.d.b.109.4 yes 6 16.5 even 4
360.2.d.e.109.3 6 48.5 odd 4
360.2.d.e.109.4 6 240.29 odd 4
360.2.d.f.109.3 6 48.29 odd 4
360.2.d.f.109.4 6 240.149 odd 4
480.2.d.a.49.5 6 16.3 odd 4
480.2.d.a.49.6 6 80.59 odd 4
480.2.d.b.49.1 6 80.19 odd 4
480.2.d.b.49.2 6 16.11 odd 4
600.2.k.f.301.1 12 80.77 odd 4
600.2.k.f.301.2 12 80.37 odd 4
600.2.k.f.301.11 12 80.53 odd 4
600.2.k.f.301.12 12 80.13 odd 4
1440.2.d.e.1009.1 6 240.59 even 4
1440.2.d.e.1009.2 6 48.35 even 4
1440.2.d.f.1009.5 6 48.11 even 4
1440.2.d.f.1009.6 6 240.179 even 4
1800.2.k.u.901.1 12 240.173 even 4
1800.2.k.u.901.2 12 240.53 even 4
1800.2.k.u.901.11 12 240.197 even 4
1800.2.k.u.901.12 12 240.77 even 4
2400.2.k.f.1201.1 12 80.3 even 4
2400.2.k.f.1201.6 12 80.27 even 4
2400.2.k.f.1201.7 12 80.43 even 4
2400.2.k.f.1201.12 12 80.67 even 4
3840.2.f.l.769.3 12 40.29 even 2 inner
3840.2.f.l.769.4 12 1.1 even 1 trivial
3840.2.f.l.769.9 12 8.5 even 2 inner
3840.2.f.l.769.10 12 5.4 even 2 inner
3840.2.f.m.769.3 12 8.3 odd 2
3840.2.f.m.769.4 12 20.19 odd 2
3840.2.f.m.769.9 12 40.19 odd 2
3840.2.f.m.769.10 12 4.3 odd 2
7200.2.k.u.3601.1 12 240.83 odd 4
7200.2.k.u.3601.2 12 240.203 odd 4
7200.2.k.u.3601.11 12 240.227 odd 4
7200.2.k.u.3601.12 12 240.107 odd 4