Properties

Label 480.2.d.b.49.1
Level $480$
Weight $2$
Character 480.49
Analytic conductor $3.833$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [480,2,Mod(49,480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("480.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 480.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.83281929702\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.839056.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 6x^{4} + 8x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(2.02852i\) of defining polynomial
Character \(\chi\) \(=\) 480.49
Dual form 480.2.d.b.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +(-2.11491 - 0.726062i) q^{5} +4.05705i q^{7} +1.00000 q^{9} +0.985939i q^{11} +4.94567 q^{13} +(-2.11491 - 0.726062i) q^{15} +4.52323i q^{17} +2.60492i q^{19} +4.05705i q^{21} +3.53729i q^{23} +(3.94567 + 3.07111i) q^{25} +1.00000 q^{27} -7.59434i q^{29} +3.28415 q^{31} +0.985939i q^{33} +(2.94567 - 8.58028i) q^{35} -0.945668 q^{37} +4.94567 q^{39} +0.568295 q^{41} -8.45963 q^{43} +(-2.11491 - 0.726062i) q^{45} -2.60492i q^{47} -9.45963 q^{49} +4.52323i q^{51} +0.229815 q^{53} +(0.715853 - 2.08517i) q^{55} +2.60492i q^{57} -9.10003i q^{59} +11.0183i q^{61} +4.05705i q^{63} +(-10.4596 - 3.59086i) q^{65} +8.45963 q^{67} +3.53729i q^{69} -1.43171 q^{71} -11.9507i q^{73} +(3.94567 + 3.07111i) q^{75} -4.00000 q^{77} -3.28415 q^{79} +1.00000 q^{81} -9.89134 q^{83} +(3.28415 - 9.56622i) q^{85} -7.59434i q^{87} +12.3510 q^{89} +20.0648i q^{91} +3.28415 q^{93} +(1.89134 - 5.50917i) q^{95} -3.23797i q^{97} +0.985939i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} + 6 q^{9} + 8 q^{13} + 2 q^{25} + 6 q^{27} + 16 q^{31} - 4 q^{35} + 16 q^{37} + 8 q^{39} - 4 q^{41} - 6 q^{49} - 24 q^{53} + 8 q^{55} - 12 q^{65} - 16 q^{71} + 2 q^{75} - 24 q^{77} - 16 q^{79}+ \cdots - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/480\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(421\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −2.11491 0.726062i −0.945815 0.324705i
\(6\) 0 0
\(7\) 4.05705i 1.53342i 0.641994 + 0.766710i \(0.278107\pi\)
−0.641994 + 0.766710i \(0.721893\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.985939i 0.297272i 0.988892 + 0.148636i \(0.0474882\pi\)
−0.988892 + 0.148636i \(0.952512\pi\)
\(12\) 0 0
\(13\) 4.94567 1.37168 0.685841 0.727752i \(-0.259435\pi\)
0.685841 + 0.727752i \(0.259435\pi\)
\(14\) 0 0
\(15\) −2.11491 0.726062i −0.546067 0.187468i
\(16\) 0 0
\(17\) 4.52323i 1.09704i 0.836136 + 0.548522i \(0.184809\pi\)
−0.836136 + 0.548522i \(0.815191\pi\)
\(18\) 0 0
\(19\) 2.60492i 0.597610i 0.954314 + 0.298805i \(0.0965881\pi\)
−0.954314 + 0.298805i \(0.903412\pi\)
\(20\) 0 0
\(21\) 4.05705i 0.885320i
\(22\) 0 0
\(23\) 3.53729i 0.737577i 0.929513 + 0.368788i \(0.120227\pi\)
−0.929513 + 0.368788i \(0.879773\pi\)
\(24\) 0 0
\(25\) 3.94567 + 3.07111i 0.789134 + 0.614222i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 7.59434i 1.41023i −0.709091 0.705117i \(-0.750895\pi\)
0.709091 0.705117i \(-0.249105\pi\)
\(30\) 0 0
\(31\) 3.28415 0.589850 0.294925 0.955520i \(-0.404705\pi\)
0.294925 + 0.955520i \(0.404705\pi\)
\(32\) 0 0
\(33\) 0.985939i 0.171630i
\(34\) 0 0
\(35\) 2.94567 8.58028i 0.497909 1.45033i
\(36\) 0 0
\(37\) −0.945668 −0.155467 −0.0777334 0.996974i \(-0.524768\pi\)
−0.0777334 + 0.996974i \(0.524768\pi\)
\(38\) 0 0
\(39\) 4.94567 0.791941
\(40\) 0 0
\(41\) 0.568295 0.0887527 0.0443763 0.999015i \(-0.485870\pi\)
0.0443763 + 0.999015i \(0.485870\pi\)
\(42\) 0 0
\(43\) −8.45963 −1.29008 −0.645041 0.764148i \(-0.723160\pi\)
−0.645041 + 0.764148i \(0.723160\pi\)
\(44\) 0 0
\(45\) −2.11491 0.726062i −0.315272 0.108235i
\(46\) 0 0
\(47\) 2.60492i 0.379967i −0.981787 0.189984i \(-0.939157\pi\)
0.981787 0.189984i \(-0.0608435\pi\)
\(48\) 0 0
\(49\) −9.45963 −1.35138
\(50\) 0 0
\(51\) 4.52323i 0.633379i
\(52\) 0 0
\(53\) 0.229815 0.0315675 0.0157838 0.999875i \(-0.494976\pi\)
0.0157838 + 0.999875i \(0.494976\pi\)
\(54\) 0 0
\(55\) 0.715853 2.08517i 0.0965256 0.281164i
\(56\) 0 0
\(57\) 2.60492i 0.345030i
\(58\) 0 0
\(59\) 9.10003i 1.18472i −0.805672 0.592362i \(-0.798196\pi\)
0.805672 0.592362i \(-0.201804\pi\)
\(60\) 0 0
\(61\) 11.0183i 1.41075i 0.708832 + 0.705377i \(0.249222\pi\)
−0.708832 + 0.705377i \(0.750778\pi\)
\(62\) 0 0
\(63\) 4.05705i 0.511140i
\(64\) 0 0
\(65\) −10.4596 3.59086i −1.29736 0.445392i
\(66\) 0 0
\(67\) 8.45963 1.03351 0.516754 0.856134i \(-0.327140\pi\)
0.516754 + 0.856134i \(0.327140\pi\)
\(68\) 0 0
\(69\) 3.53729i 0.425840i
\(70\) 0 0
\(71\) −1.43171 −0.169912 −0.0849561 0.996385i \(-0.527075\pi\)
−0.0849561 + 0.996385i \(0.527075\pi\)
\(72\) 0 0
\(73\) 11.9507i 1.39873i −0.714767 0.699363i \(-0.753467\pi\)
0.714767 0.699363i \(-0.246533\pi\)
\(74\) 0 0
\(75\) 3.94567 + 3.07111i 0.455606 + 0.354621i
\(76\) 0 0
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) −3.28415 −0.369495 −0.184748 0.982786i \(-0.559147\pi\)
−0.184748 + 0.982786i \(0.559147\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −9.89134 −1.08572 −0.542858 0.839825i \(-0.682658\pi\)
−0.542858 + 0.839825i \(0.682658\pi\)
\(84\) 0 0
\(85\) 3.28415 9.56622i 0.356216 1.03760i
\(86\) 0 0
\(87\) 7.59434i 0.814199i
\(88\) 0 0
\(89\) 12.3510 1.30920 0.654600 0.755976i \(-0.272837\pi\)
0.654600 + 0.755976i \(0.272837\pi\)
\(90\) 0 0
\(91\) 20.0648i 2.10336i
\(92\) 0 0
\(93\) 3.28415 0.340550
\(94\) 0 0
\(95\) 1.89134 5.50917i 0.194047 0.565229i
\(96\) 0 0
\(97\) 3.23797i 0.328766i −0.986397 0.164383i \(-0.947437\pi\)
0.986397 0.164383i \(-0.0525633\pi\)
\(98\) 0 0
\(99\) 0.985939i 0.0990906i
\(100\) 0 0
\(101\) 4.35637i 0.433475i 0.976230 + 0.216738i \(0.0695416\pi\)
−0.976230 + 0.216738i \(0.930458\pi\)
\(102\) 0 0
\(103\) 15.0754i 1.48542i −0.669612 0.742711i \(-0.733540\pi\)
0.669612 0.742711i \(-0.266460\pi\)
\(104\) 0 0
\(105\) 2.94567 8.58028i 0.287468 0.837350i
\(106\) 0 0
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) 4.17034i 0.399446i 0.979852 + 0.199723i \(0.0640042\pi\)
−0.979852 + 0.199723i \(0.935996\pi\)
\(110\) 0 0
\(111\) −0.945668 −0.0897588
\(112\) 0 0
\(113\) 1.28526i 0.120907i 0.998171 + 0.0604537i \(0.0192548\pi\)
−0.998171 + 0.0604537i \(0.980745\pi\)
\(114\) 0 0
\(115\) 2.56829 7.48105i 0.239495 0.697611i
\(116\) 0 0
\(117\) 4.94567 0.457227
\(118\) 0 0
\(119\) −18.3510 −1.68223
\(120\) 0 0
\(121\) 10.0279 0.911630
\(122\) 0 0
\(123\) 0.568295 0.0512414
\(124\) 0 0
\(125\) −6.11491 9.35991i −0.546934 0.837176i
\(126\) 0 0
\(127\) 1.15280i 0.102294i 0.998691 + 0.0511472i \(0.0162878\pi\)
−0.998691 + 0.0511472i \(0.983712\pi\)
\(128\) 0 0
\(129\) −8.45963 −0.744829
\(130\) 0 0
\(131\) 3.89019i 0.339887i 0.985454 + 0.169944i \(0.0543586\pi\)
−0.985454 + 0.169944i \(0.945641\pi\)
\(132\) 0 0
\(133\) −10.5683 −0.916387
\(134\) 0 0
\(135\) −2.11491 0.726062i −0.182022 0.0624895i
\(136\) 0 0
\(137\) 17.5135i 1.49628i −0.663544 0.748138i \(-0.730948\pi\)
0.663544 0.748138i \(-0.269052\pi\)
\(138\) 0 0
\(139\) 16.8612i 1.43015i −0.699047 0.715076i \(-0.746392\pi\)
0.699047 0.715076i \(-0.253608\pi\)
\(140\) 0 0
\(141\) 2.60492i 0.219374i
\(142\) 0 0
\(143\) 4.87613i 0.407762i
\(144\) 0 0
\(145\) −5.51396 + 16.0613i −0.457910 + 1.33382i
\(146\) 0 0
\(147\) −9.45963 −0.780217
\(148\) 0 0
\(149\) 10.4986i 0.860078i −0.902810 0.430039i \(-0.858500\pi\)
0.902810 0.430039i \(-0.141500\pi\)
\(150\) 0 0
\(151\) −4.71585 −0.383771 −0.191885 0.981417i \(-0.561460\pi\)
−0.191885 + 0.981417i \(0.561460\pi\)
\(152\) 0 0
\(153\) 4.52323i 0.365682i
\(154\) 0 0
\(155\) −6.94567 2.38449i −0.557889 0.191527i
\(156\) 0 0
\(157\) −8.94567 −0.713942 −0.356971 0.934115i \(-0.616191\pi\)
−0.356971 + 0.934115i \(0.616191\pi\)
\(158\) 0 0
\(159\) 0.229815 0.0182255
\(160\) 0 0
\(161\) −14.3510 −1.13101
\(162\) 0 0
\(163\) 15.7827 1.23619 0.618097 0.786102i \(-0.287904\pi\)
0.618097 + 0.786102i \(0.287904\pi\)
\(164\) 0 0
\(165\) 0.715853 2.08517i 0.0557291 0.162330i
\(166\) 0 0
\(167\) 5.50917i 0.426312i −0.977018 0.213156i \(-0.931626\pi\)
0.977018 0.213156i \(-0.0683743\pi\)
\(168\) 0 0
\(169\) 11.4596 0.881510
\(170\) 0 0
\(171\) 2.60492i 0.199203i
\(172\) 0 0
\(173\) 10.3385 0.786020 0.393010 0.919534i \(-0.371434\pi\)
0.393010 + 0.919534i \(0.371434\pi\)
\(174\) 0 0
\(175\) −12.4596 + 16.0078i −0.941860 + 1.21007i
\(176\) 0 0
\(177\) 9.10003i 0.684000i
\(178\) 0 0
\(179\) 16.1746i 1.20895i 0.796625 + 0.604474i \(0.206617\pi\)
−0.796625 + 0.604474i \(0.793383\pi\)
\(180\) 0 0
\(181\) 8.11409i 0.603116i 0.953448 + 0.301558i \(0.0975067\pi\)
−0.953448 + 0.301558i \(0.902493\pi\)
\(182\) 0 0
\(183\) 11.0183i 0.814499i
\(184\) 0 0
\(185\) 2.00000 + 0.686614i 0.147043 + 0.0504808i
\(186\) 0 0
\(187\) −4.45963 −0.326120
\(188\) 0 0
\(189\) 4.05705i 0.295107i
\(190\) 0 0
\(191\) 24.9193 1.80309 0.901547 0.432681i \(-0.142432\pi\)
0.901547 + 0.432681i \(0.142432\pi\)
\(192\) 0 0
\(193\) 1.03951i 0.0748254i −0.999300 0.0374127i \(-0.988088\pi\)
0.999300 0.0374127i \(-0.0119116\pi\)
\(194\) 0 0
\(195\) −10.4596 3.59086i −0.749030 0.257147i
\(196\) 0 0
\(197\) 9.66152 0.688355 0.344177 0.938905i \(-0.388158\pi\)
0.344177 + 0.938905i \(0.388158\pi\)
\(198\) 0 0
\(199\) 23.0668 1.63516 0.817582 0.575813i \(-0.195314\pi\)
0.817582 + 0.575813i \(0.195314\pi\)
\(200\) 0 0
\(201\) 8.45963 0.596696
\(202\) 0 0
\(203\) 30.8106 2.16248
\(204\) 0 0
\(205\) −1.20189 0.412617i −0.0839437 0.0288184i
\(206\) 0 0
\(207\) 3.53729i 0.245859i
\(208\) 0 0
\(209\) −2.56829 −0.177653
\(210\) 0 0
\(211\) 6.44154i 0.443454i −0.975109 0.221727i \(-0.928831\pi\)
0.975109 0.221727i \(-0.0711694\pi\)
\(212\) 0 0
\(213\) −1.43171 −0.0980988
\(214\) 0 0
\(215\) 17.8913 + 6.14222i 1.22018 + 0.418896i
\(216\) 0 0
\(217\) 13.3239i 0.904488i
\(218\) 0 0
\(219\) 11.9507i 0.807554i
\(220\) 0 0
\(221\) 22.3704i 1.50480i
\(222\) 0 0
\(223\) 17.9796i 1.20401i −0.798494 0.602003i \(-0.794370\pi\)
0.798494 0.602003i \(-0.205630\pi\)
\(224\) 0 0
\(225\) 3.94567 + 3.07111i 0.263045 + 0.204741i
\(226\) 0 0
\(227\) −7.02792 −0.466460 −0.233230 0.972422i \(-0.574929\pi\)
−0.233230 + 0.972422i \(0.574929\pi\)
\(228\) 0 0
\(229\) 4.17034i 0.275584i −0.990461 0.137792i \(-0.955999\pi\)
0.990461 0.137792i \(-0.0440005\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) 0 0
\(233\) 23.9894i 1.57160i 0.618483 + 0.785799i \(0.287748\pi\)
−0.618483 + 0.785799i \(0.712252\pi\)
\(234\) 0 0
\(235\) −1.89134 + 5.50917i −0.123377 + 0.359379i
\(236\) 0 0
\(237\) −3.28415 −0.213328
\(238\) 0 0
\(239\) −8.91926 −0.576939 −0.288469 0.957489i \(-0.593146\pi\)
−0.288469 + 0.957489i \(0.593146\pi\)
\(240\) 0 0
\(241\) −16.3510 −1.05326 −0.526629 0.850095i \(-0.676544\pi\)
−0.526629 + 0.850095i \(0.676544\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 20.0062 + 6.86828i 1.27815 + 0.438798i
\(246\) 0 0
\(247\) 12.8831i 0.819731i
\(248\) 0 0
\(249\) −9.89134 −0.626838
\(250\) 0 0
\(251\) 4.22391i 0.266611i 0.991075 + 0.133305i \(0.0425591\pi\)
−0.991075 + 0.133305i \(0.957441\pi\)
\(252\) 0 0
\(253\) −3.48755 −0.219261
\(254\) 0 0
\(255\) 3.28415 9.56622i 0.205661 0.599060i
\(256\) 0 0
\(257\) 24.6952i 1.54044i 0.637777 + 0.770221i \(0.279854\pi\)
−0.637777 + 0.770221i \(0.720146\pi\)
\(258\) 0 0
\(259\) 3.83662i 0.238396i
\(260\) 0 0
\(261\) 7.59434i 0.470078i
\(262\) 0 0
\(263\) 14.6628i 0.904145i 0.891981 + 0.452073i \(0.149315\pi\)
−0.891981 + 0.452073i \(0.850685\pi\)
\(264\) 0 0
\(265\) −0.486038 0.166860i −0.0298571 0.0102501i
\(266\) 0 0
\(267\) 12.3510 0.755867
\(268\) 0 0
\(269\) 11.5381i 0.703490i 0.936096 + 0.351745i \(0.114412\pi\)
−0.936096 + 0.351745i \(0.885588\pi\)
\(270\) 0 0
\(271\) −5.63511 −0.342309 −0.171154 0.985244i \(-0.554750\pi\)
−0.171154 + 0.985244i \(0.554750\pi\)
\(272\) 0 0
\(273\) 20.0648i 1.21438i
\(274\) 0 0
\(275\) −3.02792 + 3.89019i −0.182591 + 0.234587i
\(276\) 0 0
\(277\) 17.4053 1.04578 0.522892 0.852399i \(-0.324853\pi\)
0.522892 + 0.852399i \(0.324853\pi\)
\(278\) 0 0
\(279\) 3.28415 0.196617
\(280\) 0 0
\(281\) 21.7827 1.29945 0.649723 0.760171i \(-0.274885\pi\)
0.649723 + 0.760171i \(0.274885\pi\)
\(282\) 0 0
\(283\) −21.5962 −1.28376 −0.641881 0.766804i \(-0.721846\pi\)
−0.641881 + 0.766804i \(0.721846\pi\)
\(284\) 0 0
\(285\) 1.89134 5.50917i 0.112033 0.326335i
\(286\) 0 0
\(287\) 2.30560i 0.136095i
\(288\) 0 0
\(289\) −3.45963 −0.203508
\(290\) 0 0
\(291\) 3.23797i 0.189813i
\(292\) 0 0
\(293\) −32.0125 −1.87019 −0.935095 0.354398i \(-0.884686\pi\)
−0.935095 + 0.354398i \(0.884686\pi\)
\(294\) 0 0
\(295\) −6.60719 + 19.2457i −0.384685 + 1.12053i
\(296\) 0 0
\(297\) 0.985939i 0.0572100i
\(298\) 0 0
\(299\) 17.4943i 1.01172i
\(300\) 0 0
\(301\) 34.3211i 1.97824i
\(302\) 0 0
\(303\) 4.35637i 0.250267i
\(304\) 0 0
\(305\) 8.00000 23.3028i 0.458079 1.33431i
\(306\) 0 0
\(307\) 1.13659 0.0648686 0.0324343 0.999474i \(-0.489674\pi\)
0.0324343 + 0.999474i \(0.489674\pi\)
\(308\) 0 0
\(309\) 15.0754i 0.857609i
\(310\) 0 0
\(311\) −5.13659 −0.291269 −0.145635 0.989338i \(-0.546522\pi\)
−0.145635 + 0.989338i \(0.546522\pi\)
\(312\) 0 0
\(313\) 23.0762i 1.30434i −0.758071 0.652172i \(-0.773858\pi\)
0.758071 0.652172i \(-0.226142\pi\)
\(314\) 0 0
\(315\) 2.94567 8.58028i 0.165970 0.483444i
\(316\) 0 0
\(317\) 1.66152 0.0933203 0.0466601 0.998911i \(-0.485142\pi\)
0.0466601 + 0.998911i \(0.485142\pi\)
\(318\) 0 0
\(319\) 7.48755 0.419223
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) 0 0
\(323\) −11.7827 −0.655605
\(324\) 0 0
\(325\) 19.5140 + 15.1887i 1.08244 + 0.842516i
\(326\) 0 0
\(327\) 4.17034i 0.230620i
\(328\) 0 0
\(329\) 10.5683 0.582649
\(330\) 0 0
\(331\) 25.9077i 1.42402i −0.702171 0.712008i \(-0.747786\pi\)
0.702171 0.712008i \(-0.252214\pi\)
\(332\) 0 0
\(333\) −0.945668 −0.0518223
\(334\) 0 0
\(335\) −17.8913 6.14222i −0.977508 0.335585i
\(336\) 0 0
\(337\) 8.00696i 0.436167i 0.975930 + 0.218083i \(0.0699805\pi\)
−0.975930 + 0.218083i \(0.930020\pi\)
\(338\) 0 0
\(339\) 1.28526i 0.0698060i
\(340\) 0 0
\(341\) 3.23797i 0.175346i
\(342\) 0 0
\(343\) 9.97884i 0.538806i
\(344\) 0 0
\(345\) 2.56829 7.48105i 0.138272 0.402766i
\(346\) 0 0
\(347\) 23.0279 1.23620 0.618102 0.786098i \(-0.287902\pi\)
0.618102 + 0.786098i \(0.287902\pi\)
\(348\) 0 0
\(349\) 21.4380i 1.14755i −0.819012 0.573776i \(-0.805478\pi\)
0.819012 0.573776i \(-0.194522\pi\)
\(350\) 0 0
\(351\) 4.94567 0.263980
\(352\) 0 0
\(353\) 4.52323i 0.240747i 0.992729 + 0.120374i \(0.0384093\pi\)
−0.992729 + 0.120374i \(0.961591\pi\)
\(354\) 0 0
\(355\) 3.02792 + 1.03951i 0.160706 + 0.0551713i
\(356\) 0 0
\(357\) −18.3510 −0.971236
\(358\) 0 0
\(359\) 10.3510 0.546303 0.273152 0.961971i \(-0.411934\pi\)
0.273152 + 0.961971i \(0.411934\pi\)
\(360\) 0 0
\(361\) 12.2144 0.642862
\(362\) 0 0
\(363\) 10.0279 0.526330
\(364\) 0 0
\(365\) −8.67696 + 25.2747i −0.454173 + 1.32294i
\(366\) 0 0
\(367\) 0.485359i 0.0253355i 0.999920 + 0.0126678i \(0.00403238\pi\)
−0.999920 + 0.0126678i \(0.995968\pi\)
\(368\) 0 0
\(369\) 0.568295 0.0295842
\(370\) 0 0
\(371\) 0.932371i 0.0484063i
\(372\) 0 0
\(373\) −30.0823 −1.55760 −0.778800 0.627272i \(-0.784171\pi\)
−0.778800 + 0.627272i \(0.784171\pi\)
\(374\) 0 0
\(375\) −6.11491 9.35991i −0.315772 0.483344i
\(376\) 0 0
\(377\) 37.5591i 1.93439i
\(378\) 0 0
\(379\) 33.6881i 1.73044i 0.501392 + 0.865220i \(0.332821\pi\)
−0.501392 + 0.865220i \(0.667179\pi\)
\(380\) 0 0
\(381\) 1.15280i 0.0590597i
\(382\) 0 0
\(383\) 5.17545i 0.264453i −0.991220 0.132227i \(-0.957787\pi\)
0.991220 0.132227i \(-0.0422127\pi\)
\(384\) 0 0
\(385\) 8.45963 + 2.90425i 0.431143 + 0.148014i
\(386\) 0 0
\(387\) −8.45963 −0.430027
\(388\) 0 0
\(389\) 16.6408i 0.843722i 0.906660 + 0.421861i \(0.138623\pi\)
−0.906660 + 0.421861i \(0.861377\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) 3.89019i 0.196234i
\(394\) 0 0
\(395\) 6.94567 + 2.38449i 0.349474 + 0.119977i
\(396\) 0 0
\(397\) 20.4332 1.02551 0.512757 0.858534i \(-0.328624\pi\)
0.512757 + 0.858534i \(0.328624\pi\)
\(398\) 0 0
\(399\) −10.5683 −0.529076
\(400\) 0 0
\(401\) −4.56829 −0.228130 −0.114065 0.993473i \(-0.536387\pi\)
−0.114065 + 0.993473i \(0.536387\pi\)
\(402\) 0 0
\(403\) 16.2423 0.809087
\(404\) 0 0
\(405\) −2.11491 0.726062i −0.105091 0.0360783i
\(406\) 0 0
\(407\) 0.932371i 0.0462159i
\(408\) 0 0
\(409\) −19.8913 −0.983563 −0.491782 0.870719i \(-0.663654\pi\)
−0.491782 + 0.870719i \(0.663654\pi\)
\(410\) 0 0
\(411\) 17.5135i 0.863875i
\(412\) 0 0
\(413\) 36.9193 1.81668
\(414\) 0 0
\(415\) 20.9193 + 7.18172i 1.02689 + 0.352537i
\(416\) 0 0
\(417\) 16.8612i 0.825698i
\(418\) 0 0
\(419\) 0.387288i 0.0189203i −0.999955 0.00946013i \(-0.996989\pi\)
0.999955 0.00946013i \(-0.00301130\pi\)
\(420\) 0 0
\(421\) 12.0578i 0.587664i −0.955857 0.293832i \(-0.905069\pi\)
0.955857 0.293832i \(-0.0949306\pi\)
\(422\) 0 0
\(423\) 2.60492i 0.126656i
\(424\) 0 0
\(425\) −13.8913 + 17.8472i −0.673829 + 0.865715i
\(426\) 0 0
\(427\) −44.7019 −2.16328
\(428\) 0 0
\(429\) 4.87613i 0.235422i
\(430\) 0 0
\(431\) −40.4068 −1.94633 −0.973164 0.230113i \(-0.926090\pi\)
−0.973164 + 0.230113i \(0.926090\pi\)
\(432\) 0 0
\(433\) 36.1859i 1.73898i −0.493949 0.869491i \(-0.664447\pi\)
0.493949 0.869491i \(-0.335553\pi\)
\(434\) 0 0
\(435\) −5.51396 + 16.0613i −0.264374 + 0.770082i
\(436\) 0 0
\(437\) −9.21438 −0.440783
\(438\) 0 0
\(439\) −25.4178 −1.21312 −0.606562 0.795036i \(-0.707452\pi\)
−0.606562 + 0.795036i \(0.707452\pi\)
\(440\) 0 0
\(441\) −9.45963 −0.450459
\(442\) 0 0
\(443\) 7.02792 0.333907 0.166953 0.985965i \(-0.446607\pi\)
0.166953 + 0.985965i \(0.446607\pi\)
\(444\) 0 0
\(445\) −26.1212 8.96757i −1.23826 0.425103i
\(446\) 0 0
\(447\) 10.4986i 0.496566i
\(448\) 0 0
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) 0 0
\(451\) 0.560304i 0.0263837i
\(452\) 0 0
\(453\) −4.71585 −0.221570
\(454\) 0 0
\(455\) 14.5683 42.4352i 0.682972 1.98939i
\(456\) 0 0
\(457\) 25.2747i 1.18230i 0.806562 + 0.591149i \(0.201326\pi\)
−0.806562 + 0.591149i \(0.798674\pi\)
\(458\) 0 0
\(459\) 4.52323i 0.211126i
\(460\) 0 0
\(461\) 41.0902i 1.91376i −0.290479 0.956881i \(-0.593815\pi\)
0.290479 0.956881i \(-0.406185\pi\)
\(462\) 0 0
\(463\) 13.2106i 0.613951i −0.951717 0.306975i \(-0.900683\pi\)
0.951717 0.306975i \(-0.0993169\pi\)
\(464\) 0 0
\(465\) −6.94567 2.38449i −0.322098 0.110578i
\(466\) 0 0
\(467\) 1.89134 0.0875206 0.0437603 0.999042i \(-0.486066\pi\)
0.0437603 + 0.999042i \(0.486066\pi\)
\(468\) 0 0
\(469\) 34.3211i 1.58480i
\(470\) 0 0
\(471\) −8.94567 −0.412195
\(472\) 0 0
\(473\) 8.34068i 0.383505i
\(474\) 0 0
\(475\) −8.00000 + 10.2782i −0.367065 + 0.471594i
\(476\) 0 0
\(477\) 0.229815 0.0105225
\(478\) 0 0
\(479\) 31.4876 1.43870 0.719352 0.694646i \(-0.244439\pi\)
0.719352 + 0.694646i \(0.244439\pi\)
\(480\) 0 0
\(481\) −4.67696 −0.213251
\(482\) 0 0
\(483\) −14.3510 −0.652992
\(484\) 0 0
\(485\) −2.35097 + 6.84800i −0.106752 + 0.310952i
\(486\) 0 0
\(487\) 12.9964i 0.588922i −0.955664 0.294461i \(-0.904860\pi\)
0.955664 0.294461i \(-0.0951401\pi\)
\(488\) 0 0
\(489\) 15.7827 0.713717
\(490\) 0 0
\(491\) 14.9085i 0.672812i −0.941717 0.336406i \(-0.890788\pi\)
0.941717 0.336406i \(-0.109212\pi\)
\(492\) 0 0
\(493\) 34.3510 1.54709
\(494\) 0 0
\(495\) 0.715853 2.08517i 0.0321752 0.0937214i
\(496\) 0 0
\(497\) 5.80850i 0.260547i
\(498\) 0 0
\(499\) 35.6599i 1.59636i −0.602420 0.798179i \(-0.705797\pi\)
0.602420 0.798179i \(-0.294203\pi\)
\(500\) 0 0
\(501\) 5.50917i 0.246132i
\(502\) 0 0
\(503\) 25.3090i 1.12847i −0.825613 0.564237i \(-0.809170\pi\)
0.825613 0.564237i \(-0.190830\pi\)
\(504\) 0 0
\(505\) 3.16300 9.21332i 0.140751 0.409988i
\(506\) 0 0
\(507\) 11.4596 0.508940
\(508\) 0 0
\(509\) 13.7366i 0.608862i 0.952534 + 0.304431i \(0.0984663\pi\)
−0.952534 + 0.304431i \(0.901534\pi\)
\(510\) 0 0
\(511\) 48.4846 2.14483
\(512\) 0 0
\(513\) 2.60492i 0.115010i
\(514\) 0 0
\(515\) −10.9457 + 31.8831i −0.482324 + 1.40494i
\(516\) 0 0
\(517\) 2.56829 0.112953
\(518\) 0 0
\(519\) 10.3385 0.453809
\(520\) 0 0
\(521\) −30.9193 −1.35460 −0.677299 0.735708i \(-0.736850\pi\)
−0.677299 + 0.735708i \(0.736850\pi\)
\(522\) 0 0
\(523\) −21.8385 −0.954932 −0.477466 0.878650i \(-0.658445\pi\)
−0.477466 + 0.878650i \(0.658445\pi\)
\(524\) 0 0
\(525\) −12.4596 + 16.0078i −0.543783 + 0.698636i
\(526\) 0 0
\(527\) 14.8550i 0.647092i
\(528\) 0 0
\(529\) 10.4876 0.455981
\(530\) 0 0
\(531\) 9.10003i 0.394908i
\(532\) 0 0
\(533\) 2.81060 0.121740
\(534\) 0 0
\(535\) 8.45963 + 2.90425i 0.365742 + 0.125562i
\(536\) 0 0
\(537\) 16.1746i 0.697986i
\(538\) 0 0
\(539\) 9.32662i 0.401726i
\(540\) 0 0
\(541\) 24.3423i 1.04656i 0.852162 + 0.523278i \(0.175291\pi\)
−0.852162 + 0.523278i \(0.824709\pi\)
\(542\) 0 0
\(543\) 8.11409i 0.348209i
\(544\) 0 0
\(545\) 3.02792 8.81988i 0.129702 0.377802i
\(546\) 0 0
\(547\) 33.3789 1.42718 0.713589 0.700564i \(-0.247068\pi\)
0.713589 + 0.700564i \(0.247068\pi\)
\(548\) 0 0
\(549\) 11.0183i 0.470251i
\(550\) 0 0
\(551\) 19.7827 0.842770
\(552\) 0 0
\(553\) 13.3239i 0.566592i
\(554\) 0 0
\(555\) 2.00000 + 0.686614i 0.0848953 + 0.0291451i
\(556\) 0 0
\(557\) −30.5808 −1.29575 −0.647875 0.761747i \(-0.724342\pi\)
−0.647875 + 0.761747i \(0.724342\pi\)
\(558\) 0 0
\(559\) −41.8385 −1.76958
\(560\) 0 0
\(561\) −4.45963 −0.188286
\(562\) 0 0
\(563\) −7.02792 −0.296192 −0.148096 0.988973i \(-0.547314\pi\)
−0.148096 + 0.988973i \(0.547314\pi\)
\(564\) 0 0
\(565\) 0.933181 2.71821i 0.0392592 0.114356i
\(566\) 0 0
\(567\) 4.05705i 0.170380i
\(568\) 0 0
\(569\) −24.3510 −1.02085 −0.510423 0.859924i \(-0.670511\pi\)
−0.510423 + 0.859924i \(0.670511\pi\)
\(570\) 0 0
\(571\) 20.0992i 0.841125i −0.907263 0.420563i \(-0.861833\pi\)
0.907263 0.420563i \(-0.138167\pi\)
\(572\) 0 0
\(573\) 24.9193 1.04102
\(574\) 0 0
\(575\) −10.8634 + 13.9570i −0.453036 + 0.582047i
\(576\) 0 0
\(577\) 4.76899i 0.198536i −0.995061 0.0992678i \(-0.968350\pi\)
0.995061 0.0992678i \(-0.0316501\pi\)
\(578\) 0 0
\(579\) 1.03951i 0.0432004i
\(580\) 0 0
\(581\) 40.1296i 1.66486i
\(582\) 0 0
\(583\) 0.226584i 0.00938413i
\(584\) 0 0
\(585\) −10.4596 3.59086i −0.432452 0.148464i
\(586\) 0 0
\(587\) −8.21733 −0.339165 −0.169583 0.985516i \(-0.554242\pi\)
−0.169583 + 0.985516i \(0.554242\pi\)
\(588\) 0 0
\(589\) 8.55495i 0.352501i
\(590\) 0 0
\(591\) 9.66152 0.397422
\(592\) 0 0
\(593\) 7.76120i 0.318714i 0.987221 + 0.159357i \(0.0509421\pi\)
−0.987221 + 0.159357i \(0.949058\pi\)
\(594\) 0 0
\(595\) 38.8106 + 13.3239i 1.59108 + 0.546228i
\(596\) 0 0
\(597\) 23.0668 0.944062
\(598\) 0 0
\(599\) −5.64903 −0.230813 −0.115407 0.993318i \(-0.536817\pi\)
−0.115407 + 0.993318i \(0.536817\pi\)
\(600\) 0 0
\(601\) −37.7299 −1.53903 −0.769516 0.638627i \(-0.779503\pi\)
−0.769516 + 0.638627i \(0.779503\pi\)
\(602\) 0 0
\(603\) 8.45963 0.344503
\(604\) 0 0
\(605\) −21.2081 7.28090i −0.862233 0.296010i
\(606\) 0 0
\(607\) 0.113292i 0.00459837i 0.999997 + 0.00229919i \(0.000731854\pi\)
−0.999997 + 0.00229919i \(0.999268\pi\)
\(608\) 0 0
\(609\) 30.8106 1.24851
\(610\) 0 0
\(611\) 12.8831i 0.521194i
\(612\) 0 0
\(613\) −0.703366 −0.0284087 −0.0142044 0.999899i \(-0.504522\pi\)
−0.0142044 + 0.999899i \(0.504522\pi\)
\(614\) 0 0
\(615\) −1.20189 0.412617i −0.0484649 0.0166383i
\(616\) 0 0
\(617\) 24.4809i 0.985564i 0.870153 + 0.492782i \(0.164020\pi\)
−0.870153 + 0.492782i \(0.835980\pi\)
\(618\) 0 0
\(619\) 39.4966i 1.58750i 0.608243 + 0.793751i \(0.291874\pi\)
−0.608243 + 0.793751i \(0.708126\pi\)
\(620\) 0 0
\(621\) 3.53729i 0.141947i
\(622\) 0 0
\(623\) 50.1084i 2.00755i
\(624\) 0 0
\(625\) 6.13659 + 24.2351i 0.245464 + 0.969406i
\(626\) 0 0
\(627\) −2.56829 −0.102568
\(628\) 0 0
\(629\) 4.27748i 0.170554i
\(630\) 0 0
\(631\) −17.3400 −0.690294 −0.345147 0.938549i \(-0.612171\pi\)
−0.345147 + 0.938549i \(0.612171\pi\)
\(632\) 0 0
\(633\) 6.44154i 0.256028i
\(634\) 0 0
\(635\) 0.837003 2.43806i 0.0332155 0.0967516i
\(636\) 0 0
\(637\) −46.7842 −1.85366
\(638\) 0 0
\(639\) −1.43171 −0.0566374
\(640\) 0 0
\(641\) 38.7019 1.52863 0.764317 0.644840i \(-0.223076\pi\)
0.764317 + 0.644840i \(0.223076\pi\)
\(642\) 0 0
\(643\) 1.13659 0.0448227 0.0224113 0.999749i \(-0.492866\pi\)
0.0224113 + 0.999749i \(0.492866\pi\)
\(644\) 0 0
\(645\) 17.8913 + 6.14222i 0.704471 + 0.241850i
\(646\) 0 0
\(647\) 6.54868i 0.257455i −0.991680 0.128728i \(-0.958911\pi\)
0.991680 0.128728i \(-0.0410893\pi\)
\(648\) 0 0
\(649\) 8.97208 0.352185
\(650\) 0 0
\(651\) 13.3239i 0.522206i
\(652\) 0 0
\(653\) 8.74226 0.342111 0.171056 0.985261i \(-0.445282\pi\)
0.171056 + 0.985261i \(0.445282\pi\)
\(654\) 0 0
\(655\) 2.82452 8.22739i 0.110363 0.321471i
\(656\) 0 0
\(657\) 11.9507i 0.466242i
\(658\) 0 0
\(659\) 35.5336i 1.38419i −0.721804 0.692097i \(-0.756687\pi\)
0.721804 0.692097i \(-0.243313\pi\)
\(660\) 0 0
\(661\) 23.3028i 0.906373i −0.891416 0.453186i \(-0.850287\pi\)
0.891416 0.453186i \(-0.149713\pi\)
\(662\) 0 0
\(663\) 22.3704i 0.868795i
\(664\) 0 0
\(665\) 22.3510 + 7.67324i 0.866733 + 0.297555i
\(666\) 0 0
\(667\) 26.8634 1.04016
\(668\) 0 0
\(669\) 17.9796i 0.695133i
\(670\) 0 0
\(671\) −10.8634 −0.419377
\(672\) 0 0
\(673\) 14.3634i 0.553670i 0.960917 + 0.276835i \(0.0892856\pi\)
−0.960917 + 0.276835i \(0.910714\pi\)
\(674\) 0 0
\(675\) 3.94567 + 3.07111i 0.151869 + 0.118207i
\(676\) 0 0
\(677\) 24.3076 0.934217 0.467109 0.884200i \(-0.345296\pi\)
0.467109 + 0.884200i \(0.345296\pi\)
\(678\) 0 0
\(679\) 13.1366 0.504136
\(680\) 0 0
\(681\) −7.02792 −0.269311
\(682\) 0 0
\(683\) −38.5933 −1.47673 −0.738365 0.674401i \(-0.764402\pi\)
−0.738365 + 0.674401i \(0.764402\pi\)
\(684\) 0 0
\(685\) −12.7159 + 37.0393i −0.485848 + 1.41520i
\(686\) 0 0
\(687\) 4.17034i 0.159108i
\(688\) 0 0
\(689\) 1.13659 0.0433006
\(690\) 0 0
\(691\) 13.4090i 0.510102i −0.966928 0.255051i \(-0.917908\pi\)
0.966928 0.255051i \(-0.0820923\pi\)
\(692\) 0 0
\(693\) −4.00000 −0.151947
\(694\) 0 0
\(695\) −12.2423 + 35.6599i −0.464377 + 1.35266i
\(696\) 0 0
\(697\) 2.57053i 0.0973657i
\(698\) 0 0
\(699\) 23.9894i 0.907362i
\(700\) 0 0
\(701\) 15.6013i 0.589253i −0.955613 0.294626i \(-0.904805\pi\)
0.955613 0.294626i \(-0.0951952\pi\)
\(702\) 0 0
\(703\) 2.46339i 0.0929086i
\(704\) 0 0
\(705\) −1.89134 + 5.50917i −0.0712318 + 0.207487i
\(706\) 0 0
\(707\) −17.6740 −0.664699
\(708\) 0 0
\(709\) 15.7873i 0.592906i −0.955047 0.296453i \(-0.904196\pi\)
0.955047 0.296453i \(-0.0958038\pi\)
\(710\) 0 0
\(711\) −3.28415 −0.123165
\(712\) 0 0
\(713\) 11.6170i 0.435060i
\(714\) 0 0
\(715\) 3.54037 10.3126i 0.132402 0.385668i
\(716\) 0 0
\(717\) −8.91926 −0.333096
\(718\) 0 0
\(719\) 22.5683 0.841655 0.420828 0.907141i \(-0.361740\pi\)
0.420828 + 0.907141i \(0.361740\pi\)
\(720\) 0 0
\(721\) 61.1616 2.27778
\(722\) 0 0
\(723\) −16.3510 −0.608099
\(724\) 0 0
\(725\) 23.3230 29.9647i 0.866196 1.11286i
\(726\) 0 0
\(727\) 2.79096i 0.103511i −0.998660 0.0517554i \(-0.983518\pi\)
0.998660 0.0517554i \(-0.0164816\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 38.2649i 1.41528i
\(732\) 0 0
\(733\) 16.4860 0.608926 0.304463 0.952524i \(-0.401523\pi\)
0.304463 + 0.952524i \(0.401523\pi\)
\(734\) 0 0
\(735\) 20.0062 + 6.86828i 0.737941 + 0.253340i
\(736\) 0 0
\(737\) 8.34068i 0.307233i
\(738\) 0 0
\(739\) 14.8894i 0.547714i 0.961770 + 0.273857i \(0.0882995\pi\)
−0.961770 + 0.273857i \(0.911701\pi\)
\(740\) 0 0
\(741\) 12.8831i 0.473272i
\(742\) 0 0
\(743\) 41.4301i 1.51992i 0.649968 + 0.759961i \(0.274782\pi\)
−0.649968 + 0.759961i \(0.725218\pi\)
\(744\) 0 0
\(745\) −7.62263 + 22.2035i −0.279271 + 0.813475i
\(746\) 0 0
\(747\) −9.89134 −0.361905
\(748\) 0 0
\(749\) 16.2282i 0.592965i
\(750\) 0 0
\(751\) −30.5544 −1.11494 −0.557472 0.830195i \(-0.688229\pi\)
−0.557472 + 0.830195i \(0.688229\pi\)
\(752\) 0 0
\(753\) 4.22391i 0.153928i
\(754\) 0 0
\(755\) 9.97359 + 3.42400i 0.362976 + 0.124612i
\(756\) 0 0
\(757\) −0.433223 −0.0157457 −0.00787287 0.999969i \(-0.502506\pi\)
−0.00787287 + 0.999969i \(0.502506\pi\)
\(758\) 0 0
\(759\) −3.48755 −0.126590
\(760\) 0 0
\(761\) −14.9193 −0.540823 −0.270411 0.962745i \(-0.587160\pi\)
−0.270411 + 0.962745i \(0.587160\pi\)
\(762\) 0 0
\(763\) −16.9193 −0.612518
\(764\) 0 0
\(765\) 3.28415 9.56622i 0.118739 0.345867i
\(766\) 0 0
\(767\) 45.0057i 1.62506i
\(768\) 0 0
\(769\) 31.3789 1.13155 0.565776 0.824559i \(-0.308577\pi\)
0.565776 + 0.824559i \(0.308577\pi\)
\(770\) 0 0
\(771\) 24.6952i 0.889375i
\(772\) 0 0
\(773\) −13.4192 −0.482656 −0.241328 0.970444i \(-0.577583\pi\)
−0.241328 + 0.970444i \(0.577583\pi\)
\(774\) 0 0
\(775\) 12.9582 + 10.0860i 0.465471 + 0.362299i
\(776\) 0 0
\(777\) 3.83662i 0.137638i
\(778\) 0 0
\(779\) 1.48036i 0.0530395i
\(780\) 0 0
\(781\) 1.41157i 0.0505101i
\(782\) 0 0
\(783\) 7.59434i 0.271400i
\(784\) 0 0
\(785\) 18.9193 + 6.49511i 0.675257 + 0.231820i
\(786\) 0 0
\(787\) 36.4846 1.30054 0.650268 0.759705i \(-0.274657\pi\)
0.650268 + 0.759705i \(0.274657\pi\)
\(788\) 0 0
\(789\) 14.6628i 0.522009i
\(790\) 0 0
\(791\) −5.21438 −0.185402
\(792\) 0 0
\(793\) 54.4931i 1.93511i
\(794\) 0 0
\(795\) −0.486038 0.166860i −0.0172380 0.00591791i
\(796\) 0 0
\(797\) 26.0683 0.923388 0.461694 0.887039i \(-0.347242\pi\)
0.461694 + 0.887039i \(0.347242\pi\)
\(798\) 0 0
\(799\) 11.7827 0.416841
\(800\) 0 0
\(801\) 12.3510 0.436400
\(802\) 0 0
\(803\) 11.7827 0.415801
\(804\) 0 0
\(805\) 30.3510 + 10.4197i 1.06973 + 0.367246i
\(806\) 0 0
\(807\) 11.5381i 0.406160i
\(808\) 0 0
\(809\) −35.6212 −1.25237 −0.626187 0.779673i \(-0.715385\pi\)
−0.626187 + 0.779673i \(0.715385\pi\)
\(810\) 0 0
\(811\) 43.8935i 1.54131i 0.637253 + 0.770654i \(0.280071\pi\)
−0.637253 + 0.770654i \(0.719929\pi\)
\(812\) 0 0
\(813\) −5.63511 −0.197632
\(814\) 0 0
\(815\) −33.3789 11.4592i −1.16921 0.401398i
\(816\) 0 0
\(817\) 22.0367i 0.770966i
\(818\) 0 0
\(819\) 20.0648i 0.701121i
\(820\) 0 0
\(821\) 28.8058i 1.00533i 0.864482 + 0.502665i \(0.167647\pi\)
−0.864482 + 0.502665i \(0.832353\pi\)
\(822\) 0 0
\(823\) 27.9585i 0.974571i 0.873243 + 0.487286i \(0.162013\pi\)
−0.873243 + 0.487286i \(0.837987\pi\)
\(824\) 0 0
\(825\) −3.02792 + 3.89019i −0.105419 + 0.135439i
\(826\) 0 0
\(827\) 14.8634 0.516851 0.258426 0.966031i \(-0.416796\pi\)
0.258426 + 0.966031i \(0.416796\pi\)
\(828\) 0 0
\(829\) 41.7678i 1.45065i 0.688404 + 0.725327i \(0.258312\pi\)
−0.688404 + 0.725327i \(0.741688\pi\)
\(830\) 0 0
\(831\) 17.4053 0.603783
\(832\) 0 0
\(833\) 42.7881i 1.48252i
\(834\) 0 0
\(835\) −4.00000 + 11.6514i −0.138426 + 0.403213i
\(836\) 0 0
\(837\) 3.28415 0.113517
\(838\) 0 0
\(839\) −21.6490 −0.747408 −0.373704 0.927548i \(-0.621912\pi\)
−0.373704 + 0.927548i \(0.621912\pi\)
\(840\) 0 0
\(841\) −28.6740 −0.988759
\(842\) 0 0
\(843\) 21.7827 0.750235
\(844\) 0 0
\(845\) −24.2361 8.32040i −0.833746 0.286231i
\(846\) 0 0
\(847\) 40.6838i 1.39791i
\(848\) 0 0
\(849\) −21.5962 −0.741180
\(850\) 0 0
\(851\) 3.34510i 0.114669i
\(852\) 0 0
\(853\) −49.1880 −1.68416 −0.842082 0.539350i \(-0.818670\pi\)
−0.842082 + 0.539350i \(0.818670\pi\)
\(854\) 0 0
\(855\) 1.89134 5.50917i 0.0646823 0.188410i
\(856\) 0 0
\(857\) 2.65849i 0.0908123i −0.998969 0.0454062i \(-0.985542\pi\)
0.998969 0.0454062i \(-0.0144582\pi\)
\(858\) 0 0
\(859\) 4.57680i 0.156158i −0.996947 0.0780792i \(-0.975121\pi\)
0.996947 0.0780792i \(-0.0248787\pi\)
\(860\) 0 0
\(861\) 2.30560i 0.0785746i
\(862\) 0 0
\(863\) 34.0218i 1.15812i −0.815287 0.579058i \(-0.803421\pi\)
0.815287 0.579058i \(-0.196579\pi\)
\(864\) 0 0
\(865\) −21.8649 7.50638i −0.743430 0.255224i
\(866\) 0 0
\(867\) −3.45963 −0.117495
\(868\) 0 0
\(869\) 3.23797i 0.109841i
\(870\) 0 0
\(871\) 41.8385 1.41764
\(872\) 0 0
\(873\) 3.23797i 0.109589i
\(874\) 0 0
\(875\) 37.9736 24.8085i 1.28374 0.838679i
\(876\) 0 0
\(877\) 11.7563 0.396981 0.198490 0.980103i \(-0.436396\pi\)
0.198490 + 0.980103i \(0.436396\pi\)
\(878\) 0 0
\(879\) −32.0125 −1.07975
\(880\) 0 0
\(881\) 13.2702 0.447085 0.223543 0.974694i \(-0.428238\pi\)
0.223543 + 0.974694i \(0.428238\pi\)
\(882\) 0 0
\(883\) 17.1366 0.576692 0.288346 0.957526i \(-0.406895\pi\)
0.288346 + 0.957526i \(0.406895\pi\)
\(884\) 0 0
\(885\) −6.60719 + 19.2457i −0.222098 + 0.646938i
\(886\) 0 0
\(887\) 32.0883i 1.07742i 0.842492 + 0.538709i \(0.181088\pi\)
−0.842492 + 0.538709i \(0.818912\pi\)
\(888\) 0 0
\(889\) −4.67696 −0.156860
\(890\) 0 0
\(891\) 0.985939i 0.0330302i
\(892\) 0 0
\(893\) 6.78562 0.227072
\(894\) 0 0
\(895\) 11.7438 34.2078i 0.392551 1.14344i
\(896\) 0 0
\(897\) 17.4943i 0.584117i
\(898\) 0 0
\(899\) 24.9409i 0.831827i
\(900\) 0 0
\(901\) 1.03951i 0.0346310i
\(902\) 0 0
\(903\) 34.3211i 1.14214i
\(904\) 0 0
\(905\) 5.89134 17.1606i 0.195835 0.570436i
\(906\) 0 0
\(907\) −40.4596 −1.34344 −0.671720 0.740805i \(-0.734444\pi\)
−0.671720 + 0.740805i \(0.734444\pi\)
\(908\) 0 0
\(909\) 4.35637i 0.144492i
\(910\) 0 0
\(911\) −16.0000 −0.530104 −0.265052 0.964234i \(-0.585389\pi\)
−0.265052 + 0.964234i \(0.585389\pi\)
\(912\) 0 0
\(913\) 9.75225i 0.322752i
\(914\) 0 0
\(915\) 8.00000 23.3028i 0.264472 0.770366i
\(916\) 0 0
\(917\) −15.7827 −0.521190
\(918\) 0 0
\(919\) 50.8495 1.67737 0.838685 0.544617i \(-0.183325\pi\)
0.838685 + 0.544617i \(0.183325\pi\)
\(920\) 0 0
\(921\) 1.13659 0.0374519
\(922\) 0 0
\(923\) −7.08074 −0.233065
\(924\) 0 0
\(925\) −3.73129 2.90425i −0.122684 0.0954911i
\(926\) 0 0
\(927\) 15.0754i 0.495141i
\(928\) 0 0
\(929\) −12.6461 −0.414904 −0.207452 0.978245i \(-0.566517\pi\)
−0.207452 + 0.978245i \(0.566517\pi\)
\(930\) 0 0
\(931\) 24.6416i 0.807596i
\(932\) 0 0
\(933\) −5.13659 −0.168164
\(934\) 0 0
\(935\) 9.43171 + 3.23797i 0.308450 + 0.105893i
\(936\) 0 0
\(937\) 40.7971i 1.33278i −0.745603 0.666391i \(-0.767838\pi\)
0.745603 0.666391i \(-0.232162\pi\)
\(938\) 0 0
\(939\) 23.0762i 0.753063i
\(940\) 0 0
\(941\) 14.1086i 0.459928i 0.973199 + 0.229964i \(0.0738608\pi\)
−0.973199 + 0.229964i \(0.926139\pi\)
\(942\) 0 0
\(943\) 2.01022i 0.0654619i
\(944\) 0 0
\(945\) 2.94567 8.58028i 0.0958226 0.279117i
\(946\) 0 0
\(947\) −45.8385 −1.48955 −0.744776 0.667315i \(-0.767444\pi\)
−0.744776 + 0.667315i \(0.767444\pi\)
\(948\) 0 0
\(949\) 59.1043i 1.91861i
\(950\) 0 0
\(951\) 1.66152 0.0538785
\(952\) 0 0
\(953\) 21.9104i 0.709747i 0.934914 + 0.354873i \(0.115476\pi\)
−0.934914 + 0.354873i \(0.884524\pi\)
\(954\) 0 0
\(955\) −52.7019 18.0929i −1.70539 0.585473i
\(956\) 0 0
\(957\) 7.48755 0.242038
\(958\) 0 0
\(959\) 71.0529 2.29442
\(960\) 0 0
\(961\) −20.2144 −0.652077
\(962\) 0 0
\(963\) −4.00000 −0.128898
\(964\) 0 0
\(965\) −0.754747 + 2.19846i −0.0242962 + 0.0707710i
\(966\) 0 0
\(967\) 14.0359i 0.451364i −0.974201 0.225682i \(-0.927539\pi\)
0.974201 0.225682i \(-0.0724610\pi\)
\(968\) 0 0
\(969\) −11.7827 −0.378514
\(970\) 0 0
\(971\) 21.6494i 0.694762i 0.937724 + 0.347381i \(0.112929\pi\)
−0.937724 + 0.347381i \(0.887071\pi\)
\(972\) 0 0
\(973\) 68.4068 2.19302
\(974\) 0 0
\(975\) 19.5140 + 15.1887i 0.624947 + 0.486427i
\(976\) 0 0
\(977\) 6.60225i 0.211225i 0.994407 + 0.105612i \(0.0336802\pi\)
−0.994407 + 0.105612i \(0.966320\pi\)
\(978\) 0 0
\(979\) 12.1773i 0.389188i
\(980\) 0 0
\(981\) 4.17034i 0.133149i
\(982\) 0 0
\(983\) 53.8600i 1.71787i −0.512087 0.858934i \(-0.671127\pi\)
0.512087 0.858934i \(-0.328873\pi\)
\(984\) 0 0
\(985\) −20.4332 7.01486i −0.651057 0.223512i
\(986\) 0 0
\(987\) 10.5683 0.336393
\(988\) 0 0
\(989\) 29.9242i 0.951534i
\(990\) 0 0
\(991\) −29.7129 −0.943861 −0.471931 0.881636i \(-0.656443\pi\)
−0.471931 + 0.881636i \(0.656443\pi\)
\(992\) 0 0
\(993\) 25.9077i 0.822156i
\(994\) 0 0
\(995\) −48.7842 16.7479i −1.54656 0.530945i
\(996\) 0 0
\(997\) 16.6506 0.527328 0.263664 0.964615i \(-0.415069\pi\)
0.263664 + 0.964615i \(0.415069\pi\)
\(998\) 0 0
\(999\) −0.945668 −0.0299196
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.2.d.b.49.1 6
3.2 odd 2 1440.2.d.f.1009.6 6
4.3 odd 2 120.2.d.b.109.3 yes 6
5.2 odd 4 2400.2.k.f.1201.1 12
5.3 odd 4 2400.2.k.f.1201.12 12
5.4 even 2 480.2.d.a.49.5 6
8.3 odd 2 120.2.d.a.109.3 6
8.5 even 2 480.2.d.a.49.6 6
12.11 even 2 360.2.d.e.109.4 6
15.2 even 4 7200.2.k.u.3601.1 12
15.8 even 4 7200.2.k.u.3601.11 12
15.14 odd 2 1440.2.d.e.1009.2 6
16.3 odd 4 3840.2.f.l.769.3 12
16.5 even 4 3840.2.f.m.769.4 12
16.11 odd 4 3840.2.f.l.769.10 12
16.13 even 4 3840.2.f.m.769.9 12
20.3 even 4 600.2.k.f.301.1 12
20.7 even 4 600.2.k.f.301.12 12
20.19 odd 2 120.2.d.a.109.4 yes 6
24.5 odd 2 1440.2.d.e.1009.1 6
24.11 even 2 360.2.d.f.109.4 6
40.3 even 4 600.2.k.f.301.2 12
40.13 odd 4 2400.2.k.f.1201.6 12
40.19 odd 2 120.2.d.b.109.4 yes 6
40.27 even 4 600.2.k.f.301.11 12
40.29 even 2 inner 480.2.d.b.49.2 6
40.37 odd 4 2400.2.k.f.1201.7 12
60.23 odd 4 1800.2.k.u.901.12 12
60.47 odd 4 1800.2.k.u.901.1 12
60.59 even 2 360.2.d.f.109.3 6
80.19 odd 4 3840.2.f.l.769.9 12
80.29 even 4 3840.2.f.m.769.3 12
80.59 odd 4 3840.2.f.l.769.4 12
80.69 even 4 3840.2.f.m.769.10 12
120.29 odd 2 1440.2.d.f.1009.5 6
120.53 even 4 7200.2.k.u.3601.12 12
120.59 even 2 360.2.d.e.109.3 6
120.77 even 4 7200.2.k.u.3601.2 12
120.83 odd 4 1800.2.k.u.901.11 12
120.107 odd 4 1800.2.k.u.901.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.2.d.a.109.3 6 8.3 odd 2
120.2.d.a.109.4 yes 6 20.19 odd 2
120.2.d.b.109.3 yes 6 4.3 odd 2
120.2.d.b.109.4 yes 6 40.19 odd 2
360.2.d.e.109.3 6 120.59 even 2
360.2.d.e.109.4 6 12.11 even 2
360.2.d.f.109.3 6 60.59 even 2
360.2.d.f.109.4 6 24.11 even 2
480.2.d.a.49.5 6 5.4 even 2
480.2.d.a.49.6 6 8.5 even 2
480.2.d.b.49.1 6 1.1 even 1 trivial
480.2.d.b.49.2 6 40.29 even 2 inner
600.2.k.f.301.1 12 20.3 even 4
600.2.k.f.301.2 12 40.3 even 4
600.2.k.f.301.11 12 40.27 even 4
600.2.k.f.301.12 12 20.7 even 4
1440.2.d.e.1009.1 6 24.5 odd 2
1440.2.d.e.1009.2 6 15.14 odd 2
1440.2.d.f.1009.5 6 120.29 odd 2
1440.2.d.f.1009.6 6 3.2 odd 2
1800.2.k.u.901.1 12 60.47 odd 4
1800.2.k.u.901.2 12 120.107 odd 4
1800.2.k.u.901.11 12 120.83 odd 4
1800.2.k.u.901.12 12 60.23 odd 4
2400.2.k.f.1201.1 12 5.2 odd 4
2400.2.k.f.1201.6 12 40.13 odd 4
2400.2.k.f.1201.7 12 40.37 odd 4
2400.2.k.f.1201.12 12 5.3 odd 4
3840.2.f.l.769.3 12 16.3 odd 4
3840.2.f.l.769.4 12 80.59 odd 4
3840.2.f.l.769.9 12 80.19 odd 4
3840.2.f.l.769.10 12 16.11 odd 4
3840.2.f.m.769.3 12 80.29 even 4
3840.2.f.m.769.4 12 16.5 even 4
3840.2.f.m.769.9 12 16.13 even 4
3840.2.f.m.769.10 12 80.69 even 4
7200.2.k.u.3601.1 12 15.2 even 4
7200.2.k.u.3601.2 12 120.77 even 4
7200.2.k.u.3601.11 12 15.8 even 4
7200.2.k.u.3601.12 12 120.53 even 4