Properties

Label 3872.1.r.b.3361.3
Level 38723872
Weight 11
Character 3872.3361
Analytic conductor 1.9321.932
Analytic rank 00
Dimension 1616
Projective image D12D_{12}
CM discriminant -4
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3872,1,Mod(161,3872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3872, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3872.161");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3872=25112 3872 = 2^{5} \cdot 11^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3872.r (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.932379728911.93237972891
Analytic rank: 00
Dimension: 1616
Relative dimension: 44 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: 16.0.6879707136000000000000.7
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x164x14+15x1256x10+209x856x6+15x44x2+1 x^{16} - 4x^{14} + 15x^{12} - 56x^{10} + 209x^{8} - 56x^{6} + 15x^{4} - 4x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D12D_{12}
Projective field: Galois closure of 12.0.18698185645162496.1

Embedding invariants

Embedding label 3361.3
Root 1.135511.56290i1.13551 - 1.56290i of defining polynomial
Character χ\chi == 3872.3361
Dual form 3872.1.r.b.3137.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.5352331.64728i)q5+(0.3090170.951057i)q9+(1.83730+0.596975i)q13+(0.4923030.159959i)q17+(1.618031.17557i)q25+(0.3042600.418778i)q29+(0.809017+0.587785i)q37+(1.135511.56290i)q411.73205q45+(0.3090170.951057i)q49+(0.309017+0.951057i)q53+(1.345000.437016i)q61+3.34607iq65+(0.831254+1.14412i)q73+(0.809017+0.587785i)q81+(0.526994+0.725345i)q851.00000q89+(0.5352331.64728i)q97+O(q100)q+(0.535233 - 1.64728i) q^{5} +(-0.309017 - 0.951057i) q^{9} +(-1.83730 + 0.596975i) q^{13} +(-0.492303 - 0.159959i) q^{17} +(-1.61803 - 1.17557i) q^{25} +(-0.304260 - 0.418778i) q^{29} +(-0.809017 + 0.587785i) q^{37} +(1.13551 - 1.56290i) q^{41} -1.73205 q^{45} +(0.309017 - 0.951057i) q^{49} +(0.309017 + 0.951057i) q^{53} +(-1.34500 - 0.437016i) q^{61} +3.34607i q^{65} +(0.831254 + 1.14412i) q^{73} +(-0.809017 + 0.587785i) q^{81} +(-0.526994 + 0.725345i) q^{85} -1.00000 q^{89} +(-0.535233 - 1.64728i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+4q98q254q374q494q534q8116q89+O(q100) 16 q + 4 q^{9} - 8 q^{25} - 4 q^{37} - 4 q^{49} - 4 q^{53} - 4 q^{81} - 16 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3872Z)×\left(\mathbb{Z}/3872\mathbb{Z}\right)^\times.

nn 485485 16951695 27852785
χ(n)\chi(n) 11 11 e(910)e\left(\frac{9}{10}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
44 0 0
55 0.535233 1.64728i 0.535233 1.64728i −0.207912 0.978148i 0.566667π-0.566667\pi
0.743145 0.669131i 0.233333π-0.233333\pi
66 0 0
77 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
88 0 0
99 −0.309017 0.951057i −0.309017 0.951057i
1010 0 0
1111 0 0
1212 0 0
1313 −1.83730 + 0.596975i −1.83730 + 0.596975i −0.838671 + 0.544639i 0.816667π0.816667\pi
−0.998630 + 0.0523360i 0.983333π0.983333\pi
1414 0 0
1515 0 0
1616 0 0
1717 −0.492303 0.159959i −0.492303 0.159959i 0.0523360 0.998630i 0.483333π-0.483333\pi
−0.544639 + 0.838671i 0.683333π0.683333\pi
1818 0 0
1919 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 −1.61803 1.17557i −1.61803 1.17557i
2626 0 0
2727 0 0
2828 0 0
2929 −0.304260 0.418778i −0.304260 0.418778i 0.629320 0.777146i 0.283333π-0.283333\pi
−0.933580 + 0.358368i 0.883333π0.883333\pi
3030 0 0
3131 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
3838 0 0
3939 0 0
4040 0 0
4141 1.13551 1.56290i 1.13551 1.56290i 0.358368 0.933580i 0.383333π-0.383333\pi
0.777146 0.629320i 0.216667π-0.216667\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 −1.73205 −1.73205
4646 0 0
4747 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
4848 0 0
4949 0.309017 0.951057i 0.309017 0.951057i
5050 0 0
5151 0 0
5252 0 0
5353 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
6060 0 0
6161 −1.34500 0.437016i −1.34500 0.437016i −0.453990 0.891007i 0.650000π-0.650000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
6262 0 0
6363 0 0
6464 0 0
6565 3.34607i 3.34607i
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
7272 0 0
7373 0.831254 + 1.14412i 0.831254 + 1.14412i 0.987688 + 0.156434i 0.0500000π0.0500000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
8080 0 0
8181 −0.809017 + 0.587785i −0.809017 + 0.587785i
8282 0 0
8383 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
8484 0 0
8585 −0.526994 + 0.725345i −0.526994 + 0.725345i
8686 0 0
8787 0 0
8888 0 0
8989 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −0.535233 1.64728i −0.535233 1.64728i −0.743145 0.669131i 0.766667π-0.766667\pi
0.207912 0.978148i 0.433333π-0.433333\pi
9898 0 0
9999 0 0
100100 0 0
101101 1.34500 0.437016i 1.34500 0.437016i 0.453990 0.891007i 0.350000π-0.350000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
102102 0 0
103103 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
108108 0 0
109109 0.517638i 0.517638i −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
110110 0 0
111111 0 0
112112 0 0
113113 1.40126 + 1.01807i 1.40126 + 1.01807i 0.994522 + 0.104528i 0.0333333π0.0333333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
114114 0 0
115115 0 0
116116 0 0
117117 1.13551 + 1.56290i 1.13551 + 1.56290i
118118 0 0
119119 0 0
120120 0 0
121121 0 0
122122 0 0
123123 0 0
124124 0 0
125125 −1.40126 + 1.01807i −1.40126 + 1.01807i
126126 0 0
127127 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
138138 0 0
139139 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 −0.852694 + 0.277057i −0.852694 + 0.277057i
146146 0 0
147147 0 0
148148 0 0
149149 −1.83730 0.596975i −1.83730 0.596975i −0.998630 0.0523360i 0.983333π-0.983333\pi
−0.838671 0.544639i 0.816667π-0.816667\pi
150150 0 0
151151 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
152152 0 0
153153 0.517638i 0.517638i
154154 0 0
155155 0 0
156156 0 0
157157 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
168168 0 0
169169 2.21028 1.60586i 2.21028 1.60586i
170170 0 0
171171 0 0
172172 0 0
173173 0.831254 1.14412i 0.831254 1.14412i −0.156434 0.987688i 0.550000π-0.550000\pi
0.987688 0.156434i 0.0500000π-0.0500000\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
180180 0 0
181181 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
182182 0 0
183183 0 0
184184 0 0
185185 0.535233 + 1.64728i 0.535233 + 1.64728i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
192192 0 0
193193 1.83730 + 0.596975i 1.83730 + 0.596975i 0.998630 + 0.0523360i 0.0166667π0.0166667\pi
0.838671 + 0.544639i 0.183333π0.183333\pi
194194 0 0
195195 0 0
196196 0 0
197197 1.93185i 1.93185i −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 0.965926i 0.416667π-0.416667\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 −1.96677 2.70702i −1.96677 2.70702i
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 1.00000 1.00000
222222 0 0
223223 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
224224 0 0
225225 −0.618034 + 1.90211i −0.618034 + 1.90211i
226226 0 0
227227 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
228228 0 0
229229 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
230230 0 0
231231 0 0
232232 0 0
233233 −0.492303 + 0.159959i −0.492303 + 0.159959i −0.544639 0.838671i 0.683333π-0.683333\pi
0.0523360 + 0.998630i 0.483333π0.483333\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
240240 0 0
241241 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
242242 0 0
243243 0 0
244244 0 0
245245 −1.40126 1.01807i −1.40126 1.01807i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
258258 0 0
259259 0 0
260260 0 0
261261 −0.304260 + 0.418778i −0.304260 + 0.418778i
262262 0 0
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 1.73205 1.73205
266266 0 0
267267 0 0
268268 0 0
269269 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
270270 0 0
271271 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 −0.492303 + 0.159959i −0.492303 + 0.159959i −0.544639 0.838671i 0.683333π-0.683333\pi
0.0523360 + 0.998630i 0.483333π0.483333\pi
278278 0 0
279279 0 0
280280 0 0
281281 1.34500 + 0.437016i 1.34500 + 0.437016i 0.891007 0.453990i 0.150000π-0.150000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
282282 0 0
283283 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −0.592242 0.430289i −0.592242 0.430289i
290290 0 0
291291 0 0
292292 0 0
293293 0.304260 + 0.418778i 0.304260 + 0.418778i 0.933580 0.358368i 0.116667π-0.116667\pi
−0.629320 + 0.777146i 0.716667π0.716667\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −1.43977 + 1.98168i −1.43977 + 1.98168i
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
312312 0 0
313313 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 3.67460 + 1.19395i 3.67460 + 1.19395i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 0.809017 + 0.587785i 0.809017 + 0.587785i
334334 0 0
335335 0 0
336336 0 0
337337 −1.13551 1.56290i −1.13551 1.56290i −0.777146 0.629320i 0.783333π-0.783333\pi
−0.358368 0.933580i 0.616667π-0.616667\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
348348 0 0
349349 −1.13551 + 1.56290i −1.13551 + 1.56290i −0.358368 + 0.933580i 0.616667π0.616667\pi
−0.777146 + 0.629320i 0.783333π0.783333\pi
350350 0 0
351351 0 0
352352 0 0
353353 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
360360 0 0
361361 0.309017 + 0.951057i 0.309017 + 0.951057i
362362 0 0
363363 0 0
364364 0 0
365365 2.32960 0.756934i 2.32960 0.756934i
366366 0 0
367367 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
368368 0 0
369369 −1.83730 0.596975i −1.83730 0.596975i
370370 0 0
371371 0 0
372372 0 0
373373 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
374374 0 0
375375 0 0
376376 0 0
377377 0.809017 + 0.587785i 0.809017 + 0.587785i
378378 0 0
379379 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 1.40126 1.01807i 1.40126 1.01807i 0.406737 0.913545i 0.366667π-0.366667\pi
0.994522 0.104528i 0.0333333π-0.0333333\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
398398 0 0
399399 0 0
400400 0 0
401401 −0.535233 + 1.64728i −0.535233 + 1.64728i 0.207912 + 0.978148i 0.433333π0.433333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
402402 0 0
403403 0 0
404404 0 0
405405 0.535233 + 1.64728i 0.535233 + 1.64728i
406406 0 0
407407 0 0
408408 0 0
409409 1.83730 0.596975i 1.83730 0.596975i 0.838671 0.544639i 0.183333π-0.183333\pi
0.998630 0.0523360i 0.0166667π-0.0166667\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 1.40126 + 1.01807i 1.40126 + 1.01807i 0.994522 + 0.104528i 0.0333333π0.0333333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
422422 0 0
423423 0 0
424424 0 0
425425 0.608520 + 0.837556i 0.608520 + 0.837556i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
432432 0 0
433433 −1.40126 + 1.01807i −1.40126 + 1.01807i −0.406737 + 0.913545i 0.633333π0.633333\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 −1.00000 −1.00000
442442 0 0
443443 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
444444 0 0
445445 −0.535233 + 1.64728i −0.535233 + 1.64728i
446446 0 0
447447 0 0
448448 0 0
449449 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0.492303 + 0.159959i 0.492303 + 0.159959i 0.544639 0.838671i 0.316667π-0.316667\pi
−0.0523360 + 0.998630i 0.516667π0.516667\pi
458458 0 0
459459 0 0
460460 0 0
461461 0.517638i 0.517638i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0.809017 0.587785i 0.809017 0.587785i
478478 0 0
479479 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
480480 0 0
481481 1.13551 1.56290i 1.13551 1.56290i
482482 0 0
483483 0 0
484484 0 0
485485 −3.00000 −3.00000
486486 0 0
487487 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
492492 0 0
493493 0.0828009 + 0.254835i 0.0828009 + 0.254835i
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
504504 0 0
505505 2.44949i 2.44949i
506506 0 0
507507 0 0
508508 0 0
509509 1.61803 + 1.17557i 1.61803 + 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
522522 0 0
523523 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −1.00000 −1.00000
530530 0 0
531531 0 0
532532 0 0
533533 −1.15327 + 3.54939i −1.15327 + 3.54939i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 −1.34500 + 0.437016i −1.34500 + 0.437016i −0.891007 0.453990i 0.850000π-0.850000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
542542 0 0
543543 0 0
544544 0 0
545545 −0.852694 0.277057i −0.852694 0.277057i
546546 0 0
547547 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
548548 0 0
549549 1.41421i 1.41421i
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0.831254 + 1.14412i 0.831254 + 1.14412i 0.987688 + 0.156434i 0.0500000π0.0500000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
564564 0 0
565565 2.42705 1.76336i 2.42705 1.76336i
566566 0 0
567567 0 0
568568 0 0
569569 −0.831254 + 1.14412i −0.831254 + 1.14412i 0.156434 + 0.987688i 0.450000π0.450000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −0.535233 + 1.64728i −0.535233 + 1.64728i 0.207912 + 0.978148i 0.433333π0.433333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 3.18230 1.03399i 3.18230 1.03399i
586586 0 0
587587 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 1.93185i 1.93185i −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 0.965926i 0.416667π-0.416667\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
600600 0 0
601601 0.304260 + 0.418778i 0.304260 + 0.418778i 0.933580 0.358368i 0.116667π-0.116667\pi
−0.629320 + 0.777146i 0.716667π0.716667\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 1.13551 1.56290i 1.13551 1.56290i 0.358368 0.933580i 0.383333π-0.383333\pi
0.777146 0.629320i 0.216667π-0.216667\pi
614614 0 0
615615 0 0
616616 0 0
617617 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
618618 0 0
619619 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.309017 + 0.951057i 0.309017 + 0.951057i
626626 0 0
627627 0 0
628628 0 0
629629 0.492303 0.159959i 0.492303 0.159959i
630630 0 0
631631 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 1.93185i 1.93185i
638638 0 0
639639 0 0
640640 0 0
641641 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
642642 0 0
643643 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −1.61803 + 1.17557i −1.61803 + 1.17557i −0.809017 + 0.587785i 0.800000π0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
654654 0 0
655655 0 0
656656 0 0
657657 0.831254 1.14412i 0.831254 1.14412i
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 1.34500 0.437016i 1.34500 0.437016i 0.453990 0.891007i 0.350000π-0.350000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
674674 0 0
675675 0 0
676676 0 0
677677 0.492303 + 0.159959i 0.492303 + 0.159959i 0.544639 0.838671i 0.316667π-0.316667\pi
−0.0523360 + 0.998630i 0.516667π0.516667\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 −1.13551 1.56290i −1.13551 1.56290i
690690 0 0
691691 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 −0.809017 + 0.587785i −0.809017 + 0.587785i
698698 0 0
699699 0 0
700700 0 0
701701 −1.13551 + 1.56290i −1.13551 + 1.56290i −0.358368 + 0.933580i 0.616667π0.616667\pi
−0.777146 + 0.629320i 0.783333π0.783333\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 1.03528i 1.03528i
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 0.809017 + 0.587785i 0.809017 + 0.587785i
730730 0 0
731731 0 0
732732 0 0
733733 0.304260 + 0.418778i 0.304260 + 0.418778i 0.933580 0.358368i 0.116667π-0.116667\pi
−0.629320 + 0.777146i 0.716667π0.716667\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
744744 0 0
745745 −1.96677 + 2.70702i −1.96677 + 2.70702i
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0.535233 + 1.64728i 0.535233 + 1.64728i 0.743145 + 0.669131i 0.233333π0.233333\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
758758 0 0
759759 0 0
760760 0 0
761761 −1.83730 + 0.596975i −1.83730 + 0.596975i −0.838671 + 0.544639i 0.816667π0.816667\pi
−0.998630 + 0.0523360i 0.983333π0.983333\pi
762762 0 0
763763 0 0
764764 0 0
765765 0.852694 + 0.277057i 0.852694 + 0.277057i
766766 0 0
767767 0 0
768768 0 0
769769 0.517638i 0.517638i −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
770770 0 0
771771 0 0
772772 0 0
773773 −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 0.587785i 0.800000π-0.800000\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 2.73205 2.73205
794794 0 0
795795 0 0
796796 0 0
797797 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
798798 0 0
799799 0 0
800800 0 0
801801 0.309017 + 0.951057i 0.309017 + 0.951057i
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 1.34500 + 0.437016i 1.34500 + 0.437016i 0.891007 0.453990i 0.150000π-0.150000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
810810 0 0
811811 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0.831254 + 1.14412i 0.831254 + 1.14412i 0.987688 + 0.156434i 0.0500000π0.0500000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
822822 0 0
823823 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
828828 0 0
829829 1.40126 1.01807i 1.40126 1.01807i 0.406737 0.913545i 0.366667π-0.366667\pi
0.994522 0.104528i 0.0333333π-0.0333333\pi
830830 0 0
831831 0 0
832832 0 0
833833 −0.304260 + 0.418778i −0.304260 + 0.418778i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
840840 0 0
841841 0.226216 0.696222i 0.226216 0.696222i
842842 0 0
843843 0 0
844844 0 0
845845 −1.46228 4.50045i −1.46228 4.50045i
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 −0.492303 0.159959i −0.492303 0.159959i 0.0523360 0.998630i 0.483333π-0.483333\pi
−0.544639 + 0.838671i 0.683333π0.683333\pi
854854 0 0
855855 0 0
856856 0 0
857857 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
864864 0 0
865865 −1.43977 1.98168i −1.43977 1.98168i
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 −1.40126 + 1.01807i −1.40126 + 1.01807i
874874 0 0
875875 0 0
876876 0 0
877877 −0.304260 + 0.418778i −0.304260 + 0.418778i −0.933580 0.358368i 0.883333π-0.883333\pi
0.629320 + 0.777146i 0.283333π0.283333\pi
878878 0 0
879879 0 0
880880 0 0
881881 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
882882 0 0
883883 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0.517638i 0.517638i
902902 0 0
903903 0 0
904904 0 0
905905 −1.40126 1.01807i −1.40126 1.01807i
906906 0 0
907907 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
908908 0 0
909909 −0.831254 1.14412i −0.831254 1.14412i
910910 0 0
911911 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 2.00000 2.00000
926926 0 0
927927 0 0
928928 0 0
929929 0.535233 1.64728i 0.535233 1.64728i −0.207912 0.978148i 0.566667π-0.566667\pi
0.743145 0.669131i 0.233333π-0.233333\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −1.83730 + 0.596975i −1.83730 + 0.596975i −0.838671 + 0.544639i 0.816667π0.816667\pi
−0.998630 + 0.0523360i 0.983333π0.983333\pi
938938 0 0
939939 0 0
940940 0 0
941941 1.83730 + 0.596975i 1.83730 + 0.596975i 0.998630 + 0.0523360i 0.0166667π0.0166667\pi
0.838671 + 0.544639i 0.183333π0.183333\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 −2.21028 1.60586i −2.21028 1.60586i
950950 0 0
951951 0 0
952952 0 0
953953 1.13551 + 1.56290i 1.13551 + 1.56290i 0.777146 + 0.629320i 0.216667π0.216667\pi
0.358368 + 0.933580i 0.383333π0.383333\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0.809017 0.587785i 0.809017 0.587785i
962962 0 0
963963 0 0
964964 0 0
965965 1.96677 2.70702i 1.96677 2.70702i
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0.535233 + 1.64728i 0.535233 + 1.64728i 0.743145 + 0.669131i 0.233333π0.233333\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
978978 0 0
979979 0 0
980980 0 0
981981 −0.492303 + 0.159959i −0.492303 + 0.159959i
982982 0 0
983983 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
984984 0 0
985985 −3.18230 1.03399i −3.18230 1.03399i
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −1.13551 1.56290i −1.13551 1.56290i −0.777146 0.629320i 0.783333π-0.783333\pi
−0.358368 0.933580i 0.616667π-0.616667\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3872.1.r.b.3361.3 16
4.3 odd 2 CM 3872.1.r.b.3361.3 16
11.2 odd 10 inner 3872.1.r.b.3137.3 16
11.3 even 5 3872.1.h.b.2177.4 yes 4
11.4 even 5 inner 3872.1.r.b.481.1 16
11.5 even 5 inner 3872.1.r.b.161.2 16
11.6 odd 10 inner 3872.1.r.b.161.1 16
11.7 odd 10 inner 3872.1.r.b.481.2 16
11.8 odd 10 3872.1.h.b.2177.3 4
11.9 even 5 inner 3872.1.r.b.3137.4 16
11.10 odd 2 inner 3872.1.r.b.3361.4 16
44.3 odd 10 3872.1.h.b.2177.4 yes 4
44.7 even 10 inner 3872.1.r.b.481.2 16
44.15 odd 10 inner 3872.1.r.b.481.1 16
44.19 even 10 3872.1.h.b.2177.3 4
44.27 odd 10 inner 3872.1.r.b.161.2 16
44.31 odd 10 inner 3872.1.r.b.3137.4 16
44.35 even 10 inner 3872.1.r.b.3137.3 16
44.39 even 10 inner 3872.1.r.b.161.1 16
44.43 even 2 inner 3872.1.r.b.3361.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3872.1.h.b.2177.3 4 11.8 odd 10
3872.1.h.b.2177.3 4 44.19 even 10
3872.1.h.b.2177.4 yes 4 11.3 even 5
3872.1.h.b.2177.4 yes 4 44.3 odd 10
3872.1.r.b.161.1 16 11.6 odd 10 inner
3872.1.r.b.161.1 16 44.39 even 10 inner
3872.1.r.b.161.2 16 11.5 even 5 inner
3872.1.r.b.161.2 16 44.27 odd 10 inner
3872.1.r.b.481.1 16 11.4 even 5 inner
3872.1.r.b.481.1 16 44.15 odd 10 inner
3872.1.r.b.481.2 16 11.7 odd 10 inner
3872.1.r.b.481.2 16 44.7 even 10 inner
3872.1.r.b.3137.3 16 11.2 odd 10 inner
3872.1.r.b.3137.3 16 44.35 even 10 inner
3872.1.r.b.3137.4 16 11.9 even 5 inner
3872.1.r.b.3137.4 16 44.31 odd 10 inner
3872.1.r.b.3361.3 16 1.1 even 1 trivial
3872.1.r.b.3361.3 16 4.3 odd 2 CM
3872.1.r.b.3361.4 16 11.10 odd 2 inner
3872.1.r.b.3361.4 16 44.43 even 2 inner