Properties

Label 3872.1.r.b.481.2
Level 38723872
Weight 11
Character 3872.481
Analytic conductor 1.9321.932
Analytic rank 00
Dimension 1616
Projective image D12D_{12}
CM discriminant -4
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3872,1,Mod(161,3872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3872, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3872.161");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3872=25112 3872 = 2^{5} \cdot 11^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3872.r (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.932379728911.93237972891
Analytic rank: 00
Dimension: 1616
Relative dimension: 44 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: 16.0.6879707136000000000000.7
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x164x14+15x1256x10+209x856x6+15x44x2+1 x^{16} - 4x^{14} + 15x^{12} - 56x^{10} + 209x^{8} - 56x^{6} + 15x^{4} - 4x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D12D_{12}
Projective field: Galois closure of 12.0.18698185645162496.1

Embedding invariants

Embedding label 481.2
Root 1.837300.596975i1.83730 - 0.596975i of defining polynomial
Character χ\chi == 3872.481
Dual form 3872.1.r.b.161.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(1.401261.01807i)q5+(0.8090170.587785i)q9+(1.13551+1.56290i)q13+(0.3042600.418778i)q17+(0.618034+1.90211i)q25+(0.4923030.159959i)q29+(0.3090170.951057i)q37+(1.837300.596975i)q411.73205q45+(0.8090170.587785i)q49+(0.809017+0.587785i)q53+(0.8312541.14412i)q613.34607iq65+(1.34500+0.437016i)q73+(0.3090170.951057i)q81+(0.852694+0.277057i)q851.00000q89+(1.401261.01807i)q97+O(q100)q+(-1.40126 - 1.01807i) q^{5} +(0.809017 - 0.587785i) q^{9} +(1.13551 + 1.56290i) q^{13} +(0.304260 - 0.418778i) q^{17} +(0.618034 + 1.90211i) q^{25} +(-0.492303 - 0.159959i) q^{29} +(0.309017 - 0.951057i) q^{37} +(1.83730 - 0.596975i) q^{41} -1.73205 q^{45} +(-0.809017 - 0.587785i) q^{49} +(-0.809017 + 0.587785i) q^{53} +(0.831254 - 1.14412i) q^{61} -3.34607i q^{65} +(1.34500 + 0.437016i) q^{73} +(0.309017 - 0.951057i) q^{81} +(-0.852694 + 0.277057i) q^{85} -1.00000 q^{89} +(1.40126 - 1.01807i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+4q98q254q374q494q534q8116q89+O(q100) 16 q + 4 q^{9} - 8 q^{25} - 4 q^{37} - 4 q^{49} - 4 q^{53} - 4 q^{81} - 16 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3872Z)×\left(\mathbb{Z}/3872\mathbb{Z}\right)^\times.

nn 485485 16951695 27852785
χ(n)\chi(n) 11 11 e(310)e\left(\frac{3}{10}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
44 0 0
55 −1.40126 1.01807i −1.40126 1.01807i −0.994522 0.104528i 0.966667π-0.966667\pi
−0.406737 0.913545i 0.633333π-0.633333\pi
66 0 0
77 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
88 0 0
99 0.809017 0.587785i 0.809017 0.587785i
1010 0 0
1111 0 0
1212 0 0
1313 1.13551 + 1.56290i 1.13551 + 1.56290i 0.777146 + 0.629320i 0.216667π0.216667\pi
0.358368 + 0.933580i 0.383333π0.383333\pi
1414 0 0
1515 0 0
1616 0 0
1717 0.304260 0.418778i 0.304260 0.418778i −0.629320 0.777146i 0.716667π-0.716667\pi
0.933580 + 0.358368i 0.116667π0.116667\pi
1818 0 0
1919 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 0.618034 + 1.90211i 0.618034 + 1.90211i
2626 0 0
2727 0 0
2828 0 0
2929 −0.492303 0.159959i −0.492303 0.159959i 0.0523360 0.998630i 0.483333π-0.483333\pi
−0.544639 + 0.838671i 0.683333π0.683333\pi
3030 0 0
3131 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
3838 0 0
3939 0 0
4040 0 0
4141 1.83730 0.596975i 1.83730 0.596975i 0.838671 0.544639i 0.183333π-0.183333\pi
0.998630 0.0523360i 0.0166667π-0.0166667\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 −1.73205 −1.73205
4646 0 0
4747 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
4848 0 0
4949 −0.809017 0.587785i −0.809017 0.587785i
5050 0 0
5151 0 0
5252 0 0
5353 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
6060 0 0
6161 0.831254 1.14412i 0.831254 1.14412i −0.156434 0.987688i 0.550000π-0.550000\pi
0.987688 0.156434i 0.0500000π-0.0500000\pi
6262 0 0
6363 0 0
6464 0 0
6565 3.34607i 3.34607i
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
7272 0 0
7373 1.34500 + 0.437016i 1.34500 + 0.437016i 0.891007 0.453990i 0.150000π-0.150000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
8080 0 0
8181 0.309017 0.951057i 0.309017 0.951057i
8282 0 0
8383 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
8484 0 0
8585 −0.852694 + 0.277057i −0.852694 + 0.277057i
8686 0 0
8787 0 0
8888 0 0
8989 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 1.40126 1.01807i 1.40126 1.01807i 0.406737 0.913545i 0.366667π-0.366667\pi
0.994522 0.104528i 0.0333333π-0.0333333\pi
9898 0 0
9999 0 0
100100 0 0
101101 −0.831254 1.14412i −0.831254 1.14412i −0.987688 0.156434i 0.950000π-0.950000\pi
0.156434 0.987688i 0.450000π-0.450000\pi
102102 0 0
103103 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
108108 0 0
109109 0.517638i 0.517638i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
110110 0 0
111111 0 0
112112 0 0
113113 −0.535233 1.64728i −0.535233 1.64728i −0.743145 0.669131i 0.766667π-0.766667\pi
0.207912 0.978148i 0.433333π-0.433333\pi
114114 0 0
115115 0 0
116116 0 0
117117 1.83730 + 0.596975i 1.83730 + 0.596975i
118118 0 0
119119 0 0
120120 0 0
121121 0 0
122122 0 0
123123 0 0
124124 0 0
125125 0.535233 1.64728i 0.535233 1.64728i
126126 0 0
127127 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
138138 0 0
139139 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0.526994 + 0.725345i 0.526994 + 0.725345i
146146 0 0
147147 0 0
148148 0 0
149149 1.13551 1.56290i 1.13551 1.56290i 0.358368 0.933580i 0.383333π-0.383333\pi
0.777146 0.629320i 0.216667π-0.216667\pi
150150 0 0
151151 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
152152 0 0
153153 0.517638i 0.517638i
154154 0 0
155155 0 0
156156 0 0
157157 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
168168 0 0
169169 −0.844250 + 2.59833i −0.844250 + 2.59833i
170170 0 0
171171 0 0
172172 0 0
173173 1.34500 0.437016i 1.34500 0.437016i 0.453990 0.891007i 0.350000π-0.350000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
180180 0 0
181181 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
182182 0 0
183183 0 0
184184 0 0
185185 −1.40126 + 1.01807i −1.40126 + 1.01807i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
192192 0 0
193193 −1.13551 + 1.56290i −1.13551 + 1.56290i −0.358368 + 0.933580i 0.616667π0.616667\pi
−0.777146 + 0.629320i 0.783333π0.783333\pi
194194 0 0
195195 0 0
196196 0 0
197197 1.93185i 1.93185i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 −3.18230 1.03399i −3.18230 1.03399i
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 1.00000 1.00000
222222 0 0
223223 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
224224 0 0
225225 1.61803 + 1.17557i 1.61803 + 1.17557i
226226 0 0
227227 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
228228 0 0
229229 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
230230 0 0
231231 0 0
232232 0 0
233233 0.304260 + 0.418778i 0.304260 + 0.418778i 0.933580 0.358368i 0.116667π-0.116667\pi
−0.629320 + 0.777146i 0.716667π0.716667\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
240240 0 0
241241 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
242242 0 0
243243 0 0
244244 0 0
245245 0.535233 + 1.64728i 0.535233 + 1.64728i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
258258 0 0
259259 0 0
260260 0 0
261261 −0.492303 + 0.159959i −0.492303 + 0.159959i
262262 0 0
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 1.73205 1.73205
266266 0 0
267267 0 0
268268 0 0
269269 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
270270 0 0
271271 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0.304260 + 0.418778i 0.304260 + 0.418778i 0.933580 0.358368i 0.116667π-0.116667\pi
−0.629320 + 0.777146i 0.716667π0.716667\pi
278278 0 0
279279 0 0
280280 0 0
281281 −0.831254 + 1.14412i −0.831254 + 1.14412i 0.156434 + 0.987688i 0.450000π0.450000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
282282 0 0
283283 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0.226216 + 0.696222i 0.226216 + 0.696222i
290290 0 0
291291 0 0
292292 0 0
293293 0.492303 + 0.159959i 0.492303 + 0.159959i 0.544639 0.838671i 0.316667π-0.316667\pi
−0.0523360 + 0.998630i 0.516667π0.516667\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −2.32960 + 0.756934i −2.32960 + 0.756934i
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
312312 0 0
313313 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 −2.27103 + 3.12580i −2.27103 + 3.12580i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 −0.309017 0.951057i −0.309017 0.951057i
334334 0 0
335335 0 0
336336 0 0
337337 −1.83730 0.596975i −1.83730 0.596975i −0.998630 0.0523360i 0.983333π-0.983333\pi
−0.838671 0.544639i 0.816667π-0.816667\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
348348 0 0
349349 −1.83730 + 0.596975i −1.83730 + 0.596975i −0.838671 + 0.544639i 0.816667π0.816667\pi
−0.998630 + 0.0523360i 0.983333π0.983333\pi
350350 0 0
351351 0 0
352352 0 0
353353 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
360360 0 0
361361 −0.809017 + 0.587785i −0.809017 + 0.587785i
362362 0 0
363363 0 0
364364 0 0
365365 −1.43977 1.98168i −1.43977 1.98168i
366366 0 0
367367 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
368368 0 0
369369 1.13551 1.56290i 1.13551 1.56290i
370370 0 0
371371 0 0
372372 0 0
373373 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
374374 0 0
375375 0 0
376376 0 0
377377 −0.309017 0.951057i −0.309017 0.951057i
378378 0 0
379379 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 −0.535233 + 1.64728i −0.535233 + 1.64728i 0.207912 + 0.978148i 0.433333π0.433333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
398398 0 0
399399 0 0
400400 0 0
401401 1.40126 + 1.01807i 1.40126 + 1.01807i 0.994522 + 0.104528i 0.0333333π0.0333333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
402402 0 0
403403 0 0
404404 0 0
405405 −1.40126 + 1.01807i −1.40126 + 1.01807i
406406 0 0
407407 0 0
408408 0 0
409409 −1.13551 1.56290i −1.13551 1.56290i −0.777146 0.629320i 0.783333π-0.783333\pi
−0.358368 0.933580i 0.616667π-0.616667\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 −0.535233 1.64728i −0.535233 1.64728i −0.743145 0.669131i 0.766667π-0.766667\pi
0.207912 0.978148i 0.433333π-0.433333\pi
422422 0 0
423423 0 0
424424 0 0
425425 0.984606 + 0.319918i 0.984606 + 0.319918i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
432432 0 0
433433 0.535233 1.64728i 0.535233 1.64728i −0.207912 0.978148i 0.566667π-0.566667\pi
0.743145 0.669131i 0.233333π-0.233333\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 −1.00000 −1.00000
442442 0 0
443443 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
444444 0 0
445445 1.40126 + 1.01807i 1.40126 + 1.01807i
446446 0 0
447447 0 0
448448 0 0
449449 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −0.304260 + 0.418778i −0.304260 + 0.418778i −0.933580 0.358368i 0.883333π-0.883333\pi
0.629320 + 0.777146i 0.283333π0.283333\pi
458458 0 0
459459 0 0
460460 0 0
461461 0.517638i 0.517638i −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 −0.309017 + 0.951057i −0.309017 + 0.951057i
478478 0 0
479479 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
480480 0 0
481481 1.83730 0.596975i 1.83730 0.596975i
482482 0 0
483483 0 0
484484 0 0
485485 −3.00000 −3.00000
486486 0 0
487487 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
492492 0 0
493493 −0.216775 + 0.157497i −0.216775 + 0.157497i
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
504504 0 0
505505 2.44949i 2.44949i
506506 0 0
507507 0 0
508508 0 0
509509 −0.618034 1.90211i −0.618034 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
522522 0 0
523523 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −1.00000 −1.00000
530530 0 0
531531 0 0
532532 0 0
533533 3.01929 + 2.19364i 3.01929 + 2.19364i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0.831254 + 1.14412i 0.831254 + 1.14412i 0.987688 + 0.156434i 0.0500000π0.0500000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
542542 0 0
543543 0 0
544544 0 0
545545 0.526994 0.725345i 0.526994 0.725345i
546546 0 0
547547 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
548548 0 0
549549 1.41421i 1.41421i
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 1.34500 + 0.437016i 1.34500 + 0.437016i 0.891007 0.453990i 0.150000π-0.150000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
564564 0 0
565565 −0.927051 + 2.85317i −0.927051 + 2.85317i
566566 0 0
567567 0 0
568568 0 0
569569 −1.34500 + 0.437016i −1.34500 + 0.437016i −0.891007 0.453990i 0.850000π-0.850000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 1.40126 + 1.01807i 1.40126 + 1.01807i 0.994522 + 0.104528i 0.0333333π0.0333333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 −1.96677 2.70702i −1.96677 2.70702i
586586 0 0
587587 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 1.93185i 1.93185i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
600600 0 0
601601 0.492303 + 0.159959i 0.492303 + 0.159959i 0.544639 0.838671i 0.316667π-0.316667\pi
−0.0523360 + 0.998630i 0.516667π0.516667\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 1.83730 0.596975i 1.83730 0.596975i 0.838671 0.544639i 0.183333π-0.183333\pi
0.998630 0.0523360i 0.0166667π-0.0166667\pi
614614 0 0
615615 0 0
616616 0 0
617617 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
618618 0 0
619619 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −0.809017 + 0.587785i −0.809017 + 0.587785i
626626 0 0
627627 0 0
628628 0 0
629629 −0.304260 0.418778i −0.304260 0.418778i
630630 0 0
631631 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 1.93185i 1.93185i
638638 0 0
639639 0 0
640640 0 0
641641 −0.309017 0.951057i −0.309017 0.951057i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 0.743145i 0.266667π-0.266667\pi
642642 0 0
643643 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
654654 0 0
655655 0 0
656656 0 0
657657 1.34500 0.437016i 1.34500 0.437016i
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −0.831254 1.14412i −0.831254 1.14412i −0.987688 0.156434i 0.950000π-0.950000\pi
0.156434 0.987688i 0.450000π-0.450000\pi
674674 0 0
675675 0 0
676676 0 0
677677 −0.304260 + 0.418778i −0.304260 + 0.418778i −0.933580 0.358368i 0.883333π-0.883333\pi
0.629320 + 0.777146i 0.283333π0.283333\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 −1.83730 0.596975i −1.83730 0.596975i
690690 0 0
691691 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0.309017 0.951057i 0.309017 0.951057i
698698 0 0
699699 0 0
700700 0 0
701701 −1.83730 + 0.596975i −1.83730 + 0.596975i −0.838671 + 0.544639i 0.816667π0.816667\pi
−0.998630 + 0.0523360i 0.983333π0.983333\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 0.587785i 0.800000π-0.800000\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 1.03528i 1.03528i
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 −0.309017 0.951057i −0.309017 0.951057i
730730 0 0
731731 0 0
732732 0 0
733733 0.492303 + 0.159959i 0.492303 + 0.159959i 0.544639 0.838671i 0.316667π-0.316667\pi
−0.0523360 + 0.998630i 0.516667π0.516667\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
744744 0 0
745745 −3.18230 + 1.03399i −3.18230 + 1.03399i
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −1.40126 + 1.01807i −1.40126 + 1.01807i −0.406737 + 0.913545i 0.633333π0.633333\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
758758 0 0
759759 0 0
760760 0 0
761761 1.13551 + 1.56290i 1.13551 + 1.56290i 0.777146 + 0.629320i 0.216667π0.216667\pi
0.358368 + 0.933580i 0.383333π0.383333\pi
762762 0 0
763763 0 0
764764 0 0
765765 −0.526994 + 0.725345i −0.526994 + 0.725345i
766766 0 0
767767 0 0
768768 0 0
769769 0.517638i 0.517638i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
770770 0 0
771771 0 0
772772 0 0
773773 0.618034 + 1.90211i 0.618034 + 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 2.73205 2.73205
794794 0 0
795795 0 0
796796 0 0
797797 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
798798 0 0
799799 0 0
800800 0 0
801801 −0.809017 + 0.587785i −0.809017 + 0.587785i
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −0.831254 + 1.14412i −0.831254 + 1.14412i 0.156434 + 0.987688i 0.450000π0.450000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
810810 0 0
811811 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 1.34500 + 0.437016i 1.34500 + 0.437016i 0.891007 0.453990i 0.150000π-0.150000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
822822 0 0
823823 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
828828 0 0
829829 −0.535233 + 1.64728i −0.535233 + 1.64728i 0.207912 + 0.978148i 0.433333π0.433333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
830830 0 0
831831 0 0
832832 0 0
833833 −0.492303 + 0.159959i −0.492303 + 0.159959i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
840840 0 0
841841 −0.592242 0.430289i −0.592242 0.430289i
842842 0 0
843843 0 0
844844 0 0
845845 3.82831 2.78143i 3.82831 2.78143i
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0.304260 0.418778i 0.304260 0.418778i −0.629320 0.777146i 0.716667π-0.716667\pi
0.933580 + 0.358368i 0.116667π0.116667\pi
854854 0 0
855855 0 0
856856 0 0
857857 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
864864 0 0
865865 −2.32960 0.756934i −2.32960 0.756934i
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0.535233 1.64728i 0.535233 1.64728i
874874 0 0
875875 0 0
876876 0 0
877877 −0.492303 + 0.159959i −0.492303 + 0.159959i −0.544639 0.838671i 0.683333π-0.683333\pi
0.0523360 + 0.998630i 0.483333π0.483333\pi
878878 0 0
879879 0 0
880880 0 0
881881 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
882882 0 0
883883 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0.517638i 0.517638i
902902 0 0
903903 0 0
904904 0 0
905905 0.535233 + 1.64728i 0.535233 + 1.64728i
906906 0 0
907907 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
908908 0 0
909909 −1.34500 0.437016i −1.34500 0.437016i
910910 0 0
911911 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 2.00000 2.00000
926926 0 0
927927 0 0
928928 0 0
929929 −1.40126 1.01807i −1.40126 1.01807i −0.994522 0.104528i 0.966667π-0.966667\pi
−0.406737 0.913545i 0.633333π-0.633333\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 1.13551 + 1.56290i 1.13551 + 1.56290i 0.777146 + 0.629320i 0.216667π0.216667\pi
0.358368 + 0.933580i 0.383333π0.383333\pi
938938 0 0
939939 0 0
940940 0 0
941941 −1.13551 + 1.56290i −1.13551 + 1.56290i −0.358368 + 0.933580i 0.616667π0.616667\pi
−0.777146 + 0.629320i 0.783333π0.783333\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 0.844250 + 2.59833i 0.844250 + 2.59833i
950950 0 0
951951 0 0
952952 0 0
953953 1.83730 + 0.596975i 1.83730 + 0.596975i 0.998630 + 0.0523360i 0.0166667π0.0166667\pi
0.838671 + 0.544639i 0.183333π0.183333\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −0.309017 + 0.951057i −0.309017 + 0.951057i
962962 0 0
963963 0 0
964964 0 0
965965 3.18230 1.03399i 3.18230 1.03399i
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 −1.40126 + 1.01807i −1.40126 + 1.01807i −0.406737 + 0.913545i 0.633333π0.633333\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
978978 0 0
979979 0 0
980980 0 0
981981 0.304260 + 0.418778i 0.304260 + 0.418778i
982982 0 0
983983 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
984984 0 0
985985 1.96677 2.70702i 1.96677 2.70702i
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −1.83730 0.596975i −1.83730 0.596975i −0.998630 0.0523360i 0.983333π-0.983333\pi
−0.838671 0.544639i 0.816667π-0.816667\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3872.1.r.b.481.2 16
4.3 odd 2 CM 3872.1.r.b.481.2 16
11.2 odd 10 3872.1.h.b.2177.4 yes 4
11.3 even 5 inner 3872.1.r.b.3361.4 16
11.4 even 5 inner 3872.1.r.b.161.1 16
11.5 even 5 inner 3872.1.r.b.3137.3 16
11.6 odd 10 inner 3872.1.r.b.3137.4 16
11.7 odd 10 inner 3872.1.r.b.161.2 16
11.8 odd 10 inner 3872.1.r.b.3361.3 16
11.9 even 5 3872.1.h.b.2177.3 4
11.10 odd 2 inner 3872.1.r.b.481.1 16
44.3 odd 10 inner 3872.1.r.b.3361.4 16
44.7 even 10 inner 3872.1.r.b.161.2 16
44.15 odd 10 inner 3872.1.r.b.161.1 16
44.19 even 10 inner 3872.1.r.b.3361.3 16
44.27 odd 10 inner 3872.1.r.b.3137.3 16
44.31 odd 10 3872.1.h.b.2177.3 4
44.35 even 10 3872.1.h.b.2177.4 yes 4
44.39 even 10 inner 3872.1.r.b.3137.4 16
44.43 even 2 inner 3872.1.r.b.481.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3872.1.h.b.2177.3 4 11.9 even 5
3872.1.h.b.2177.3 4 44.31 odd 10
3872.1.h.b.2177.4 yes 4 11.2 odd 10
3872.1.h.b.2177.4 yes 4 44.35 even 10
3872.1.r.b.161.1 16 11.4 even 5 inner
3872.1.r.b.161.1 16 44.15 odd 10 inner
3872.1.r.b.161.2 16 11.7 odd 10 inner
3872.1.r.b.161.2 16 44.7 even 10 inner
3872.1.r.b.481.1 16 11.10 odd 2 inner
3872.1.r.b.481.1 16 44.43 even 2 inner
3872.1.r.b.481.2 16 1.1 even 1 trivial
3872.1.r.b.481.2 16 4.3 odd 2 CM
3872.1.r.b.3137.3 16 11.5 even 5 inner
3872.1.r.b.3137.3 16 44.27 odd 10 inner
3872.1.r.b.3137.4 16 11.6 odd 10 inner
3872.1.r.b.3137.4 16 44.39 even 10 inner
3872.1.r.b.3361.3 16 11.8 odd 10 inner
3872.1.r.b.3361.3 16 44.19 even 10 inner
3872.1.r.b.3361.4 16 11.3 even 5 inner
3872.1.r.b.3361.4 16 44.3 odd 10 inner