Properties

Label 3872.2.c.i.1937.8
Level $3872$
Weight $2$
Character 3872.1937
Analytic conductor $30.918$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3872,2,Mod(1937,3872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3872.1937");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3872 = 2^{5} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3872.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.9180756626\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 2 x^{16} - 2 x^{15} - 4 x^{14} - 4 x^{13} + 12 x^{12} + 16 x^{11} + 32 x^{9} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1937.8
Root \(-0.549610 - 1.30305i\) of defining polynomial
Character \(\chi\) \(=\) 3872.1937
Dual form 3872.2.c.i.1937.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.612207i q^{3} -1.46030i q^{5} +4.42813 q^{7} +2.62520 q^{9} -5.57312i q^{13} -0.894002 q^{15} +2.55806 q^{17} +3.01989i q^{19} -2.71093i q^{21} +3.70783 q^{23} +2.86754 q^{25} -3.44379i q^{27} -3.65947i q^{29} -1.49166 q^{31} -6.46637i q^{35} +1.48880i q^{37} -3.41190 q^{39} -3.14210 q^{41} +6.25559i q^{43} -3.83357i q^{45} +2.65892 q^{47} +12.6083 q^{49} -1.56606i q^{51} -9.79852i q^{53} +1.84880 q^{57} +2.57763i q^{59} +5.58617i q^{61} +11.6247 q^{63} -8.13840 q^{65} +11.5059i q^{67} -2.26996i q^{69} -1.12369 q^{71} -14.1221 q^{73} -1.75553i q^{75} +0.766251 q^{79} +5.76730 q^{81} +8.56399i q^{83} -3.73552i q^{85} -2.24035 q^{87} -8.84290 q^{89} -24.6785i q^{91} +0.913204i q^{93} +4.40994 q^{95} -0.298285 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 10 q^{7} - 10 q^{9} + 4 q^{15} - 2 q^{17} + 4 q^{23} - 2 q^{25} - 2 q^{31} + 28 q^{39} + 2 q^{41} - 2 q^{47} - 2 q^{49} - 22 q^{57} - 30 q^{63} + 18 q^{65} + 34 q^{71} - 2 q^{73} - 58 q^{79} - 12 q^{81}+ \cdots + 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3872\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(1695\) \(2785\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 0.612207i − 0.353458i −0.984260 0.176729i \(-0.943448\pi\)
0.984260 0.176729i \(-0.0565516\pi\)
\(4\) 0 0
\(5\) − 1.46030i − 0.653064i −0.945186 0.326532i \(-0.894120\pi\)
0.945186 0.326532i \(-0.105880\pi\)
\(6\) 0 0
\(7\) 4.42813 1.67368 0.836838 0.547451i \(-0.184402\pi\)
0.836838 + 0.547451i \(0.184402\pi\)
\(8\) 0 0
\(9\) 2.62520 0.875068
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) − 5.57312i − 1.54571i −0.634586 0.772853i \(-0.718829\pi\)
0.634586 0.772853i \(-0.281171\pi\)
\(14\) 0 0
\(15\) −0.894002 −0.230830
\(16\) 0 0
\(17\) 2.55806 0.620420 0.310210 0.950668i \(-0.399601\pi\)
0.310210 + 0.950668i \(0.399601\pi\)
\(18\) 0 0
\(19\) 3.01989i 0.692811i 0.938085 + 0.346406i \(0.112598\pi\)
−0.938085 + 0.346406i \(0.887402\pi\)
\(20\) 0 0
\(21\) − 2.71093i − 0.591573i
\(22\) 0 0
\(23\) 3.70783 0.773136 0.386568 0.922261i \(-0.373661\pi\)
0.386568 + 0.922261i \(0.373661\pi\)
\(24\) 0 0
\(25\) 2.86754 0.573508
\(26\) 0 0
\(27\) − 3.44379i − 0.662757i
\(28\) 0 0
\(29\) − 3.65947i − 0.679546i −0.940507 0.339773i \(-0.889650\pi\)
0.940507 0.339773i \(-0.110350\pi\)
\(30\) 0 0
\(31\) −1.49166 −0.267910 −0.133955 0.990987i \(-0.542768\pi\)
−0.133955 + 0.990987i \(0.542768\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 6.46637i − 1.09302i
\(36\) 0 0
\(37\) 1.48880i 0.244757i 0.992483 + 0.122379i \(0.0390522\pi\)
−0.992483 + 0.122379i \(0.960948\pi\)
\(38\) 0 0
\(39\) −3.41190 −0.546341
\(40\) 0 0
\(41\) −3.14210 −0.490713 −0.245357 0.969433i \(-0.578905\pi\)
−0.245357 + 0.969433i \(0.578905\pi\)
\(42\) 0 0
\(43\) 6.25559i 0.953968i 0.878912 + 0.476984i \(0.158270\pi\)
−0.878912 + 0.476984i \(0.841730\pi\)
\(44\) 0 0
\(45\) − 3.83357i − 0.571475i
\(46\) 0 0
\(47\) 2.65892 0.387844 0.193922 0.981017i \(-0.437879\pi\)
0.193922 + 0.981017i \(0.437879\pi\)
\(48\) 0 0
\(49\) 12.6083 1.80119
\(50\) 0 0
\(51\) − 1.56606i − 0.219292i
\(52\) 0 0
\(53\) − 9.79852i − 1.34593i −0.739674 0.672965i \(-0.765020\pi\)
0.739674 0.672965i \(-0.234980\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.84880 0.244879
\(58\) 0 0
\(59\) 2.57763i 0.335579i 0.985823 + 0.167789i \(0.0536629\pi\)
−0.985823 + 0.167789i \(0.946337\pi\)
\(60\) 0 0
\(61\) 5.58617i 0.715235i 0.933868 + 0.357618i \(0.116411\pi\)
−0.933868 + 0.357618i \(0.883589\pi\)
\(62\) 0 0
\(63\) 11.6247 1.46458
\(64\) 0 0
\(65\) −8.13840 −1.00944
\(66\) 0 0
\(67\) 11.5059i 1.40566i 0.711356 + 0.702832i \(0.248081\pi\)
−0.711356 + 0.702832i \(0.751919\pi\)
\(68\) 0 0
\(69\) − 2.26996i − 0.273271i
\(70\) 0 0
\(71\) −1.12369 −0.133358 −0.0666788 0.997774i \(-0.521240\pi\)
−0.0666788 + 0.997774i \(0.521240\pi\)
\(72\) 0 0
\(73\) −14.1221 −1.65287 −0.826436 0.563031i \(-0.809635\pi\)
−0.826436 + 0.563031i \(0.809635\pi\)
\(74\) 0 0
\(75\) − 1.75553i − 0.202711i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.766251 0.0862100 0.0431050 0.999071i \(-0.486275\pi\)
0.0431050 + 0.999071i \(0.486275\pi\)
\(80\) 0 0
\(81\) 5.76730 0.640811
\(82\) 0 0
\(83\) 8.56399i 0.940020i 0.882661 + 0.470010i \(0.155750\pi\)
−0.882661 + 0.470010i \(0.844250\pi\)
\(84\) 0 0
\(85\) − 3.73552i − 0.405174i
\(86\) 0 0
\(87\) −2.24035 −0.240191
\(88\) 0 0
\(89\) −8.84290 −0.937346 −0.468673 0.883372i \(-0.655268\pi\)
−0.468673 + 0.883372i \(0.655268\pi\)
\(90\) 0 0
\(91\) − 24.6785i − 2.58701i
\(92\) 0 0
\(93\) 0.913204i 0.0946949i
\(94\) 0 0
\(95\) 4.40994 0.452450
\(96\) 0 0
\(97\) −0.298285 −0.0302862 −0.0151431 0.999885i \(-0.504820\pi\)
−0.0151431 + 0.999885i \(0.504820\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.63142i 0.261836i 0.991393 + 0.130918i \(0.0417924\pi\)
−0.991393 + 0.130918i \(0.958208\pi\)
\(102\) 0 0
\(103\) 2.26365 0.223044 0.111522 0.993762i \(-0.464427\pi\)
0.111522 + 0.993762i \(0.464427\pi\)
\(104\) 0 0
\(105\) −3.95876 −0.386335
\(106\) 0 0
\(107\) − 6.04559i − 0.584450i −0.956350 0.292225i \(-0.905604\pi\)
0.956350 0.292225i \(-0.0943956\pi\)
\(108\) 0 0
\(109\) 11.9381i 1.14346i 0.820440 + 0.571732i \(0.193728\pi\)
−0.820440 + 0.571732i \(0.806272\pi\)
\(110\) 0 0
\(111\) 0.911454 0.0865113
\(112\) 0 0
\(113\) 12.4098 1.16741 0.583706 0.811965i \(-0.301602\pi\)
0.583706 + 0.811965i \(0.301602\pi\)
\(114\) 0 0
\(115\) − 5.41452i − 0.504907i
\(116\) 0 0
\(117\) − 14.6306i − 1.35260i
\(118\) 0 0
\(119\) 11.3274 1.03838
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 1.92361i 0.173446i
\(124\) 0 0
\(125\) − 11.4889i − 1.02760i
\(126\) 0 0
\(127\) −8.91108 −0.790730 −0.395365 0.918524i \(-0.629382\pi\)
−0.395365 + 0.918524i \(0.629382\pi\)
\(128\) 0 0
\(129\) 3.82971 0.337187
\(130\) 0 0
\(131\) 8.30263i 0.725404i 0.931905 + 0.362702i \(0.118146\pi\)
−0.931905 + 0.362702i \(0.881854\pi\)
\(132\) 0 0
\(133\) 13.3725i 1.15954i
\(134\) 0 0
\(135\) −5.02894 −0.432823
\(136\) 0 0
\(137\) −16.5315 −1.41238 −0.706192 0.708020i \(-0.749589\pi\)
−0.706192 + 0.708020i \(0.749589\pi\)
\(138\) 0 0
\(139\) 16.8902i 1.43261i 0.697788 + 0.716305i \(0.254168\pi\)
−0.697788 + 0.716305i \(0.745832\pi\)
\(140\) 0 0
\(141\) − 1.62781i − 0.137086i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −5.34391 −0.443787
\(146\) 0 0
\(147\) − 7.71890i − 0.636644i
\(148\) 0 0
\(149\) 19.0320i 1.55916i 0.626303 + 0.779580i \(0.284567\pi\)
−0.626303 + 0.779580i \(0.715433\pi\)
\(150\) 0 0
\(151\) −10.1613 −0.826914 −0.413457 0.910524i \(-0.635679\pi\)
−0.413457 + 0.910524i \(0.635679\pi\)
\(152\) 0 0
\(153\) 6.71542 0.542909
\(154\) 0 0
\(155\) 2.17826i 0.174962i
\(156\) 0 0
\(157\) − 16.7488i − 1.33670i −0.743848 0.668349i \(-0.767001\pi\)
0.743848 0.668349i \(-0.232999\pi\)
\(158\) 0 0
\(159\) −5.99872 −0.475729
\(160\) 0 0
\(161\) 16.4187 1.29398
\(162\) 0 0
\(163\) − 6.97143i − 0.546045i −0.962008 0.273022i \(-0.911977\pi\)
0.962008 0.273022i \(-0.0880233\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.99355 0.773324 0.386662 0.922222i \(-0.373628\pi\)
0.386662 + 0.922222i \(0.373628\pi\)
\(168\) 0 0
\(169\) −18.0597 −1.38920
\(170\) 0 0
\(171\) 7.92783i 0.606257i
\(172\) 0 0
\(173\) − 3.55549i − 0.270319i −0.990824 0.135159i \(-0.956845\pi\)
0.990824 0.135159i \(-0.0431546\pi\)
\(174\) 0 0
\(175\) 12.6978 0.959866
\(176\) 0 0
\(177\) 1.57804 0.118613
\(178\) 0 0
\(179\) − 5.39181i − 0.403003i −0.979488 0.201501i \(-0.935418\pi\)
0.979488 0.201501i \(-0.0645820\pi\)
\(180\) 0 0
\(181\) − 4.01052i − 0.298100i −0.988830 0.149050i \(-0.952379\pi\)
0.988830 0.149050i \(-0.0476215\pi\)
\(182\) 0 0
\(183\) 3.41989 0.252805
\(184\) 0 0
\(185\) 2.17409 0.159842
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) − 15.2495i − 1.10924i
\(190\) 0 0
\(191\) −0.569284 −0.0411920 −0.0205960 0.999788i \(-0.506556\pi\)
−0.0205960 + 0.999788i \(0.506556\pi\)
\(192\) 0 0
\(193\) −7.11655 −0.512261 −0.256130 0.966642i \(-0.582448\pi\)
−0.256130 + 0.966642i \(0.582448\pi\)
\(194\) 0 0
\(195\) 4.98238i 0.356796i
\(196\) 0 0
\(197\) − 1.44252i − 0.102775i −0.998679 0.0513876i \(-0.983636\pi\)
0.998679 0.0513876i \(-0.0163644\pi\)
\(198\) 0 0
\(199\) −0.847005 −0.0600426 −0.0300213 0.999549i \(-0.509558\pi\)
−0.0300213 + 0.999549i \(0.509558\pi\)
\(200\) 0 0
\(201\) 7.04396 0.496843
\(202\) 0 0
\(203\) − 16.2046i − 1.13734i
\(204\) 0 0
\(205\) 4.58839i 0.320467i
\(206\) 0 0
\(207\) 9.73380 0.676546
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 15.1087i − 1.04012i −0.854128 0.520062i \(-0.825909\pi\)
0.854128 0.520062i \(-0.174091\pi\)
\(212\) 0 0
\(213\) 0.687931i 0.0471363i
\(214\) 0 0
\(215\) 9.13500 0.623002
\(216\) 0 0
\(217\) −6.60526 −0.448395
\(218\) 0 0
\(219\) 8.64567i 0.584220i
\(220\) 0 0
\(221\) − 14.2564i − 0.958986i
\(222\) 0 0
\(223\) 18.7075 1.25275 0.626373 0.779523i \(-0.284539\pi\)
0.626373 + 0.779523i \(0.284539\pi\)
\(224\) 0 0
\(225\) 7.52787 0.501858
\(226\) 0 0
\(227\) − 27.1008i − 1.79874i −0.437186 0.899371i \(-0.644025\pi\)
0.437186 0.899371i \(-0.355975\pi\)
\(228\) 0 0
\(229\) − 11.6235i − 0.768101i −0.923312 0.384051i \(-0.874529\pi\)
0.923312 0.384051i \(-0.125471\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 26.1177 1.71103 0.855514 0.517780i \(-0.173242\pi\)
0.855514 + 0.517780i \(0.173242\pi\)
\(234\) 0 0
\(235\) − 3.88281i − 0.253287i
\(236\) 0 0
\(237\) − 0.469104i − 0.0304716i
\(238\) 0 0
\(239\) −14.1891 −0.917817 −0.458909 0.888483i \(-0.651759\pi\)
−0.458909 + 0.888483i \(0.651759\pi\)
\(240\) 0 0
\(241\) −17.2505 −1.11120 −0.555602 0.831448i \(-0.687512\pi\)
−0.555602 + 0.831448i \(0.687512\pi\)
\(242\) 0 0
\(243\) − 13.8621i − 0.889257i
\(244\) 0 0
\(245\) − 18.4119i − 1.17629i
\(246\) 0 0
\(247\) 16.8302 1.07088
\(248\) 0 0
\(249\) 5.24293 0.332257
\(250\) 0 0
\(251\) − 20.3207i − 1.28263i −0.767277 0.641316i \(-0.778389\pi\)
0.767277 0.641316i \(-0.221611\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −2.28691 −0.143212
\(256\) 0 0
\(257\) 15.0884 0.941190 0.470595 0.882349i \(-0.344039\pi\)
0.470595 + 0.882349i \(0.344039\pi\)
\(258\) 0 0
\(259\) 6.59260i 0.409644i
\(260\) 0 0
\(261\) − 9.60685i − 0.594649i
\(262\) 0 0
\(263\) −10.8242 −0.667448 −0.333724 0.942671i \(-0.608305\pi\)
−0.333724 + 0.942671i \(0.608305\pi\)
\(264\) 0 0
\(265\) −14.3087 −0.878979
\(266\) 0 0
\(267\) 5.41368i 0.331312i
\(268\) 0 0
\(269\) − 19.5769i − 1.19363i −0.802381 0.596813i \(-0.796434\pi\)
0.802381 0.596813i \(-0.203566\pi\)
\(270\) 0 0
\(271\) −25.8557 −1.57062 −0.785311 0.619102i \(-0.787497\pi\)
−0.785311 + 0.619102i \(0.787497\pi\)
\(272\) 0 0
\(273\) −15.1083 −0.914398
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 24.5001i − 1.47207i −0.676943 0.736035i \(-0.736696\pi\)
0.676943 0.736035i \(-0.263304\pi\)
\(278\) 0 0
\(279\) −3.91591 −0.234440
\(280\) 0 0
\(281\) −9.32504 −0.556285 −0.278143 0.960540i \(-0.589719\pi\)
−0.278143 + 0.960540i \(0.589719\pi\)
\(282\) 0 0
\(283\) 18.9916i 1.12893i 0.825456 + 0.564466i \(0.190918\pi\)
−0.825456 + 0.564466i \(0.809082\pi\)
\(284\) 0 0
\(285\) − 2.69979i − 0.159922i
\(286\) 0 0
\(287\) −13.9136 −0.821295
\(288\) 0 0
\(289\) −10.4563 −0.615079
\(290\) 0 0
\(291\) 0.182612i 0.0107049i
\(292\) 0 0
\(293\) − 5.91337i − 0.345463i −0.984969 0.172731i \(-0.944741\pi\)
0.984969 0.172731i \(-0.0552593\pi\)
\(294\) 0 0
\(295\) 3.76410 0.219154
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 20.6642i − 1.19504i
\(300\) 0 0
\(301\) 27.7005i 1.59663i
\(302\) 0 0
\(303\) 1.61097 0.0925478
\(304\) 0 0
\(305\) 8.15745 0.467094
\(306\) 0 0
\(307\) − 13.6216i − 0.777423i −0.921360 0.388711i \(-0.872920\pi\)
0.921360 0.388711i \(-0.127080\pi\)
\(308\) 0 0
\(309\) − 1.38582i − 0.0788365i
\(310\) 0 0
\(311\) −14.1842 −0.804312 −0.402156 0.915571i \(-0.631739\pi\)
−0.402156 + 0.915571i \(0.631739\pi\)
\(312\) 0 0
\(313\) −2.16820 −0.122554 −0.0612770 0.998121i \(-0.519517\pi\)
−0.0612770 + 0.998121i \(0.519517\pi\)
\(314\) 0 0
\(315\) − 16.9755i − 0.956464i
\(316\) 0 0
\(317\) 14.1656i 0.795619i 0.917468 + 0.397809i \(0.130229\pi\)
−0.917468 + 0.397809i \(0.869771\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −3.70115 −0.206578
\(322\) 0 0
\(323\) 7.72506i 0.429834i
\(324\) 0 0
\(325\) − 15.9811i − 0.886474i
\(326\) 0 0
\(327\) 7.30860 0.404166
\(328\) 0 0
\(329\) 11.7740 0.649124
\(330\) 0 0
\(331\) 10.7862i 0.592865i 0.955054 + 0.296433i \(0.0957970\pi\)
−0.955054 + 0.296433i \(0.904203\pi\)
\(332\) 0 0
\(333\) 3.90840i 0.214179i
\(334\) 0 0
\(335\) 16.8019 0.917988
\(336\) 0 0
\(337\) 6.28480 0.342355 0.171177 0.985240i \(-0.445243\pi\)
0.171177 + 0.985240i \(0.445243\pi\)
\(338\) 0 0
\(339\) − 7.59734i − 0.412631i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 24.8344 1.34093
\(344\) 0 0
\(345\) −3.31481 −0.178463
\(346\) 0 0
\(347\) − 17.3557i − 0.931701i −0.884863 0.465851i \(-0.845748\pi\)
0.884863 0.465851i \(-0.154252\pi\)
\(348\) 0 0
\(349\) 24.8420i 1.32976i 0.746950 + 0.664880i \(0.231517\pi\)
−0.746950 + 0.664880i \(0.768483\pi\)
\(350\) 0 0
\(351\) −19.1926 −1.02443
\(352\) 0 0
\(353\) 17.9063 0.953056 0.476528 0.879159i \(-0.341895\pi\)
0.476528 + 0.879159i \(0.341895\pi\)
\(354\) 0 0
\(355\) 1.64092i 0.0870911i
\(356\) 0 0
\(357\) − 6.93471i − 0.367024i
\(358\) 0 0
\(359\) 14.7140 0.776577 0.388288 0.921538i \(-0.373066\pi\)
0.388288 + 0.921538i \(0.373066\pi\)
\(360\) 0 0
\(361\) 9.88024 0.520013
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 20.6225i 1.07943i
\(366\) 0 0
\(367\) 31.4422 1.64127 0.820635 0.571453i \(-0.193620\pi\)
0.820635 + 0.571453i \(0.193620\pi\)
\(368\) 0 0
\(369\) −8.24865 −0.429407
\(370\) 0 0
\(371\) − 43.3891i − 2.25265i
\(372\) 0 0
\(373\) 20.5892i 1.06607i 0.846094 + 0.533034i \(0.178948\pi\)
−0.846094 + 0.533034i \(0.821052\pi\)
\(374\) 0 0
\(375\) −7.03360 −0.363213
\(376\) 0 0
\(377\) −20.3947 −1.05038
\(378\) 0 0
\(379\) 13.0063i 0.668087i 0.942558 + 0.334044i \(0.108413\pi\)
−0.942558 + 0.334044i \(0.891587\pi\)
\(380\) 0 0
\(381\) 5.45542i 0.279490i
\(382\) 0 0
\(383\) −37.1361 −1.89757 −0.948783 0.315929i \(-0.897684\pi\)
−0.948783 + 0.315929i \(0.897684\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 16.4222i 0.834787i
\(388\) 0 0
\(389\) − 3.54956i − 0.179970i −0.995943 0.0899849i \(-0.971318\pi\)
0.995943 0.0899849i \(-0.0286819\pi\)
\(390\) 0 0
\(391\) 9.48483 0.479669
\(392\) 0 0
\(393\) 5.08293 0.256400
\(394\) 0 0
\(395\) − 1.11895i − 0.0563006i
\(396\) 0 0
\(397\) 35.1583i 1.76454i 0.470742 + 0.882271i \(0.343986\pi\)
−0.470742 + 0.882271i \(0.656014\pi\)
\(398\) 0 0
\(399\) 8.18672 0.409849
\(400\) 0 0
\(401\) 14.2497 0.711597 0.355799 0.934563i \(-0.384209\pi\)
0.355799 + 0.934563i \(0.384209\pi\)
\(402\) 0 0
\(403\) 8.31320i 0.414110i
\(404\) 0 0
\(405\) − 8.42196i − 0.418491i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −10.3906 −0.513783 −0.256892 0.966440i \(-0.582698\pi\)
−0.256892 + 0.966440i \(0.582698\pi\)
\(410\) 0 0
\(411\) 10.1207i 0.499218i
\(412\) 0 0
\(413\) 11.4141i 0.561650i
\(414\) 0 0
\(415\) 12.5060 0.613893
\(416\) 0 0
\(417\) 10.3403 0.506367
\(418\) 0 0
\(419\) − 20.7586i − 1.01412i −0.861910 0.507062i \(-0.830732\pi\)
0.861910 0.507062i \(-0.169268\pi\)
\(420\) 0 0
\(421\) 0.165219i 0.00805227i 0.999992 + 0.00402614i \(0.00128156\pi\)
−0.999992 + 0.00402614i \(0.998718\pi\)
\(422\) 0 0
\(423\) 6.98021 0.339389
\(424\) 0 0
\(425\) 7.33533 0.355816
\(426\) 0 0
\(427\) 24.7363i 1.19707i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −33.8135 −1.62874 −0.814370 0.580345i \(-0.802918\pi\)
−0.814370 + 0.580345i \(0.802918\pi\)
\(432\) 0 0
\(433\) −5.39449 −0.259243 −0.129621 0.991564i \(-0.541376\pi\)
−0.129621 + 0.991564i \(0.541376\pi\)
\(434\) 0 0
\(435\) 3.27157i 0.156860i
\(436\) 0 0
\(437\) 11.1972i 0.535637i
\(438\) 0 0
\(439\) 0.0455090 0.00217203 0.00108601 0.999999i \(-0.499654\pi\)
0.00108601 + 0.999999i \(0.499654\pi\)
\(440\) 0 0
\(441\) 33.0994 1.57616
\(442\) 0 0
\(443\) 0.0874300i 0.00415393i 0.999998 + 0.00207696i \(0.000661118\pi\)
−0.999998 + 0.00207696i \(0.999339\pi\)
\(444\) 0 0
\(445\) 12.9132i 0.612147i
\(446\) 0 0
\(447\) 11.6515 0.551097
\(448\) 0 0
\(449\) 29.9107 1.41157 0.705787 0.708424i \(-0.250594\pi\)
0.705787 + 0.708424i \(0.250594\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 6.22081i 0.292279i
\(454\) 0 0
\(455\) −36.0379 −1.68948
\(456\) 0 0
\(457\) 21.5081 1.00611 0.503053 0.864255i \(-0.332210\pi\)
0.503053 + 0.864255i \(0.332210\pi\)
\(458\) 0 0
\(459\) − 8.80940i − 0.411188i
\(460\) 0 0
\(461\) 7.88518i 0.367250i 0.982996 + 0.183625i \(0.0587832\pi\)
−0.982996 + 0.183625i \(0.941217\pi\)
\(462\) 0 0
\(463\) −5.12007 −0.237950 −0.118975 0.992897i \(-0.537961\pi\)
−0.118975 + 0.992897i \(0.537961\pi\)
\(464\) 0 0
\(465\) 1.33355 0.0618418
\(466\) 0 0
\(467\) 18.6252i 0.861873i 0.902382 + 0.430936i \(0.141817\pi\)
−0.902382 + 0.430936i \(0.858183\pi\)
\(468\) 0 0
\(469\) 50.9494i 2.35262i
\(470\) 0 0
\(471\) −10.2537 −0.472466
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 8.65966i 0.397332i
\(476\) 0 0
\(477\) − 25.7231i − 1.17778i
\(478\) 0 0
\(479\) −39.2942 −1.79540 −0.897698 0.440611i \(-0.854762\pi\)
−0.897698 + 0.440611i \(0.854762\pi\)
\(480\) 0 0
\(481\) 8.29726 0.378323
\(482\) 0 0
\(483\) − 10.0517i − 0.457366i
\(484\) 0 0
\(485\) 0.435584i 0.0197788i
\(486\) 0 0
\(487\) 18.2826 0.828466 0.414233 0.910171i \(-0.364050\pi\)
0.414233 + 0.910171i \(0.364050\pi\)
\(488\) 0 0
\(489\) −4.26796 −0.193004
\(490\) 0 0
\(491\) 4.10219i 0.185129i 0.995707 + 0.0925646i \(0.0295065\pi\)
−0.995707 + 0.0925646i \(0.970494\pi\)
\(492\) 0 0
\(493\) − 9.36113i − 0.421604i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.97585 −0.223197
\(498\) 0 0
\(499\) 9.37476i 0.419672i 0.977737 + 0.209836i \(0.0672930\pi\)
−0.977737 + 0.209836i \(0.932707\pi\)
\(500\) 0 0
\(501\) − 6.11811i − 0.273337i
\(502\) 0 0
\(503\) −14.4704 −0.645202 −0.322601 0.946535i \(-0.604557\pi\)
−0.322601 + 0.946535i \(0.604557\pi\)
\(504\) 0 0
\(505\) 3.84264 0.170995
\(506\) 0 0
\(507\) 11.0562i 0.491025i
\(508\) 0 0
\(509\) 5.70909i 0.253051i 0.991963 + 0.126526i \(0.0403826\pi\)
−0.991963 + 0.126526i \(0.959617\pi\)
\(510\) 0 0
\(511\) −62.5347 −2.76637
\(512\) 0 0
\(513\) 10.3999 0.459165
\(514\) 0 0
\(515\) − 3.30559i − 0.145662i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −2.17669 −0.0955462
\(520\) 0 0
\(521\) 33.9942 1.48931 0.744655 0.667449i \(-0.232614\pi\)
0.744655 + 0.667449i \(0.232614\pi\)
\(522\) 0 0
\(523\) 34.5786i 1.51201i 0.654563 + 0.756007i \(0.272853\pi\)
−0.654563 + 0.756007i \(0.727147\pi\)
\(524\) 0 0
\(525\) − 7.77369i − 0.339272i
\(526\) 0 0
\(527\) −3.81575 −0.166217
\(528\) 0 0
\(529\) −9.25201 −0.402261
\(530\) 0 0
\(531\) 6.76680i 0.293654i
\(532\) 0 0
\(533\) 17.5113i 0.758498i
\(534\) 0 0
\(535\) −8.82835 −0.381683
\(536\) 0 0
\(537\) −3.30090 −0.142444
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 29.0659i 1.24964i 0.780769 + 0.624820i \(0.214828\pi\)
−0.780769 + 0.624820i \(0.785172\pi\)
\(542\) 0 0
\(543\) −2.45527 −0.105366
\(544\) 0 0
\(545\) 17.4332 0.746755
\(546\) 0 0
\(547\) 13.4006i 0.572968i 0.958085 + 0.286484i \(0.0924866\pi\)
−0.958085 + 0.286484i \(0.907513\pi\)
\(548\) 0 0
\(549\) 14.6648i 0.625879i
\(550\) 0 0
\(551\) 11.0512 0.470797
\(552\) 0 0
\(553\) 3.39306 0.144288
\(554\) 0 0
\(555\) − 1.33099i − 0.0564974i
\(556\) 0 0
\(557\) 0.917195i 0.0388628i 0.999811 + 0.0194314i \(0.00618560\pi\)
−0.999811 + 0.0194314i \(0.993814\pi\)
\(558\) 0 0
\(559\) 34.8631 1.47455
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.4995i 1.03253i 0.856429 + 0.516265i \(0.172678\pi\)
−0.856429 + 0.516265i \(0.827322\pi\)
\(564\) 0 0
\(565\) − 18.1219i − 0.762395i
\(566\) 0 0
\(567\) 25.5383 1.07251
\(568\) 0 0
\(569\) −3.69958 −0.155094 −0.0775472 0.996989i \(-0.524709\pi\)
−0.0775472 + 0.996989i \(0.524709\pi\)
\(570\) 0 0
\(571\) − 22.3627i − 0.935849i −0.883768 0.467925i \(-0.845002\pi\)
0.883768 0.467925i \(-0.154998\pi\)
\(572\) 0 0
\(573\) 0.348519i 0.0145596i
\(574\) 0 0
\(575\) 10.6323 0.443399
\(576\) 0 0
\(577\) −33.8245 −1.40813 −0.704065 0.710135i \(-0.748634\pi\)
−0.704065 + 0.710135i \(0.748634\pi\)
\(578\) 0 0
\(579\) 4.35680i 0.181062i
\(580\) 0 0
\(581\) 37.9224i 1.57329i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −21.3649 −0.883332
\(586\) 0 0
\(587\) − 44.1660i − 1.82293i −0.411380 0.911464i \(-0.634953\pi\)
0.411380 0.911464i \(-0.365047\pi\)
\(588\) 0 0
\(589\) − 4.50466i − 0.185611i
\(590\) 0 0
\(591\) −0.883119 −0.0363267
\(592\) 0 0
\(593\) 13.4081 0.550605 0.275303 0.961358i \(-0.411222\pi\)
0.275303 + 0.961358i \(0.411222\pi\)
\(594\) 0 0
\(595\) − 16.5414i − 0.678129i
\(596\) 0 0
\(597\) 0.518542i 0.0212225i
\(598\) 0 0
\(599\) 38.1205 1.55756 0.778780 0.627297i \(-0.215839\pi\)
0.778780 + 0.627297i \(0.215839\pi\)
\(600\) 0 0
\(601\) −5.00586 −0.204193 −0.102097 0.994774i \(-0.532555\pi\)
−0.102097 + 0.994774i \(0.532555\pi\)
\(602\) 0 0
\(603\) 30.2052i 1.23005i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −29.4921 −1.19705 −0.598523 0.801106i \(-0.704245\pi\)
−0.598523 + 0.801106i \(0.704245\pi\)
\(608\) 0 0
\(609\) −9.92056 −0.402002
\(610\) 0 0
\(611\) − 14.8185i − 0.599492i
\(612\) 0 0
\(613\) − 18.9375i − 0.764879i −0.923981 0.382439i \(-0.875084\pi\)
0.923981 0.382439i \(-0.124916\pi\)
\(614\) 0 0
\(615\) 2.80904 0.113272
\(616\) 0 0
\(617\) −22.1947 −0.893524 −0.446762 0.894653i \(-0.647423\pi\)
−0.446762 + 0.894653i \(0.647423\pi\)
\(618\) 0 0
\(619\) 41.5178i 1.66874i 0.551205 + 0.834370i \(0.314168\pi\)
−0.551205 + 0.834370i \(0.685832\pi\)
\(620\) 0 0
\(621\) − 12.7690i − 0.512401i
\(622\) 0 0
\(623\) −39.1575 −1.56881
\(624\) 0 0
\(625\) −2.43953 −0.0975814
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.80844i 0.151852i
\(630\) 0 0
\(631\) −21.5614 −0.858346 −0.429173 0.903222i \(-0.641195\pi\)
−0.429173 + 0.903222i \(0.641195\pi\)
\(632\) 0 0
\(633\) −9.24963 −0.367640
\(634\) 0 0
\(635\) 13.0128i 0.516397i
\(636\) 0 0
\(637\) − 70.2677i − 2.78411i
\(638\) 0 0
\(639\) −2.94992 −0.116697
\(640\) 0 0
\(641\) −10.0707 −0.397770 −0.198885 0.980023i \(-0.563732\pi\)
−0.198885 + 0.980023i \(0.563732\pi\)
\(642\) 0 0
\(643\) 30.6956i 1.21052i 0.796029 + 0.605259i \(0.206930\pi\)
−0.796029 + 0.605259i \(0.793070\pi\)
\(644\) 0 0
\(645\) − 5.59251i − 0.220205i
\(646\) 0 0
\(647\) −41.2455 −1.62153 −0.810764 0.585373i \(-0.800948\pi\)
−0.810764 + 0.585373i \(0.800948\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 4.04379i 0.158488i
\(652\) 0 0
\(653\) 24.2798i 0.950141i 0.879948 + 0.475071i \(0.157577\pi\)
−0.879948 + 0.475071i \(0.842423\pi\)
\(654\) 0 0
\(655\) 12.1243 0.473735
\(656\) 0 0
\(657\) −37.0735 −1.44637
\(658\) 0 0
\(659\) 2.24471i 0.0874413i 0.999044 + 0.0437207i \(0.0139212\pi\)
−0.999044 + 0.0437207i \(0.986079\pi\)
\(660\) 0 0
\(661\) − 21.5996i − 0.840129i −0.907494 0.420064i \(-0.862007\pi\)
0.907494 0.420064i \(-0.137993\pi\)
\(662\) 0 0
\(663\) −8.72783 −0.338961
\(664\) 0 0
\(665\) 19.5278 0.757254
\(666\) 0 0
\(667\) − 13.5687i − 0.525382i
\(668\) 0 0
\(669\) − 11.4528i − 0.442793i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 21.8507 0.842283 0.421142 0.906995i \(-0.361630\pi\)
0.421142 + 0.906995i \(0.361630\pi\)
\(674\) 0 0
\(675\) − 9.87519i − 0.380096i
\(676\) 0 0
\(677\) − 39.6499i − 1.52387i −0.647653 0.761935i \(-0.724249\pi\)
0.647653 0.761935i \(-0.275751\pi\)
\(678\) 0 0
\(679\) −1.32084 −0.0506893
\(680\) 0 0
\(681\) −16.5913 −0.635779
\(682\) 0 0
\(683\) 5.22481i 0.199922i 0.994991 + 0.0999610i \(0.0318718\pi\)
−0.994991 + 0.0999610i \(0.968128\pi\)
\(684\) 0 0
\(685\) 24.1409i 0.922377i
\(686\) 0 0
\(687\) −7.11597 −0.271491
\(688\) 0 0
\(689\) −54.6083 −2.08041
\(690\) 0 0
\(691\) 0.0821400i 0.00312475i 0.999999 + 0.00156238i \(0.000497320\pi\)
−0.999999 + 0.00156238i \(0.999503\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 24.6647 0.935585
\(696\) 0 0
\(697\) −8.03766 −0.304448
\(698\) 0 0
\(699\) − 15.9894i − 0.604776i
\(700\) 0 0
\(701\) 21.9415i 0.828719i 0.910113 + 0.414360i \(0.135994\pi\)
−0.910113 + 0.414360i \(0.864006\pi\)
\(702\) 0 0
\(703\) −4.49602 −0.169571
\(704\) 0 0
\(705\) −2.37708 −0.0895261
\(706\) 0 0
\(707\) 11.6523i 0.438228i
\(708\) 0 0
\(709\) 40.8478i 1.53407i 0.641604 + 0.767036i \(0.278269\pi\)
−0.641604 + 0.767036i \(0.721731\pi\)
\(710\) 0 0
\(711\) 2.01157 0.0754396
\(712\) 0 0
\(713\) −5.53082 −0.207131
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 8.68667i 0.324410i
\(718\) 0 0
\(719\) 42.5909 1.58837 0.794187 0.607674i \(-0.207897\pi\)
0.794187 + 0.607674i \(0.207897\pi\)
\(720\) 0 0
\(721\) 10.0237 0.373303
\(722\) 0 0
\(723\) 10.5609i 0.392764i
\(724\) 0 0
\(725\) − 10.4937i − 0.389725i
\(726\) 0 0
\(727\) 26.7043 0.990408 0.495204 0.868777i \(-0.335093\pi\)
0.495204 + 0.868777i \(0.335093\pi\)
\(728\) 0 0
\(729\) 8.81541 0.326497
\(730\) 0 0
\(731\) 16.0021i 0.591861i
\(732\) 0 0
\(733\) − 23.8158i − 0.879655i −0.898082 0.439827i \(-0.855040\pi\)
0.898082 0.439827i \(-0.144960\pi\)
\(734\) 0 0
\(735\) −11.2719 −0.415769
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.704285i 0.0259075i 0.999916 + 0.0129538i \(0.00412343\pi\)
−0.999916 + 0.0129538i \(0.995877\pi\)
\(740\) 0 0
\(741\) − 10.3036i − 0.378511i
\(742\) 0 0
\(743\) 1.25332 0.0459800 0.0229900 0.999736i \(-0.492681\pi\)
0.0229900 + 0.999736i \(0.492681\pi\)
\(744\) 0 0
\(745\) 27.7923 1.01823
\(746\) 0 0
\(747\) 22.4822i 0.822581i
\(748\) 0 0
\(749\) − 26.7707i − 0.978179i
\(750\) 0 0
\(751\) −32.0736 −1.17038 −0.585192 0.810895i \(-0.698981\pi\)
−0.585192 + 0.810895i \(0.698981\pi\)
\(752\) 0 0
\(753\) −12.4405 −0.453356
\(754\) 0 0
\(755\) 14.8385i 0.540027i
\(756\) 0 0
\(757\) 31.0673i 1.12916i 0.825379 + 0.564580i \(0.190962\pi\)
−0.825379 + 0.564580i \(0.809038\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −15.3256 −0.555553 −0.277776 0.960646i \(-0.589597\pi\)
−0.277776 + 0.960646i \(0.589597\pi\)
\(762\) 0 0
\(763\) 52.8635i 1.91379i
\(764\) 0 0
\(765\) − 9.80649i − 0.354555i
\(766\) 0 0
\(767\) 14.3654 0.518706
\(768\) 0 0
\(769\) 42.6201 1.53692 0.768460 0.639898i \(-0.221023\pi\)
0.768460 + 0.639898i \(0.221023\pi\)
\(770\) 0 0
\(771\) − 9.23723i − 0.332671i
\(772\) 0 0
\(773\) 34.6702i 1.24700i 0.781823 + 0.623501i \(0.214290\pi\)
−0.781823 + 0.623501i \(0.785710\pi\)
\(774\) 0 0
\(775\) −4.27739 −0.153649
\(776\) 0 0
\(777\) 4.03603 0.144792
\(778\) 0 0
\(779\) − 9.48880i − 0.339972i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −12.6024 −0.450374
\(784\) 0 0
\(785\) −24.4582 −0.872949
\(786\) 0 0
\(787\) − 40.0266i − 1.42679i −0.700761 0.713397i \(-0.747156\pi\)
0.700761 0.713397i \(-0.252844\pi\)
\(788\) 0 0
\(789\) 6.62664i 0.235915i
\(790\) 0 0
\(791\) 54.9521 1.95387
\(792\) 0 0
\(793\) 31.1324 1.10554
\(794\) 0 0
\(795\) 8.75990i 0.310682i
\(796\) 0 0
\(797\) − 36.1405i − 1.28016i −0.768308 0.640081i \(-0.778901\pi\)
0.768308 0.640081i \(-0.221099\pi\)
\(798\) 0 0
\(799\) 6.80167 0.240626
\(800\) 0 0
\(801\) −23.2144 −0.820241
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) − 23.9762i − 0.845050i
\(806\) 0 0
\(807\) −11.9851 −0.421896
\(808\) 0 0
\(809\) 6.43465 0.226230 0.113115 0.993582i \(-0.463917\pi\)
0.113115 + 0.993582i \(0.463917\pi\)
\(810\) 0 0
\(811\) 9.56683i 0.335937i 0.985792 + 0.167968i \(0.0537207\pi\)
−0.985792 + 0.167968i \(0.946279\pi\)
\(812\) 0 0
\(813\) 15.8290i 0.555148i
\(814\) 0 0
\(815\) −10.1803 −0.356602
\(816\) 0 0
\(817\) −18.8912 −0.660920
\(818\) 0 0
\(819\) − 64.7860i − 2.26381i
\(820\) 0 0
\(821\) − 17.1960i − 0.600146i −0.953916 0.300073i \(-0.902989\pi\)
0.953916 0.300073i \(-0.0970110\pi\)
\(822\) 0 0
\(823\) 38.3934 1.33831 0.669155 0.743123i \(-0.266656\pi\)
0.669155 + 0.743123i \(0.266656\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 17.6011i 0.612050i 0.952024 + 0.306025i \(0.0989991\pi\)
−0.952024 + 0.306025i \(0.901001\pi\)
\(828\) 0 0
\(829\) 28.5872i 0.992874i 0.868073 + 0.496437i \(0.165359\pi\)
−0.868073 + 0.496437i \(0.834641\pi\)
\(830\) 0 0
\(831\) −14.9991 −0.520314
\(832\) 0 0
\(833\) 32.2528 1.11749
\(834\) 0 0
\(835\) − 14.5935i − 0.505030i
\(836\) 0 0
\(837\) 5.13696i 0.177559i
\(838\) 0 0
\(839\) −53.0362 −1.83101 −0.915506 0.402303i \(-0.868210\pi\)
−0.915506 + 0.402303i \(0.868210\pi\)
\(840\) 0 0
\(841\) 15.6083 0.538217
\(842\) 0 0
\(843\) 5.70885i 0.196623i
\(844\) 0 0
\(845\) 26.3724i 0.907239i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 11.6268 0.399030
\(850\) 0 0
\(851\) 5.52022i 0.189231i
\(852\) 0 0
\(853\) 4.06897i 0.139319i 0.997571 + 0.0696595i \(0.0221913\pi\)
−0.997571 + 0.0696595i \(0.977809\pi\)
\(854\) 0 0
\(855\) 11.5770 0.395924
\(856\) 0 0
\(857\) −23.5570 −0.804692 −0.402346 0.915488i \(-0.631805\pi\)
−0.402346 + 0.915488i \(0.631805\pi\)
\(858\) 0 0
\(859\) − 21.8683i − 0.746138i −0.927804 0.373069i \(-0.878306\pi\)
0.927804 0.373069i \(-0.121694\pi\)
\(860\) 0 0
\(861\) 8.51800i 0.290293i
\(862\) 0 0
\(863\) −22.4232 −0.763294 −0.381647 0.924308i \(-0.624643\pi\)
−0.381647 + 0.924308i \(0.624643\pi\)
\(864\) 0 0
\(865\) −5.19206 −0.176535
\(866\) 0 0
\(867\) 6.40144i 0.217404i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 64.1235 2.17274
\(872\) 0 0
\(873\) −0.783058 −0.0265025
\(874\) 0 0
\(875\) − 50.8744i − 1.71987i
\(876\) 0 0
\(877\) − 18.2771i − 0.617173i −0.951196 0.308587i \(-0.900144\pi\)
0.951196 0.308587i \(-0.0998560\pi\)
\(878\) 0 0
\(879\) −3.62021 −0.122107
\(880\) 0 0
\(881\) −6.65131 −0.224088 −0.112044 0.993703i \(-0.535740\pi\)
−0.112044 + 0.993703i \(0.535740\pi\)
\(882\) 0 0
\(883\) 25.5001i 0.858147i 0.903270 + 0.429073i \(0.141160\pi\)
−0.903270 + 0.429073i \(0.858840\pi\)
\(884\) 0 0
\(885\) − 2.30441i − 0.0774618i
\(886\) 0 0
\(887\) 22.5084 0.755760 0.377880 0.925855i \(-0.376653\pi\)
0.377880 + 0.925855i \(0.376653\pi\)
\(888\) 0 0
\(889\) −39.4594 −1.32343
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 8.02966i 0.268702i
\(894\) 0 0
\(895\) −7.87363 −0.263186
\(896\) 0 0
\(897\) −12.6507 −0.422396
\(898\) 0 0
\(899\) 5.45869i 0.182057i
\(900\) 0 0
\(901\) − 25.0652i − 0.835042i
\(902\) 0 0
\(903\) 16.9585 0.564342
\(904\) 0 0
\(905\) −5.85654 −0.194678
\(906\) 0 0
\(907\) 13.7034i 0.455014i 0.973776 + 0.227507i \(0.0730574\pi\)
−0.973776 + 0.227507i \(0.926943\pi\)
\(908\) 0 0
\(909\) 6.90800i 0.229124i
\(910\) 0 0
\(911\) 44.3015 1.46778 0.733888 0.679271i \(-0.237704\pi\)
0.733888 + 0.679271i \(0.237704\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) − 4.99405i − 0.165098i
\(916\) 0 0
\(917\) 36.7651i 1.21409i
\(918\) 0 0
\(919\) 44.6532 1.47297 0.736486 0.676453i \(-0.236484\pi\)
0.736486 + 0.676453i \(0.236484\pi\)
\(920\) 0 0
\(921\) −8.33920 −0.274786
\(922\) 0 0
\(923\) 6.26247i 0.206132i
\(924\) 0 0
\(925\) 4.26919i 0.140370i
\(926\) 0 0
\(927\) 5.94254 0.195178
\(928\) 0 0
\(929\) −37.8438 −1.24161 −0.620807 0.783964i \(-0.713195\pi\)
−0.620807 + 0.783964i \(0.713195\pi\)
\(930\) 0 0
\(931\) 38.0758i 1.24788i
\(932\) 0 0
\(933\) 8.68366i 0.284290i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −17.0665 −0.557539 −0.278770 0.960358i \(-0.589927\pi\)
−0.278770 + 0.960358i \(0.589927\pi\)
\(938\) 0 0
\(939\) 1.32739i 0.0433176i
\(940\) 0 0
\(941\) 4.66455i 0.152060i 0.997106 + 0.0760299i \(0.0242245\pi\)
−0.997106 + 0.0760299i \(0.975776\pi\)
\(942\) 0 0
\(943\) −11.6504 −0.379388
\(944\) 0 0
\(945\) −22.2688 −0.724404
\(946\) 0 0
\(947\) 52.8254i 1.71659i 0.513153 + 0.858297i \(0.328477\pi\)
−0.513153 + 0.858297i \(0.671523\pi\)
\(948\) 0 0
\(949\) 78.7044i 2.55485i
\(950\) 0 0
\(951\) 8.67227 0.281218
\(952\) 0 0
\(953\) 38.7779 1.25614 0.628069 0.778157i \(-0.283845\pi\)
0.628069 + 0.778157i \(0.283845\pi\)
\(954\) 0 0
\(955\) 0.831323i 0.0269010i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −73.2038 −2.36387
\(960\) 0 0
\(961\) −28.7749 −0.928224
\(962\) 0 0
\(963\) − 15.8709i − 0.511433i
\(964\) 0 0
\(965\) 10.3923i 0.334539i
\(966\) 0 0
\(967\) 38.0583 1.22387 0.611937 0.790907i \(-0.290391\pi\)
0.611937 + 0.790907i \(0.290391\pi\)
\(968\) 0 0
\(969\) 4.72933 0.151928
\(970\) 0 0
\(971\) 5.71228i 0.183316i 0.995791 + 0.0916578i \(0.0292166\pi\)
−0.995791 + 0.0916578i \(0.970783\pi\)
\(972\) 0 0
\(973\) 74.7920i 2.39772i
\(974\) 0 0
\(975\) −9.78375 −0.313331
\(976\) 0 0
\(977\) 0.568676 0.0181936 0.00909678 0.999959i \(-0.497104\pi\)
0.00909678 + 0.999959i \(0.497104\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 31.3400i 1.00061i
\(982\) 0 0
\(983\) −2.19510 −0.0700129 −0.0350065 0.999387i \(-0.511145\pi\)
−0.0350065 + 0.999387i \(0.511145\pi\)
\(984\) 0 0
\(985\) −2.10650 −0.0671187
\(986\) 0 0
\(987\) − 7.20815i − 0.229438i
\(988\) 0 0
\(989\) 23.1946i 0.737547i
\(990\) 0 0
\(991\) −10.7399 −0.341165 −0.170582 0.985343i \(-0.554565\pi\)
−0.170582 + 0.985343i \(0.554565\pi\)
\(992\) 0 0
\(993\) 6.60340 0.209553
\(994\) 0 0
\(995\) 1.23688i 0.0392117i
\(996\) 0 0
\(997\) − 5.24854i − 0.166223i −0.996540 0.0831115i \(-0.973514\pi\)
0.996540 0.0831115i \(-0.0264858\pi\)
\(998\) 0 0
\(999\) 5.12711 0.162215
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3872.2.c.i.1937.8 20
4.3 odd 2 968.2.c.i.485.14 20
8.3 odd 2 968.2.c.i.485.13 20
8.5 even 2 inner 3872.2.c.i.1937.13 20
11.2 odd 10 352.2.w.a.81.5 40
11.6 odd 10 352.2.w.a.113.6 40
11.10 odd 2 3872.2.c.h.1937.8 20
44.3 odd 10 968.2.o.d.493.10 40
44.7 even 10 968.2.o.j.269.8 40
44.15 odd 10 968.2.o.d.269.3 40
44.19 even 10 968.2.o.j.493.1 40
44.27 odd 10 968.2.o.i.245.2 40
44.31 odd 10 968.2.o.i.565.6 40
44.35 even 10 88.2.o.a.37.5 40
44.39 even 10 88.2.o.a.69.9 yes 40
44.43 even 2 968.2.c.h.485.7 20
88.3 odd 10 968.2.o.d.493.3 40
88.13 odd 10 352.2.w.a.81.6 40
88.19 even 10 968.2.o.j.493.8 40
88.21 odd 2 3872.2.c.h.1937.13 20
88.27 odd 10 968.2.o.i.245.6 40
88.35 even 10 88.2.o.a.37.9 yes 40
88.43 even 2 968.2.c.h.485.8 20
88.51 even 10 968.2.o.j.269.1 40
88.59 odd 10 968.2.o.d.269.10 40
88.61 odd 10 352.2.w.a.113.5 40
88.75 odd 10 968.2.o.i.565.2 40
88.83 even 10 88.2.o.a.69.5 yes 40
132.35 odd 10 792.2.br.b.37.6 40
132.83 odd 10 792.2.br.b.685.2 40
264.35 odd 10 792.2.br.b.37.2 40
264.83 odd 10 792.2.br.b.685.6 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.o.a.37.5 40 44.35 even 10
88.2.o.a.37.9 yes 40 88.35 even 10
88.2.o.a.69.5 yes 40 88.83 even 10
88.2.o.a.69.9 yes 40 44.39 even 10
352.2.w.a.81.5 40 11.2 odd 10
352.2.w.a.81.6 40 88.13 odd 10
352.2.w.a.113.5 40 88.61 odd 10
352.2.w.a.113.6 40 11.6 odd 10
792.2.br.b.37.2 40 264.35 odd 10
792.2.br.b.37.6 40 132.35 odd 10
792.2.br.b.685.2 40 132.83 odd 10
792.2.br.b.685.6 40 264.83 odd 10
968.2.c.h.485.7 20 44.43 even 2
968.2.c.h.485.8 20 88.43 even 2
968.2.c.i.485.13 20 8.3 odd 2
968.2.c.i.485.14 20 4.3 odd 2
968.2.o.d.269.3 40 44.15 odd 10
968.2.o.d.269.10 40 88.59 odd 10
968.2.o.d.493.3 40 88.3 odd 10
968.2.o.d.493.10 40 44.3 odd 10
968.2.o.i.245.2 40 44.27 odd 10
968.2.o.i.245.6 40 88.27 odd 10
968.2.o.i.565.2 40 88.75 odd 10
968.2.o.i.565.6 40 44.31 odd 10
968.2.o.j.269.1 40 88.51 even 10
968.2.o.j.269.8 40 44.7 even 10
968.2.o.j.493.1 40 44.19 even 10
968.2.o.j.493.8 40 88.19 even 10
3872.2.c.h.1937.8 20 11.10 odd 2
3872.2.c.h.1937.13 20 88.21 odd 2
3872.2.c.i.1937.8 20 1.1 even 1 trivial
3872.2.c.i.1937.13 20 8.5 even 2 inner