Properties

Label 792.2.br.b.685.6
Level $792$
Weight $2$
Character 792.685
Analytic conductor $6.324$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [792,2,Mod(37,792)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(792, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("792.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.br (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 685.6
Character \(\chi\) \(=\) 792.685
Dual form 792.2.br.b.37.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.321268 + 1.37724i) q^{2} +(-1.79357 + 0.884925i) q^{4} +(-0.858340 + 1.18140i) q^{5} +(1.36837 - 4.21140i) q^{7} +(-1.79497 - 2.18588i) q^{8} +(-1.90283 - 0.802592i) q^{10} +(2.69217 - 1.93706i) q^{11} +(3.27580 + 4.50875i) q^{13} +(6.23972 + 0.531582i) q^{14} +(2.43382 - 3.17436i) q^{16} +(-2.06951 - 1.50359i) q^{17} +(2.87209 - 0.933198i) q^{19} +(0.494043 - 2.87850i) q^{20} +(3.53270 + 3.08545i) q^{22} +3.70783 q^{23} +(0.886118 + 2.72719i) q^{25} +(-5.15722 + 5.96007i) q^{26} +(1.27250 + 8.76436i) q^{28} +(3.48036 + 1.13084i) q^{29} +(-1.20678 + 0.876776i) q^{31} +(5.15375 + 2.33213i) q^{32} +(1.40593 - 3.33327i) q^{34} +(3.80084 + 5.23141i) q^{35} +(-1.41593 - 0.460065i) q^{37} +(2.20795 + 3.65575i) q^{38} +(4.12310 - 0.244353i) q^{40} +(-0.970962 - 2.98831i) q^{41} -6.25559i q^{43} +(-3.11446 + 5.85663i) q^{44} +(1.19121 + 5.10657i) q^{46} +(0.821652 + 2.52878i) q^{47} +(-10.2003 - 7.41099i) q^{49} +(-3.47131 + 2.09655i) q^{50} +(-9.86529 - 5.18794i) q^{52} +(5.75943 + 7.92717i) q^{53} +(-0.0223497 + 4.84320i) q^{55} +(-11.6618 + 4.56825i) q^{56} +(-0.439307 + 5.15659i) q^{58} +(-2.45147 - 0.796531i) q^{59} +(3.28347 - 4.51930i) q^{61} +(-1.59523 - 1.38034i) q^{62} +(-1.55617 + 7.84719i) q^{64} -8.13840 q^{65} +11.5059i q^{67} +(5.04238 + 0.865435i) q^{68} +(-5.98381 + 6.91535i) q^{70} +(0.909086 + 0.660489i) q^{71} +(4.36398 - 13.4310i) q^{73} +(0.178725 - 2.09788i) q^{74} +(-4.32550 + 4.21534i) q^{76} +(-4.47386 - 13.9884i) q^{77} +(-0.619910 + 0.450391i) q^{79} +(1.66115 + 5.60000i) q^{80} +(3.80368 - 2.29729i) q^{82} +(5.03379 - 6.92841i) q^{83} +(3.55269 - 1.15434i) q^{85} +(8.61544 - 2.00972i) q^{86} +(-9.06656 - 2.40781i) q^{88} +8.84290 q^{89} +(23.4706 - 7.62607i) q^{91} +(-6.65026 + 3.28115i) q^{92} +(-3.21877 + 1.94403i) q^{94} +(-1.36275 + 4.19410i) q^{95} +(0.241317 - 0.175327i) q^{97} +(6.92966 - 16.4292i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 5 q^{2} - q^{4} - 10 q^{7} + 5 q^{8} - 20 q^{10} - 2 q^{14} + 15 q^{16} + 6 q^{17} - 8 q^{20} - 35 q^{22} + 8 q^{23} - 4 q^{25} + 10 q^{26} + 32 q^{28} - 6 q^{31} - 20 q^{32} + 10 q^{34} - 12 q^{38}+ \cdots + 144 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.321268 + 1.37724i 0.227171 + 0.973855i
\(3\) 0 0
\(4\) −1.79357 + 0.884925i −0.896787 + 0.442462i
\(5\) −0.858340 + 1.18140i −0.383861 + 0.528340i −0.956602 0.291397i \(-0.905880\pi\)
0.572741 + 0.819736i \(0.305880\pi\)
\(6\) 0 0
\(7\) 1.36837 4.21140i 0.517194 1.59176i −0.262060 0.965052i \(-0.584402\pi\)
0.779254 0.626708i \(-0.215598\pi\)
\(8\) −1.79497 2.18588i −0.634618 0.772826i
\(9\) 0 0
\(10\) −1.90283 0.802592i −0.601728 0.253802i
\(11\) 2.69217 1.93706i 0.811721 0.584046i
\(12\) 0 0
\(13\) 3.27580 + 4.50875i 0.908543 + 1.25050i 0.967662 + 0.252251i \(0.0811708\pi\)
−0.0591193 + 0.998251i \(0.518829\pi\)
\(14\) 6.23972 + 0.531582i 1.66763 + 0.142071i
\(15\) 0 0
\(16\) 2.43382 3.17436i 0.608454 0.793589i
\(17\) −2.06951 1.50359i −0.501930 0.364674i 0.307824 0.951443i \(-0.400399\pi\)
−0.809754 + 0.586770i \(0.800399\pi\)
\(18\) 0 0
\(19\) 2.87209 0.933198i 0.658902 0.214090i 0.0395671 0.999217i \(-0.487402\pi\)
0.619335 + 0.785127i \(0.287402\pi\)
\(20\) 0.494043 2.87850i 0.110471 0.643652i
\(21\) 0 0
\(22\) 3.53270 + 3.08545i 0.753175 + 0.657820i
\(23\) 3.70783 0.773136 0.386568 0.922261i \(-0.373661\pi\)
0.386568 + 0.922261i \(0.373661\pi\)
\(24\) 0 0
\(25\) 0.886118 + 2.72719i 0.177224 + 0.545438i
\(26\) −5.15722 + 5.96007i −1.01141 + 1.16887i
\(27\) 0 0
\(28\) 1.27250 + 8.76436i 0.240481 + 1.65631i
\(29\) 3.48036 + 1.13084i 0.646287 + 0.209991i 0.613776 0.789480i \(-0.289650\pi\)
0.0325108 + 0.999471i \(0.489650\pi\)
\(30\) 0 0
\(31\) −1.20678 + 0.876776i −0.216744 + 0.157474i −0.690860 0.722989i \(-0.742768\pi\)
0.474116 + 0.880462i \(0.342768\pi\)
\(32\) 5.15375 + 2.33213i 0.911063 + 0.412266i
\(33\) 0 0
\(34\) 1.40593 3.33327i 0.241116 0.571650i
\(35\) 3.80084 + 5.23141i 0.642459 + 0.884269i
\(36\) 0 0
\(37\) −1.41593 0.460065i −0.232778 0.0756342i 0.190305 0.981725i \(-0.439052\pi\)
−0.423083 + 0.906091i \(0.639052\pi\)
\(38\) 2.20795 + 3.65575i 0.358176 + 0.593040i
\(39\) 0 0
\(40\) 4.12310 0.244353i 0.651920 0.0386357i
\(41\) −0.970962 2.98831i −0.151639 0.466696i 0.846166 0.532919i \(-0.178905\pi\)
−0.997805 + 0.0662232i \(0.978905\pi\)
\(42\) 0 0
\(43\) 6.25559i 0.953968i −0.878912 0.476984i \(-0.841730\pi\)
0.878912 0.476984i \(-0.158270\pi\)
\(44\) −3.11446 + 5.85663i −0.469523 + 0.882920i
\(45\) 0 0
\(46\) 1.19121 + 5.10657i 0.175634 + 0.752922i
\(47\) 0.821652 + 2.52878i 0.119850 + 0.368861i 0.992928 0.118720i \(-0.0378792\pi\)
−0.873077 + 0.487582i \(0.837879\pi\)
\(48\) 0 0
\(49\) −10.2003 7.41099i −1.45719 1.05871i
\(50\) −3.47131 + 2.09655i −0.490918 + 0.296498i
\(51\) 0 0
\(52\) −9.86529 5.18794i −1.36807 0.719438i
\(53\) 5.75943 + 7.92717i 0.791118 + 1.08888i 0.993968 + 0.109671i \(0.0349797\pi\)
−0.202850 + 0.979210i \(0.565020\pi\)
\(54\) 0 0
\(55\) −0.0223497 + 4.84320i −0.00301363 + 0.653057i
\(56\) −11.6618 + 4.56825i −1.55837 + 0.610458i
\(57\) 0 0
\(58\) −0.439307 + 5.15659i −0.0576838 + 0.677094i
\(59\) −2.45147 0.796531i −0.319154 0.103700i 0.145059 0.989423i \(-0.453663\pi\)
−0.464213 + 0.885723i \(0.653663\pi\)
\(60\) 0 0
\(61\) 3.28347 4.51930i 0.420405 0.578638i −0.545313 0.838233i \(-0.683589\pi\)
0.965718 + 0.259595i \(0.0835891\pi\)
\(62\) −1.59523 1.38034i −0.202594 0.175304i
\(63\) 0 0
\(64\) −1.55617 + 7.84719i −0.194521 + 0.980898i
\(65\) −8.13840 −1.00944
\(66\) 0 0
\(67\) 11.5059i 1.40566i 0.711356 + 0.702832i \(0.248081\pi\)
−0.711356 + 0.702832i \(0.751919\pi\)
\(68\) 5.04238 + 0.865435i 0.611479 + 0.104949i
\(69\) 0 0
\(70\) −5.98381 + 6.91535i −0.715202 + 0.826542i
\(71\) 0.909086 + 0.660489i 0.107889 + 0.0783857i 0.640421 0.768024i \(-0.278760\pi\)
−0.532533 + 0.846409i \(0.678760\pi\)
\(72\) 0 0
\(73\) 4.36398 13.4310i 0.510765 1.57197i −0.280091 0.959973i \(-0.590365\pi\)
0.790857 0.612001i \(-0.209635\pi\)
\(74\) 0.178725 2.09788i 0.0207764 0.243874i
\(75\) 0 0
\(76\) −4.32550 + 4.21534i −0.496168 + 0.483533i
\(77\) −4.47386 13.9884i −0.509843 1.59413i
\(78\) 0 0
\(79\) −0.619910 + 0.450391i −0.0697454 + 0.0506730i −0.622112 0.782929i \(-0.713725\pi\)
0.552366 + 0.833602i \(0.313725\pi\)
\(80\) 1.66115 + 5.60000i 0.185723 + 0.626099i
\(81\) 0 0
\(82\) 3.80368 2.29729i 0.420046 0.253694i
\(83\) 5.03379 6.92841i 0.552530 0.760492i −0.437823 0.899061i \(-0.644250\pi\)
0.990353 + 0.138569i \(0.0442503\pi\)
\(84\) 0 0
\(85\) 3.55269 1.15434i 0.385343 0.125206i
\(86\) 8.61544 2.00972i 0.929027 0.216713i
\(87\) 0 0
\(88\) −9.06656 2.40781i −0.966498 0.256673i
\(89\) 8.84290 0.937346 0.468673 0.883372i \(-0.344732\pi\)
0.468673 + 0.883372i \(0.344732\pi\)
\(90\) 0 0
\(91\) 23.4706 7.62607i 2.46039 0.799430i
\(92\) −6.65026 + 3.28115i −0.693338 + 0.342083i
\(93\) 0 0
\(94\) −3.21877 + 1.94403i −0.331991 + 0.200511i
\(95\) −1.36275 + 4.19410i −0.139815 + 0.430305i
\(96\) 0 0
\(97\) 0.241317 0.175327i 0.0245021 0.0178018i −0.575467 0.817825i \(-0.695180\pi\)
0.599969 + 0.800023i \(0.295180\pi\)
\(98\) 6.92966 16.4292i 0.700001 1.65960i
\(99\) 0 0
\(100\) −4.00268 4.10727i −0.400268 0.410727i
\(101\) 1.54671 + 2.12886i 0.153903 + 0.211830i 0.879006 0.476812i \(-0.158208\pi\)
−0.725102 + 0.688641i \(0.758208\pi\)
\(102\) 0 0
\(103\) −0.699506 + 2.15286i −0.0689243 + 0.212127i −0.979586 0.201026i \(-0.935573\pi\)
0.910662 + 0.413153i \(0.135573\pi\)
\(104\) 3.97564 15.2536i 0.389843 1.49574i
\(105\) 0 0
\(106\) −9.06729 + 10.4789i −0.880693 + 1.01780i
\(107\) 5.74970 1.86819i 0.555845 0.180605i −0.0176059 0.999845i \(-0.505604\pi\)
0.573451 + 0.819240i \(0.305604\pi\)
\(108\) 0 0
\(109\) 11.9381i 1.14346i 0.820440 + 0.571732i \(0.193728\pi\)
−0.820440 + 0.571732i \(0.806272\pi\)
\(110\) −6.67742 + 1.52518i −0.636667 + 0.145420i
\(111\) 0 0
\(112\) −10.0381 14.5935i −0.948514 1.37895i
\(113\) −3.83483 11.8024i −0.360750 1.11028i −0.952600 0.304227i \(-0.901602\pi\)
0.591849 0.806049i \(-0.298398\pi\)
\(114\) 0 0
\(115\) −3.18258 + 4.38044i −0.296777 + 0.408478i
\(116\) −7.24300 + 1.05162i −0.672495 + 0.0976401i
\(117\) 0 0
\(118\) 0.309436 3.63216i 0.0284859 0.334368i
\(119\) −9.16406 + 6.65808i −0.840068 + 0.610345i
\(120\) 0 0
\(121\) 3.49559 10.4298i 0.317781 0.948164i
\(122\) 7.27903 + 3.07021i 0.659013 + 0.277964i
\(123\) 0 0
\(124\) 1.38857 2.64047i 0.124697 0.237121i
\(125\) −10.9266 3.55027i −0.977307 0.317546i
\(126\) 0 0
\(127\) 7.20921 + 5.23780i 0.639714 + 0.464780i 0.859752 0.510712i \(-0.170618\pi\)
−0.220038 + 0.975491i \(0.570618\pi\)
\(128\) −11.3074 + 0.377835i −0.999442 + 0.0333962i
\(129\) 0 0
\(130\) −2.61460 11.2085i −0.229316 0.983052i
\(131\) 8.30263i 0.725404i 0.931905 + 0.362702i \(0.118146\pi\)
−0.931905 + 0.362702i \(0.881854\pi\)
\(132\) 0 0
\(133\) 13.3725i 1.15954i
\(134\) −15.8463 + 3.69646i −1.36891 + 0.319325i
\(135\) 0 0
\(136\) 0.428044 + 7.22260i 0.0367044 + 0.619333i
\(137\) −13.3743 9.71699i −1.14264 0.830179i −0.155158 0.987890i \(-0.549589\pi\)
−0.987485 + 0.157711i \(0.949589\pi\)
\(138\) 0 0
\(139\) −16.0635 5.21936i −1.36249 0.442701i −0.465618 0.884986i \(-0.654168\pi\)
−0.896874 + 0.442285i \(0.854168\pi\)
\(140\) −11.4465 6.01946i −0.967405 0.508737i
\(141\) 0 0
\(142\) −0.617592 + 1.46422i −0.0518272 + 0.122875i
\(143\) 17.5527 + 5.79291i 1.46783 + 0.484428i
\(144\) 0 0
\(145\) −4.32331 + 3.14107i −0.359031 + 0.260852i
\(146\) 19.8996 + 1.69531i 1.64691 + 0.140305i
\(147\) 0 0
\(148\) 2.94670 0.427834i 0.242218 0.0351678i
\(149\) −11.1867 + 15.3972i −0.916451 + 1.26139i 0.0484646 + 0.998825i \(0.484567\pi\)
−0.964915 + 0.262561i \(0.915433\pi\)
\(150\) 0 0
\(151\) −3.14001 9.66396i −0.255530 0.786442i −0.993725 0.111854i \(-0.964321\pi\)
0.738194 0.674588i \(-0.235679\pi\)
\(152\) −7.19518 4.60299i −0.583606 0.373352i
\(153\) 0 0
\(154\) 17.8281 10.6556i 1.43663 0.858653i
\(155\) 2.17826i 0.174962i
\(156\) 0 0
\(157\) −15.9290 + 5.17566i −1.27128 + 0.413063i −0.865499 0.500910i \(-0.832999\pi\)
−0.405776 + 0.913972i \(0.632999\pi\)
\(158\) −0.819453 0.709069i −0.0651922 0.0564105i
\(159\) 0 0
\(160\) −7.17886 + 4.08690i −0.567539 + 0.323098i
\(161\) 5.07367 15.6151i 0.399861 1.23065i
\(162\) 0 0
\(163\) 4.09770 + 5.64001i 0.320957 + 0.441759i 0.938759 0.344574i \(-0.111977\pi\)
−0.617802 + 0.786334i \(0.711977\pi\)
\(164\) 4.38592 + 4.50053i 0.342483 + 0.351433i
\(165\) 0 0
\(166\) 11.1593 + 4.70685i 0.866127 + 0.365323i
\(167\) 8.08495 5.87406i 0.625632 0.454548i −0.229252 0.973367i \(-0.573628\pi\)
0.854884 + 0.518819i \(0.173628\pi\)
\(168\) 0 0
\(169\) −5.58074 + 17.1758i −0.429288 + 1.32121i
\(170\) 2.73116 + 4.52205i 0.209471 + 0.346825i
\(171\) 0 0
\(172\) 5.53572 + 11.2199i 0.422095 + 0.855506i
\(173\) −3.38147 + 1.09871i −0.257088 + 0.0835331i −0.434726 0.900563i \(-0.643155\pi\)
0.177637 + 0.984096i \(0.443155\pi\)
\(174\) 0 0
\(175\) 12.6978 0.959866
\(176\) 0.403338 13.2604i 0.0304027 0.999538i
\(177\) 0 0
\(178\) 2.84094 + 12.1788i 0.212937 + 0.912839i
\(179\) −5.12791 + 1.66616i −0.383278 + 0.124535i −0.494318 0.869281i \(-0.664582\pi\)
0.111039 + 0.993816i \(0.464582\pi\)
\(180\) 0 0
\(181\) 2.35732 3.24458i 0.175219 0.241168i −0.712371 0.701803i \(-0.752379\pi\)
0.887589 + 0.460636i \(0.152379\pi\)
\(182\) 18.0433 + 29.8747i 1.33746 + 2.21446i
\(183\) 0 0
\(184\) −6.65544 8.10488i −0.490646 0.597499i
\(185\) 1.75887 1.27790i 0.129315 0.0939529i
\(186\) 0 0
\(187\) −8.48402 0.0391508i −0.620413 0.00286299i
\(188\) −3.71148 3.80846i −0.270687 0.277761i
\(189\) 0 0
\(190\) −6.21408 0.529398i −0.450817 0.0384065i
\(191\) −0.175918 + 0.541421i −0.0127290 + 0.0391759i −0.957219 0.289364i \(-0.906556\pi\)
0.944490 + 0.328539i \(0.106556\pi\)
\(192\) 0 0
\(193\) −5.75741 4.18300i −0.414428 0.301099i 0.360964 0.932580i \(-0.382448\pi\)
−0.775392 + 0.631480i \(0.782448\pi\)
\(194\) 0.318995 + 0.276025i 0.0229025 + 0.0198174i
\(195\) 0 0
\(196\) 24.8532 + 4.26562i 1.77523 + 0.304687i
\(197\) 1.44252i 0.102775i 0.998679 + 0.0513876i \(0.0163644\pi\)
−0.998679 + 0.0513876i \(0.983636\pi\)
\(198\) 0 0
\(199\) 0.847005 0.0600426 0.0300213 0.999549i \(-0.490442\pi\)
0.0300213 + 0.999549i \(0.490442\pi\)
\(200\) 4.37076 6.83218i 0.309060 0.483108i
\(201\) 0 0
\(202\) −2.43504 + 2.81412i −0.171329 + 0.198001i
\(203\) 9.52483 13.1098i 0.668512 0.920127i
\(204\) 0 0
\(205\) 4.36382 + 1.41789i 0.304782 + 0.0990298i
\(206\) −3.18973 0.271743i −0.222239 0.0189332i
\(207\) 0 0
\(208\) 22.2851 + 0.574922i 1.54519 + 0.0398636i
\(209\) 5.92450 8.07574i 0.409806 0.558611i
\(210\) 0 0
\(211\) −8.88066 12.2232i −0.611370 0.841478i 0.385320 0.922783i \(-0.374091\pi\)
−0.996689 + 0.0813050i \(0.974091\pi\)
\(212\) −17.3449 9.12131i −1.19125 0.626454i
\(213\) 0 0
\(214\) 4.42014 + 7.31852i 0.302155 + 0.500284i
\(215\) 7.39037 + 5.36942i 0.504019 + 0.366191i
\(216\) 0 0
\(217\) 2.04114 + 6.28198i 0.138562 + 0.426449i
\(218\) −16.4416 + 3.83533i −1.11357 + 0.259761i
\(219\) 0 0
\(220\) −4.24578 8.70642i −0.286250 0.586986i
\(221\) 14.2564i 0.958986i
\(222\) 0 0
\(223\) −5.78093 17.7919i −0.387120 1.19143i −0.934931 0.354830i \(-0.884539\pi\)
0.547811 0.836602i \(-0.315461\pi\)
\(224\) 16.8738 18.5133i 1.12743 1.23697i
\(225\) 0 0
\(226\) 15.0227 9.07320i 0.999296 0.603541i
\(227\) −25.7744 8.37460i −1.71071 0.555842i −0.720255 0.693710i \(-0.755975\pi\)
−0.990451 + 0.137868i \(0.955975\pi\)
\(228\) 0 0
\(229\) −6.83211 9.40359i −0.451479 0.621407i 0.521236 0.853413i \(-0.325471\pi\)
−0.972714 + 0.232006i \(0.925471\pi\)
\(230\) −7.05537 2.97587i −0.465218 0.196223i
\(231\) 0 0
\(232\) −3.77527 9.63748i −0.247858 0.632732i
\(233\) −21.1297 + 15.3516i −1.38425 + 1.00572i −0.387781 + 0.921751i \(0.626758\pi\)
−0.996469 + 0.0839651i \(0.973242\pi\)
\(234\) 0 0
\(235\) −3.69277 1.19985i −0.240890 0.0782699i
\(236\) 5.10177 0.740729i 0.332097 0.0482174i
\(237\) 0 0
\(238\) −12.1139 10.4821i −0.785227 0.679452i
\(239\) 4.38468 + 13.4946i 0.283621 + 0.872896i 0.986809 + 0.161892i \(0.0517595\pi\)
−0.703187 + 0.711005i \(0.748241\pi\)
\(240\) 0 0
\(241\) 17.2505 1.11120 0.555602 0.831448i \(-0.312488\pi\)
0.555602 + 0.831448i \(0.312488\pi\)
\(242\) 15.4874 + 1.46351i 0.995565 + 0.0940779i
\(243\) 0 0
\(244\) −1.88990 + 11.0113i −0.120988 + 0.704928i
\(245\) 17.5107 5.68958i 1.11872 0.363494i
\(246\) 0 0
\(247\) 13.6159 + 9.89256i 0.866361 + 0.629448i
\(248\) 4.08266 + 1.06409i 0.259249 + 0.0675698i
\(249\) 0 0
\(250\) 1.37921 16.1892i 0.0872287 1.02389i
\(251\) −11.9442 16.4398i −0.753912 1.03767i −0.997696 0.0678411i \(-0.978389\pi\)
0.243784 0.969829i \(-0.421611\pi\)
\(252\) 0 0
\(253\) 9.98212 7.18229i 0.627570 0.451547i
\(254\) −4.89762 + 11.6115i −0.307304 + 0.728573i
\(255\) 0 0
\(256\) −4.15307 15.4516i −0.259567 0.965725i
\(257\) −4.66258 + 14.3499i −0.290844 + 0.895125i 0.693742 + 0.720223i \(0.255961\pi\)
−0.984586 + 0.174901i \(0.944039\pi\)
\(258\) 0 0
\(259\) −3.87503 + 5.33353i −0.240783 + 0.331409i
\(260\) 14.5968 7.20187i 0.905256 0.446641i
\(261\) 0 0
\(262\) −11.4347 + 2.66737i −0.706439 + 0.164790i
\(263\) 10.8242 0.667448 0.333724 0.942671i \(-0.391695\pi\)
0.333724 + 0.942671i \(0.391695\pi\)
\(264\) 0 0
\(265\) −14.3087 −0.878979
\(266\) 18.4171 4.29614i 1.12922 0.263413i
\(267\) 0 0
\(268\) −10.1818 20.6366i −0.621953 1.26058i
\(269\) −11.5070 + 15.8381i −0.701595 + 0.965663i 0.298342 + 0.954459i \(0.403566\pi\)
−0.999937 + 0.0112040i \(0.996434\pi\)
\(270\) 0 0
\(271\) −7.98985 + 24.5902i −0.485349 + 1.49375i 0.346127 + 0.938188i \(0.387497\pi\)
−0.831475 + 0.555562i \(0.812503\pi\)
\(272\) −9.80974 + 2.90991i −0.594803 + 0.176439i
\(273\) 0 0
\(274\) 9.08589 21.5413i 0.548899 1.30136i
\(275\) 7.66832 + 5.62561i 0.462417 + 0.339237i
\(276\) 0 0
\(277\) 14.4008 + 19.8210i 0.865261 + 1.19093i 0.980289 + 0.197567i \(0.0633042\pi\)
−0.115028 + 0.993362i \(0.536696\pi\)
\(278\) 2.02761 23.8002i 0.121608 1.42744i
\(279\) 0 0
\(280\) 4.61285 17.6984i 0.275670 1.05768i
\(281\) 7.54411 + 5.48112i 0.450044 + 0.326976i 0.789613 0.613605i \(-0.210281\pi\)
−0.339569 + 0.940581i \(0.610281\pi\)
\(282\) 0 0
\(283\) 18.0621 5.86872i 1.07368 0.348859i 0.281759 0.959485i \(-0.409082\pi\)
0.791919 + 0.610626i \(0.209082\pi\)
\(284\) −2.21500 0.380165i −0.131436 0.0225586i
\(285\) 0 0
\(286\) −2.33910 + 26.0354i −0.138314 + 1.53950i
\(287\) −13.9136 −0.821295
\(288\) 0 0
\(289\) −3.23119 9.94458i −0.190070 0.584975i
\(290\) −5.71494 4.94511i −0.335593 0.290387i
\(291\) 0 0
\(292\) 4.05826 + 27.9512i 0.237492 + 1.63572i
\(293\) 5.62395 + 1.82733i 0.328555 + 0.106754i 0.468650 0.883384i \(-0.344741\pi\)
−0.140095 + 0.990138i \(0.544741\pi\)
\(294\) 0 0
\(295\) 3.04522 2.21248i 0.177300 0.128816i
\(296\) 1.53591 + 3.92087i 0.0892730 + 0.227896i
\(297\) 0 0
\(298\) −24.7995 10.4602i −1.43660 0.605940i
\(299\) 12.1461 + 16.7177i 0.702427 + 0.966807i
\(300\) 0 0
\(301\) −26.3448 8.55994i −1.51849 0.493387i
\(302\) 12.3008 7.42926i 0.707831 0.427506i
\(303\) 0 0
\(304\) 4.02784 11.3883i 0.231012 0.653162i
\(305\) 2.52079 + 7.75820i 0.144340 + 0.444233i
\(306\) 0 0
\(307\) 13.6216i 0.777423i 0.921360 + 0.388711i \(0.127080\pi\)
−0.921360 + 0.388711i \(0.872920\pi\)
\(308\) 20.4029 + 21.1303i 1.16256 + 1.20401i
\(309\) 0 0
\(310\) 2.99999 0.699806i 0.170388 0.0397463i
\(311\) −4.38316 13.4900i −0.248546 0.764946i −0.995033 0.0995459i \(-0.968261\pi\)
0.746487 0.665400i \(-0.231739\pi\)
\(312\) 0 0
\(313\) 1.75411 + 1.27444i 0.0991482 + 0.0720354i 0.636255 0.771479i \(-0.280483\pi\)
−0.537107 + 0.843514i \(0.680483\pi\)
\(314\) −12.2456 20.2753i −0.691059 1.14420i
\(315\) 0 0
\(316\) 0.713293 1.35638i 0.0401259 0.0763026i
\(317\) −8.32633 11.4602i −0.467653 0.643669i 0.508421 0.861109i \(-0.330229\pi\)
−0.976074 + 0.217440i \(0.930229\pi\)
\(318\) 0 0
\(319\) 11.5602 3.69726i 0.647249 0.207007i
\(320\) −7.93498 8.57401i −0.443579 0.479302i
\(321\) 0 0
\(322\) 23.1358 + 1.97101i 1.28931 + 0.109840i
\(323\) −7.34697 2.38717i −0.408796 0.132826i
\(324\) 0 0
\(325\) −9.39347 + 12.9290i −0.521056 + 0.717172i
\(326\) −6.45118 + 7.45547i −0.357298 + 0.412920i
\(327\) 0 0
\(328\) −4.78925 + 7.48634i −0.264442 + 0.413364i
\(329\) 11.7740 0.649124
\(330\) 0 0
\(331\) 10.7862i 0.592865i 0.955054 + 0.296433i \(0.0957970\pi\)
−0.955054 + 0.296433i \(0.904203\pi\)
\(332\) −2.89735 + 16.8811i −0.159013 + 0.926473i
\(333\) 0 0
\(334\) 10.6874 + 9.24776i 0.584789 + 0.506015i
\(335\) −13.5931 9.87594i −0.742668 0.539580i
\(336\) 0 0
\(337\) −1.94211 + 5.97720i −0.105793 + 0.325599i −0.989916 0.141657i \(-0.954757\pi\)
0.884122 + 0.467255i \(0.154757\pi\)
\(338\) −25.4480 2.16800i −1.38419 0.117924i
\(339\) 0 0
\(340\) −5.35051 + 5.21425i −0.290172 + 0.282783i
\(341\) −1.55049 + 4.69804i −0.0839637 + 0.254413i
\(342\) 0 0
\(343\) −20.0914 + 14.5973i −1.08484 + 0.788179i
\(344\) −13.6740 + 11.2286i −0.737252 + 0.605405i
\(345\) 0 0
\(346\) −2.59954 4.30411i −0.139752 0.231391i
\(347\) −10.2014 + 14.0410i −0.547640 + 0.753762i −0.989690 0.143229i \(-0.954252\pi\)
0.442050 + 0.896991i \(0.354252\pi\)
\(348\) 0 0
\(349\) −23.6261 + 7.67659i −1.26468 + 0.410918i −0.863159 0.504933i \(-0.831517\pi\)
−0.401518 + 0.915851i \(0.631517\pi\)
\(350\) 4.07940 + 17.4879i 0.218053 + 0.934770i
\(351\) 0 0
\(352\) 18.3923 3.70463i 0.980311 0.197458i
\(353\) −17.9063 −0.953056 −0.476528 0.879159i \(-0.658105\pi\)
−0.476528 + 0.879159i \(0.658105\pi\)
\(354\) 0 0
\(355\) −1.56061 + 0.507073i −0.0828285 + 0.0269126i
\(356\) −15.8604 + 7.82530i −0.840600 + 0.414740i
\(357\) 0 0
\(358\) −3.94213 6.52708i −0.208348 0.344967i
\(359\) −4.54688 + 13.9939i −0.239975 + 0.738568i 0.756447 + 0.654055i \(0.226934\pi\)
−0.996422 + 0.0845133i \(0.973066\pi\)
\(360\) 0 0
\(361\) −7.99328 + 5.80746i −0.420699 + 0.305656i
\(362\) 5.22589 + 2.20422i 0.274667 + 0.115851i
\(363\) 0 0
\(364\) −35.3478 + 34.4477i −1.85273 + 1.80555i
\(365\) 12.1216 + 16.6839i 0.634473 + 0.873278i
\(366\) 0 0
\(367\) −9.71617 + 29.9033i −0.507180 + 1.56094i 0.289894 + 0.957059i \(0.406380\pi\)
−0.797074 + 0.603881i \(0.793620\pi\)
\(368\) 9.02417 11.7700i 0.470418 0.613552i
\(369\) 0 0
\(370\) 2.32504 + 2.01184i 0.120873 + 0.104591i
\(371\) 41.2655 13.4080i 2.14240 0.696107i
\(372\) 0 0
\(373\) 20.5892i 1.06607i 0.846094 + 0.533034i \(0.178948\pi\)
−0.846094 + 0.533034i \(0.821052\pi\)
\(374\) −2.67172 11.6971i −0.138151 0.604843i
\(375\) 0 0
\(376\) 4.05279 6.33513i 0.209006 0.326709i
\(377\) 6.30230 + 19.3965i 0.324585 + 0.998969i
\(378\) 0 0
\(379\) 7.64489 10.5223i 0.392692 0.540494i −0.566199 0.824268i \(-0.691587\pi\)
0.958891 + 0.283775i \(0.0915868\pi\)
\(380\) −1.26728 8.72835i −0.0650099 0.447755i
\(381\) 0 0
\(382\) −0.802183 0.0683406i −0.0410433 0.00349661i
\(383\) 30.0437 21.8280i 1.53516 1.11536i 0.581883 0.813272i \(-0.302316\pi\)
0.953280 0.302089i \(-0.0976839\pi\)
\(384\) 0 0
\(385\) 20.3661 + 6.72140i 1.03795 + 0.342554i
\(386\) 3.91133 9.27319i 0.199081 0.471993i
\(387\) 0 0
\(388\) −0.277669 + 0.528010i −0.0140965 + 0.0268057i
\(389\) −3.37583 1.09687i −0.171161 0.0556137i 0.222183 0.975005i \(-0.428682\pi\)
−0.393344 + 0.919391i \(0.628682\pi\)
\(390\) 0 0
\(391\) −7.67339 5.57505i −0.388060 0.281942i
\(392\) 2.10977 + 35.5993i 0.106560 + 1.79803i
\(393\) 0 0
\(394\) −1.98669 + 0.463434i −0.100088 + 0.0233475i
\(395\) 1.11895i 0.0563006i
\(396\) 0 0
\(397\) 35.1583i 1.76454i −0.470742 0.882271i \(-0.656014\pi\)
0.470742 0.882271i \(-0.343986\pi\)
\(398\) 0.272115 + 1.16653i 0.0136399 + 0.0584728i
\(399\) 0 0
\(400\) 10.8137 + 3.82463i 0.540686 + 0.191231i
\(401\) 11.5283 + 8.37578i 0.575694 + 0.418266i 0.837169 0.546944i \(-0.184209\pi\)
−0.261475 + 0.965210i \(0.584209\pi\)
\(402\) 0 0
\(403\) −7.90632 2.56892i −0.393842 0.127967i
\(404\) −4.65802 2.44955i −0.231745 0.121870i
\(405\) 0 0
\(406\) 21.1153 + 8.90621i 1.04794 + 0.442008i
\(407\) −4.70311 + 1.50418i −0.233125 + 0.0745592i
\(408\) 0 0
\(409\) −8.40619 + 6.10746i −0.415660 + 0.301994i −0.775889 0.630869i \(-0.782698\pi\)
0.360230 + 0.932864i \(0.382698\pi\)
\(410\) −0.550821 + 6.46554i −0.0272031 + 0.319310i
\(411\) 0 0
\(412\) −0.650501 4.48032i −0.0320479 0.220729i
\(413\) −6.70902 + 9.23418i −0.330130 + 0.454384i
\(414\) 0 0
\(415\) 3.86455 + 11.8939i 0.189703 + 0.583847i
\(416\) 6.36766 + 30.8766i 0.312200 + 1.51385i
\(417\) 0 0
\(418\) 13.0256 + 5.56498i 0.637102 + 0.272192i
\(419\) 20.7586i 1.01412i 0.861910 + 0.507062i \(0.169268\pi\)
−0.861910 + 0.507062i \(0.830732\pi\)
\(420\) 0 0
\(421\) 0.157132 0.0510554i 0.00765817 0.00248829i −0.305185 0.952293i \(-0.598718\pi\)
0.312844 + 0.949805i \(0.398718\pi\)
\(422\) 13.9812 16.1577i 0.680593 0.786544i
\(423\) 0 0
\(424\) 6.98987 26.8185i 0.339458 1.30242i
\(425\) 2.26674 6.97631i 0.109953 0.338401i
\(426\) 0 0
\(427\) −14.5396 20.0121i −0.703621 0.968451i
\(428\) −8.65931 + 8.43879i −0.418564 + 0.407904i
\(429\) 0 0
\(430\) −5.02069 + 11.9033i −0.242119 + 0.574030i
\(431\) −27.3557 + 19.8751i −1.31768 + 0.957350i −0.317721 + 0.948184i \(0.602918\pi\)
−0.999958 + 0.00916561i \(0.997082\pi\)
\(432\) 0 0
\(433\) −1.66699 + 5.13046i −0.0801103 + 0.246554i −0.983088 0.183133i \(-0.941376\pi\)
0.902978 + 0.429687i \(0.141376\pi\)
\(434\) −7.99604 + 4.82933i −0.383822 + 0.231815i
\(435\) 0 0
\(436\) −10.5643 21.4119i −0.505940 1.02544i
\(437\) 10.6492 3.46014i 0.509421 0.165521i
\(438\) 0 0
\(439\) 0.0455090 0.00217203 0.00108601 0.999999i \(-0.499654\pi\)
0.00108601 + 0.999999i \(0.499654\pi\)
\(440\) 10.6268 8.64454i 0.506612 0.412112i
\(441\) 0 0
\(442\) 19.6344 4.58011i 0.933913 0.217853i
\(443\) 0.0831509 0.0270174i 0.00395062 0.00128363i −0.307041 0.951696i \(-0.599339\pi\)
0.310992 + 0.950413i \(0.399339\pi\)
\(444\) 0 0
\(445\) −7.59022 + 10.4470i −0.359811 + 0.495237i
\(446\) 22.6464 13.6777i 1.07234 0.647657i
\(447\) 0 0
\(448\) 30.9182 + 17.2915i 1.46075 + 0.816945i
\(449\) 24.1983 17.5811i 1.14199 0.829702i 0.154592 0.987978i \(-0.450594\pi\)
0.987395 + 0.158276i \(0.0505937\pi\)
\(450\) 0 0
\(451\) −8.40254 6.16424i −0.395660 0.290263i
\(452\) 17.3223 + 17.7749i 0.814771 + 0.836062i
\(453\) 0 0
\(454\) 3.25336 38.1880i 0.152688 1.79225i
\(455\) −11.1363 + 34.2741i −0.522079 + 1.60679i
\(456\) 0 0
\(457\) 17.4004 + 12.6421i 0.813957 + 0.591375i 0.914975 0.403510i \(-0.132210\pi\)
−0.101018 + 0.994885i \(0.532210\pi\)
\(458\) 10.7561 12.4305i 0.502598 0.580840i
\(459\) 0 0
\(460\) 1.83183 10.6730i 0.0854094 0.497631i
\(461\) 7.88518i 0.367250i −0.982996 0.183625i \(-0.941217\pi\)
0.982996 0.183625i \(-0.0587832\pi\)
\(462\) 0 0
\(463\) 5.12007 0.237950 0.118975 0.992897i \(-0.462039\pi\)
0.118975 + 0.992897i \(0.462039\pi\)
\(464\) 12.0602 8.29566i 0.559883 0.385116i
\(465\) 0 0
\(466\) −27.9311 24.1686i −1.29388 1.11959i
\(467\) −10.9476 + 15.0681i −0.506596 + 0.697270i −0.983341 0.181772i \(-0.941817\pi\)
0.476745 + 0.879042i \(0.341817\pi\)
\(468\) 0 0
\(469\) 48.4558 + 15.7442i 2.23748 + 0.727001i
\(470\) 0.466118 5.47130i 0.0215004 0.252372i
\(471\) 0 0
\(472\) 2.65919 + 6.78838i 0.122399 + 0.312460i
\(473\) −12.1174 16.8411i −0.557161 0.774356i
\(474\) 0 0
\(475\) 5.09002 + 7.00581i 0.233546 + 0.321449i
\(476\) 10.5445 20.0513i 0.483308 0.919048i
\(477\) 0 0
\(478\) −17.1767 + 10.3741i −0.785644 + 0.474502i
\(479\) −31.7897 23.0965i −1.45251 1.05531i −0.985238 0.171192i \(-0.945238\pi\)
−0.467269 0.884115i \(-0.654762\pi\)
\(480\) 0 0
\(481\) −2.56400 7.89117i −0.116908 0.359806i
\(482\) 5.54204 + 23.7581i 0.252433 + 1.08215i
\(483\) 0 0
\(484\) 2.95998 + 21.8000i 0.134545 + 0.990908i
\(485\) 0.435584i 0.0197788i
\(486\) 0 0
\(487\) −5.64965 17.3878i −0.256010 0.787918i −0.993629 0.112701i \(-0.964050\pi\)
0.737619 0.675217i \(-0.235950\pi\)
\(488\) −15.7724 + 0.934742i −0.713983 + 0.0423138i
\(489\) 0 0
\(490\) 13.4615 + 22.2886i 0.608131 + 1.00690i
\(491\) 3.90141 + 1.26765i 0.176068 + 0.0572081i 0.395724 0.918369i \(-0.370494\pi\)
−0.219656 + 0.975577i \(0.570494\pi\)
\(492\) 0 0
\(493\) −5.50234 7.57331i −0.247813 0.341085i
\(494\) −9.25006 + 21.9306i −0.416180 + 0.986702i
\(495\) 0 0
\(496\) −0.153879 + 5.96466i −0.00690939 + 0.267821i
\(497\) 4.02555 2.92473i 0.180571 0.131192i
\(498\) 0 0
\(499\) 8.91593 + 2.89696i 0.399132 + 0.129686i 0.501703 0.865040i \(-0.332707\pi\)
−0.102571 + 0.994726i \(0.532707\pi\)
\(500\) 22.7394 3.30155i 1.01694 0.147650i
\(501\) 0 0
\(502\) 18.8042 21.7316i 0.839274 0.969929i
\(503\) 4.47159 + 13.7621i 0.199378 + 0.613624i 0.999898 + 0.0143165i \(0.00455723\pi\)
−0.800519 + 0.599307i \(0.795443\pi\)
\(504\) 0 0
\(505\) −3.84264 −0.170995
\(506\) 13.0987 + 11.4403i 0.582306 + 0.508584i
\(507\) 0 0
\(508\) −17.5653 3.01477i −0.779335 0.133759i
\(509\) −5.42967 + 1.76421i −0.240666 + 0.0781971i −0.426867 0.904315i \(-0.640383\pi\)
0.186201 + 0.982512i \(0.440383\pi\)
\(510\) 0 0
\(511\) −50.5916 36.7570i −2.23804 1.62603i
\(512\) 19.9463 10.6839i 0.881510 0.472165i
\(513\) 0 0
\(514\) −21.2612 1.81131i −0.937793 0.0798936i
\(515\) −1.94298 2.67428i −0.0856179 0.117843i
\(516\) 0 0
\(517\) 7.11044 + 5.21634i 0.312717 + 0.229414i
\(518\) −8.59046 3.62336i −0.377443 0.159201i
\(519\) 0 0
\(520\) 14.6082 + 17.7896i 0.640611 + 0.780125i
\(521\) −10.5048 + 32.3304i −0.460222 + 1.41642i 0.404671 + 0.914463i \(0.367386\pi\)
−0.864893 + 0.501956i \(0.832614\pi\)
\(522\) 0 0
\(523\) −20.3248 + 27.9746i −0.888740 + 1.22325i 0.0851828 + 0.996365i \(0.472853\pi\)
−0.973923 + 0.226880i \(0.927147\pi\)
\(524\) −7.34720 14.8914i −0.320964 0.650533i
\(525\) 0 0
\(526\) 3.47746 + 14.9075i 0.151625 + 0.649998i
\(527\) 3.81575 0.166217
\(528\) 0 0
\(529\) −9.25201 −0.402261
\(530\) −4.59693 19.7065i −0.199678 0.855998i
\(531\) 0 0
\(532\) 11.8336 + 23.9845i 0.513053 + 1.03986i
\(533\) 10.2929 14.1669i 0.445834 0.613638i
\(534\) 0 0
\(535\) −2.72811 + 8.39626i −0.117947 + 0.363002i
\(536\) 25.1504 20.6527i 1.08633 0.892059i
\(537\) 0 0
\(538\) −25.5096 10.7597i −1.09980 0.463882i
\(539\) −41.8166 0.192969i −1.80117 0.00831177i
\(540\) 0 0
\(541\) −17.0845 23.5148i −0.734520 1.01098i −0.998915 0.0465653i \(-0.985172\pi\)
0.264396 0.964414i \(-0.414828\pi\)
\(542\) −36.4335 3.10389i −1.56495 0.133323i
\(543\) 0 0
\(544\) −7.15919 12.5755i −0.306948 0.539170i
\(545\) −14.1037 10.2470i −0.604138 0.438932i
\(546\) 0 0
\(547\) 12.7447 4.14101i 0.544925 0.177057i −0.0236019 0.999721i \(-0.507513\pi\)
0.568527 + 0.822664i \(0.307513\pi\)
\(548\) 32.5866 + 5.59291i 1.39203 + 0.238917i
\(549\) 0 0
\(550\) −5.28422 + 12.3684i −0.225320 + 0.527392i
\(551\) 11.0512 0.470797
\(552\) 0 0
\(553\) 1.04851 + 3.22699i 0.0445873 + 0.137226i
\(554\) −22.6718 + 26.2012i −0.963231 + 1.11318i
\(555\) 0 0
\(556\) 33.4299 4.85371i 1.41774 0.205843i
\(557\) −0.872304 0.283429i −0.0369607 0.0120093i 0.290478 0.956882i \(-0.406186\pi\)
−0.327439 + 0.944872i \(0.606186\pi\)
\(558\) 0 0
\(559\) 28.2049 20.4920i 1.19294 0.866721i
\(560\) 25.8569 + 0.667070i 1.09265 + 0.0281888i
\(561\) 0 0
\(562\) −5.12513 + 12.1510i −0.216191 + 0.512557i
\(563\) −14.4004 19.8205i −0.606906 0.835334i 0.389413 0.921063i \(-0.372678\pi\)
−0.996318 + 0.0857291i \(0.972678\pi\)
\(564\) 0 0
\(565\) 17.2350 + 5.59998i 0.725081 + 0.235593i
\(566\) 13.8854 + 22.9904i 0.583646 + 0.966357i
\(567\) 0 0
\(568\) −0.188029 3.17271i −0.00788953 0.133124i
\(569\) −1.14323 3.51851i −0.0479268 0.147503i 0.924229 0.381838i \(-0.124709\pi\)
−0.972156 + 0.234335i \(0.924709\pi\)
\(570\) 0 0
\(571\) 22.3627i 0.935849i 0.883768 + 0.467925i \(0.154998\pi\)
−0.883768 + 0.467925i \(0.845002\pi\)
\(572\) −36.6084 + 5.14282i −1.53067 + 0.215032i
\(573\) 0 0
\(574\) −4.46999 19.1624i −0.186574 0.799822i
\(575\) 3.28557 + 10.1120i 0.137018 + 0.421698i
\(576\) 0 0
\(577\) 27.3646 + 19.8815i 1.13920 + 0.827678i 0.987008 0.160672i \(-0.0513662\pi\)
0.152194 + 0.988351i \(0.451366\pi\)
\(578\) 12.6580 7.64499i 0.526503 0.317990i
\(579\) 0 0
\(580\) 4.97457 9.45954i 0.206558 0.392786i
\(581\) −22.2903 30.6799i −0.924755 1.27282i
\(582\) 0 0
\(583\) 30.8608 + 10.1850i 1.27812 + 0.421818i
\(584\) −37.1917 + 14.5690i −1.53900 + 0.602870i
\(585\) 0 0
\(586\) −0.709880 + 8.33259i −0.0293249 + 0.344216i
\(587\) 42.0044 + 13.6481i 1.73371 + 0.563316i 0.993977 0.109588i \(-0.0349531\pi\)
0.739730 + 0.672904i \(0.234953\pi\)
\(588\) 0 0
\(589\) −2.64777 + 3.64434i −0.109099 + 0.150163i
\(590\) 4.02545 + 3.48320i 0.165725 + 0.143401i
\(591\) 0 0
\(592\) −4.90653 + 3.37496i −0.201657 + 0.138710i
\(593\) 13.4081 0.550605 0.275303 0.961358i \(-0.411222\pi\)
0.275303 + 0.961358i \(0.411222\pi\)
\(594\) 0 0
\(595\) 16.5414i 0.678129i
\(596\) 6.43884 37.5154i 0.263745 1.53669i
\(597\) 0 0
\(598\) −19.1221 + 22.0989i −0.781960 + 0.903692i
\(599\) −30.8401 22.4066i −1.26009 0.915511i −0.261330 0.965249i \(-0.584161\pi\)
−0.998762 + 0.0497386i \(0.984161\pi\)
\(600\) 0 0
\(601\) 1.54690 4.76086i 0.0630992 0.194199i −0.914537 0.404502i \(-0.867445\pi\)
0.977636 + 0.210303i \(0.0674449\pi\)
\(602\) 3.32536 39.0331i 0.135531 1.59087i
\(603\) 0 0
\(604\) 14.1837 + 14.5544i 0.577127 + 0.592208i
\(605\) 9.32140 + 13.0820i 0.378969 + 0.531860i
\(606\) 0 0
\(607\) 23.8596 17.3350i 0.968430 0.703606i 0.0133371 0.999911i \(-0.495755\pi\)
0.955093 + 0.296305i \(0.0957545\pi\)
\(608\) 16.9784 + 1.88861i 0.688564 + 0.0765933i
\(609\) 0 0
\(610\) −9.87504 + 5.96419i −0.399829 + 0.241483i
\(611\) −8.71009 + 11.9884i −0.352372 + 0.484999i
\(612\) 0 0
\(613\) 18.0106 5.85201i 0.727443 0.236360i 0.0781956 0.996938i \(-0.475084\pi\)
0.649247 + 0.760578i \(0.275084\pi\)
\(614\) −18.7601 + 4.37616i −0.757097 + 0.176608i
\(615\) 0 0
\(616\) −22.5466 + 34.8881i −0.908429 + 1.40568i
\(617\) 22.1947 0.893524 0.446762 0.894653i \(-0.352577\pi\)
0.446762 + 0.894653i \(0.352577\pi\)
\(618\) 0 0
\(619\) −39.4857 + 12.8297i −1.58707 + 0.515669i −0.963864 0.266393i \(-0.914168\pi\)
−0.623201 + 0.782062i \(0.714168\pi\)
\(620\) 1.92760 + 3.90688i 0.0774143 + 0.156904i
\(621\) 0 0
\(622\) 17.1707 10.3705i 0.688484 0.415821i
\(623\) 12.1003 37.2410i 0.484790 1.49203i
\(624\) 0 0
\(625\) 1.97363 1.43392i 0.0789450 0.0573569i
\(626\) −1.19166 + 2.82527i −0.0476285 + 0.112920i
\(627\) 0 0
\(628\) 23.9898 23.3789i 0.957299 0.932921i
\(629\) 2.23854 + 3.08109i 0.0892566 + 0.122851i
\(630\) 0 0
\(631\) 6.66284 20.5061i 0.265244 0.816336i −0.726394 0.687279i \(-0.758805\pi\)
0.991637 0.129057i \(-0.0411950\pi\)
\(632\) 2.09722 + 0.546613i 0.0834230 + 0.0217431i
\(633\) 0 0
\(634\) 13.1085 15.1491i 0.520603 0.601649i
\(635\) −12.3759 + 4.02118i −0.491123 + 0.159576i
\(636\) 0 0
\(637\) 70.2677i 2.78411i
\(638\) 8.80594 + 14.7334i 0.348631 + 0.583301i
\(639\) 0 0
\(640\) 9.25922 13.6829i 0.366003 0.540865i
\(641\) 3.11203 + 9.57784i 0.122918 + 0.378302i 0.993516 0.113693i \(-0.0362680\pi\)
−0.870598 + 0.491995i \(0.836268\pi\)
\(642\) 0 0
\(643\) 18.0424 24.8333i 0.711525 0.979330i −0.288238 0.957559i \(-0.593070\pi\)
0.999763 0.0217709i \(-0.00693044\pi\)
\(644\) 4.71823 + 32.4967i 0.185924 + 1.28055i
\(645\) 0 0
\(646\) 0.927367 10.8855i 0.0364868 0.428282i
\(647\) 33.3683 24.2435i 1.31184 0.953111i 0.311849 0.950132i \(-0.399052\pi\)
0.999996 0.00297890i \(-0.000948215\pi\)
\(648\) 0 0
\(649\) −8.14271 + 2.60425i −0.319630 + 0.102226i
\(650\) −20.8241 8.78339i −0.816790 0.344513i
\(651\) 0 0
\(652\) −12.3405 6.48961i −0.483292 0.254153i
\(653\) 23.0914 + 7.50286i 0.903638 + 0.293610i 0.723738 0.690075i \(-0.242423\pi\)
0.179900 + 0.983685i \(0.442423\pi\)
\(654\) 0 0
\(655\) −9.80876 7.12648i −0.383260 0.278455i
\(656\) −11.8491 4.19083i −0.462630 0.163624i
\(657\) 0 0
\(658\) 3.78262 + 16.2157i 0.147462 + 0.632153i
\(659\) 2.24471i 0.0874413i 0.999044 + 0.0437207i \(0.0139212\pi\)
−0.999044 + 0.0437207i \(0.986079\pi\)
\(660\) 0 0
\(661\) 21.5996i 0.840129i 0.907494 + 0.420064i \(0.137993\pi\)
−0.907494 + 0.420064i \(0.862007\pi\)
\(662\) −14.8552 + 3.46527i −0.577365 + 0.134681i
\(663\) 0 0
\(664\) −24.1802 + 1.43303i −0.938373 + 0.0556122i
\(665\) 15.7983 + 11.4781i 0.612631 + 0.445103i
\(666\) 0 0
\(667\) 12.9046 + 4.19295i 0.499668 + 0.162352i
\(668\) −9.30286 + 17.6901i −0.359938 + 0.684452i
\(669\) 0 0
\(670\) 9.23451 21.8937i 0.356760 0.845828i
\(671\) 0.0854957 18.5270i 0.00330053 0.715228i
\(672\) 0 0
\(673\) 17.6776 12.8435i 0.681421 0.495082i −0.192408 0.981315i \(-0.561630\pi\)
0.873829 + 0.486234i \(0.161630\pi\)
\(674\) −8.85597 0.754469i −0.341119 0.0290610i
\(675\) 0 0
\(676\) −5.18977 35.7445i −0.199607 1.37479i
\(677\) 23.3056 32.0775i 0.895708 1.23284i −0.0761084 0.997100i \(-0.524249\pi\)
0.971817 0.235737i \(-0.0757505\pi\)
\(678\) 0 0
\(679\) −0.408163 1.25620i −0.0156639 0.0482084i
\(680\) −8.90022 5.69376i −0.341308 0.218346i
\(681\) 0 0
\(682\) −6.96844 0.626067i −0.266835 0.0239733i
\(683\) 5.22481i 0.199922i −0.994991 0.0999610i \(-0.968128\pi\)
0.994991 0.0999610i \(-0.0318718\pi\)
\(684\) 0 0
\(685\) 22.9594 7.45995i 0.877233 0.285030i
\(686\) −26.5587 22.9811i −1.01401 0.877421i
\(687\) 0 0
\(688\) −19.8575 15.2250i −0.757058 0.580446i
\(689\) −16.8749 + 51.9356i −0.642883 + 1.97859i
\(690\) 0 0
\(691\) −0.0482807 0.0664526i −0.00183668 0.00252798i 0.808098 0.589049i \(-0.200497\pi\)
−0.809934 + 0.586521i \(0.800497\pi\)
\(692\) 5.09265 4.96296i 0.193593 0.188663i
\(693\) 0 0
\(694\) −22.6152 9.53884i −0.858463 0.362090i
\(695\) 19.9542 14.4975i 0.756904 0.549923i
\(696\) 0 0
\(697\) −2.48377 + 7.64427i −0.0940797 + 0.289548i
\(698\) −18.1628 30.0725i −0.687472 1.13826i
\(699\) 0 0
\(700\) −22.7745 + 11.2366i −0.860795 + 0.424704i
\(701\) 20.8676 6.78030i 0.788159 0.256088i 0.112839 0.993613i \(-0.464006\pi\)
0.675320 + 0.737525i \(0.264006\pi\)
\(702\) 0 0
\(703\) −4.49602 −0.169571
\(704\) 11.0110 + 24.1404i 0.414993 + 0.909825i
\(705\) 0 0
\(706\) −5.75271 24.6612i −0.216506 0.928138i
\(707\) 11.0819 3.60074i 0.416780 0.135420i
\(708\) 0 0
\(709\) −24.0097 + 33.0466i −0.901705 + 1.24109i 0.0682161 + 0.997671i \(0.478269\pi\)
−0.969921 + 0.243420i \(0.921731\pi\)
\(710\) −1.19973 1.98643i −0.0450252 0.0745492i
\(711\) 0 0
\(712\) −15.8727 19.3296i −0.594856 0.724406i
\(713\) −4.47453 + 3.25094i −0.167572 + 0.121748i
\(714\) 0 0
\(715\) −21.9100 + 15.7646i −0.819387 + 0.589561i
\(716\) 7.72287 7.52620i 0.288617 0.281267i
\(717\) 0 0
\(718\) −20.7337 1.76637i −0.773774 0.0659203i
\(719\) 13.1613 40.5064i 0.490834 1.51063i −0.332515 0.943098i \(-0.607897\pi\)
0.823349 0.567535i \(-0.192103\pi\)
\(720\) 0 0
\(721\) 8.10936 + 5.89180i 0.302008 + 0.219422i
\(722\) −10.5662 9.14291i −0.393235 0.340264i
\(723\) 0 0
\(724\) −1.35683 + 7.90545i −0.0504261 + 0.293804i
\(725\) 10.4937i 0.389725i
\(726\) 0 0
\(727\) −26.7043 −0.990408 −0.495204 0.868777i \(-0.664907\pi\)
−0.495204 + 0.868777i \(0.664907\pi\)
\(728\) −58.7988 37.6155i −2.17923 1.39412i
\(729\) 0 0
\(730\) −19.0835 + 22.0544i −0.706312 + 0.816268i
\(731\) −9.40583 + 12.9460i −0.347887 + 0.478825i
\(732\) 0 0
\(733\) −22.6501 7.35947i −0.836602 0.271828i −0.140778 0.990041i \(-0.544960\pi\)
−0.695823 + 0.718213i \(0.744960\pi\)
\(734\) −44.3055 3.77453i −1.63535 0.139320i
\(735\) 0 0
\(736\) 19.1092 + 8.64714i 0.704376 + 0.318738i
\(737\) 22.2875 + 30.9758i 0.820972 + 1.14101i
\(738\) 0 0
\(739\) 0.413968 + 0.569778i 0.0152281 + 0.0209596i 0.816563 0.577256i \(-0.195877\pi\)
−0.801335 + 0.598216i \(0.795877\pi\)
\(740\) −2.02383 + 3.84847i −0.0743974 + 0.141473i
\(741\) 0 0
\(742\) 31.7233 + 52.5249i 1.16460 + 1.92825i
\(743\) 1.01396 + 0.736685i 0.0371986 + 0.0270264i 0.606229 0.795290i \(-0.292681\pi\)
−0.569031 + 0.822316i \(0.692681\pi\)
\(744\) 0 0
\(745\) −8.58829 26.4320i −0.314650 0.968395i
\(746\) −28.3562 + 6.61464i −1.03819 + 0.242179i
\(747\) 0 0
\(748\) 15.2514 7.43750i 0.557645 0.271942i
\(749\) 26.7707i 0.978179i
\(750\) 0 0
\(751\) 9.91130 + 30.5038i 0.361668 + 1.11310i 0.952041 + 0.305970i \(0.0989808\pi\)
−0.590373 + 0.807131i \(0.701019\pi\)
\(752\) 10.0270 + 3.54638i 0.365648 + 0.129323i
\(753\) 0 0
\(754\) −24.6889 + 14.9112i −0.899115 + 0.543035i
\(755\) 14.1122 + 4.58534i 0.513597 + 0.166878i
\(756\) 0 0
\(757\) 18.2609 + 25.1340i 0.663703 + 0.913509i 0.999597 0.0283908i \(-0.00903828\pi\)
−0.335894 + 0.941900i \(0.609038\pi\)
\(758\) 16.9478 + 7.14837i 0.615571 + 0.259641i
\(759\) 0 0
\(760\) 11.6139 4.54948i 0.421280 0.165027i
\(761\) 12.3987 9.00817i 0.449452 0.326546i −0.339928 0.940452i \(-0.610403\pi\)
0.789379 + 0.613906i \(0.210403\pi\)
\(762\) 0 0
\(763\) 50.2762 + 16.3357i 1.82012 + 0.591393i
\(764\) −0.163594 1.12675i −0.00591863 0.0407645i
\(765\) 0 0
\(766\) 39.7145 + 34.3648i 1.43494 + 1.24165i
\(767\) −4.43916 13.6623i −0.160289 0.493319i
\(768\) 0 0
\(769\) −42.6201 −1.53692 −0.768460 0.639898i \(-0.778977\pi\)
−0.768460 + 0.639898i \(0.778977\pi\)
\(770\) −2.71401 + 30.2083i −0.0978062 + 1.08863i
\(771\) 0 0
\(772\) 14.0280 + 2.40765i 0.504878 + 0.0866534i
\(773\) −32.9733 + 10.7137i −1.18597 + 0.385345i −0.834581 0.550885i \(-0.814290\pi\)
−0.351388 + 0.936230i \(0.614290\pi\)
\(774\) 0 0
\(775\) −3.46048 2.51419i −0.124304 0.0903123i
\(776\) −0.816402 0.212784i −0.0293071 0.00763851i
\(777\) 0 0
\(778\) 0.426112 5.00172i 0.0152769 0.179320i
\(779\) −5.57738 7.67660i −0.199830 0.275043i
\(780\) 0 0
\(781\) 3.72682 + 0.0171980i 0.133356 + 0.000615393i
\(782\) 5.21296 12.3592i 0.186415 0.441963i
\(783\) 0 0
\(784\) −48.3509 + 14.3425i −1.72682 + 0.512234i
\(785\) 7.55799 23.2611i 0.269756 0.830224i
\(786\) 0 0
\(787\) 23.5270 32.3822i 0.838648 1.15430i −0.147603 0.989047i \(-0.547156\pi\)
0.986251 0.165253i \(-0.0528441\pi\)
\(788\) −1.27652 2.58726i −0.0454741 0.0921674i
\(789\) 0 0
\(790\) 1.54107 0.359483i 0.0548287 0.0127898i
\(791\) −54.9521 −1.95387
\(792\) 0 0
\(793\) 31.1324 1.10554
\(794\) 48.4213 11.2952i 1.71841 0.400852i
\(795\) 0 0
\(796\) −1.51917 + 0.749536i −0.0538454 + 0.0265666i
\(797\) −21.2428 + 29.2383i −0.752460 + 1.03567i 0.245344 + 0.969436i \(0.421099\pi\)
−0.997804 + 0.0662363i \(0.978901\pi\)
\(798\) 0 0
\(799\) 2.10183 6.46878i 0.0743575 0.228849i
\(800\) −1.79333 + 16.1218i −0.0634038 + 0.569992i
\(801\) 0 0
\(802\) −7.83179 + 18.5680i −0.276550 + 0.655660i
\(803\) −14.2680 44.6118i −0.503506 1.57431i
\(804\) 0 0
\(805\) 14.0929 + 19.3972i 0.496708 + 0.683660i
\(806\) 0.997971 11.7142i 0.0351520 0.412615i
\(807\) 0 0
\(808\) 1.87715 7.20216i 0.0660378 0.253371i
\(809\) −5.20574 3.78219i −0.183024 0.132975i 0.492501 0.870312i \(-0.336083\pi\)
−0.675525 + 0.737337i \(0.736083\pi\)
\(810\) 0 0
\(811\) 9.09860 2.95631i 0.319495 0.103810i −0.144879 0.989449i \(-0.546279\pi\)
0.464374 + 0.885639i \(0.346279\pi\)
\(812\) −5.48230 + 31.9421i −0.192391 + 1.12095i
\(813\) 0 0
\(814\) −3.58257 5.99407i −0.125569 0.210092i
\(815\) −10.1803 −0.356602
\(816\) 0 0
\(817\) −5.83770 17.9666i −0.204235 0.628572i
\(818\) −11.1121 9.61521i −0.388524 0.336188i
\(819\) 0 0
\(820\) −9.08156 + 1.31856i −0.317142 + 0.0460460i
\(821\) 16.3544 + 5.31387i 0.570772 + 0.185455i 0.580163 0.814501i \(-0.302989\pi\)
−0.00939014 + 0.999956i \(0.502989\pi\)
\(822\) 0 0
\(823\) 31.0609 22.5671i 1.08272 0.786639i 0.104561 0.994518i \(-0.466656\pi\)
0.978154 + 0.207880i \(0.0666563\pi\)
\(824\) 5.96148 2.33528i 0.207678 0.0813532i
\(825\) 0 0
\(826\) −14.8731 6.27329i −0.517500 0.218276i
\(827\) −10.3457 14.2396i −0.359754 0.495159i 0.590326 0.807165i \(-0.298999\pi\)
−0.950080 + 0.312006i \(0.898999\pi\)
\(828\) 0 0
\(829\) −27.1880 8.83392i −0.944279 0.306815i −0.203890 0.978994i \(-0.565359\pi\)
−0.740389 + 0.672179i \(0.765359\pi\)
\(830\) −15.1391 + 9.14352i −0.525487 + 0.317376i
\(831\) 0 0
\(832\) −40.4787 + 18.6894i −1.40335 + 0.647939i
\(833\) 9.96666 + 30.6742i 0.345324 + 1.06280i
\(834\) 0 0
\(835\) 14.5935i 0.505030i
\(836\) −3.47961 + 19.7272i −0.120345 + 0.682279i
\(837\) 0 0
\(838\) −28.5895 + 6.66906i −0.987609 + 0.230379i
\(839\) −16.3891 50.4404i −0.565814 1.74140i −0.665520 0.746380i \(-0.731790\pi\)
0.0997063 0.995017i \(-0.468210\pi\)
\(840\) 0 0
\(841\) −12.6274 9.17432i −0.435426 0.316356i
\(842\) 0.120797 + 0.200006i 0.00416294 + 0.00689268i
\(843\) 0 0
\(844\) 26.7447 + 14.0645i 0.920591 + 0.484119i
\(845\) −15.5013 21.3357i −0.533262 0.733972i
\(846\) 0 0
\(847\) −39.1408 28.9931i −1.34489 0.996216i
\(848\) 39.1811 + 1.01081i 1.34548 + 0.0347115i
\(849\) 0 0
\(850\) 10.3363 + 0.880581i 0.354531 + 0.0302037i
\(851\) −5.25004 1.70584i −0.179969 0.0584755i
\(852\) 0 0
\(853\) 2.39168 3.29187i 0.0818896 0.112711i −0.766107 0.642713i \(-0.777809\pi\)
0.847997 + 0.530002i \(0.177809\pi\)
\(854\) 22.8903 26.4537i 0.783289 0.905229i
\(855\) 0 0
\(856\) −14.4042 9.21483i −0.492325 0.314956i
\(857\) −23.5570 −0.804692 −0.402346 0.915488i \(-0.631805\pi\)
−0.402346 + 0.915488i \(0.631805\pi\)
\(858\) 0 0
\(859\) 21.8683i 0.746138i −0.927804 0.373069i \(-0.878306\pi\)
0.927804 0.373069i \(-0.121694\pi\)
\(860\) −18.0067 3.09053i −0.614024 0.105386i
\(861\) 0 0
\(862\) −36.1613 31.2901i −1.23166 1.06575i
\(863\) 18.1407 + 13.1800i 0.617517 + 0.448653i 0.852053 0.523455i \(-0.175357\pi\)
−0.234536 + 0.972107i \(0.575357\pi\)
\(864\) 0 0
\(865\) 1.60444 4.93794i 0.0545524 0.167895i
\(866\) −7.60142 0.647590i −0.258307 0.0220060i
\(867\) 0 0
\(868\) −9.22001 9.46094i −0.312948 0.321125i
\(869\) −0.796471 + 2.41334i −0.0270184 + 0.0818668i
\(870\) 0 0
\(871\) −51.8770 + 37.6908i −1.75779 + 1.27711i
\(872\) 26.0953 21.4286i 0.883700 0.725663i
\(873\) 0 0
\(874\) 8.18669 + 13.5549i 0.276919 + 0.458501i
\(875\) −29.9033 + 41.1583i −1.01091 + 1.39140i
\(876\) 0 0
\(877\) 17.3825 5.64793i 0.586967 0.190717i −0.000452412 1.00000i \(-0.500144\pi\)
0.587419 + 0.809283i \(0.300144\pi\)
\(878\) 0.0146206 + 0.0626768i 0.000493420 + 0.00211524i
\(879\) 0 0
\(880\) 15.3196 + 11.8584i 0.516425 + 0.399747i
\(881\) 6.65131 0.224088 0.112044 0.993703i \(-0.464260\pi\)
0.112044 + 0.993703i \(0.464260\pi\)
\(882\) 0 0
\(883\) −24.2520 + 7.87997i −0.816146 + 0.265182i −0.687199 0.726469i \(-0.741160\pi\)
−0.128947 + 0.991651i \(0.541160\pi\)
\(884\) 12.6158 + 25.5698i 0.424315 + 0.860006i
\(885\) 0 0
\(886\) 0.0639230 + 0.105839i 0.00214754 + 0.00355572i
\(887\) −6.95549 + 21.4068i −0.233543 + 0.718770i 0.763769 + 0.645490i \(0.223347\pi\)
−0.997311 + 0.0732803i \(0.976653\pi\)
\(888\) 0 0
\(889\) 31.9233 23.1937i 1.07067 0.777890i
\(890\) −16.8266 7.09725i −0.564028 0.237900i
\(891\) 0 0
\(892\) 26.1130 + 26.7954i 0.874328 + 0.897175i
\(893\) 4.71972 + 6.49613i 0.157939 + 0.217385i
\(894\) 0 0
\(895\) 2.43309 7.48827i 0.0813291 0.250305i
\(896\) −13.8815 + 48.1370i −0.463747 + 1.60814i
\(897\) 0 0
\(898\) 31.9875 + 27.6786i 1.06744 + 0.923646i
\(899\) −5.19152 + 1.68683i −0.173147 + 0.0562588i
\(900\) 0 0
\(901\) 25.0652i 0.835042i
\(902\) 5.79017 13.5527i 0.192792 0.451255i
\(903\) 0 0
\(904\) −18.9152 + 29.5674i −0.629112 + 0.983398i
\(905\) 1.80977 + 5.56990i 0.0601588 + 0.185150i
\(906\) 0 0
\(907\) 8.05465 11.0863i 0.267450 0.368114i −0.654077 0.756428i \(-0.726943\pi\)
0.921527 + 0.388315i \(0.126943\pi\)
\(908\) 53.6391 7.78791i 1.78008 0.258451i
\(909\) 0 0
\(910\) −50.7813 4.32622i −1.68338 0.143413i
\(911\) −35.8407 + 26.0398i −1.18746 + 0.862737i −0.992993 0.118173i \(-0.962296\pi\)
−0.194462 + 0.980910i \(0.562296\pi\)
\(912\) 0 0
\(913\) 0.131071 28.4032i 0.00433782 0.940010i
\(914\) −11.8211 + 28.0260i −0.391006 + 0.927019i
\(915\) 0 0
\(916\) 20.5754 + 10.8201i 0.679829 + 0.357508i
\(917\) 34.9657 + 11.3610i 1.15467 + 0.375175i
\(918\) 0 0
\(919\) −36.1252 26.2465i −1.19166 0.865791i −0.198221 0.980157i \(-0.563516\pi\)
−0.993439 + 0.114366i \(0.963516\pi\)
\(920\) 15.2878 0.906021i 0.504023 0.0298706i
\(921\) 0 0
\(922\) 10.8598 2.53325i 0.357648 0.0834283i
\(923\) 6.26247i 0.206132i
\(924\) 0 0
\(925\) 4.26919i 0.140370i
\(926\) 1.64491 + 7.05157i 0.0540552 + 0.231729i
\(927\) 0 0
\(928\) 15.2997 + 13.9447i 0.502236 + 0.457758i
\(929\) −30.6162 22.2440i −1.00449 0.729802i −0.0414410 0.999141i \(-0.513195\pi\)
−0.963045 + 0.269339i \(0.913195\pi\)
\(930\) 0 0
\(931\) −36.2122 11.7661i −1.18681 0.385617i
\(932\) 24.3126 46.2324i 0.796386 1.51439i
\(933\) 0 0
\(934\) −24.2695 10.2366i −0.794123 0.334952i
\(935\) 7.32843 9.98945i 0.239665 0.326690i
\(936\) 0 0
\(937\) −13.8071 + 10.0315i −0.451059 + 0.327713i −0.790014 0.613089i \(-0.789927\pi\)
0.338955 + 0.940803i \(0.389927\pi\)
\(938\) −6.11630 + 71.7933i −0.199704 + 2.34413i
\(939\) 0 0
\(940\) 7.68504 1.11580i 0.250658 0.0363933i
\(941\) −2.74175 + 3.77370i −0.0893785 + 0.123019i −0.851365 0.524574i \(-0.824224\pi\)
0.761986 + 0.647593i \(0.224224\pi\)
\(942\) 0 0
\(943\) −3.60016 11.0801i −0.117237 0.360819i
\(944\) −8.49491 + 5.84323i −0.276486 + 0.190181i
\(945\) 0 0
\(946\) 19.3013 22.0991i 0.627540 0.718505i
\(947\) 52.8254i 1.71659i −0.513153 0.858297i \(-0.671523\pi\)
0.513153 0.858297i \(-0.328477\pi\)
\(948\) 0 0
\(949\) 74.8523 24.3210i 2.42981 0.789493i
\(950\) −8.01342 + 9.26091i −0.259990 + 0.300464i
\(951\) 0 0
\(952\) 31.0030 + 8.08051i 1.00481 + 0.261891i
\(953\) 11.9830 36.8800i 0.388168 1.19466i −0.545988 0.837793i \(-0.683845\pi\)
0.934156 0.356866i \(-0.116155\pi\)
\(954\) 0 0
\(955\) −0.488639 0.672554i −0.0158120 0.0217633i
\(956\) −19.8060 20.3235i −0.640571 0.657310i
\(957\) 0 0
\(958\) 21.5965 51.2021i 0.697750 1.65427i
\(959\) −59.2231 + 43.0281i −1.91241 + 1.38945i
\(960\) 0 0
\(961\) −8.89195 + 27.3666i −0.286837 + 0.882794i
\(962\) 10.0443 6.06641i 0.323841 0.195589i
\(963\) 0 0
\(964\) −30.9401 + 15.2654i −0.996514 + 0.491666i
\(965\) 9.88363 3.21139i 0.318165 0.103378i
\(966\) 0 0
\(967\) 38.0583 1.22387 0.611937 0.790907i \(-0.290391\pi\)
0.611937 + 0.790907i \(0.290391\pi\)
\(968\) −29.0728 + 11.0802i −0.934436 + 0.356132i
\(969\) 0 0
\(970\) −0.599903 + 0.139939i −0.0192617 + 0.00449317i
\(971\) 5.43270 1.76519i 0.174344 0.0566476i −0.220544 0.975377i \(-0.570783\pi\)
0.394888 + 0.918729i \(0.370783\pi\)
\(972\) 0 0
\(973\) −43.9617 + 60.5080i −1.40935 + 1.93980i
\(974\) 22.1321 13.3671i 0.709160 0.428308i
\(975\) 0 0
\(976\) −6.35452 21.4220i −0.203403 0.685703i
\(977\) 0.460069 0.334259i 0.0147189 0.0106939i −0.580401 0.814330i \(-0.697104\pi\)
0.595120 + 0.803637i \(0.297104\pi\)
\(978\) 0 0
\(979\) 23.8066 17.1292i 0.760863 0.547453i
\(980\) −26.3719 + 25.7004i −0.842421 + 0.820968i
\(981\) 0 0
\(982\) −0.492454 + 5.78043i −0.0157148 + 0.184461i
\(983\) −0.678324 + 2.08767i −0.0216352 + 0.0665863i −0.961291 0.275534i \(-0.911145\pi\)
0.939656 + 0.342121i \(0.111145\pi\)
\(984\) 0 0
\(985\) −1.70420 1.23817i −0.0543002 0.0394514i
\(986\) 8.66254 10.0111i 0.275872 0.318818i
\(987\) 0 0
\(988\) −33.1754 5.69396i −1.05545 0.181149i
\(989\) 23.1946i 0.737547i
\(990\) 0 0
\(991\) 10.7399 0.341165 0.170582 0.985343i \(-0.445435\pi\)
0.170582 + 0.985343i \(0.445435\pi\)
\(992\) −8.26420 + 1.70432i −0.262388 + 0.0541123i
\(993\) 0 0
\(994\) 5.32133 + 4.60452i 0.168782 + 0.146047i
\(995\) −0.727018 + 1.00065i −0.0230480 + 0.0317229i
\(996\) 0 0
\(997\) −4.99166 1.62189i −0.158088 0.0513657i 0.228904 0.973449i \(-0.426486\pi\)
−0.386992 + 0.922083i \(0.626486\pi\)
\(998\) −1.12541 + 13.2101i −0.0356242 + 0.418157i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.br.b.685.6 40
3.2 odd 2 88.2.o.a.69.5 yes 40
8.5 even 2 inner 792.2.br.b.685.2 40
11.4 even 5 inner 792.2.br.b.37.2 40
12.11 even 2 352.2.w.a.113.5 40
24.5 odd 2 88.2.o.a.69.9 yes 40
24.11 even 2 352.2.w.a.113.6 40
33.2 even 10 968.2.c.i.485.13 20
33.5 odd 10 968.2.o.j.493.8 40
33.8 even 10 968.2.o.d.269.10 40
33.14 odd 10 968.2.o.j.269.1 40
33.17 even 10 968.2.o.d.493.3 40
33.20 odd 10 968.2.c.h.485.8 20
33.26 odd 10 88.2.o.a.37.9 yes 40
33.29 even 10 968.2.o.i.565.2 40
33.32 even 2 968.2.o.i.245.6 40
88.37 even 10 inner 792.2.br.b.37.6 40
132.35 odd 10 3872.2.c.i.1937.13 20
132.59 even 10 352.2.w.a.81.6 40
132.119 even 10 3872.2.c.h.1937.13 20
264.5 odd 10 968.2.o.j.493.1 40
264.29 even 10 968.2.o.i.565.6 40
264.35 odd 10 3872.2.c.i.1937.8 20
264.53 odd 10 968.2.c.h.485.7 20
264.59 even 10 352.2.w.a.81.5 40
264.101 even 10 968.2.c.i.485.14 20
264.125 odd 10 88.2.o.a.37.5 40
264.149 even 10 968.2.o.d.493.10 40
264.173 even 10 968.2.o.d.269.3 40
264.197 even 2 968.2.o.i.245.2 40
264.245 odd 10 968.2.o.j.269.8 40
264.251 even 10 3872.2.c.h.1937.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.o.a.37.5 40 264.125 odd 10
88.2.o.a.37.9 yes 40 33.26 odd 10
88.2.o.a.69.5 yes 40 3.2 odd 2
88.2.o.a.69.9 yes 40 24.5 odd 2
352.2.w.a.81.5 40 264.59 even 10
352.2.w.a.81.6 40 132.59 even 10
352.2.w.a.113.5 40 12.11 even 2
352.2.w.a.113.6 40 24.11 even 2
792.2.br.b.37.2 40 11.4 even 5 inner
792.2.br.b.37.6 40 88.37 even 10 inner
792.2.br.b.685.2 40 8.5 even 2 inner
792.2.br.b.685.6 40 1.1 even 1 trivial
968.2.c.h.485.7 20 264.53 odd 10
968.2.c.h.485.8 20 33.20 odd 10
968.2.c.i.485.13 20 33.2 even 10
968.2.c.i.485.14 20 264.101 even 10
968.2.o.d.269.3 40 264.173 even 10
968.2.o.d.269.10 40 33.8 even 10
968.2.o.d.493.3 40 33.17 even 10
968.2.o.d.493.10 40 264.149 even 10
968.2.o.i.245.2 40 264.197 even 2
968.2.o.i.245.6 40 33.32 even 2
968.2.o.i.565.2 40 33.29 even 10
968.2.o.i.565.6 40 264.29 even 10
968.2.o.j.269.1 40 33.14 odd 10
968.2.o.j.269.8 40 264.245 odd 10
968.2.o.j.493.1 40 264.5 odd 10
968.2.o.j.493.8 40 33.5 odd 10
3872.2.c.h.1937.8 20 264.251 even 10
3872.2.c.h.1937.13 20 132.119 even 10
3872.2.c.i.1937.8 20 264.35 odd 10
3872.2.c.i.1937.13 20 132.35 odd 10