Properties

Label 39.10.a.a
Level $39$
Weight $10$
Character orbit 39.a
Self dual yes
Analytic conductor $20.086$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [39,10,Mod(1,39)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(39, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("39.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 39.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.0863976104\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 301x - 420 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 6) q^{2} + 81 q^{3} + (4 \beta_{2} - 6 \beta_1 + 328) q^{4} + ( - 3 \beta_{2} - 31 \beta_1 - 297) q^{5} + (81 \beta_1 - 486) q^{6} + ( - 33 \beta_{2} - 27 \beta_1 - 4813) q^{7} + ( - 72 \beta_{2} + 180 \beta_1 - 5184) q^{8}+ \cdots + (708588 \beta_{2} - 7099002 \beta_1 - 199506888) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 18 q^{2} + 243 q^{3} + 980 q^{4} - 888 q^{5} - 1458 q^{6} - 14406 q^{7} - 15480 q^{8} + 19683 q^{9} - 66044 q^{10} - 91332 q^{11} + 79380 q^{12} + 85683 q^{13} + 57456 q^{14} - 71928 q^{15} + 103184 q^{16}+ \cdots - 599229252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 301x - 420 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3\nu - 201 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{2} + 3\beta _1 + 402 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−16.6044
−1.40455
18.0089
−39.2088 81.0000 1025.33 358.916 −3175.91 −8025.48 −20126.9 6561.00 −14072.6
1.2 −8.80911 81.0000 −434.400 374.523 −713.538 1691.69 8336.94 6561.00 −3299.21
1.3 30.0179 81.0000 389.073 −1621.44 2431.45 −8072.22 −3690.02 6561.00 −48672.1
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 39.10.a.a 3
3.b odd 2 1 117.10.a.a 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.10.a.a 3 1.a even 1 1 trivial
117.10.a.a 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} + 18T_{2}^{2} - 1096T_{2} - 10368 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(39))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 18 T^{2} + \cdots - 10368 \) Copy content Toggle raw display
$3$ \( (T - 81)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 888 T^{2} + \cdots + 217957440 \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots - 109593639680 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots - 56844752394240 \) Copy content Toggle raw display
$13$ \( (T - 28561)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 78\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 35\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 50\!\cdots\!20 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 34\!\cdots\!08 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 64\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 11\!\cdots\!12 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 58\!\cdots\!08 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 31\!\cdots\!60 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 84\!\cdots\!64 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 25\!\cdots\!68 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 19\!\cdots\!28 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 42\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 74\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 27\!\cdots\!88 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 23\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 46\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 24\!\cdots\!64 \) Copy content Toggle raw display
show more
show less