Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [39,6,Mod(5,39)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(39, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("39.5");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 39 = 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 39.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.25496897271\) |
Analytic rank: | \(0\) |
Dimension: | \(44\) |
Relative dimension: | \(22\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −7.77041 | − | 7.77041i | −4.70768 | + | 14.8606i | 88.7585i | −30.1421 | − | 30.1421i | 152.054 | − | 78.8924i | 60.1892 | + | 60.1892i | 441.037 | − | 441.037i | −198.675 | − | 139.918i | 468.433i | ||||
5.2 | −6.77656 | − | 6.77656i | −0.111541 | − | 15.5881i | 59.8434i | 57.3759 | + | 57.3759i | −104.877 | + | 106.389i | 139.198 | + | 139.198i | 188.683 | − | 188.683i | −242.975 | + | 3.47741i | − | 777.622i | |||
5.3 | −6.46085 | − | 6.46085i | 14.7948 | − | 4.91051i | 51.4853i | −18.6574 | − | 18.6574i | −127.313 | − | 63.8612i | −126.698 | − | 126.698i | 125.892 | − | 125.892i | 194.774 | − | 145.300i | 241.085i | ||||
5.4 | −6.01851 | − | 6.01851i | −10.4416 | − | 11.5747i | 40.4450i | −55.1183 | − | 55.1183i | −6.81986 | + | 132.505i | −92.2834 | − | 92.2834i | 50.8266 | − | 50.8266i | −24.9476 | + | 241.716i | 663.461i | ||||
5.5 | −5.33357 | − | 5.33357i | −15.0211 | + | 4.16738i | 24.8940i | 58.2277 | + | 58.2277i | 102.343 | + | 57.8890i | −64.3799 | − | 64.3799i | −37.9005 | + | 37.9005i | 208.266 | − | 125.197i | − | 621.123i | |||
5.6 | −4.70563 | − | 4.70563i | 13.6569 | + | 7.51597i | 12.2859i | 2.98354 | + | 2.98354i | −28.8968 | − | 99.6316i | 130.405 | + | 130.405i | −92.7671 | + | 92.7671i | 130.020 | + | 205.289i | − | 28.0789i | |||
5.7 | −3.76705 | − | 3.76705i | 2.33888 | + | 15.4120i | − | 3.61863i | 14.1700 | + | 14.1700i | 49.2471 | − | 66.8685i | −76.3369 | − | 76.3369i | −134.177 | + | 134.177i | −232.059 | + | 72.0936i | − | 106.758i | ||
5.8 | −2.84235 | − | 2.84235i | −14.9406 | + | 4.44742i | − | 15.8421i | −43.3121 | − | 43.3121i | 55.1074 | + | 29.8252i | 113.155 | + | 113.155i | −135.984 | + | 135.984i | 203.441 | − | 132.894i | 246.216i | |||
5.9 | −2.20001 | − | 2.20001i | 7.79307 | − | 13.5007i | − | 22.3199i | −32.7863 | − | 32.7863i | −46.8465 | + | 12.5568i | 82.1975 | + | 82.1975i | −119.504 | + | 119.504i | −121.536 | − | 210.423i | 144.261i | |||
5.10 | −1.19509 | − | 1.19509i | −8.76613 | − | 12.8901i | − | 29.1435i | 15.3758 | + | 15.3758i | −4.92854 | + | 25.8812i | −44.9529 | − | 44.9529i | −73.0722 | + | 73.0722i | −89.3099 | + | 225.993i | − | 36.7511i | ||
5.11 | −0.778428 | − | 0.778428i | 14.4049 | − | 5.95807i | − | 30.7881i | 73.9451 | + | 73.9451i | −15.8511 | − | 6.57526i | −83.4924 | − | 83.4924i | −48.8760 | + | 48.8760i | 172.003 | − | 171.651i | − | 115.122i | ||
5.12 | 0.778428 | + | 0.778428i | 14.4049 | + | 5.95807i | − | 30.7881i | −73.9451 | − | 73.9451i | 6.57526 | + | 15.8511i | −83.4924 | − | 83.4924i | 48.8760 | − | 48.8760i | 172.003 | + | 171.651i | − | 115.122i | ||
5.13 | 1.19509 | + | 1.19509i | −8.76613 | + | 12.8901i | − | 29.1435i | −15.3758 | − | 15.3758i | −25.8812 | + | 4.92854i | −44.9529 | − | 44.9529i | 73.0722 | − | 73.0722i | −89.3099 | − | 225.993i | − | 36.7511i | ||
5.14 | 2.20001 | + | 2.20001i | 7.79307 | + | 13.5007i | − | 22.3199i | 32.7863 | + | 32.7863i | −12.5568 | + | 46.8465i | 82.1975 | + | 82.1975i | 119.504 | − | 119.504i | −121.536 | + | 210.423i | 144.261i | |||
5.15 | 2.84235 | + | 2.84235i | −14.9406 | − | 4.44742i | − | 15.8421i | 43.3121 | + | 43.3121i | −29.8252 | − | 55.1074i | 113.155 | + | 113.155i | 135.984 | − | 135.984i | 203.441 | + | 132.894i | 246.216i | |||
5.16 | 3.76705 | + | 3.76705i | 2.33888 | − | 15.4120i | − | 3.61863i | −14.1700 | − | 14.1700i | 66.8685 | − | 49.2471i | −76.3369 | − | 76.3369i | 134.177 | − | 134.177i | −232.059 | − | 72.0936i | − | 106.758i | ||
5.17 | 4.70563 | + | 4.70563i | 13.6569 | − | 7.51597i | 12.2859i | −2.98354 | − | 2.98354i | 99.6316 | + | 28.8968i | 130.405 | + | 130.405i | 92.7671 | − | 92.7671i | 130.020 | − | 205.289i | − | 28.0789i | |||
5.18 | 5.33357 | + | 5.33357i | −15.0211 | − | 4.16738i | 24.8940i | −58.2277 | − | 58.2277i | −57.8890 | − | 102.343i | −64.3799 | − | 64.3799i | 37.9005 | − | 37.9005i | 208.266 | + | 125.197i | − | 621.123i | |||
5.19 | 6.01851 | + | 6.01851i | −10.4416 | + | 11.5747i | 40.4450i | 55.1183 | + | 55.1183i | −132.505 | + | 6.81986i | −92.2834 | − | 92.2834i | −50.8266 | + | 50.8266i | −24.9476 | − | 241.716i | 663.461i | ||||
5.20 | 6.46085 | + | 6.46085i | 14.7948 | + | 4.91051i | 51.4853i | 18.6574 | + | 18.6574i | 63.8612 | + | 127.313i | −126.698 | − | 126.698i | −125.892 | + | 125.892i | 194.774 | + | 145.300i | 241.085i | ||||
See all 44 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
13.d | odd | 4 | 1 | inner |
39.f | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 39.6.f.a | ✓ | 44 |
3.b | odd | 2 | 1 | inner | 39.6.f.a | ✓ | 44 |
13.d | odd | 4 | 1 | inner | 39.6.f.a | ✓ | 44 |
39.f | even | 4 | 1 | inner | 39.6.f.a | ✓ | 44 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
39.6.f.a | ✓ | 44 | 1.a | even | 1 | 1 | trivial |
39.6.f.a | ✓ | 44 | 3.b | odd | 2 | 1 | inner |
39.6.f.a | ✓ | 44 | 13.d | odd | 4 | 1 | inner |
39.6.f.a | ✓ | 44 | 39.f | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(39, [\chi])\).