Properties

Label 390.2.p.d.161.2
Level $390$
Weight $2$
Character 390.161
Analytic conductor $3.114$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [390,2,Mod(161,390)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(390, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("390.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 390.p (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.11416567883\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.2
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 390.161
Dual form 390.2.p.d.281.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +(1.00000 + 1.41421i) q^{3} +1.00000i q^{4} +(0.707107 + 0.707107i) q^{5} +(-0.292893 + 1.70711i) q^{6} +(-0.707107 + 0.707107i) q^{8} +(-1.00000 + 2.82843i) q^{9} +1.00000i q^{10} +(-1.41421 + 1.41421i) q^{11} +(-1.41421 + 1.00000i) q^{12} +(-3.00000 - 2.00000i) q^{13} +(-0.292893 + 1.70711i) q^{15} -1.00000 q^{16} +4.24264 q^{17} +(-2.70711 + 1.29289i) q^{18} +(6.00000 - 6.00000i) q^{19} +(-0.707107 + 0.707107i) q^{20} -2.00000 q^{22} +1.41421 q^{23} +(-1.70711 - 0.292893i) q^{24} +1.00000i q^{25} +(-0.707107 - 3.53553i) q^{26} +(-5.00000 + 1.41421i) q^{27} +1.41421i q^{29} +(-1.41421 + 1.00000i) q^{30} +(-3.00000 + 3.00000i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(-3.41421 - 0.585786i) q^{33} +(3.00000 + 3.00000i) q^{34} +(-2.82843 - 1.00000i) q^{36} +(5.00000 + 5.00000i) q^{37} +8.48528 q^{38} +(-0.171573 - 6.24264i) q^{39} -1.00000 q^{40} +(-7.07107 - 7.07107i) q^{41} -4.00000i q^{43} +(-1.41421 - 1.41421i) q^{44} +(-2.70711 + 1.29289i) q^{45} +(1.00000 + 1.00000i) q^{46} +(4.24264 - 4.24264i) q^{47} +(-1.00000 - 1.41421i) q^{48} -7.00000i q^{49} +(-0.707107 + 0.707107i) q^{50} +(4.24264 + 6.00000i) q^{51} +(2.00000 - 3.00000i) q^{52} +11.3137i q^{53} +(-4.53553 - 2.53553i) q^{54} -2.00000 q^{55} +(14.4853 + 2.48528i) q^{57} +(-1.00000 + 1.00000i) q^{58} +(2.82843 - 2.82843i) q^{59} +(-1.70711 - 0.292893i) q^{60} +2.00000 q^{61} -4.24264 q^{62} -1.00000i q^{64} +(-0.707107 - 3.53553i) q^{65} +(-2.00000 - 2.82843i) q^{66} +(5.00000 - 5.00000i) q^{67} +4.24264i q^{68} +(1.41421 + 2.00000i) q^{69} +(-5.65685 - 5.65685i) q^{71} +(-1.29289 - 2.70711i) q^{72} +(6.00000 + 6.00000i) q^{73} +7.07107i q^{74} +(-1.41421 + 1.00000i) q^{75} +(6.00000 + 6.00000i) q^{76} +(4.29289 - 4.53553i) q^{78} +8.00000 q^{79} +(-0.707107 - 0.707107i) q^{80} +(-7.00000 - 5.65685i) q^{81} -10.0000i q^{82} +(-5.65685 - 5.65685i) q^{83} +(3.00000 + 3.00000i) q^{85} +(2.82843 - 2.82843i) q^{86} +(-2.00000 + 1.41421i) q^{87} -2.00000i q^{88} +(-4.24264 + 4.24264i) q^{89} +(-2.82843 - 1.00000i) q^{90} +1.41421i q^{92} +(-7.24264 - 1.24264i) q^{93} +6.00000 q^{94} +8.48528 q^{95} +(0.292893 - 1.70711i) q^{96} +(10.0000 - 10.0000i) q^{97} +(4.94975 - 4.94975i) q^{98} +(-2.58579 - 5.41421i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{6} - 4 q^{9} - 12 q^{13} - 4 q^{15} - 4 q^{16} - 8 q^{18} + 24 q^{19} - 8 q^{22} - 4 q^{24} - 20 q^{27} - 12 q^{31} - 8 q^{33} + 12 q^{34} + 20 q^{37} - 12 q^{39} - 4 q^{40} - 8 q^{45}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/390\mathbb{Z}\right)^\times\).

\(n\) \(131\) \(157\) \(301\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 1.00000 + 1.41421i 0.577350 + 0.816497i
\(4\) 1.00000i 0.500000i
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) −0.292893 + 1.70711i −0.119573 + 0.696923i
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) −1.00000 + 2.82843i −0.333333 + 0.942809i
\(10\) 1.00000i 0.316228i
\(11\) −1.41421 + 1.41421i −0.426401 + 0.426401i −0.887401 0.460999i \(-0.847491\pi\)
0.460999 + 0.887401i \(0.347491\pi\)
\(12\) −1.41421 + 1.00000i −0.408248 + 0.288675i
\(13\) −3.00000 2.00000i −0.832050 0.554700i
\(14\) 0 0
\(15\) −0.292893 + 1.70711i −0.0756247 + 0.440773i
\(16\) −1.00000 −0.250000
\(17\) 4.24264 1.02899 0.514496 0.857493i \(-0.327979\pi\)
0.514496 + 0.857493i \(0.327979\pi\)
\(18\) −2.70711 + 1.29289i −0.638071 + 0.304738i
\(19\) 6.00000 6.00000i 1.37649 1.37649i 0.526026 0.850469i \(-0.323682\pi\)
0.850469 0.526026i \(-0.176318\pi\)
\(20\) −0.707107 + 0.707107i −0.158114 + 0.158114i
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 1.41421 0.294884 0.147442 0.989071i \(-0.452896\pi\)
0.147442 + 0.989071i \(0.452896\pi\)
\(24\) −1.70711 0.292893i −0.348462 0.0597866i
\(25\) 1.00000i 0.200000i
\(26\) −0.707107 3.53553i −0.138675 0.693375i
\(27\) −5.00000 + 1.41421i −0.962250 + 0.272166i
\(28\) 0 0
\(29\) 1.41421i 0.262613i 0.991342 + 0.131306i \(0.0419172\pi\)
−0.991342 + 0.131306i \(0.958083\pi\)
\(30\) −1.41421 + 1.00000i −0.258199 + 0.182574i
\(31\) −3.00000 + 3.00000i −0.538816 + 0.538816i −0.923181 0.384365i \(-0.874420\pi\)
0.384365 + 0.923181i \(0.374420\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) −3.41421 0.585786i −0.594338 0.101972i
\(34\) 3.00000 + 3.00000i 0.514496 + 0.514496i
\(35\) 0 0
\(36\) −2.82843 1.00000i −0.471405 0.166667i
\(37\) 5.00000 + 5.00000i 0.821995 + 0.821995i 0.986394 0.164399i \(-0.0525685\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 8.48528 1.37649
\(39\) −0.171573 6.24264i −0.0274736 0.999623i
\(40\) −1.00000 −0.158114
\(41\) −7.07107 7.07107i −1.10432 1.10432i −0.993884 0.110432i \(-0.964777\pi\)
−0.110432 0.993884i \(-0.535223\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) −1.41421 1.41421i −0.213201 0.213201i
\(45\) −2.70711 + 1.29289i −0.403552 + 0.192733i
\(46\) 1.00000 + 1.00000i 0.147442 + 0.147442i
\(47\) 4.24264 4.24264i 0.618853 0.618853i −0.326384 0.945237i \(-0.605830\pi\)
0.945237 + 0.326384i \(0.105830\pi\)
\(48\) −1.00000 1.41421i −0.144338 0.204124i
\(49\) 7.00000i 1.00000i
\(50\) −0.707107 + 0.707107i −0.100000 + 0.100000i
\(51\) 4.24264 + 6.00000i 0.594089 + 0.840168i
\(52\) 2.00000 3.00000i 0.277350 0.416025i
\(53\) 11.3137i 1.55406i 0.629465 + 0.777029i \(0.283274\pi\)
−0.629465 + 0.777029i \(0.716726\pi\)
\(54\) −4.53553 2.53553i −0.617208 0.345042i
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 14.4853 + 2.48528i 1.91862 + 0.329184i
\(58\) −1.00000 + 1.00000i −0.131306 + 0.131306i
\(59\) 2.82843 2.82843i 0.368230 0.368230i −0.498601 0.866831i \(-0.666153\pi\)
0.866831 + 0.498601i \(0.166153\pi\)
\(60\) −1.70711 0.292893i −0.220387 0.0378124i
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −4.24264 −0.538816
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −0.707107 3.53553i −0.0877058 0.438529i
\(66\) −2.00000 2.82843i −0.246183 0.348155i
\(67\) 5.00000 5.00000i 0.610847 0.610847i −0.332320 0.943167i \(-0.607831\pi\)
0.943167 + 0.332320i \(0.107831\pi\)
\(68\) 4.24264i 0.514496i
\(69\) 1.41421 + 2.00000i 0.170251 + 0.240772i
\(70\) 0 0
\(71\) −5.65685 5.65685i −0.671345 0.671345i 0.286681 0.958026i \(-0.407448\pi\)
−0.958026 + 0.286681i \(0.907448\pi\)
\(72\) −1.29289 2.70711i −0.152369 0.319036i
\(73\) 6.00000 + 6.00000i 0.702247 + 0.702247i 0.964892 0.262646i \(-0.0845950\pi\)
−0.262646 + 0.964892i \(0.584595\pi\)
\(74\) 7.07107i 0.821995i
\(75\) −1.41421 + 1.00000i −0.163299 + 0.115470i
\(76\) 6.00000 + 6.00000i 0.688247 + 0.688247i
\(77\) 0 0
\(78\) 4.29289 4.53553i 0.486074 0.513548i
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) −0.707107 0.707107i −0.0790569 0.0790569i
\(81\) −7.00000 5.65685i −0.777778 0.628539i
\(82\) 10.0000i 1.10432i
\(83\) −5.65685 5.65685i −0.620920 0.620920i 0.324846 0.945767i \(-0.394687\pi\)
−0.945767 + 0.324846i \(0.894687\pi\)
\(84\) 0 0
\(85\) 3.00000 + 3.00000i 0.325396 + 0.325396i
\(86\) 2.82843 2.82843i 0.304997 0.304997i
\(87\) −2.00000 + 1.41421i −0.214423 + 0.151620i
\(88\) 2.00000i 0.213201i
\(89\) −4.24264 + 4.24264i −0.449719 + 0.449719i −0.895261 0.445542i \(-0.853011\pi\)
0.445542 + 0.895261i \(0.353011\pi\)
\(90\) −2.82843 1.00000i −0.298142 0.105409i
\(91\) 0 0
\(92\) 1.41421i 0.147442i
\(93\) −7.24264 1.24264i −0.751027 0.128856i
\(94\) 6.00000 0.618853
\(95\) 8.48528 0.870572
\(96\) 0.292893 1.70711i 0.0298933 0.174231i
\(97\) 10.0000 10.0000i 1.01535 1.01535i 0.0154658 0.999880i \(-0.495077\pi\)
0.999880 0.0154658i \(-0.00492310\pi\)
\(98\) 4.94975 4.94975i 0.500000 0.500000i
\(99\) −2.58579 5.41421i −0.259881 0.544149i
\(100\) −1.00000 −0.100000
\(101\) −15.5563 −1.54791 −0.773957 0.633238i \(-0.781726\pi\)
−0.773957 + 0.633238i \(0.781726\pi\)
\(102\) −1.24264 + 7.24264i −0.123040 + 0.717128i
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) 3.53553 0.707107i 0.346688 0.0693375i
\(105\) 0 0
\(106\) −8.00000 + 8.00000i −0.777029 + 0.777029i
\(107\) 11.3137i 1.09374i −0.837218 0.546869i \(-0.815820\pi\)
0.837218 0.546869i \(-0.184180\pi\)
\(108\) −1.41421 5.00000i −0.136083 0.481125i
\(109\) 2.00000 2.00000i 0.191565 0.191565i −0.604807 0.796372i \(-0.706750\pi\)
0.796372 + 0.604807i \(0.206750\pi\)
\(110\) −1.41421 1.41421i −0.134840 0.134840i
\(111\) −2.07107 + 12.0711i −0.196577 + 1.14574i
\(112\) 0 0
\(113\) 7.07107i 0.665190i 0.943070 + 0.332595i \(0.107924\pi\)
−0.943070 + 0.332595i \(0.892076\pi\)
\(114\) 8.48528 + 12.0000i 0.794719 + 1.12390i
\(115\) 1.00000 + 1.00000i 0.0932505 + 0.0932505i
\(116\) −1.41421 −0.131306
\(117\) 8.65685 6.48528i 0.800326 0.599564i
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) −1.00000 1.41421i −0.0912871 0.129099i
\(121\) 7.00000i 0.636364i
\(122\) 1.41421 + 1.41421i 0.128037 + 0.128037i
\(123\) 2.92893 17.0711i 0.264093 1.53925i
\(124\) −3.00000 3.00000i −0.269408 0.269408i
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 4.00000i 0.354943i 0.984126 + 0.177471i \(0.0567917\pi\)
−0.984126 + 0.177471i \(0.943208\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 5.65685 4.00000i 0.498058 0.352180i
\(130\) 2.00000 3.00000i 0.175412 0.263117i
\(131\) 7.07107i 0.617802i −0.951094 0.308901i \(-0.900039\pi\)
0.951094 0.308901i \(-0.0999612\pi\)
\(132\) 0.585786 3.41421i 0.0509862 0.297169i
\(133\) 0 0
\(134\) 7.07107 0.610847
\(135\) −4.53553 2.53553i −0.390357 0.218224i
\(136\) −3.00000 + 3.00000i −0.257248 + 0.257248i
\(137\) −14.1421 + 14.1421i −1.20824 + 1.20824i −0.236649 + 0.971595i \(0.576049\pi\)
−0.971595 + 0.236649i \(0.923951\pi\)
\(138\) −0.414214 + 2.41421i −0.0352602 + 0.205512i
\(139\) −16.0000 −1.35710 −0.678551 0.734553i \(-0.737392\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 0 0
\(141\) 10.2426 + 1.75736i 0.862586 + 0.147996i
\(142\) 8.00000i 0.671345i
\(143\) 7.07107 1.41421i 0.591312 0.118262i
\(144\) 1.00000 2.82843i 0.0833333 0.235702i
\(145\) −1.00000 + 1.00000i −0.0830455 + 0.0830455i
\(146\) 8.48528i 0.702247i
\(147\) 9.89949 7.00000i 0.816497 0.577350i
\(148\) −5.00000 + 5.00000i −0.410997 + 0.410997i
\(149\) −7.07107 7.07107i −0.579284 0.579284i 0.355422 0.934706i \(-0.384337\pi\)
−0.934706 + 0.355422i \(0.884337\pi\)
\(150\) −1.70711 0.292893i −0.139385 0.0239146i
\(151\) −13.0000 13.0000i −1.05792 1.05792i −0.998216 0.0597092i \(-0.980983\pi\)
−0.0597092 0.998216i \(-0.519017\pi\)
\(152\) 8.48528i 0.688247i
\(153\) −4.24264 + 12.0000i −0.342997 + 0.970143i
\(154\) 0 0
\(155\) −4.24264 −0.340777
\(156\) 6.24264 0.171573i 0.499811 0.0137368i
\(157\) −6.00000 −0.478852 −0.239426 0.970915i \(-0.576959\pi\)
−0.239426 + 0.970915i \(0.576959\pi\)
\(158\) 5.65685 + 5.65685i 0.450035 + 0.450035i
\(159\) −16.0000 + 11.3137i −1.26888 + 0.897235i
\(160\) 1.00000i 0.0790569i
\(161\) 0 0
\(162\) −0.949747 8.94975i −0.0746192 0.703159i
\(163\) −11.0000 11.0000i −0.861586 0.861586i 0.129936 0.991522i \(-0.458523\pi\)
−0.991522 + 0.129936i \(0.958523\pi\)
\(164\) 7.07107 7.07107i 0.552158 0.552158i
\(165\) −2.00000 2.82843i −0.155700 0.220193i
\(166\) 8.00000i 0.620920i
\(167\) 11.3137 11.3137i 0.875481 0.875481i −0.117582 0.993063i \(-0.537514\pi\)
0.993063 + 0.117582i \(0.0375143\pi\)
\(168\) 0 0
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) 4.24264i 0.325396i
\(171\) 10.9706 + 22.9706i 0.838940 + 1.75660i
\(172\) 4.00000 0.304997
\(173\) 2.82843 0.215041 0.107521 0.994203i \(-0.465709\pi\)
0.107521 + 0.994203i \(0.465709\pi\)
\(174\) −2.41421 0.414214i −0.183021 0.0314014i
\(175\) 0 0
\(176\) 1.41421 1.41421i 0.106600 0.106600i
\(177\) 6.82843 + 1.17157i 0.513256 + 0.0880608i
\(178\) −6.00000 −0.449719
\(179\) −18.3848 −1.37414 −0.687071 0.726590i \(-0.741104\pi\)
−0.687071 + 0.726590i \(0.741104\pi\)
\(180\) −1.29289 2.70711i −0.0963666 0.201776i
\(181\) 18.0000i 1.33793i 0.743294 + 0.668965i \(0.233262\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) 0 0
\(183\) 2.00000 + 2.82843i 0.147844 + 0.209083i
\(184\) −1.00000 + 1.00000i −0.0737210 + 0.0737210i
\(185\) 7.07107i 0.519875i
\(186\) −4.24264 6.00000i −0.311086 0.439941i
\(187\) −6.00000 + 6.00000i −0.438763 + 0.438763i
\(188\) 4.24264 + 4.24264i 0.309426 + 0.309426i
\(189\) 0 0
\(190\) 6.00000 + 6.00000i 0.435286 + 0.435286i
\(191\) 19.7990i 1.43260i 0.697790 + 0.716302i \(0.254167\pi\)
−0.697790 + 0.716302i \(0.745833\pi\)
\(192\) 1.41421 1.00000i 0.102062 0.0721688i
\(193\) −6.00000 6.00000i −0.431889 0.431889i 0.457381 0.889271i \(-0.348787\pi\)
−0.889271 + 0.457381i \(0.848787\pi\)
\(194\) 14.1421 1.01535
\(195\) 4.29289 4.53553i 0.307420 0.324796i
\(196\) 7.00000 0.500000
\(197\) 9.89949 + 9.89949i 0.705310 + 0.705310i 0.965545 0.260235i \(-0.0838002\pi\)
−0.260235 + 0.965545i \(0.583800\pi\)
\(198\) 2.00000 5.65685i 0.142134 0.402015i
\(199\) 2.00000i 0.141776i 0.997484 + 0.0708881i \(0.0225833\pi\)
−0.997484 + 0.0708881i \(0.977417\pi\)
\(200\) −0.707107 0.707107i −0.0500000 0.0500000i
\(201\) 12.0711 + 2.07107i 0.851427 + 0.146082i
\(202\) −11.0000 11.0000i −0.773957 0.773957i
\(203\) 0 0
\(204\) −6.00000 + 4.24264i −0.420084 + 0.297044i
\(205\) 10.0000i 0.698430i
\(206\) −5.65685 + 5.65685i −0.394132 + 0.394132i
\(207\) −1.41421 + 4.00000i −0.0982946 + 0.278019i
\(208\) 3.00000 + 2.00000i 0.208013 + 0.138675i
\(209\) 16.9706i 1.17388i
\(210\) 0 0
\(211\) −24.0000 −1.65223 −0.826114 0.563503i \(-0.809453\pi\)
−0.826114 + 0.563503i \(0.809453\pi\)
\(212\) −11.3137 −0.777029
\(213\) 2.34315 13.6569i 0.160550 0.935752i
\(214\) 8.00000 8.00000i 0.546869 0.546869i
\(215\) 2.82843 2.82843i 0.192897 0.192897i
\(216\) 2.53553 4.53553i 0.172521 0.308604i
\(217\) 0 0
\(218\) 2.82843 0.191565
\(219\) −2.48528 + 14.4853i −0.167940 + 0.978825i
\(220\) 2.00000i 0.134840i
\(221\) −12.7279 8.48528i −0.856173 0.570782i
\(222\) −10.0000 + 7.07107i −0.671156 + 0.474579i
\(223\) −10.0000 + 10.0000i −0.669650 + 0.669650i −0.957635 0.287985i \(-0.907015\pi\)
0.287985 + 0.957635i \(0.407015\pi\)
\(224\) 0 0
\(225\) −2.82843 1.00000i −0.188562 0.0666667i
\(226\) −5.00000 + 5.00000i −0.332595 + 0.332595i
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) −2.48528 + 14.4853i −0.164592 + 0.959311i
\(229\) 6.00000 + 6.00000i 0.396491 + 0.396491i 0.876993 0.480502i \(-0.159546\pi\)
−0.480502 + 0.876993i \(0.659546\pi\)
\(230\) 1.41421i 0.0932505i
\(231\) 0 0
\(232\) −1.00000 1.00000i −0.0656532 0.0656532i
\(233\) 18.3848 1.20443 0.602213 0.798335i \(-0.294286\pi\)
0.602213 + 0.798335i \(0.294286\pi\)
\(234\) 10.7071 + 1.53553i 0.699945 + 0.100381i
\(235\) 6.00000 0.391397
\(236\) 2.82843 + 2.82843i 0.184115 + 0.184115i
\(237\) 8.00000 + 11.3137i 0.519656 + 0.734904i
\(238\) 0 0
\(239\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(240\) 0.292893 1.70711i 0.0189062 0.110193i
\(241\) −1.00000 1.00000i −0.0644157 0.0644157i 0.674165 0.738581i \(-0.264504\pi\)
−0.738581 + 0.674165i \(0.764504\pi\)
\(242\) −4.94975 + 4.94975i −0.318182 + 0.318182i
\(243\) 1.00000 15.5563i 0.0641500 0.997940i
\(244\) 2.00000i 0.128037i
\(245\) 4.94975 4.94975i 0.316228 0.316228i
\(246\) 14.1421 10.0000i 0.901670 0.637577i
\(247\) −30.0000 + 6.00000i −1.90885 + 0.381771i
\(248\) 4.24264i 0.269408i
\(249\) 2.34315 13.6569i 0.148491 0.865468i
\(250\) −1.00000 −0.0632456
\(251\) −4.24264 −0.267793 −0.133897 0.990995i \(-0.542749\pi\)
−0.133897 + 0.990995i \(0.542749\pi\)
\(252\) 0 0
\(253\) −2.00000 + 2.00000i −0.125739 + 0.125739i
\(254\) −2.82843 + 2.82843i −0.177471 + 0.177471i
\(255\) −1.24264 + 7.24264i −0.0778172 + 0.453552i
\(256\) 1.00000 0.0625000
\(257\) 1.41421 0.0882162 0.0441081 0.999027i \(-0.485955\pi\)
0.0441081 + 0.999027i \(0.485955\pi\)
\(258\) 6.82843 + 1.17157i 0.425119 + 0.0729389i
\(259\) 0 0
\(260\) 3.53553 0.707107i 0.219265 0.0438529i
\(261\) −4.00000 1.41421i −0.247594 0.0875376i
\(262\) 5.00000 5.00000i 0.308901 0.308901i
\(263\) 4.24264i 0.261612i −0.991408 0.130806i \(-0.958243\pi\)
0.991408 0.130806i \(-0.0417566\pi\)
\(264\) 2.82843 2.00000i 0.174078 0.123091i
\(265\) −8.00000 + 8.00000i −0.491436 + 0.491436i
\(266\) 0 0
\(267\) −10.2426 1.75736i −0.626839 0.107549i
\(268\) 5.00000 + 5.00000i 0.305424 + 0.305424i
\(269\) 1.41421i 0.0862261i 0.999070 + 0.0431131i \(0.0137276\pi\)
−0.999070 + 0.0431131i \(0.986272\pi\)
\(270\) −1.41421 5.00000i −0.0860663 0.304290i
\(271\) −3.00000 3.00000i −0.182237 0.182237i 0.610093 0.792330i \(-0.291132\pi\)
−0.792330 + 0.610093i \(0.791132\pi\)
\(272\) −4.24264 −0.257248
\(273\) 0 0
\(274\) −20.0000 −1.20824
\(275\) −1.41421 1.41421i −0.0852803 0.0852803i
\(276\) −2.00000 + 1.41421i −0.120386 + 0.0851257i
\(277\) 28.0000i 1.68236i 0.540758 + 0.841178i \(0.318138\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) −11.3137 11.3137i −0.678551 0.678551i
\(279\) −5.48528 11.4853i −0.328395 0.687606i
\(280\) 0 0
\(281\) 12.7279 12.7279i 0.759284 0.759284i −0.216908 0.976192i \(-0.569597\pi\)
0.976192 + 0.216908i \(0.0695971\pi\)
\(282\) 6.00000 + 8.48528i 0.357295 + 0.505291i
\(283\) 6.00000i 0.356663i −0.983970 0.178331i \(-0.942930\pi\)
0.983970 0.178331i \(-0.0570699\pi\)
\(284\) 5.65685 5.65685i 0.335673 0.335673i
\(285\) 8.48528 + 12.0000i 0.502625 + 0.710819i
\(286\) 6.00000 + 4.00000i 0.354787 + 0.236525i
\(287\) 0 0
\(288\) 2.70711 1.29289i 0.159518 0.0761845i
\(289\) 1.00000 0.0588235
\(290\) −1.41421 −0.0830455
\(291\) 24.1421 + 4.14214i 1.41524 + 0.242816i
\(292\) −6.00000 + 6.00000i −0.351123 + 0.351123i
\(293\) −9.89949 + 9.89949i −0.578335 + 0.578335i −0.934444 0.356110i \(-0.884103\pi\)
0.356110 + 0.934444i \(0.384103\pi\)
\(294\) 11.9497 + 2.05025i 0.696923 + 0.119573i
\(295\) 4.00000 0.232889
\(296\) −7.07107 −0.410997
\(297\) 5.07107 9.07107i 0.294253 0.526357i
\(298\) 10.0000i 0.579284i
\(299\) −4.24264 2.82843i −0.245358 0.163572i
\(300\) −1.00000 1.41421i −0.0577350 0.0816497i
\(301\) 0 0
\(302\) 18.3848i 1.05792i
\(303\) −15.5563 22.0000i −0.893689 1.26387i
\(304\) −6.00000 + 6.00000i −0.344124 + 0.344124i
\(305\) 1.41421 + 1.41421i 0.0809776 + 0.0809776i
\(306\) −11.4853 + 5.48528i −0.656570 + 0.313573i
\(307\) 23.0000 + 23.0000i 1.31268 + 1.31268i 0.919433 + 0.393246i \(0.128648\pi\)
0.393246 + 0.919433i \(0.371352\pi\)
\(308\) 0 0
\(309\) −11.3137 + 8.00000i −0.643614 + 0.455104i
\(310\) −3.00000 3.00000i −0.170389 0.170389i
\(311\) 2.82843 0.160385 0.0801927 0.996779i \(-0.474446\pi\)
0.0801927 + 0.996779i \(0.474446\pi\)
\(312\) 4.53553 + 4.29289i 0.256774 + 0.243037i
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) −4.24264 4.24264i −0.239426 0.239426i
\(315\) 0 0
\(316\) 8.00000i 0.450035i
\(317\) −18.3848 18.3848i −1.03259 1.03259i −0.999451 0.0331412i \(-0.989449\pi\)
−0.0331412 0.999451i \(-0.510551\pi\)
\(318\) −19.3137 3.31371i −1.08306 0.185824i
\(319\) −2.00000 2.00000i −0.111979 0.111979i
\(320\) 0.707107 0.707107i 0.0395285 0.0395285i
\(321\) 16.0000 11.3137i 0.893033 0.631470i
\(322\) 0 0
\(323\) 25.4558 25.4558i 1.41640 1.41640i
\(324\) 5.65685 7.00000i 0.314270 0.388889i
\(325\) 2.00000 3.00000i 0.110940 0.166410i
\(326\) 15.5563i 0.861586i
\(327\) 4.82843 + 0.828427i 0.267013 + 0.0458121i
\(328\) 10.0000 0.552158
\(329\) 0 0
\(330\) 0.585786 3.41421i 0.0322465 0.187946i
\(331\) 24.0000 24.0000i 1.31916 1.31916i 0.404718 0.914442i \(-0.367370\pi\)
0.914442 0.404718i \(-0.132630\pi\)
\(332\) 5.65685 5.65685i 0.310460 0.310460i
\(333\) −19.1421 + 9.14214i −1.04898 + 0.500986i
\(334\) 16.0000 0.875481
\(335\) 7.07107 0.386334
\(336\) 0 0
\(337\) 14.0000i 0.762629i 0.924445 + 0.381314i \(0.124528\pi\)
−0.924445 + 0.381314i \(0.875472\pi\)
\(338\) −4.94975 + 12.0208i −0.269231 + 0.653846i
\(339\) −10.0000 + 7.07107i −0.543125 + 0.384048i
\(340\) −3.00000 + 3.00000i −0.162698 + 0.162698i
\(341\) 8.48528i 0.459504i
\(342\) −8.48528 + 24.0000i −0.458831 + 1.29777i
\(343\) 0 0
\(344\) 2.82843 + 2.82843i 0.152499 + 0.152499i
\(345\) −0.414214 + 2.41421i −0.0223005 + 0.129977i
\(346\) 2.00000 + 2.00000i 0.107521 + 0.107521i
\(347\) 11.3137i 0.607352i 0.952775 + 0.303676i \(0.0982140\pi\)
−0.952775 + 0.303676i \(0.901786\pi\)
\(348\) −1.41421 2.00000i −0.0758098 0.107211i
\(349\) −12.0000 12.0000i −0.642345 0.642345i 0.308786 0.951131i \(-0.400077\pi\)
−0.951131 + 0.308786i \(0.900077\pi\)
\(350\) 0 0
\(351\) 17.8284 + 5.75736i 0.951611 + 0.307305i
\(352\) 2.00000 0.106600
\(353\) 25.4558 + 25.4558i 1.35488 + 1.35488i 0.880112 + 0.474766i \(0.157467\pi\)
0.474766 + 0.880112i \(0.342533\pi\)
\(354\) 4.00000 + 5.65685i 0.212598 + 0.300658i
\(355\) 8.00000i 0.424596i
\(356\) −4.24264 4.24264i −0.224860 0.224860i
\(357\) 0 0
\(358\) −13.0000 13.0000i −0.687071 0.687071i
\(359\) 16.9706 16.9706i 0.895672 0.895672i −0.0993777 0.995050i \(-0.531685\pi\)
0.995050 + 0.0993777i \(0.0316852\pi\)
\(360\) 1.00000 2.82843i 0.0527046 0.149071i
\(361\) 53.0000i 2.78947i
\(362\) −12.7279 + 12.7279i −0.668965 + 0.668965i
\(363\) −9.89949 + 7.00000i −0.519589 + 0.367405i
\(364\) 0 0
\(365\) 8.48528i 0.444140i
\(366\) −0.585786 + 3.41421i −0.0306195 + 0.178464i
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) −1.41421 −0.0737210
\(369\) 27.0711 12.9289i 1.40926 0.673053i
\(370\) −5.00000 + 5.00000i −0.259938 + 0.259938i
\(371\) 0 0
\(372\) 1.24264 7.24264i 0.0644279 0.375513i
\(373\) −32.0000 −1.65690 −0.828449 0.560065i \(-0.810776\pi\)
−0.828449 + 0.560065i \(0.810776\pi\)
\(374\) −8.48528 −0.438763
\(375\) −1.70711 0.292893i −0.0881546 0.0151249i
\(376\) 6.00000i 0.309426i
\(377\) 2.82843 4.24264i 0.145671 0.218507i
\(378\) 0 0
\(379\) 16.0000 16.0000i 0.821865 0.821865i −0.164511 0.986375i \(-0.552604\pi\)
0.986375 + 0.164511i \(0.0526045\pi\)
\(380\) 8.48528i 0.435286i
\(381\) −5.65685 + 4.00000i −0.289809 + 0.204926i
\(382\) −14.0000 + 14.0000i −0.716302 + 0.716302i
\(383\) −16.9706 16.9706i −0.867155 0.867155i 0.125001 0.992157i \(-0.460106\pi\)
−0.992157 + 0.125001i \(0.960106\pi\)
\(384\) 1.70711 + 0.292893i 0.0871154 + 0.0149466i
\(385\) 0 0
\(386\) 8.48528i 0.431889i
\(387\) 11.3137 + 4.00000i 0.575108 + 0.203331i
\(388\) 10.0000 + 10.0000i 0.507673 + 0.507673i
\(389\) −26.8701 −1.36237 −0.681183 0.732113i \(-0.738534\pi\)
−0.681183 + 0.732113i \(0.738534\pi\)
\(390\) 6.24264 0.171573i 0.316108 0.00868793i
\(391\) 6.00000 0.303433
\(392\) 4.94975 + 4.94975i 0.250000 + 0.250000i
\(393\) 10.0000 7.07107i 0.504433 0.356688i
\(394\) 14.0000i 0.705310i
\(395\) 5.65685 + 5.65685i 0.284627 + 0.284627i
\(396\) 5.41421 2.58579i 0.272074 0.129941i
\(397\) 3.00000 + 3.00000i 0.150566 + 0.150566i 0.778371 0.627805i \(-0.216046\pi\)
−0.627805 + 0.778371i \(0.716046\pi\)
\(398\) −1.41421 + 1.41421i −0.0708881 + 0.0708881i
\(399\) 0 0
\(400\) 1.00000i 0.0500000i
\(401\) 4.24264 4.24264i 0.211867 0.211867i −0.593193 0.805060i \(-0.702133\pi\)
0.805060 + 0.593193i \(0.202133\pi\)
\(402\) 7.07107 + 10.0000i 0.352673 + 0.498755i
\(403\) 15.0000 3.00000i 0.747203 0.149441i
\(404\) 15.5563i 0.773957i
\(405\) −0.949747 8.94975i −0.0471933 0.444717i
\(406\) 0 0
\(407\) −14.1421 −0.701000
\(408\) −7.24264 1.24264i −0.358564 0.0615199i
\(409\) −3.00000 + 3.00000i −0.148340 + 0.148340i −0.777376 0.629036i \(-0.783450\pi\)
0.629036 + 0.777376i \(0.283450\pi\)
\(410\) 7.07107 7.07107i 0.349215 0.349215i
\(411\) −34.1421 5.85786i −1.68411 0.288947i
\(412\) −8.00000 −0.394132
\(413\) 0 0
\(414\) −3.82843 + 1.82843i −0.188157 + 0.0898623i
\(415\) 8.00000i 0.392705i
\(416\) 0.707107 + 3.53553i 0.0346688 + 0.173344i
\(417\) −16.0000 22.6274i −0.783523 1.10807i
\(418\) −12.0000 + 12.0000i −0.586939 + 0.586939i
\(419\) 15.5563i 0.759977i −0.924991 0.379989i \(-0.875928\pi\)
0.924991 0.379989i \(-0.124072\pi\)
\(420\) 0 0
\(421\) 12.0000 12.0000i 0.584844 0.584844i −0.351386 0.936231i \(-0.614290\pi\)
0.936231 + 0.351386i \(0.114290\pi\)
\(422\) −16.9706 16.9706i −0.826114 0.826114i
\(423\) 7.75736 + 16.2426i 0.377176 + 0.789744i
\(424\) −8.00000 8.00000i −0.388514 0.388514i
\(425\) 4.24264i 0.205798i
\(426\) 11.3137 8.00000i 0.548151 0.387601i
\(427\) 0 0
\(428\) 11.3137 0.546869
\(429\) 9.07107 + 8.58579i 0.437955 + 0.414526i
\(430\) 4.00000 0.192897
\(431\) 25.4558 + 25.4558i 1.22616 + 1.22616i 0.965403 + 0.260762i \(0.0839737\pi\)
0.260762 + 0.965403i \(0.416026\pi\)
\(432\) 5.00000 1.41421i 0.240563 0.0680414i
\(433\) 14.0000i 0.672797i −0.941720 0.336399i \(-0.890791\pi\)
0.941720 0.336399i \(-0.109209\pi\)
\(434\) 0 0
\(435\) −2.41421 0.414214i −0.115753 0.0198600i
\(436\) 2.00000 + 2.00000i 0.0957826 + 0.0957826i
\(437\) 8.48528 8.48528i 0.405906 0.405906i
\(438\) −12.0000 + 8.48528i −0.573382 + 0.405442i
\(439\) 6.00000i 0.286364i 0.989696 + 0.143182i \(0.0457335\pi\)
−0.989696 + 0.143182i \(0.954267\pi\)
\(440\) 1.41421 1.41421i 0.0674200 0.0674200i
\(441\) 19.7990 + 7.00000i 0.942809 + 0.333333i
\(442\) −3.00000 15.0000i −0.142695 0.713477i
\(443\) 8.48528i 0.403148i 0.979473 + 0.201574i \(0.0646056\pi\)
−0.979473 + 0.201574i \(0.935394\pi\)
\(444\) −12.0711 2.07107i −0.572868 0.0982885i
\(445\) −6.00000 −0.284427
\(446\) −14.1421 −0.669650
\(447\) 2.92893 17.0711i 0.138534 0.807434i
\(448\) 0 0
\(449\) −12.7279 + 12.7279i −0.600668 + 0.600668i −0.940490 0.339822i \(-0.889633\pi\)
0.339822 + 0.940490i \(0.389633\pi\)
\(450\) −1.29289 2.70711i −0.0609476 0.127614i
\(451\) 20.0000 0.941763
\(452\) −7.07107 −0.332595
\(453\) 5.38478 31.3848i 0.252999 1.47459i
\(454\) 0 0
\(455\) 0 0
\(456\) −12.0000 + 8.48528i −0.561951 + 0.397360i
\(457\) 6.00000 6.00000i 0.280668 0.280668i −0.552707 0.833375i \(-0.686405\pi\)
0.833375 + 0.552707i \(0.186405\pi\)
\(458\) 8.48528i 0.396491i
\(459\) −21.2132 + 6.00000i −0.990148 + 0.280056i
\(460\) −1.00000 + 1.00000i −0.0466252 + 0.0466252i
\(461\) −2.82843 2.82843i −0.131733 0.131733i 0.638166 0.769899i \(-0.279693\pi\)
−0.769899 + 0.638166i \(0.779693\pi\)
\(462\) 0 0
\(463\) 22.0000 + 22.0000i 1.02243 + 1.02243i 0.999743 + 0.0226840i \(0.00722117\pi\)
0.0226840 + 0.999743i \(0.492779\pi\)
\(464\) 1.41421i 0.0656532i
\(465\) −4.24264 6.00000i −0.196748 0.278243i
\(466\) 13.0000 + 13.0000i 0.602213 + 0.602213i
\(467\) 2.82843 0.130884 0.0654420 0.997856i \(-0.479154\pi\)
0.0654420 + 0.997856i \(0.479154\pi\)
\(468\) 6.48528 + 8.65685i 0.299782 + 0.400163i
\(469\) 0 0
\(470\) 4.24264 + 4.24264i 0.195698 + 0.195698i
\(471\) −6.00000 8.48528i −0.276465 0.390981i
\(472\) 4.00000i 0.184115i
\(473\) 5.65685 + 5.65685i 0.260102 + 0.260102i
\(474\) −2.34315 + 13.6569i −0.107624 + 0.627280i
\(475\) 6.00000 + 6.00000i 0.275299 + 0.275299i
\(476\) 0 0
\(477\) −32.0000 11.3137i −1.46518 0.518019i
\(478\) 0 0
\(479\) 14.1421 14.1421i 0.646171 0.646171i −0.305895 0.952065i \(-0.598956\pi\)
0.952065 + 0.305895i \(0.0989555\pi\)
\(480\) 1.41421 1.00000i 0.0645497 0.0456435i
\(481\) −5.00000 25.0000i −0.227980 1.13990i
\(482\) 1.41421i 0.0644157i
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) 14.1421 0.642161
\(486\) 11.7071 10.2929i 0.531045 0.466895i
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) −1.41421 + 1.41421i −0.0640184 + 0.0640184i
\(489\) 4.55635 26.5563i 0.206045 1.20092i
\(490\) 7.00000 0.316228
\(491\) 15.5563 0.702048 0.351024 0.936366i \(-0.385834\pi\)
0.351024 + 0.936366i \(0.385834\pi\)
\(492\) 17.0711 + 2.92893i 0.769623 + 0.132046i
\(493\) 6.00000i 0.270226i
\(494\) −25.4558 16.9706i −1.14531 0.763542i
\(495\) 2.00000 5.65685i 0.0898933 0.254257i
\(496\) 3.00000 3.00000i 0.134704 0.134704i
\(497\) 0 0
\(498\) 11.3137 8.00000i 0.506979 0.358489i
\(499\) −18.0000 + 18.0000i −0.805791 + 0.805791i −0.983994 0.178203i \(-0.942972\pi\)
0.178203 + 0.983994i \(0.442972\pi\)
\(500\) −0.707107 0.707107i −0.0316228 0.0316228i
\(501\) 27.3137 + 4.68629i 1.22029 + 0.209368i
\(502\) −3.00000 3.00000i −0.133897 0.133897i
\(503\) 9.89949i 0.441397i 0.975342 + 0.220698i \(0.0708336\pi\)
−0.975342 + 0.220698i \(0.929166\pi\)
\(504\) 0 0
\(505\) −11.0000 11.0000i −0.489494 0.489494i
\(506\) −2.82843 −0.125739
\(507\) −11.9706 + 19.0711i −0.531631 + 0.846976i
\(508\) −4.00000 −0.177471
\(509\) −14.1421 14.1421i −0.626839 0.626839i 0.320432 0.947271i \(-0.396172\pi\)
−0.947271 + 0.320432i \(0.896172\pi\)
\(510\) −6.00000 + 4.24264i −0.265684 + 0.187867i
\(511\) 0 0
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) −21.5147 + 38.4853i −0.949898 + 1.69917i
\(514\) 1.00000 + 1.00000i 0.0441081 + 0.0441081i
\(515\) −5.65685 + 5.65685i −0.249271 + 0.249271i
\(516\) 4.00000 + 5.65685i 0.176090 + 0.249029i
\(517\) 12.0000i 0.527759i
\(518\) 0 0
\(519\) 2.82843 + 4.00000i 0.124154 + 0.175581i
\(520\) 3.00000 + 2.00000i 0.131559 + 0.0877058i
\(521\) 5.65685i 0.247831i 0.992293 + 0.123916i \(0.0395452\pi\)
−0.992293 + 0.123916i \(0.960455\pi\)
\(522\) −1.82843 3.82843i −0.0800281 0.167566i
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 7.07107 0.308901
\(525\) 0 0
\(526\) 3.00000 3.00000i 0.130806 0.130806i
\(527\) −12.7279 + 12.7279i −0.554437 + 0.554437i
\(528\) 3.41421 + 0.585786i 0.148585 + 0.0254931i
\(529\) −21.0000 −0.913043
\(530\) −11.3137 −0.491436
\(531\) 5.17157 + 10.8284i 0.224427 + 0.469914i
\(532\) 0 0
\(533\) 7.07107 + 35.3553i 0.306282 + 1.53141i
\(534\) −6.00000 8.48528i −0.259645 0.367194i
\(535\) 8.00000 8.00000i 0.345870 0.345870i
\(536\) 7.07107i 0.305424i
\(537\) −18.3848 26.0000i −0.793362 1.12198i
\(538\) −1.00000 + 1.00000i −0.0431131 + 0.0431131i
\(539\) 9.89949 + 9.89949i 0.426401 + 0.426401i
\(540\) 2.53553 4.53553i 0.109112 0.195178i
\(541\) −8.00000 8.00000i −0.343947 0.343947i 0.513902 0.857849i \(-0.328199\pi\)
−0.857849 + 0.513902i \(0.828199\pi\)
\(542\) 4.24264i 0.182237i
\(543\) −25.4558 + 18.0000i −1.09241 + 0.772454i
\(544\) −3.00000 3.00000i −0.128624 0.128624i
\(545\) 2.82843 0.121157
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) −14.1421 14.1421i −0.604122 0.604122i
\(549\) −2.00000 + 5.65685i −0.0853579 + 0.241429i
\(550\) 2.00000i 0.0852803i
\(551\) 8.48528 + 8.48528i 0.361485 + 0.361485i
\(552\) −2.41421 0.414214i −0.102756 0.0176301i
\(553\) 0 0
\(554\) −19.7990 + 19.7990i −0.841178 + 0.841178i
\(555\) −10.0000 + 7.07107i −0.424476 + 0.300150i
\(556\) 16.0000i 0.678551i
\(557\) −18.3848 + 18.3848i −0.778988 + 0.778988i −0.979659 0.200671i \(-0.935688\pi\)
0.200671 + 0.979659i \(0.435688\pi\)
\(558\) 4.24264 12.0000i 0.179605 0.508001i
\(559\) −8.00000 + 12.0000i −0.338364 + 0.507546i
\(560\) 0 0
\(561\) −14.4853 2.48528i −0.611569 0.104929i
\(562\) 18.0000 0.759284
\(563\) 19.7990 0.834428 0.417214 0.908808i \(-0.363007\pi\)
0.417214 + 0.908808i \(0.363007\pi\)
\(564\) −1.75736 + 10.2426i −0.0739982 + 0.431293i
\(565\) −5.00000 + 5.00000i −0.210352 + 0.210352i
\(566\) 4.24264 4.24264i 0.178331 0.178331i
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) 45.2548 1.89718 0.948591 0.316506i \(-0.102510\pi\)
0.948591 + 0.316506i \(0.102510\pi\)
\(570\) −2.48528 + 14.4853i −0.104097 + 0.606722i
\(571\) 12.0000i 0.502184i 0.967963 + 0.251092i \(0.0807897\pi\)
−0.967963 + 0.251092i \(0.919210\pi\)
\(572\) 1.41421 + 7.07107i 0.0591312 + 0.295656i
\(573\) −28.0000 + 19.7990i −1.16972 + 0.827115i
\(574\) 0 0
\(575\) 1.41421i 0.0589768i
\(576\) 2.82843 + 1.00000i 0.117851 + 0.0416667i
\(577\) 26.0000 26.0000i 1.08239 1.08239i 0.0861084 0.996286i \(-0.472557\pi\)
0.996286 0.0861084i \(-0.0274431\pi\)
\(578\) 0.707107 + 0.707107i 0.0294118 + 0.0294118i
\(579\) 2.48528 14.4853i 0.103285 0.601988i
\(580\) −1.00000 1.00000i −0.0415227 0.0415227i
\(581\) 0 0
\(582\) 14.1421 + 20.0000i 0.586210 + 0.829027i
\(583\) −16.0000 16.0000i −0.662652 0.662652i
\(584\) −8.48528 −0.351123
\(585\) 10.7071 + 1.53553i 0.442684 + 0.0634865i
\(586\) −14.0000 −0.578335
\(587\) −19.7990 19.7990i −0.817192 0.817192i 0.168508 0.985700i \(-0.446105\pi\)
−0.985700 + 0.168508i \(0.946105\pi\)
\(588\) 7.00000 + 9.89949i 0.288675 + 0.408248i
\(589\) 36.0000i 1.48335i
\(590\) 2.82843 + 2.82843i 0.116445 + 0.116445i
\(591\) −4.10051 + 23.8995i −0.168672 + 0.983094i
\(592\) −5.00000 5.00000i −0.205499 0.205499i
\(593\) −25.4558 + 25.4558i −1.04535 + 1.04535i −0.0464244 + 0.998922i \(0.514783\pi\)
−0.998922 + 0.0464244i \(0.985217\pi\)
\(594\) 10.0000 2.82843i 0.410305 0.116052i
\(595\) 0 0
\(596\) 7.07107 7.07107i 0.289642 0.289642i
\(597\) −2.82843 + 2.00000i −0.115760 + 0.0818546i
\(598\) −1.00000 5.00000i −0.0408930 0.204465i
\(599\) 45.2548i 1.84906i 0.381106 + 0.924531i \(0.375543\pi\)
−0.381106 + 0.924531i \(0.624457\pi\)
\(600\) 0.292893 1.70711i 0.0119573 0.0696923i
\(601\) 38.0000 1.55005 0.775026 0.631929i \(-0.217737\pi\)
0.775026 + 0.631929i \(0.217737\pi\)
\(602\) 0 0
\(603\) 9.14214 + 19.1421i 0.372297 + 0.779528i
\(604\) 13.0000 13.0000i 0.528962 0.528962i
\(605\) −4.94975 + 4.94975i −0.201236 + 0.201236i
\(606\) 4.55635 26.5563i 0.185089 1.07878i
\(607\) 36.0000 1.46119 0.730597 0.682808i \(-0.239242\pi\)
0.730597 + 0.682808i \(0.239242\pi\)
\(608\) −8.48528 −0.344124
\(609\) 0 0
\(610\) 2.00000i 0.0809776i
\(611\) −21.2132 + 4.24264i −0.858194 + 0.171639i
\(612\) −12.0000 4.24264i −0.485071 0.171499i
\(613\) −9.00000 + 9.00000i −0.363507 + 0.363507i −0.865102 0.501596i \(-0.832747\pi\)
0.501596 + 0.865102i \(0.332747\pi\)
\(614\) 32.5269i 1.31268i
\(615\) 14.1421 10.0000i 0.570266 0.403239i
\(616\) 0 0
\(617\) 7.07107 + 7.07107i 0.284670 + 0.284670i 0.834968 0.550298i \(-0.185486\pi\)
−0.550298 + 0.834968i \(0.685486\pi\)
\(618\) −13.6569 2.34315i −0.549359 0.0942551i
\(619\) 32.0000 + 32.0000i 1.28619 + 1.28619i 0.937084 + 0.349105i \(0.113514\pi\)
0.349105 + 0.937084i \(0.386486\pi\)
\(620\) 4.24264i 0.170389i
\(621\) −7.07107 + 2.00000i −0.283752 + 0.0802572i
\(622\) 2.00000 + 2.00000i 0.0801927 + 0.0801927i
\(623\) 0 0
\(624\) 0.171573 + 6.24264i 0.00686841 + 0.249906i
\(625\) −1.00000 −0.0400000
\(626\) 18.3848 + 18.3848i 0.734803 + 0.734803i
\(627\) −24.0000 + 16.9706i −0.958468 + 0.677739i
\(628\) 6.00000i 0.239426i
\(629\) 21.2132 + 21.2132i 0.845826 + 0.845826i
\(630\) 0 0
\(631\) 9.00000 + 9.00000i 0.358284 + 0.358284i 0.863180 0.504896i \(-0.168469\pi\)
−0.504896 + 0.863180i \(0.668469\pi\)
\(632\) −5.65685 + 5.65685i −0.225018 + 0.225018i
\(633\) −24.0000 33.9411i −0.953914 1.34904i
\(634\) 26.0000i 1.03259i
\(635\) −2.82843 + 2.82843i −0.112243 + 0.112243i
\(636\) −11.3137 16.0000i −0.448618 0.634441i
\(637\) −14.0000 + 21.0000i −0.554700 + 0.832050i
\(638\) 2.82843i 0.111979i
\(639\) 21.6569 10.3431i 0.856732 0.409169i
\(640\) 1.00000 0.0395285
\(641\) −39.5980 −1.56403 −0.782013 0.623262i \(-0.785807\pi\)
−0.782013 + 0.623262i \(0.785807\pi\)
\(642\) 19.3137 + 3.31371i 0.762251 + 0.130782i
\(643\) −21.0000 + 21.0000i −0.828159 + 0.828159i −0.987262 0.159103i \(-0.949140\pi\)
0.159103 + 0.987262i \(0.449140\pi\)
\(644\) 0 0
\(645\) 6.82843 + 1.17157i 0.268869 + 0.0461306i
\(646\) 36.0000 1.41640
\(647\) 7.07107 0.277992 0.138996 0.990293i \(-0.455612\pi\)
0.138996 + 0.990293i \(0.455612\pi\)
\(648\) 8.94975 0.949747i 0.351579 0.0373096i
\(649\) 8.00000i 0.314027i
\(650\) 3.53553 0.707107i 0.138675 0.0277350i
\(651\) 0 0
\(652\) 11.0000 11.0000i 0.430793 0.430793i
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 2.82843 + 4.00000i 0.110600 + 0.156412i
\(655\) 5.00000 5.00000i 0.195366 0.195366i
\(656\) 7.07107 + 7.07107i 0.276079 + 0.276079i
\(657\) −22.9706 + 10.9706i −0.896167 + 0.428002i
\(658\) 0 0
\(659\) 9.89949i 0.385630i 0.981235 + 0.192815i \(0.0617617\pi\)
−0.981235 + 0.192815i \(0.938238\pi\)
\(660\) 2.82843 2.00000i 0.110096 0.0778499i
\(661\) −22.0000 22.0000i −0.855701 0.855701i 0.135127 0.990828i \(-0.456856\pi\)
−0.990828 + 0.135127i \(0.956856\pi\)
\(662\) 33.9411 1.31916
\(663\) −0.727922 26.4853i −0.0282702 1.02860i
\(664\) 8.00000 0.310460
\(665\) 0 0
\(666\) −20.0000 7.07107i −0.774984 0.273998i
\(667\) 2.00000i 0.0774403i
\(668\) 11.3137 + 11.3137i 0.437741 + 0.437741i
\(669\) −24.1421 4.14214i −0.933389 0.160144i
\(670\) 5.00000 + 5.00000i 0.193167 + 0.193167i
\(671\) −2.82843 + 2.82843i −0.109190 + 0.109190i
\(672\) 0 0
\(673\) 6.00000i 0.231283i −0.993291 0.115642i \(-0.963108\pi\)
0.993291 0.115642i \(-0.0368924\pi\)
\(674\) −9.89949 + 9.89949i −0.381314 + 0.381314i
\(675\) −1.41421 5.00000i −0.0544331 0.192450i
\(676\) −12.0000 + 5.00000i −0.461538 + 0.192308i
\(677\) 36.7696i 1.41317i −0.707629 0.706584i \(-0.750235\pi\)
0.707629 0.706584i \(-0.249765\pi\)
\(678\) −12.0711 2.07107i −0.463587 0.0795389i
\(679\) 0 0
\(680\) −4.24264 −0.162698
\(681\) 0 0
\(682\) 6.00000 6.00000i 0.229752 0.229752i
\(683\) 16.9706 16.9706i 0.649361 0.649361i −0.303478 0.952838i \(-0.598148\pi\)
0.952838 + 0.303478i \(0.0981479\pi\)
\(684\) −22.9706 + 10.9706i −0.878301 + 0.419470i
\(685\) −20.0000 −0.764161
\(686\) 0 0
\(687\) −2.48528 + 14.4853i −0.0948194 + 0.552648i
\(688\) 4.00000i 0.152499i
\(689\) 22.6274 33.9411i 0.862036 1.29305i
\(690\) −2.00000 + 1.41421i −0.0761387 + 0.0538382i
\(691\) −16.0000 + 16.0000i −0.608669 + 0.608669i −0.942598 0.333929i \(-0.891625\pi\)
0.333929 + 0.942598i \(0.391625\pi\)
\(692\) 2.82843i 0.107521i
\(693\) 0 0
\(694\) −8.00000 + 8.00000i −0.303676 + 0.303676i
\(695\) −11.3137 11.3137i −0.429153 0.429153i
\(696\) 0.414214 2.41421i 0.0157007 0.0915105i
\(697\) −30.0000 30.0000i −1.13633 1.13633i
\(698\) 16.9706i 0.642345i
\(699\) 18.3848 + 26.0000i 0.695376 + 0.983410i
\(700\) 0 0
\(701\) 1.41421 0.0534141 0.0267071 0.999643i \(-0.491498\pi\)
0.0267071 + 0.999643i \(0.491498\pi\)
\(702\) 8.53553 + 16.6777i 0.322153 + 0.629458i
\(703\) 60.0000 2.26294
\(704\) 1.41421 + 1.41421i 0.0533002 + 0.0533002i
\(705\) 6.00000 + 8.48528i 0.225973 + 0.319574i
\(706\) 36.0000i 1.35488i
\(707\) 0 0
\(708\) −1.17157 + 6.82843i −0.0440304 + 0.256628i
\(709\) −18.0000 18.0000i −0.676004 0.676004i 0.283089 0.959094i \(-0.408641\pi\)
−0.959094 + 0.283089i \(0.908641\pi\)
\(710\) 5.65685 5.65685i 0.212298 0.212298i
\(711\) −8.00000 + 22.6274i −0.300023 + 0.848594i
\(712\) 6.00000i 0.224860i
\(713\) −4.24264 + 4.24264i −0.158888 + 0.158888i
\(714\) 0 0
\(715\) 6.00000 + 4.00000i 0.224387 + 0.149592i
\(716\) 18.3848i 0.687071i
\(717\) 0 0
\(718\) 24.0000 0.895672
\(719\) 45.2548 1.68772 0.843860 0.536563i \(-0.180278\pi\)
0.843860 + 0.536563i \(0.180278\pi\)
\(720\) 2.70711 1.29289i 0.100888 0.0481833i
\(721\) 0 0
\(722\) 37.4767 37.4767i 1.39474 1.39474i
\(723\) 0.414214 2.41421i 0.0154048 0.0897856i
\(724\) −18.0000 −0.668965
\(725\) −1.41421 −0.0525226
\(726\) −11.9497 2.05025i −0.443497 0.0760920i
\(727\) 8.00000i 0.296704i −0.988935 0.148352i \(-0.952603\pi\)
0.988935 0.148352i \(-0.0473968\pi\)
\(728\) 0 0
\(729\) 23.0000 14.1421i 0.851852 0.523783i
\(730\) −6.00000 + 6.00000i −0.222070 + 0.222070i
\(731\) 16.9706i 0.627679i
\(732\) −2.82843 + 2.00000i −0.104542 + 0.0739221i
\(733\) −9.00000 + 9.00000i −0.332423 + 0.332423i −0.853506 0.521083i \(-0.825528\pi\)
0.521083 + 0.853506i \(0.325528\pi\)
\(734\) −5.65685 5.65685i −0.208798 0.208798i
\(735\) 11.9497 + 2.05025i 0.440773 + 0.0756247i
\(736\) −1.00000 1.00000i −0.0368605 0.0368605i
\(737\) 14.1421i 0.520932i
\(738\) 28.2843 + 10.0000i 1.04116 + 0.368105i
\(739\) −12.0000 12.0000i −0.441427 0.441427i 0.451064 0.892491i \(-0.351045\pi\)
−0.892491 + 0.451064i \(0.851045\pi\)
\(740\) −7.07107 −0.259938
\(741\) −38.4853 36.4264i −1.41379 1.33816i
\(742\) 0 0
\(743\) −18.3848 18.3848i −0.674472 0.674472i 0.284272 0.958744i \(-0.408248\pi\)
−0.958744 + 0.284272i \(0.908248\pi\)
\(744\) 6.00000 4.24264i 0.219971 0.155543i
\(745\) 10.0000i 0.366372i
\(746\) −22.6274 22.6274i −0.828449 0.828449i
\(747\) 21.6569 10.3431i 0.792383 0.378436i
\(748\) −6.00000 6.00000i −0.219382 0.219382i
\(749\) 0 0
\(750\) −1.00000 1.41421i −0.0365148 0.0516398i
\(751\) 10.0000i 0.364905i 0.983215 + 0.182453i \(0.0584036\pi\)
−0.983215 + 0.182453i \(0.941596\pi\)
\(752\) −4.24264 + 4.24264i −0.154713 + 0.154713i
\(753\) −4.24264 6.00000i −0.154610 0.218652i
\(754\) 5.00000 1.00000i 0.182089 0.0364179i
\(755\) 18.3848i 0.669091i
\(756\) 0 0
\(757\) 42.0000 1.52652 0.763258 0.646094i \(-0.223599\pi\)
0.763258 + 0.646094i \(0.223599\pi\)
\(758\) 22.6274 0.821865
\(759\) −4.82843 0.828427i −0.175261 0.0300700i
\(760\) −6.00000 + 6.00000i −0.217643 + 0.217643i
\(761\) 9.89949 9.89949i 0.358856 0.358856i −0.504535 0.863391i \(-0.668336\pi\)
0.863391 + 0.504535i \(0.168336\pi\)
\(762\) −6.82843 1.17157i −0.247368 0.0424416i
\(763\) 0 0
\(764\) −19.7990 −0.716302
\(765\) −11.4853 + 5.48528i −0.415251 + 0.198321i
\(766\) 24.0000i 0.867155i
\(767\) −14.1421 + 2.82843i −0.510643 + 0.102129i
\(768\) 1.00000 + 1.41421i 0.0360844 + 0.0510310i
\(769\) −21.0000 + 21.0000i −0.757279 + 0.757279i −0.975826 0.218547i \(-0.929868\pi\)
0.218547 + 0.975826i \(0.429868\pi\)
\(770\) 0 0
\(771\) 1.41421 + 2.00000i 0.0509317 + 0.0720282i
\(772\) 6.00000 6.00000i 0.215945 0.215945i
\(773\) −4.24264 4.24264i −0.152597 0.152597i 0.626680 0.779277i \(-0.284413\pi\)
−0.779277 + 0.626680i \(0.784413\pi\)
\(774\) 5.17157 + 10.8284i 0.185888 + 0.389220i
\(775\) −3.00000 3.00000i −0.107763 0.107763i
\(776\) 14.1421i 0.507673i
\(777\) 0 0
\(778\) −19.0000 19.0000i −0.681183 0.681183i
\(779\) −84.8528 −3.04017
\(780\) 4.53553 + 4.29289i 0.162398 + 0.153710i
\(781\) 16.0000 0.572525
\(782\) 4.24264 + 4.24264i 0.151717 + 0.151717i
\(783\) −2.00000 7.07107i −0.0714742 0.252699i
\(784\) 7.00000i 0.250000i
\(785\) −4.24264 4.24264i −0.151426 0.151426i
\(786\) 12.0711 + 2.07107i 0.430561 + 0.0738725i
\(787\) −3.00000 3.00000i −0.106938 0.106938i 0.651613 0.758552i \(-0.274093\pi\)
−0.758552 + 0.651613i \(0.774093\pi\)
\(788\) −9.89949 + 9.89949i −0.352655 + 0.352655i
\(789\) 6.00000 4.24264i 0.213606 0.151042i
\(790\) 8.00000i 0.284627i
\(791\) 0 0
\(792\) 5.65685 + 2.00000i 0.201008 + 0.0710669i
\(793\) −6.00000 4.00000i −0.213066 0.142044i
\(794\) 4.24264i 0.150566i
\(795\) −19.3137 3.31371i −0.684987 0.117525i
\(796\) −2.00000 −0.0708881
\(797\) 45.2548 1.60301 0.801504 0.597989i \(-0.204033\pi\)
0.801504 + 0.597989i \(0.204033\pi\)
\(798\) 0 0
\(799\) 18.0000 18.0000i 0.636794 0.636794i
\(800\) 0.707107 0.707107i 0.0250000 0.0250000i
\(801\) −7.75736 16.2426i −0.274093 0.573905i
\(802\) 6.00000 0.211867
\(803\) −16.9706 −0.598878
\(804\) −2.07107 + 12.0711i −0.0730409 + 0.425714i
\(805\) 0 0
\(806\) 12.7279 + 8.48528i 0.448322 + 0.298881i
\(807\) −2.00000 + 1.41421i −0.0704033 + 0.0497827i
\(808\) 11.0000 11.0000i 0.386979 0.386979i
\(809\) 25.4558i 0.894980i −0.894289 0.447490i \(-0.852318\pi\)
0.894289 0.447490i \(-0.147682\pi\)
\(810\) 5.65685 7.00000i 0.198762 0.245955i
\(811\) −26.0000 + 26.0000i −0.912983 + 0.912983i −0.996506 0.0835224i \(-0.973383\pi\)
0.0835224 + 0.996506i \(0.473383\pi\)
\(812\) 0 0
\(813\) 1.24264 7.24264i 0.0435813 0.254010i
\(814\) −10.0000 10.0000i −0.350500 0.350500i
\(815\) 15.5563i 0.544915i
\(816\) −4.24264 6.00000i −0.148522 0.210042i
\(817\) −24.0000 24.0000i −0.839654 0.839654i
\(818\) −4.24264 −0.148340
\(819\) 0 0
\(820\) 10.0000 0.349215
\(821\) −21.2132 21.2132i −0.740346 0.740346i 0.232299 0.972645i \(-0.425375\pi\)
−0.972645 + 0.232299i \(0.925375\pi\)
\(822\) −20.0000 28.2843i −0.697580 0.986527i
\(823\) 52.0000i 1.81261i −0.422628 0.906303i \(-0.638892\pi\)
0.422628 0.906303i \(-0.361108\pi\)
\(824\) −5.65685 5.65685i −0.197066 0.197066i
\(825\) 0.585786 3.41421i 0.0203945 0.118868i
\(826\) 0 0
\(827\) 14.1421 14.1421i 0.491770 0.491770i −0.417093 0.908864i \(-0.636951\pi\)
0.908864 + 0.417093i \(0.136951\pi\)
\(828\) −4.00000 1.41421i −0.139010 0.0491473i
\(829\) 14.0000i 0.486240i −0.969996 0.243120i \(-0.921829\pi\)
0.969996 0.243120i \(-0.0781709\pi\)
\(830\) 5.65685 5.65685i 0.196352 0.196352i
\(831\) −39.5980 + 28.0000i −1.37364 + 0.971309i
\(832\) −2.00000 + 3.00000i −0.0693375 + 0.104006i
\(833\) 29.6985i 1.02899i
\(834\) 4.68629 27.3137i 0.162273 0.945796i
\(835\) 16.0000 0.553703
\(836\) −16.9706 −0.586939
\(837\) 10.7574 19.2426i 0.371829 0.665123i
\(838\) 11.0000 11.0000i 0.379989 0.379989i
\(839\) 31.1127 31.1127i 1.07413 1.07413i 0.0771068 0.997023i \(-0.475432\pi\)
0.997023 0.0771068i \(-0.0245682\pi\)
\(840\) 0 0
\(841\) 27.0000 0.931034
\(842\) 16.9706 0.584844
\(843\) 30.7279 + 5.27208i 1.05833 + 0.181580i
\(844\) 24.0000i 0.826114i
\(845\) −4.94975 + 12.0208i −0.170276 + 0.413529i
\(846\) −6.00000 + 16.9706i −0.206284 + 0.583460i
\(847\) 0 0
\(848\) 11.3137i 0.388514i
\(849\) 8.48528 6.00000i 0.291214 0.205919i
\(850\) −3.00000 + 3.00000i −0.102899 + 0.102899i
\(851\) 7.07107 + 7.07107i 0.242393 + 0.242393i
\(852\) 13.6569 + 2.34315i 0.467876 + 0.0802749i
\(853\) 39.0000 + 39.0000i 1.33533 + 1.33533i 0.900520 + 0.434815i \(0.143186\pi\)
0.434815 + 0.900520i \(0.356814\pi\)
\(854\) 0 0
\(855\) −8.48528 + 24.0000i −0.290191 + 0.820783i
\(856\) 8.00000 + 8.00000i 0.273434 + 0.273434i
\(857\) −49.4975 −1.69080 −0.845401 0.534133i \(-0.820638\pi\)
−0.845401 + 0.534133i \(0.820638\pi\)
\(858\) 0.343146 + 12.4853i 0.0117148 + 0.426240i
\(859\) 24.0000 0.818869 0.409435 0.912339i \(-0.365726\pi\)
0.409435 + 0.912339i \(0.365726\pi\)
\(860\) 2.82843 + 2.82843i 0.0964486 + 0.0964486i
\(861\) 0 0
\(862\) 36.0000i 1.22616i
\(863\) −33.9411 33.9411i −1.15537 1.15537i −0.985460 0.169910i \(-0.945652\pi\)
−0.169910 0.985460i \(-0.554348\pi\)
\(864\) 4.53553 + 2.53553i 0.154302 + 0.0862606i
\(865\) 2.00000 + 2.00000i 0.0680020 + 0.0680020i
\(866\) 9.89949 9.89949i 0.336399 0.336399i
\(867\) 1.00000 + 1.41421i 0.0339618 + 0.0480292i
\(868\) 0 0
\(869\) −11.3137 + 11.3137i −0.383791 + 0.383791i
\(870\) −1.41421 2.00000i −0.0479463 0.0678064i
\(871\) −25.0000 + 5.00000i −0.847093 + 0.169419i
\(872\) 2.82843i 0.0957826i
\(873\) 18.2843 + 38.2843i 0.618829 + 1.29573i
\(874\) 12.0000 0.405906
\(875\) 0 0
\(876\) −14.4853 2.48528i −0.489412 0.0839699i
\(877\) −15.0000 + 15.0000i −0.506514 + 0.506514i −0.913455 0.406941i \(-0.866596\pi\)
0.406941 + 0.913455i \(0.366596\pi\)
\(878\) −4.24264 + 4.24264i −0.143182 + 0.143182i
\(879\) −23.8995 4.10051i −0.806110 0.138307i
\(880\) 2.00000 0.0674200
\(881\) 56.5685 1.90584 0.952921 0.303218i \(-0.0980609\pi\)
0.952921 + 0.303218i \(0.0980609\pi\)
\(882\) 9.05025 + 18.9497i 0.304738 + 0.638071i
\(883\) 4.00000i 0.134611i 0.997732 + 0.0673054i \(0.0214402\pi\)
−0.997732 + 0.0673054i \(0.978560\pi\)
\(884\) 8.48528 12.7279i 0.285391 0.428086i
\(885\) 4.00000 + 5.65685i 0.134459 + 0.190153i
\(886\) −6.00000 + 6.00000i −0.201574 + 0.201574i
\(887\) 38.1838i 1.28209i 0.767505 + 0.641043i \(0.221498\pi\)
−0.767505 + 0.641043i \(0.778502\pi\)
\(888\) −7.07107 10.0000i −0.237289 0.335578i
\(889\) 0 0
\(890\) −4.24264 4.24264i −0.142214 0.142214i
\(891\) 17.8995 1.89949i 0.599656 0.0636355i
\(892\) −10.0000 10.0000i −0.334825 0.334825i
\(893\) 50.9117i 1.70369i
\(894\) 14.1421 10.0000i 0.472984 0.334450i
\(895\) −13.0000 13.0000i −0.434542 0.434542i
\(896\) 0 0
\(897\) −0.242641 8.82843i −0.00810154 0.294773i
\(898\) −18.0000 −0.600668
\(899\) −4.24264 4.24264i −0.141500 0.141500i
\(900\) 1.00000 2.82843i 0.0333333 0.0942809i
\(901\) 48.0000i 1.59911i
\(902\) 14.1421 + 14.1421i 0.470882 + 0.470882i
\(903\) 0 0
\(904\) −5.00000 5.00000i −0.166298 0.166298i
\(905\) −12.7279 + 12.7279i −0.423090 + 0.423090i
\(906\) 26.0000 18.3848i 0.863792 0.610793i
\(907\) 14.0000i 0.464862i −0.972613 0.232431i \(-0.925332\pi\)
0.972613 0.232431i \(-0.0746680\pi\)
\(908\) 0 0
\(909\) 15.5563 44.0000i 0.515972 1.45939i
\(910\) 0 0
\(911\) 5.65685i 0.187420i −0.995600 0.0937100i \(-0.970127\pi\)
0.995600 0.0937100i \(-0.0298726\pi\)
\(912\) −14.4853 2.48528i −0.479656 0.0822959i
\(913\) 16.0000 0.529523
\(914\) 8.48528 0.280668
\(915\) −0.585786 + 3.41421i −0.0193655 + 0.112870i
\(916\) −6.00000 + 6.00000i −0.198246 + 0.198246i
\(917\) 0 0
\(918\) −19.2426 10.7574i −0.635102 0.355046i
\(919\) 42.0000 1.38545 0.692726 0.721201i \(-0.256409\pi\)
0.692726 + 0.721201i \(0.256409\pi\)
\(920\) −1.41421 −0.0466252
\(921\) −9.52691 + 55.5269i −0.313922 + 1.82967i
\(922\) 4.00000i 0.131733i
\(923\) 5.65685 + 28.2843i 0.186198 + 0.930988i
\(924\) 0 0
\(925\) −5.00000 + 5.00000i −0.164399 + 0.164399i
\(926\) 31.1127i 1.02243i
\(927\) −22.6274 8.00000i −0.743182 0.262754i
\(928\) 1.00000 1.00000i 0.0328266 0.0328266i
\(929\) 12.7279 + 12.7279i 0.417590 + 0.417590i 0.884372 0.466783i \(-0.154587\pi\)
−0.466783 + 0.884372i \(0.654587\pi\)
\(930\) 1.24264 7.24264i 0.0407478 0.237496i
\(931\) −42.0000 42.0000i −1.37649 1.37649i
\(932\) 18.3848i 0.602213i
\(933\) 2.82843 + 4.00000i 0.0925985 + 0.130954i
\(934\) 2.00000 + 2.00000i 0.0654420 + 0.0654420i
\(935\) −8.48528 −0.277498
\(936\) −1.53553 + 10.7071i −0.0501905 + 0.349973i
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) 26.0000 + 36.7696i 0.848478 + 1.19993i
\(940\) 6.00000i 0.195698i
\(941\) 28.2843 + 28.2843i 0.922041 + 0.922041i 0.997174 0.0751327i \(-0.0239380\pi\)
−0.0751327 + 0.997174i \(0.523938\pi\)
\(942\) 1.75736 10.2426i 0.0572579 0.333723i
\(943\) −10.0000 10.0000i −0.325645 0.325645i
\(944\) −2.82843 + 2.82843i −0.0920575 + 0.0920575i
\(945\) 0 0
\(946\) 8.00000i 0.260102i
\(947\) −5.65685 + 5.65685i −0.183823 + 0.183823i −0.793019 0.609196i \(-0.791492\pi\)
0.609196 + 0.793019i \(0.291492\pi\)
\(948\) −11.3137 + 8.00000i −0.367452 + 0.259828i
\(949\) −6.00000 30.0000i −0.194768 0.973841i
\(950\) 8.48528i 0.275299i
\(951\) 7.61522 44.3848i 0.246941 1.43927i
\(952\) 0 0
\(953\) −12.7279 −0.412298 −0.206149 0.978521i \(-0.566093\pi\)
−0.206149 + 0.978521i \(0.566093\pi\)
\(954\) −14.6274 30.6274i −0.473580 0.991599i
\(955\) −14.0000 + 14.0000i −0.453029 + 0.453029i
\(956\) 0 0
\(957\) 0.828427 4.82843i 0.0267792 0.156081i
\(958\) 20.0000 0.646171
\(959\) 0 0
\(960\) 1.70711 + 0.292893i 0.0550966 + 0.00945309i
\(961\) 13.0000i 0.419355i
\(962\) 14.1421 21.2132i 0.455961 0.683941i
\(963\) 32.0000 + 11.3137i 1.03119 + 0.364579i
\(964\) 1.00000 1.00000i 0.0322078 0.0322078i
\(965\) 8.48528i 0.273151i
\(966\) 0 0
\(967\) −32.0000 + 32.0000i −1.02905 + 1.02905i −0.0294854 + 0.999565i \(0.509387\pi\)
−0.999565 + 0.0294854i \(0.990613\pi\)
\(968\) −4.94975 4.94975i −0.159091 0.159091i
\(969\) 61.4558 + 10.5442i 1.97425 + 0.338727i
\(970\) 10.0000 + 10.0000i 0.321081 + 0.321081i
\(971\) 12.7279i 0.408458i 0.978923 + 0.204229i \(0.0654688\pi\)
−0.978923 + 0.204229i \(0.934531\pi\)
\(972\) 15.5563 + 1.00000i 0.498970 + 0.0320750i
\(973\) 0 0
\(974\) 0 0
\(975\) 6.24264 0.171573i 0.199925 0.00549473i
\(976\) −2.00000 −0.0640184
\(977\) −19.7990 19.7990i −0.633426 0.633426i 0.315500 0.948926i \(-0.397828\pi\)
−0.948926 + 0.315500i \(0.897828\pi\)
\(978\) 22.0000 15.5563i 0.703482 0.497437i
\(979\) 12.0000i 0.383522i
\(980\) 4.94975 + 4.94975i 0.158114 + 0.158114i
\(981\) 3.65685 + 7.65685i 0.116754 + 0.244465i
\(982\) 11.0000 + 11.0000i 0.351024 + 0.351024i
\(983\) 24.0416 24.0416i 0.766809 0.766809i −0.210734 0.977543i \(-0.567586\pi\)
0.977543 + 0.210734i \(0.0675855\pi\)
\(984\) 10.0000 + 14.1421i 0.318788 + 0.450835i
\(985\) 14.0000i 0.446077i
\(986\) −4.24264 + 4.24264i −0.135113 + 0.135113i
\(987\) 0 0
\(988\) −6.00000 30.0000i −0.190885 0.954427i
\(989\) 5.65685i 0.179878i
\(990\) 5.41421 2.58579i 0.172075 0.0821817i
\(991\) −50.0000 −1.58830 −0.794151 0.607720i \(-0.792084\pi\)
−0.794151 + 0.607720i \(0.792084\pi\)
\(992\) 4.24264 0.134704
\(993\) 57.9411 + 9.94113i 1.83871 + 0.315472i
\(994\) 0 0
\(995\) −1.41421 + 1.41421i −0.0448336 + 0.0448336i
\(996\) 13.6569 + 2.34315i 0.432734 + 0.0742454i
\(997\) 22.0000 0.696747 0.348373 0.937356i \(-0.386734\pi\)
0.348373 + 0.937356i \(0.386734\pi\)
\(998\) −25.4558 −0.805791
\(999\) −32.0711 17.9289i −1.01468 0.567246i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 390.2.p.d.161.2 yes 4
3.2 odd 2 inner 390.2.p.d.161.1 4
13.8 odd 4 inner 390.2.p.d.281.1 yes 4
39.8 even 4 inner 390.2.p.d.281.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.p.d.161.1 4 3.2 odd 2 inner
390.2.p.d.161.2 yes 4 1.1 even 1 trivial
390.2.p.d.281.1 yes 4 13.8 odd 4 inner
390.2.p.d.281.2 yes 4 39.8 even 4 inner