Properties

Label 392.2.i.g.361.2
Level $392$
Weight $2$
Character 392.361
Analytic conductor $3.130$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,2,Mod(177,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.13013575923\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.2
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 392.361
Dual form 392.2.i.g.177.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41421 - 2.44949i) q^{3} +(1.41421 + 2.44949i) q^{5} +(-2.50000 - 4.33013i) q^{9} +(2.00000 - 3.46410i) q^{11} +2.82843 q^{13} +8.00000 q^{15} +(-2.82843 + 4.89898i) q^{17} +(-1.41421 - 2.44949i) q^{19} +(-1.50000 + 2.59808i) q^{25} -5.65685 q^{27} +2.00000 q^{29} +(-2.82843 + 4.89898i) q^{31} +(-5.65685 - 9.79796i) q^{33} +(-5.00000 - 8.66025i) q^{37} +(4.00000 - 6.92820i) q^{39} -5.65685 q^{41} -4.00000 q^{43} +(7.07107 - 12.2474i) q^{45} +(2.82843 + 4.89898i) q^{47} +(8.00000 + 13.8564i) q^{51} +(-3.00000 + 5.19615i) q^{53} +11.3137 q^{55} -8.00000 q^{57} +(-1.41421 + 2.44949i) q^{59} +(7.07107 + 12.2474i) q^{61} +(4.00000 + 6.92820i) q^{65} +(-6.00000 + 10.3923i) q^{67} +(4.24264 + 7.34847i) q^{75} +(-4.00000 - 6.92820i) q^{79} +(-0.500000 + 0.866025i) q^{81} +14.1421 q^{83} -16.0000 q^{85} +(2.82843 - 4.89898i) q^{87} +(8.00000 + 13.8564i) q^{93} +(4.00000 - 6.92820i) q^{95} -5.65685 q^{97} -20.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 10 q^{9} + 8 q^{11} + 32 q^{15} - 6 q^{25} + 8 q^{29} - 20 q^{37} + 16 q^{39} - 16 q^{43} + 32 q^{51} - 12 q^{53} - 32 q^{57} + 16 q^{65} - 24 q^{67} - 16 q^{79} - 2 q^{81} - 64 q^{85} + 32 q^{93}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41421 2.44949i 0.816497 1.41421i −0.0917517 0.995782i \(-0.529247\pi\)
0.908248 0.418432i \(-0.137420\pi\)
\(4\) 0 0
\(5\) 1.41421 + 2.44949i 0.632456 + 1.09545i 0.987048 + 0.160424i \(0.0512862\pi\)
−0.354593 + 0.935021i \(0.615380\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.50000 4.33013i −0.833333 1.44338i
\(10\) 0 0
\(11\) 2.00000 3.46410i 0.603023 1.04447i −0.389338 0.921095i \(-0.627296\pi\)
0.992361 0.123371i \(-0.0393705\pi\)
\(12\) 0 0
\(13\) 2.82843 0.784465 0.392232 0.919866i \(-0.371703\pi\)
0.392232 + 0.919866i \(0.371703\pi\)
\(14\) 0 0
\(15\) 8.00000 2.06559
\(16\) 0 0
\(17\) −2.82843 + 4.89898i −0.685994 + 1.18818i 0.287129 + 0.957892i \(0.407299\pi\)
−0.973123 + 0.230285i \(0.926034\pi\)
\(18\) 0 0
\(19\) −1.41421 2.44949i −0.324443 0.561951i 0.656957 0.753928i \(-0.271843\pi\)
−0.981399 + 0.191977i \(0.938510\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) −1.50000 + 2.59808i −0.300000 + 0.519615i
\(26\) 0 0
\(27\) −5.65685 −1.08866
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −2.82843 + 4.89898i −0.508001 + 0.879883i 0.491957 + 0.870620i \(0.336282\pi\)
−0.999957 + 0.00926296i \(0.997051\pi\)
\(32\) 0 0
\(33\) −5.65685 9.79796i −0.984732 1.70561i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.00000 8.66025i −0.821995 1.42374i −0.904194 0.427121i \(-0.859528\pi\)
0.0821995 0.996616i \(-0.473806\pi\)
\(38\) 0 0
\(39\) 4.00000 6.92820i 0.640513 1.10940i
\(40\) 0 0
\(41\) −5.65685 −0.883452 −0.441726 0.897150i \(-0.645634\pi\)
−0.441726 + 0.897150i \(0.645634\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 7.07107 12.2474i 1.05409 1.82574i
\(46\) 0 0
\(47\) 2.82843 + 4.89898i 0.412568 + 0.714590i 0.995170 0.0981685i \(-0.0312984\pi\)
−0.582601 + 0.812758i \(0.697965\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 8.00000 + 13.8564i 1.12022 + 1.94029i
\(52\) 0 0
\(53\) −3.00000 + 5.19615i −0.412082 + 0.713746i −0.995117 0.0987002i \(-0.968532\pi\)
0.583036 + 0.812447i \(0.301865\pi\)
\(54\) 0 0
\(55\) 11.3137 1.52554
\(56\) 0 0
\(57\) −8.00000 −1.05963
\(58\) 0 0
\(59\) −1.41421 + 2.44949i −0.184115 + 0.318896i −0.943278 0.332004i \(-0.892275\pi\)
0.759163 + 0.650901i \(0.225609\pi\)
\(60\) 0 0
\(61\) 7.07107 + 12.2474i 0.905357 + 1.56813i 0.820437 + 0.571737i \(0.193730\pi\)
0.0849208 + 0.996388i \(0.472936\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.00000 + 6.92820i 0.496139 + 0.859338i
\(66\) 0 0
\(67\) −6.00000 + 10.3923i −0.733017 + 1.26962i 0.222571 + 0.974916i \(0.428555\pi\)
−0.955588 + 0.294706i \(0.904778\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(74\) 0 0
\(75\) 4.24264 + 7.34847i 0.489898 + 0.848528i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −4.00000 6.92820i −0.450035 0.779484i 0.548352 0.836247i \(-0.315255\pi\)
−0.998388 + 0.0567635i \(0.981922\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 14.1421 1.55230 0.776151 0.630548i \(-0.217170\pi\)
0.776151 + 0.630548i \(0.217170\pi\)
\(84\) 0 0
\(85\) −16.0000 −1.73544
\(86\) 0 0
\(87\) 2.82843 4.89898i 0.303239 0.525226i
\(88\) 0 0
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 8.00000 + 13.8564i 0.829561 + 1.43684i
\(94\) 0 0
\(95\) 4.00000 6.92820i 0.410391 0.710819i
\(96\) 0 0
\(97\) −5.65685 −0.574367 −0.287183 0.957876i \(-0.592719\pi\)
−0.287183 + 0.957876i \(0.592719\pi\)
\(98\) 0 0
\(99\) −20.0000 −2.01008
\(100\) 0 0
\(101\) −4.24264 + 7.34847i −0.422159 + 0.731200i −0.996150 0.0876610i \(-0.972061\pi\)
0.573992 + 0.818861i \(0.305394\pi\)
\(102\) 0 0
\(103\) −8.48528 14.6969i −0.836080 1.44813i −0.893148 0.449762i \(-0.851509\pi\)
0.0570688 0.998370i \(-0.481825\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 + 10.3923i 0.580042 + 1.00466i 0.995474 + 0.0950377i \(0.0302972\pi\)
−0.415432 + 0.909624i \(0.636370\pi\)
\(108\) 0 0
\(109\) −1.00000 + 1.73205i −0.0957826 + 0.165900i −0.909935 0.414751i \(-0.863869\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) 0 0
\(111\) −28.2843 −2.68462
\(112\) 0 0
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −7.07107 12.2474i −0.653720 1.13228i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.50000 4.33013i −0.227273 0.393648i
\(122\) 0 0
\(123\) −8.00000 + 13.8564i −0.721336 + 1.24939i
\(124\) 0 0
\(125\) 5.65685 0.505964
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) −5.65685 + 9.79796i −0.498058 + 0.862662i
\(130\) 0 0
\(131\) −7.07107 12.2474i −0.617802 1.07006i −0.989886 0.141865i \(-0.954690\pi\)
0.372084 0.928199i \(-0.378643\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −8.00000 13.8564i −0.688530 1.19257i
\(136\) 0 0
\(137\) 5.00000 8.66025i 0.427179 0.739895i −0.569442 0.822031i \(-0.692841\pi\)
0.996621 + 0.0821359i \(0.0261741\pi\)
\(138\) 0 0
\(139\) −14.1421 −1.19952 −0.599760 0.800180i \(-0.704737\pi\)
−0.599760 + 0.800180i \(0.704737\pi\)
\(140\) 0 0
\(141\) 16.0000 1.34744
\(142\) 0 0
\(143\) 5.65685 9.79796i 0.473050 0.819346i
\(144\) 0 0
\(145\) 2.82843 + 4.89898i 0.234888 + 0.406838i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.00000 + 8.66025i 0.409616 + 0.709476i 0.994847 0.101391i \(-0.0323294\pi\)
−0.585231 + 0.810867i \(0.698996\pi\)
\(150\) 0 0
\(151\) −8.00000 + 13.8564i −0.651031 + 1.12762i 0.331842 + 0.943335i \(0.392330\pi\)
−0.982873 + 0.184284i \(0.941004\pi\)
\(152\) 0 0
\(153\) 28.2843 2.28665
\(154\) 0 0
\(155\) −16.0000 −1.28515
\(156\) 0 0
\(157\) −7.07107 + 12.2474i −0.564333 + 0.977453i 0.432779 + 0.901500i \(0.357533\pi\)
−0.997111 + 0.0759527i \(0.975800\pi\)
\(158\) 0 0
\(159\) 8.48528 + 14.6969i 0.672927 + 1.16554i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −10.0000 17.3205i −0.783260 1.35665i −0.930033 0.367477i \(-0.880222\pi\)
0.146772 0.989170i \(-0.453112\pi\)
\(164\) 0 0
\(165\) 16.0000 27.7128i 1.24560 2.15744i
\(166\) 0 0
\(167\) 5.65685 0.437741 0.218870 0.975754i \(-0.429763\pi\)
0.218870 + 0.975754i \(0.429763\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) −7.07107 + 12.2474i −0.540738 + 0.936586i
\(172\) 0 0
\(173\) −1.41421 2.44949i −0.107521 0.186231i 0.807245 0.590217i \(-0.200958\pi\)
−0.914765 + 0.403986i \(0.867625\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 4.00000 + 6.92820i 0.300658 + 0.520756i
\(178\) 0 0
\(179\) 10.0000 17.3205i 0.747435 1.29460i −0.201613 0.979465i \(-0.564618\pi\)
0.949048 0.315130i \(-0.102048\pi\)
\(180\) 0 0
\(181\) −8.48528 −0.630706 −0.315353 0.948974i \(-0.602123\pi\)
−0.315353 + 0.948974i \(0.602123\pi\)
\(182\) 0 0
\(183\) 40.0000 2.95689
\(184\) 0 0
\(185\) 14.1421 24.4949i 1.03975 1.80090i
\(186\) 0 0
\(187\) 11.3137 + 19.5959i 0.827340 + 1.43300i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.0000 20.7846i −0.868290 1.50392i −0.863743 0.503932i \(-0.831886\pi\)
−0.00454614 0.999990i \(-0.501447\pi\)
\(192\) 0 0
\(193\) −5.00000 + 8.66025i −0.359908 + 0.623379i −0.987945 0.154805i \(-0.950525\pi\)
0.628037 + 0.778183i \(0.283859\pi\)
\(194\) 0 0
\(195\) 22.6274 1.62038
\(196\) 0 0
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) 0 0
\(199\) 8.48528 14.6969i 0.601506 1.04184i −0.391088 0.920353i \(-0.627901\pi\)
0.992593 0.121485i \(-0.0387656\pi\)
\(200\) 0 0
\(201\) 16.9706 + 29.3939i 1.19701 + 2.07328i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −8.00000 13.8564i −0.558744 0.967773i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −11.3137 −0.782586
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.65685 9.79796i −0.385794 0.668215i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −8.00000 + 13.8564i −0.538138 + 0.932083i
\(222\) 0 0
\(223\) 11.3137 0.757622 0.378811 0.925474i \(-0.376333\pi\)
0.378811 + 0.925474i \(0.376333\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) 0 0
\(227\) 4.24264 7.34847i 0.281594 0.487735i −0.690184 0.723634i \(-0.742470\pi\)
0.971778 + 0.235899i \(0.0758036\pi\)
\(228\) 0 0
\(229\) −12.7279 22.0454i −0.841085 1.45680i −0.888978 0.457949i \(-0.848584\pi\)
0.0478936 0.998852i \(-0.484749\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.00000 + 8.66025i 0.327561 + 0.567352i 0.982027 0.188739i \(-0.0604400\pi\)
−0.654466 + 0.756091i \(0.727107\pi\)
\(234\) 0 0
\(235\) −8.00000 + 13.8564i −0.521862 + 0.903892i
\(236\) 0 0
\(237\) −22.6274 −1.46981
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) 14.1421 24.4949i 0.910975 1.57786i 0.0982854 0.995158i \(-0.468664\pi\)
0.812690 0.582697i \(-0.198002\pi\)
\(242\) 0 0
\(243\) −7.07107 12.2474i −0.453609 0.785674i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.00000 6.92820i −0.254514 0.440831i
\(248\) 0 0
\(249\) 20.0000 34.6410i 1.26745 2.19529i
\(250\) 0 0
\(251\) −14.1421 −0.892644 −0.446322 0.894873i \(-0.647266\pi\)
−0.446322 + 0.894873i \(0.647266\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −22.6274 + 39.1918i −1.41698 + 2.45429i
\(256\) 0 0
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −5.00000 8.66025i −0.309492 0.536056i
\(262\) 0 0
\(263\) 8.00000 13.8564i 0.493301 0.854423i −0.506669 0.862141i \(-0.669123\pi\)
0.999970 + 0.00771799i \(0.00245674\pi\)
\(264\) 0 0
\(265\) −16.9706 −1.04249
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.07107 + 12.2474i −0.431131 + 0.746740i −0.996971 0.0777747i \(-0.975219\pi\)
0.565840 + 0.824515i \(0.308552\pi\)
\(270\) 0 0
\(271\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.00000 + 10.3923i 0.361814 + 0.626680i
\(276\) 0 0
\(277\) 5.00000 8.66025i 0.300421 0.520344i −0.675810 0.737075i \(-0.736206\pi\)
0.976231 + 0.216731i \(0.0695395\pi\)
\(278\) 0 0
\(279\) 28.2843 1.69334
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −1.41421 + 2.44949i −0.0840663 + 0.145607i −0.904993 0.425427i \(-0.860124\pi\)
0.820927 + 0.571034i \(0.193457\pi\)
\(284\) 0 0
\(285\) −11.3137 19.5959i −0.670166 1.16076i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −7.50000 12.9904i −0.441176 0.764140i
\(290\) 0 0
\(291\) −8.00000 + 13.8564i −0.468968 + 0.812277i
\(292\) 0 0
\(293\) −2.82843 −0.165238 −0.0826192 0.996581i \(-0.526329\pi\)
−0.0826192 + 0.996581i \(0.526329\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 0 0
\(297\) −11.3137 + 19.5959i −0.656488 + 1.13707i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 12.0000 + 20.7846i 0.689382 + 1.19404i
\(304\) 0 0
\(305\) −20.0000 + 34.6410i −1.14520 + 1.98354i
\(306\) 0 0
\(307\) −8.48528 −0.484281 −0.242140 0.970241i \(-0.577849\pi\)
−0.242140 + 0.970241i \(0.577849\pi\)
\(308\) 0 0
\(309\) −48.0000 −2.73062
\(310\) 0 0
\(311\) −11.3137 + 19.5959i −0.641542 + 1.11118i 0.343547 + 0.939135i \(0.388371\pi\)
−0.985089 + 0.172047i \(0.944962\pi\)
\(312\) 0 0
\(313\) −8.48528 14.6969i −0.479616 0.830720i 0.520110 0.854099i \(-0.325891\pi\)
−0.999727 + 0.0233791i \(0.992558\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.00000 + 15.5885i 0.505490 + 0.875535i 0.999980 + 0.00635137i \(0.00202172\pi\)
−0.494489 + 0.869184i \(0.664645\pi\)
\(318\) 0 0
\(319\) 4.00000 6.92820i 0.223957 0.387905i
\(320\) 0 0
\(321\) 33.9411 1.89441
\(322\) 0 0
\(323\) 16.0000 0.890264
\(324\) 0 0
\(325\) −4.24264 + 7.34847i −0.235339 + 0.407620i
\(326\) 0 0
\(327\) 2.82843 + 4.89898i 0.156412 + 0.270914i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 10.0000 + 17.3205i 0.549650 + 0.952021i 0.998298 + 0.0583130i \(0.0185721\pi\)
−0.448649 + 0.893708i \(0.648095\pi\)
\(332\) 0 0
\(333\) −25.0000 + 43.3013i −1.36999 + 2.37289i
\(334\) 0 0
\(335\) −33.9411 −1.85440
\(336\) 0 0
\(337\) −10.0000 −0.544735 −0.272367 0.962193i \(-0.587807\pi\)
−0.272367 + 0.962193i \(0.587807\pi\)
\(338\) 0 0
\(339\) 14.1421 24.4949i 0.768095 1.33038i
\(340\) 0 0
\(341\) 11.3137 + 19.5959i 0.612672 + 1.06118i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.0000 17.3205i 0.536828 0.929814i −0.462244 0.886753i \(-0.652956\pi\)
0.999072 0.0430610i \(-0.0137110\pi\)
\(348\) 0 0
\(349\) 25.4558 1.36262 0.681310 0.731995i \(-0.261411\pi\)
0.681310 + 0.731995i \(0.261411\pi\)
\(350\) 0 0
\(351\) −16.0000 −0.854017
\(352\) 0 0
\(353\) 5.65685 9.79796i 0.301084 0.521493i −0.675298 0.737545i \(-0.735985\pi\)
0.976382 + 0.216052i \(0.0693182\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) 0 0
\(361\) 5.50000 9.52628i 0.289474 0.501383i
\(362\) 0 0
\(363\) −14.1421 −0.742270
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 16.9706 29.3939i 0.885856 1.53435i 0.0411270 0.999154i \(-0.486905\pi\)
0.844729 0.535194i \(-0.179761\pi\)
\(368\) 0 0
\(369\) 14.1421 + 24.4949i 0.736210 + 1.27515i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 5.00000 + 8.66025i 0.258890 + 0.448411i 0.965945 0.258748i \(-0.0833099\pi\)
−0.707055 + 0.707159i \(0.749977\pi\)
\(374\) 0 0
\(375\) 8.00000 13.8564i 0.413118 0.715542i
\(376\) 0 0
\(377\) 5.65685 0.291343
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) 11.3137 19.5959i 0.579619 1.00393i
\(382\) 0 0
\(383\) 14.1421 + 24.4949i 0.722629 + 1.25163i 0.959942 + 0.280198i \(0.0904000\pi\)
−0.237313 + 0.971433i \(0.576267\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 10.0000 + 17.3205i 0.508329 + 0.880451i
\(388\) 0 0
\(389\) 11.0000 19.0526i 0.557722 0.966003i −0.439964 0.898015i \(-0.645009\pi\)
0.997686 0.0679877i \(-0.0216579\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −40.0000 −2.01773
\(394\) 0 0
\(395\) 11.3137 19.5959i 0.569254 0.985978i
\(396\) 0 0
\(397\) 4.24264 + 7.34847i 0.212932 + 0.368809i 0.952631 0.304129i \(-0.0983654\pi\)
−0.739699 + 0.672938i \(0.765032\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.00000 5.19615i −0.149813 0.259483i 0.781345 0.624099i \(-0.214534\pi\)
−0.931158 + 0.364615i \(0.881200\pi\)
\(402\) 0 0
\(403\) −8.00000 + 13.8564i −0.398508 + 0.690237i
\(404\) 0 0
\(405\) −2.82843 −0.140546
\(406\) 0 0
\(407\) −40.0000 −1.98273
\(408\) 0 0
\(409\) −8.48528 + 14.6969i −0.419570 + 0.726717i −0.995896 0.0905030i \(-0.971153\pi\)
0.576326 + 0.817220i \(0.304486\pi\)
\(410\) 0 0
\(411\) −14.1421 24.4949i −0.697580 1.20824i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 20.0000 + 34.6410i 0.981761 + 1.70046i
\(416\) 0 0
\(417\) −20.0000 + 34.6410i −0.979404 + 1.69638i
\(418\) 0 0
\(419\) −2.82843 −0.138178 −0.0690889 0.997611i \(-0.522009\pi\)
−0.0690889 + 0.997611i \(0.522009\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 0 0
\(423\) 14.1421 24.4949i 0.687614 1.19098i
\(424\) 0 0
\(425\) −8.48528 14.6969i −0.411597 0.712906i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −16.0000 27.7128i −0.772487 1.33799i
\(430\) 0 0
\(431\) −12.0000 + 20.7846i −0.578020 + 1.00116i 0.417687 + 0.908591i \(0.362841\pi\)
−0.995706 + 0.0925683i \(0.970492\pi\)
\(432\) 0 0
\(433\) −5.65685 −0.271851 −0.135926 0.990719i \(-0.543401\pi\)
−0.135926 + 0.990719i \(0.543401\pi\)
\(434\) 0 0
\(435\) 16.0000 0.767141
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.00000 3.46410i −0.0950229 0.164584i 0.814595 0.580030i \(-0.196959\pi\)
−0.909618 + 0.415445i \(0.863626\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 28.2843 1.33780
\(448\) 0 0
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) 0 0
\(451\) −11.3137 + 19.5959i −0.532742 + 0.922736i
\(452\) 0 0
\(453\) 22.6274 + 39.1918i 1.06313 + 1.84139i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −9.00000 15.5885i −0.421002 0.729197i 0.575036 0.818128i \(-0.304988\pi\)
−0.996038 + 0.0889312i \(0.971655\pi\)
\(458\) 0 0
\(459\) 16.0000 27.7128i 0.746816 1.29352i
\(460\) 0 0
\(461\) 14.1421 0.658665 0.329332 0.944214i \(-0.393176\pi\)
0.329332 + 0.944214i \(0.393176\pi\)
\(462\) 0 0
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) 0 0
\(465\) −22.6274 + 39.1918i −1.04932 + 1.81748i
\(466\) 0 0
\(467\) 4.24264 + 7.34847i 0.196326 + 0.340047i 0.947334 0.320246i \(-0.103766\pi\)
−0.751008 + 0.660293i \(0.770432\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 20.0000 + 34.6410i 0.921551 + 1.59617i
\(472\) 0 0
\(473\) −8.00000 + 13.8564i −0.367840 + 0.637118i
\(474\) 0 0
\(475\) 8.48528 0.389331
\(476\) 0 0
\(477\) 30.0000 1.37361
\(478\) 0 0
\(479\) −14.1421 + 24.4949i −0.646171 + 1.11920i 0.337859 + 0.941197i \(0.390297\pi\)
−0.984030 + 0.178004i \(0.943036\pi\)
\(480\) 0 0
\(481\) −14.1421 24.4949i −0.644826 1.11687i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.00000 13.8564i −0.363261 0.629187i
\(486\) 0 0
\(487\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(488\) 0 0
\(489\) −56.5685 −2.55812
\(490\) 0 0
\(491\) 4.00000 0.180517 0.0902587 0.995918i \(-0.471231\pi\)
0.0902587 + 0.995918i \(0.471231\pi\)
\(492\) 0 0
\(493\) −5.65685 + 9.79796i −0.254772 + 0.441278i
\(494\) 0 0
\(495\) −28.2843 48.9898i −1.27128 2.20193i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −14.0000 24.2487i −0.626726 1.08552i −0.988204 0.153141i \(-0.951061\pi\)
0.361478 0.932381i \(-0.382272\pi\)
\(500\) 0 0
\(501\) 8.00000 13.8564i 0.357414 0.619059i
\(502\) 0 0
\(503\) −11.3137 −0.504453 −0.252227 0.967668i \(-0.581163\pi\)
−0.252227 + 0.967668i \(0.581163\pi\)
\(504\) 0 0
\(505\) −24.0000 −1.06799
\(506\) 0 0
\(507\) −7.07107 + 12.2474i −0.314037 + 0.543928i
\(508\) 0 0
\(509\) −7.07107 12.2474i −0.313420 0.542859i 0.665681 0.746237i \(-0.268141\pi\)
−0.979100 + 0.203378i \(0.934808\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 8.00000 + 13.8564i 0.353209 + 0.611775i
\(514\) 0 0
\(515\) 24.0000 41.5692i 1.05757 1.83176i
\(516\) 0 0
\(517\) 22.6274 0.995153
\(518\) 0 0
\(519\) −8.00000 −0.351161
\(520\) 0 0
\(521\) −2.82843 + 4.89898i −0.123916 + 0.214628i −0.921309 0.388832i \(-0.872879\pi\)
0.797393 + 0.603460i \(0.206212\pi\)
\(522\) 0 0
\(523\) 9.89949 + 17.1464i 0.432875 + 0.749761i 0.997119 0.0758466i \(-0.0241659\pi\)
−0.564245 + 0.825608i \(0.690833\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −16.0000 27.7128i −0.696971 1.20719i
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 14.1421 0.613716
\(532\) 0 0
\(533\) −16.0000 −0.693037
\(534\) 0 0
\(535\) −16.9706 + 29.3939i −0.733701 + 1.27081i
\(536\) 0 0
\(537\) −28.2843 48.9898i −1.22056 2.11407i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.0000 + 29.4449i 0.730887 + 1.26593i 0.956504 + 0.291718i \(0.0942267\pi\)
−0.225617 + 0.974216i \(0.572440\pi\)
\(542\) 0 0
\(543\) −12.0000 + 20.7846i −0.514969 + 0.891953i
\(544\) 0 0
\(545\) −5.65685 −0.242313
\(546\) 0 0
\(547\) 20.0000 0.855138 0.427569 0.903983i \(-0.359370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(548\) 0 0
\(549\) 35.3553 61.2372i 1.50893 2.61354i
\(550\) 0 0
\(551\) −2.82843 4.89898i −0.120495 0.208704i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −40.0000 69.2820i −1.69791 2.94086i
\(556\) 0 0
\(557\) −15.0000 + 25.9808i −0.635570 + 1.10084i 0.350824 + 0.936442i \(0.385902\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(558\) 0 0
\(559\) −11.3137 −0.478519
\(560\) 0 0
\(561\) 64.0000 2.70208
\(562\) 0 0
\(563\) −21.2132 + 36.7423i −0.894030 + 1.54851i −0.0590293 + 0.998256i \(0.518801\pi\)
−0.835001 + 0.550249i \(0.814533\pi\)
\(564\) 0 0
\(565\) 14.1421 + 24.4949i 0.594964 + 1.03051i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15.0000 25.9808i −0.628833 1.08917i −0.987786 0.155815i \(-0.950200\pi\)
0.358954 0.933355i \(-0.383134\pi\)
\(570\) 0 0
\(571\) 10.0000 17.3205i 0.418487 0.724841i −0.577301 0.816532i \(-0.695894\pi\)
0.995788 + 0.0916910i \(0.0292272\pi\)
\(572\) 0 0
\(573\) −67.8823 −2.83582
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 16.9706 29.3939i 0.706494 1.22368i −0.259656 0.965701i \(-0.583609\pi\)
0.966150 0.257982i \(-0.0830575\pi\)
\(578\) 0 0
\(579\) 14.1421 + 24.4949i 0.587727 + 1.01797i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 12.0000 + 20.7846i 0.496989 + 0.860811i
\(584\) 0 0
\(585\) 20.0000 34.6410i 0.826898 1.43223i
\(586\) 0 0
\(587\) 42.4264 1.75113 0.875563 0.483105i \(-0.160491\pi\)
0.875563 + 0.483105i \(0.160491\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) 31.1127 53.8888i 1.27981 2.21669i
\(592\) 0 0
\(593\) −5.65685 9.79796i −0.232299 0.402354i 0.726185 0.687499i \(-0.241292\pi\)
−0.958484 + 0.285145i \(0.907958\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −24.0000 41.5692i −0.982255 1.70131i
\(598\) 0 0
\(599\) −16.0000 + 27.7128i −0.653742 + 1.13231i 0.328465 + 0.944516i \(0.393469\pi\)
−0.982208 + 0.187799i \(0.939865\pi\)
\(600\) 0 0
\(601\) 22.6274 0.922992 0.461496 0.887142i \(-0.347313\pi\)
0.461496 + 0.887142i \(0.347313\pi\)
\(602\) 0 0
\(603\) 60.0000 2.44339
\(604\) 0 0
\(605\) 7.07107 12.2474i 0.287480 0.497930i
\(606\) 0 0
\(607\) 11.3137 + 19.5959i 0.459209 + 0.795374i 0.998919 0.0464772i \(-0.0147995\pi\)
−0.539710 + 0.841851i \(0.681466\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.00000 + 13.8564i 0.323645 + 0.560570i
\(612\) 0 0
\(613\) 3.00000 5.19615i 0.121169 0.209871i −0.799060 0.601251i \(-0.794669\pi\)
0.920229 + 0.391381i \(0.128002\pi\)
\(614\) 0 0
\(615\) −45.2548 −1.82485
\(616\) 0 0
\(617\) 30.0000 1.20775 0.603877 0.797077i \(-0.293622\pi\)
0.603877 + 0.797077i \(0.293622\pi\)
\(618\) 0 0
\(619\) −7.07107 + 12.2474i −0.284210 + 0.492267i −0.972417 0.233248i \(-0.925065\pi\)
0.688207 + 0.725514i \(0.258398\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15.5000 + 26.8468i 0.620000 + 1.07387i
\(626\) 0 0
\(627\) −16.0000 + 27.7128i −0.638978 + 1.10674i
\(628\) 0 0
\(629\) 56.5685 2.25554
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) −5.65685 + 9.79796i −0.224840 + 0.389434i
\(634\) 0 0
\(635\) 11.3137 + 19.5959i 0.448971 + 0.777640i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5.00000 8.66025i 0.197488 0.342059i −0.750225 0.661182i \(-0.770055\pi\)
0.947713 + 0.319123i \(0.103388\pi\)
\(642\) 0 0
\(643\) −25.4558 −1.00388 −0.501940 0.864902i \(-0.667380\pi\)
−0.501940 + 0.864902i \(0.667380\pi\)
\(644\) 0 0
\(645\) −32.0000 −1.26000
\(646\) 0 0
\(647\) 8.48528 14.6969i 0.333591 0.577796i −0.649622 0.760257i \(-0.725073\pi\)
0.983213 + 0.182461i \(0.0584063\pi\)
\(648\) 0 0
\(649\) 5.65685 + 9.79796i 0.222051 + 0.384604i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.00000 + 12.1244i 0.273931 + 0.474463i 0.969865 0.243643i \(-0.0783426\pi\)
−0.695934 + 0.718106i \(0.745009\pi\)
\(654\) 0 0
\(655\) 20.0000 34.6410i 0.781465 1.35354i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) 7.07107 12.2474i 0.275033 0.476371i −0.695111 0.718903i \(-0.744645\pi\)
0.970143 + 0.242532i \(0.0779780\pi\)
\(662\) 0 0
\(663\) 22.6274 + 39.1918i 0.878776 + 1.52208i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 16.0000 27.7128i 0.618596 1.07144i
\(670\) 0 0
\(671\) 56.5685 2.18380
\(672\) 0 0
\(673\) 30.0000 1.15642 0.578208 0.815890i \(-0.303752\pi\)
0.578208 + 0.815890i \(0.303752\pi\)
\(674\) 0 0
\(675\) 8.48528 14.6969i 0.326599 0.565685i
\(676\) 0 0
\(677\) 4.24264 + 7.34847i 0.163058 + 0.282425i 0.935964 0.352096i \(-0.114531\pi\)
−0.772906 + 0.634521i \(0.781198\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −12.0000 20.7846i −0.459841 0.796468i
\(682\) 0 0
\(683\) −10.0000 + 17.3205i −0.382639 + 0.662751i −0.991439 0.130573i \(-0.958318\pi\)
0.608799 + 0.793324i \(0.291651\pi\)
\(684\) 0 0
\(685\) 28.2843 1.08069
\(686\) 0 0
\(687\) −72.0000 −2.74697
\(688\) 0 0
\(689\) −8.48528 + 14.6969i −0.323263 + 0.559909i
\(690\) 0 0
\(691\) −7.07107 12.2474i −0.268996 0.465915i 0.699607 0.714528i \(-0.253359\pi\)
−0.968603 + 0.248613i \(0.920025\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −20.0000 34.6410i −0.758643 1.31401i
\(696\) 0 0
\(697\) 16.0000 27.7128i 0.606043 1.04970i
\(698\) 0 0
\(699\) 28.2843 1.06981
\(700\) 0 0
\(701\) 34.0000 1.28416 0.642081 0.766637i \(-0.278071\pi\)
0.642081 + 0.766637i \(0.278071\pi\)
\(702\) 0 0
\(703\) −14.1421 + 24.4949i −0.533381 + 0.923843i
\(704\) 0 0
\(705\) 22.6274 + 39.1918i 0.852198 + 1.47605i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 11.0000 + 19.0526i 0.413114 + 0.715534i 0.995228 0.0975728i \(-0.0311079\pi\)
−0.582115 + 0.813107i \(0.697775\pi\)
\(710\) 0 0
\(711\) −20.0000 + 34.6410i −0.750059 + 1.29914i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 32.0000 1.19673
\(716\) 0 0
\(717\) −11.3137 + 19.5959i −0.422518 + 0.731823i
\(718\) 0 0
\(719\) −14.1421 24.4949i −0.527413 0.913506i −0.999490 0.0319481i \(-0.989829\pi\)
0.472077 0.881557i \(-0.343504\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −40.0000 69.2820i −1.48762 2.57663i
\(724\) 0 0
\(725\) −3.00000 + 5.19615i −0.111417 + 0.192980i
\(726\) 0 0
\(727\) −28.2843 −1.04901 −0.524503 0.851409i \(-0.675749\pi\)
−0.524503 + 0.851409i \(0.675749\pi\)
\(728\) 0 0
\(729\) −43.0000 −1.59259
\(730\) 0 0
\(731\) 11.3137 19.5959i 0.418453 0.724781i
\(732\) 0 0
\(733\) 12.7279 + 22.0454i 0.470117 + 0.814266i 0.999416 0.0341693i \(-0.0108786\pi\)
−0.529300 + 0.848435i \(0.677545\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24.0000 + 41.5692i 0.884051 + 1.53122i
\(738\) 0 0
\(739\) 6.00000 10.3923i 0.220714 0.382287i −0.734311 0.678813i \(-0.762495\pi\)
0.955025 + 0.296526i \(0.0958281\pi\)
\(740\) 0 0
\(741\) −22.6274 −0.831239
\(742\) 0 0
\(743\) −16.0000 −0.586983 −0.293492 0.955962i \(-0.594817\pi\)
−0.293492 + 0.955962i \(0.594817\pi\)
\(744\) 0 0
\(745\) −14.1421 + 24.4949i −0.518128 + 0.897424i
\(746\) 0 0
\(747\) −35.3553 61.2372i −1.29358 2.24055i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 12.0000 + 20.7846i 0.437886 + 0.758441i 0.997526 0.0702946i \(-0.0223939\pi\)
−0.559640 + 0.828736i \(0.689061\pi\)
\(752\) 0 0
\(753\) −20.0000 + 34.6410i −0.728841 + 1.26239i
\(754\) 0 0
\(755\) −45.2548 −1.64699
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −14.1421 24.4949i −0.512652 0.887939i −0.999892 0.0146714i \(-0.995330\pi\)
0.487240 0.873268i \(-0.338004\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 40.0000 + 69.2820i 1.44620 + 2.50490i
\(766\) 0 0
\(767\) −4.00000 + 6.92820i −0.144432 + 0.250163i
\(768\) 0 0
\(769\) −16.9706 −0.611974 −0.305987 0.952036i \(-0.598986\pi\)
−0.305987 + 0.952036i \(0.598986\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −26.8701 + 46.5403i −0.966449 + 1.67394i −0.260778 + 0.965399i \(0.583979\pi\)
−0.705671 + 0.708540i \(0.749354\pi\)
\(774\) 0 0
\(775\) −8.48528 14.6969i −0.304800 0.527930i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.00000 + 13.8564i 0.286630 + 0.496457i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −11.3137 −0.404319
\(784\) 0 0
\(785\) −40.0000 −1.42766
\(786\) 0 0
\(787\) 4.24264 7.34847i 0.151234 0.261945i −0.780447 0.625221i \(-0.785009\pi\)
0.931681 + 0.363277i \(0.118342\pi\)
\(788\) 0 0
\(789\) −22.6274 39.1918i −0.805557 1.39527i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 20.0000 + 34.6410i 0.710221 + 1.23014i
\(794\) 0 0
\(795\) −24.0000 + 41.5692i −0.851192 + 1.47431i
\(796\) 0 0
\(797\) −8.48528 −0.300564 −0.150282 0.988643i \(-0.548018\pi\)
−0.150282 + 0.988643i \(0.548018\pi\)
\(798\) 0 0
\(799\) −32.0000 −1.13208
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 20.0000 + 34.6410i 0.704033 + 1.21942i
\(808\) 0 0
\(809\) −9.00000 + 15.5885i −0.316423 + 0.548061i −0.979739 0.200279i \(-0.935815\pi\)
0.663316 + 0.748340i \(0.269149\pi\)
\(810\) 0 0
\(811\) 14.1421 0.496598 0.248299 0.968683i \(-0.420129\pi\)
0.248299 + 0.968683i \(0.420129\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 28.2843 48.9898i 0.990755 1.71604i
\(816\) 0 0
\(817\) 5.65685 + 9.79796i 0.197908 + 0.342787i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −27.0000 46.7654i −0.942306 1.63212i −0.761056 0.648686i \(-0.775319\pi\)
−0.181250 0.983437i \(-0.558014\pi\)
\(822\) 0 0
\(823\) 8.00000 13.8564i 0.278862 0.483004i −0.692240 0.721668i \(-0.743376\pi\)
0.971102 + 0.238664i \(0.0767093\pi\)
\(824\) 0 0
\(825\) 33.9411 1.18168
\(826\) 0 0
\(827\) 20.0000 0.695468 0.347734 0.937593i \(-0.386951\pi\)
0.347734 + 0.937593i \(0.386951\pi\)
\(828\) 0 0
\(829\) −15.5563 + 26.9444i −0.540294 + 0.935817i 0.458593 + 0.888647i \(0.348354\pi\)
−0.998887 + 0.0471706i \(0.984980\pi\)
\(830\) 0 0
\(831\) −14.1421 24.4949i −0.490585 0.849719i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 8.00000 + 13.8564i 0.276851 + 0.479521i
\(836\) 0 0
\(837\) 16.0000 27.7128i 0.553041 0.957895i
\(838\) 0 0
\(839\) −28.2843 −0.976481 −0.488241 0.872709i \(-0.662361\pi\)
−0.488241 + 0.872709i \(0.662361\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 8.48528 14.6969i 0.292249 0.506189i
\(844\) 0 0
\(845\) −7.07107 12.2474i −0.243252 0.421325i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 4.00000 + 6.92820i 0.137280 + 0.237775i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −42.4264 −1.45265 −0.726326 0.687350i \(-0.758774\pi\)
−0.726326 + 0.687350i \(0.758774\pi\)
\(854\) 0 0
\(855\) −40.0000 −1.36797
\(856\) 0 0
\(857\) 14.1421 24.4949i 0.483086 0.836730i −0.516725 0.856151i \(-0.672849\pi\)
0.999811 + 0.0194215i \(0.00618245\pi\)
\(858\) 0 0
\(859\) −21.2132 36.7423i −0.723785 1.25363i −0.959472 0.281804i \(-0.909067\pi\)
0.235687 0.971829i \(-0.424266\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −12.0000 20.7846i −0.408485 0.707516i 0.586235 0.810141i \(-0.300609\pi\)
−0.994720 + 0.102624i \(0.967276\pi\)
\(864\) 0 0
\(865\) 4.00000 6.92820i 0.136004 0.235566i
\(866\) 0 0
\(867\) −42.4264 −1.44088
\(868\) 0 0
\(869\) −32.0000 −1.08553
\(870\) 0 0
\(871\) −16.9706 + 29.3939i −0.575026 + 0.995974i
\(872\) 0 0
\(873\) 14.1421 + 24.4949i 0.478639 + 0.829027i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.00000 1.73205i −0.0337676 0.0584872i 0.848648 0.528958i \(-0.177417\pi\)
−0.882415 + 0.470471i \(0.844084\pi\)
\(878\) 0 0
\(879\) −4.00000 + 6.92820i −0.134917 + 0.233682i
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) −11.3137 + 19.5959i −0.380306 + 0.658710i
\(886\) 0 0
\(887\) 14.1421 + 24.4949i 0.474846 + 0.822458i 0.999585 0.0288053i \(-0.00917026\pi\)
−0.524739 + 0.851263i \(0.675837\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 2.00000 + 3.46410i 0.0670025 + 0.116052i
\(892\) 0 0
\(893\) 8.00000 13.8564i 0.267710 0.463687i
\(894\) 0 0
\(895\) 56.5685 1.89088
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.65685 + 9.79796i −0.188667 + 0.326780i
\(900\) 0 0
\(901\) −16.9706 29.3939i −0.565371 0.979252i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12.0000 20.7846i −0.398893 0.690904i
\(906\) 0 0
\(907\) −10.0000 + 17.3205i −0.332045 + 0.575118i −0.982913 0.184073i \(-0.941072\pi\)
0.650868 + 0.759191i \(0.274405\pi\)
\(908\) 0 0
\(909\) 42.4264 1.40720
\(910\) 0 0
\(911\) −40.0000 −1.32526 −0.662630 0.748947i \(-0.730560\pi\)
−0.662630 + 0.748947i \(0.730560\pi\)
\(912\) 0 0
\(913\) 28.2843 48.9898i 0.936073 1.62133i
\(914\) 0 0
\(915\) 56.5685 + 97.9796i 1.87010 + 3.23911i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 16.0000 + 27.7128i 0.527791 + 0.914161i 0.999475 + 0.0323936i \(0.0103130\pi\)
−0.471684 + 0.881768i \(0.656354\pi\)
\(920\) 0 0
\(921\) −12.0000 + 20.7846i −0.395413 + 0.684876i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 30.0000 0.986394
\(926\) 0 0
\(927\) −42.4264 + 73.4847i −1.39347 + 2.41355i
\(928\) 0 0
\(929\) 19.7990 + 34.2929i 0.649584 + 1.12511i 0.983222 + 0.182411i \(0.0583902\pi\)
−0.333639 + 0.942701i \(0.608277\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 32.0000 + 55.4256i 1.04763 + 1.81455i
\(934\) 0 0
\(935\) −32.0000 + 55.4256i −1.04651 + 1.81261i
\(936\) 0 0
\(937\) 22.6274 0.739205 0.369603 0.929190i \(-0.379494\pi\)
0.369603 + 0.929190i \(0.379494\pi\)
\(938\) 0 0
\(939\) −48.0000 −1.56642
\(940\) 0 0
\(941\) 7.07107 12.2474i 0.230510 0.399255i −0.727448 0.686163i \(-0.759294\pi\)
0.957958 + 0.286907i \(0.0926272\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.00000 + 10.3923i 0.194974 + 0.337705i 0.946892 0.321552i \(-0.104204\pi\)
−0.751918 + 0.659256i \(0.770871\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 50.9117 1.65092
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 33.9411 58.7878i 1.09831 1.90233i
\(956\) 0 0
\(957\) −11.3137 19.5959i −0.365720 0.633446i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.500000 0.866025i −0.0161290 0.0279363i
\(962\) 0 0
\(963\) 30.0000 51.9615i 0.966736 1.67444i
\(964\) 0 0
\(965\) −28.2843 −0.910503
\(966\) 0 0
\(967\) 48.0000 1.54358 0.771788 0.635880i \(-0.219363\pi\)
0.771788 + 0.635880i \(0.219363\pi\)
\(968\) 0 0
\(969\) 22.6274 39.1918i 0.726897 1.25902i
\(970\) 0 0
\(971\) 9.89949 + 17.1464i 0.317690 + 0.550255i 0.980006 0.198970i \(-0.0637596\pi\)
−0.662316 + 0.749225i \(0.730426\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 12.0000 + 20.7846i 0.384308 + 0.665640i
\(976\) 0 0
\(977\) 9.00000 15.5885i 0.287936 0.498719i −0.685381 0.728184i \(-0.740364\pi\)
0.973317 + 0.229465i \(0.0736978\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) 0 0
\(983\) −19.7990 + 34.2929i −0.631490 + 1.09377i 0.355758 + 0.934578i \(0.384223\pi\)
−0.987247 + 0.159194i \(0.949110\pi\)
\(984\) 0 0
\(985\) 31.1127 + 53.8888i 0.991333 + 1.71704i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −4.00000 + 6.92820i −0.127064 + 0.220082i −0.922538 0.385906i \(-0.873889\pi\)
0.795474 + 0.605988i \(0.207222\pi\)
\(992\) 0 0
\(993\) 56.5685 1.79515
\(994\) 0 0
\(995\) 48.0000 1.52170
\(996\) 0 0
\(997\) 18.3848 31.8434i 0.582252 1.00849i −0.412960 0.910749i \(-0.635505\pi\)
0.995212 0.0977405i \(-0.0311615\pi\)
\(998\) 0 0
\(999\) 28.2843 + 48.9898i 0.894875 + 1.54997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.2.i.g.361.2 4
3.2 odd 2 3528.2.s.be.361.1 4
4.3 odd 2 784.2.i.k.753.1 4
7.2 even 3 inner 392.2.i.g.177.2 4
7.3 odd 6 392.2.a.h.1.2 yes 2
7.4 even 3 392.2.a.h.1.1 2
7.5 odd 6 inner 392.2.i.g.177.1 4
7.6 odd 2 inner 392.2.i.g.361.1 4
21.2 odd 6 3528.2.s.be.3313.1 4
21.5 even 6 3528.2.s.be.3313.2 4
21.11 odd 6 3528.2.a.bj.1.2 2
21.17 even 6 3528.2.a.bj.1.1 2
21.20 even 2 3528.2.s.be.361.2 4
28.3 even 6 784.2.a.n.1.1 2
28.11 odd 6 784.2.a.n.1.2 2
28.19 even 6 784.2.i.k.177.2 4
28.23 odd 6 784.2.i.k.177.1 4
28.27 even 2 784.2.i.k.753.2 4
35.4 even 6 9800.2.a.bw.1.2 2
35.24 odd 6 9800.2.a.bw.1.1 2
56.3 even 6 3136.2.a.bq.1.2 2
56.11 odd 6 3136.2.a.bq.1.1 2
56.45 odd 6 3136.2.a.bt.1.1 2
56.53 even 6 3136.2.a.bt.1.2 2
84.11 even 6 7056.2.a.cj.1.2 2
84.59 odd 6 7056.2.a.cj.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
392.2.a.h.1.1 2 7.4 even 3
392.2.a.h.1.2 yes 2 7.3 odd 6
392.2.i.g.177.1 4 7.5 odd 6 inner
392.2.i.g.177.2 4 7.2 even 3 inner
392.2.i.g.361.1 4 7.6 odd 2 inner
392.2.i.g.361.2 4 1.1 even 1 trivial
784.2.a.n.1.1 2 28.3 even 6
784.2.a.n.1.2 2 28.11 odd 6
784.2.i.k.177.1 4 28.23 odd 6
784.2.i.k.177.2 4 28.19 even 6
784.2.i.k.753.1 4 4.3 odd 2
784.2.i.k.753.2 4 28.27 even 2
3136.2.a.bq.1.1 2 56.11 odd 6
3136.2.a.bq.1.2 2 56.3 even 6
3136.2.a.bt.1.1 2 56.45 odd 6
3136.2.a.bt.1.2 2 56.53 even 6
3528.2.a.bj.1.1 2 21.17 even 6
3528.2.a.bj.1.2 2 21.11 odd 6
3528.2.s.be.361.1 4 3.2 odd 2
3528.2.s.be.361.2 4 21.20 even 2
3528.2.s.be.3313.1 4 21.2 odd 6
3528.2.s.be.3313.2 4 21.5 even 6
7056.2.a.cj.1.1 2 84.59 odd 6
7056.2.a.cj.1.2 2 84.11 even 6
9800.2.a.bw.1.1 2 35.24 odd 6
9800.2.a.bw.1.2 2 35.4 even 6