Properties

Label 784.2.i.k.177.2
Level $784$
Weight $2$
Character 784.177
Analytic conductor $6.260$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(177,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 392)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.2
Root \(0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 784.177
Dual form 784.2.i.k.753.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41421 + 2.44949i) q^{3} +(-1.41421 + 2.44949i) q^{5} +(-2.50000 + 4.33013i) q^{9} +(-2.00000 - 3.46410i) q^{11} -2.82843 q^{13} -8.00000 q^{15} +(2.82843 + 4.89898i) q^{17} +(-1.41421 + 2.44949i) q^{19} +(-1.50000 - 2.59808i) q^{25} -5.65685 q^{27} +2.00000 q^{29} +(-2.82843 - 4.89898i) q^{31} +(5.65685 - 9.79796i) q^{33} +(-5.00000 + 8.66025i) q^{37} +(-4.00000 - 6.92820i) q^{39} +5.65685 q^{41} +4.00000 q^{43} +(-7.07107 - 12.2474i) q^{45} +(2.82843 - 4.89898i) q^{47} +(-8.00000 + 13.8564i) q^{51} +(-3.00000 - 5.19615i) q^{53} +11.3137 q^{55} -8.00000 q^{57} +(-1.41421 - 2.44949i) q^{59} +(-7.07107 + 12.2474i) q^{61} +(4.00000 - 6.92820i) q^{65} +(6.00000 + 10.3923i) q^{67} +(4.24264 - 7.34847i) q^{75} +(4.00000 - 6.92820i) q^{79} +(-0.500000 - 0.866025i) q^{81} +14.1421 q^{83} -16.0000 q^{85} +(2.82843 + 4.89898i) q^{87} +(8.00000 - 13.8564i) q^{93} +(-4.00000 - 6.92820i) q^{95} +5.65685 q^{97} +20.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 10 q^{9} - 8 q^{11} - 32 q^{15} - 6 q^{25} + 8 q^{29} - 20 q^{37} - 16 q^{39} + 16 q^{43} - 32 q^{51} - 12 q^{53} - 32 q^{57} + 16 q^{65} + 24 q^{67} + 16 q^{79} - 2 q^{81} - 64 q^{85} + 32 q^{93}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41421 + 2.44949i 0.816497 + 1.41421i 0.908248 + 0.418432i \(0.137420\pi\)
−0.0917517 + 0.995782i \(0.529247\pi\)
\(4\) 0 0
\(5\) −1.41421 + 2.44949i −0.632456 + 1.09545i 0.354593 + 0.935021i \(0.384620\pi\)
−0.987048 + 0.160424i \(0.948714\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.50000 + 4.33013i −0.833333 + 1.44338i
\(10\) 0 0
\(11\) −2.00000 3.46410i −0.603023 1.04447i −0.992361 0.123371i \(-0.960630\pi\)
0.389338 0.921095i \(-0.372704\pi\)
\(12\) 0 0
\(13\) −2.82843 −0.784465 −0.392232 0.919866i \(-0.628297\pi\)
−0.392232 + 0.919866i \(0.628297\pi\)
\(14\) 0 0
\(15\) −8.00000 −2.06559
\(16\) 0 0
\(17\) 2.82843 + 4.89898i 0.685994 + 1.18818i 0.973123 + 0.230285i \(0.0739659\pi\)
−0.287129 + 0.957892i \(0.592701\pi\)
\(18\) 0 0
\(19\) −1.41421 + 2.44949i −0.324443 + 0.561951i −0.981399 0.191977i \(-0.938510\pi\)
0.656957 + 0.753928i \(0.271843\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) −1.50000 2.59808i −0.300000 0.519615i
\(26\) 0 0
\(27\) −5.65685 −1.08866
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −2.82843 4.89898i −0.508001 0.879883i −0.999957 0.00926296i \(-0.997051\pi\)
0.491957 0.870620i \(-0.336282\pi\)
\(32\) 0 0
\(33\) 5.65685 9.79796i 0.984732 1.70561i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.00000 + 8.66025i −0.821995 + 1.42374i 0.0821995 + 0.996616i \(0.473806\pi\)
−0.904194 + 0.427121i \(0.859528\pi\)
\(38\) 0 0
\(39\) −4.00000 6.92820i −0.640513 1.10940i
\(40\) 0 0
\(41\) 5.65685 0.883452 0.441726 0.897150i \(-0.354366\pi\)
0.441726 + 0.897150i \(0.354366\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) −7.07107 12.2474i −1.05409 1.82574i
\(46\) 0 0
\(47\) 2.82843 4.89898i 0.412568 0.714590i −0.582601 0.812758i \(-0.697965\pi\)
0.995170 + 0.0981685i \(0.0312984\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −8.00000 + 13.8564i −1.12022 + 1.94029i
\(52\) 0 0
\(53\) −3.00000 5.19615i −0.412082 0.713746i 0.583036 0.812447i \(-0.301865\pi\)
−0.995117 + 0.0987002i \(0.968532\pi\)
\(54\) 0 0
\(55\) 11.3137 1.52554
\(56\) 0 0
\(57\) −8.00000 −1.05963
\(58\) 0 0
\(59\) −1.41421 2.44949i −0.184115 0.318896i 0.759163 0.650901i \(-0.225609\pi\)
−0.943278 + 0.332004i \(0.892275\pi\)
\(60\) 0 0
\(61\) −7.07107 + 12.2474i −0.905357 + 1.56813i −0.0849208 + 0.996388i \(0.527064\pi\)
−0.820437 + 0.571737i \(0.806270\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.00000 6.92820i 0.496139 0.859338i
\(66\) 0 0
\(67\) 6.00000 + 10.3923i 0.733017 + 1.26962i 0.955588 + 0.294706i \(0.0952216\pi\)
−0.222571 + 0.974916i \(0.571445\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(74\) 0 0
\(75\) 4.24264 7.34847i 0.489898 0.848528i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 6.92820i 0.450035 0.779484i −0.548352 0.836247i \(-0.684745\pi\)
0.998388 + 0.0567635i \(0.0180781\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 14.1421 1.55230 0.776151 0.630548i \(-0.217170\pi\)
0.776151 + 0.630548i \(0.217170\pi\)
\(84\) 0 0
\(85\) −16.0000 −1.73544
\(86\) 0 0
\(87\) 2.82843 + 4.89898i 0.303239 + 0.525226i
\(88\) 0 0
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 8.00000 13.8564i 0.829561 1.43684i
\(94\) 0 0
\(95\) −4.00000 6.92820i −0.410391 0.710819i
\(96\) 0 0
\(97\) 5.65685 0.574367 0.287183 0.957876i \(-0.407281\pi\)
0.287183 + 0.957876i \(0.407281\pi\)
\(98\) 0 0
\(99\) 20.0000 2.01008
\(100\) 0 0
\(101\) 4.24264 + 7.34847i 0.422159 + 0.731200i 0.996150 0.0876610i \(-0.0279392\pi\)
−0.573992 + 0.818861i \(0.694606\pi\)
\(102\) 0 0
\(103\) −8.48528 + 14.6969i −0.836080 + 1.44813i 0.0570688 + 0.998370i \(0.481825\pi\)
−0.893148 + 0.449762i \(0.851509\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.00000 + 10.3923i −0.580042 + 1.00466i 0.415432 + 0.909624i \(0.363630\pi\)
−0.995474 + 0.0950377i \(0.969703\pi\)
\(108\) 0 0
\(109\) −1.00000 1.73205i −0.0957826 0.165900i 0.814152 0.580651i \(-0.197202\pi\)
−0.909935 + 0.414751i \(0.863869\pi\)
\(110\) 0 0
\(111\) −28.2843 −2.68462
\(112\) 0 0
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 7.07107 12.2474i 0.653720 1.13228i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) 0 0
\(123\) 8.00000 + 13.8564i 0.721336 + 1.24939i
\(124\) 0 0
\(125\) −5.65685 −0.505964
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) 5.65685 + 9.79796i 0.498058 + 0.862662i
\(130\) 0 0
\(131\) −7.07107 + 12.2474i −0.617802 + 1.07006i 0.372084 + 0.928199i \(0.378643\pi\)
−0.989886 + 0.141865i \(0.954690\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 8.00000 13.8564i 0.688530 1.19257i
\(136\) 0 0
\(137\) 5.00000 + 8.66025i 0.427179 + 0.739895i 0.996621 0.0821359i \(-0.0261741\pi\)
−0.569442 + 0.822031i \(0.692841\pi\)
\(138\) 0 0
\(139\) −14.1421 −1.19952 −0.599760 0.800180i \(-0.704737\pi\)
−0.599760 + 0.800180i \(0.704737\pi\)
\(140\) 0 0
\(141\) 16.0000 1.34744
\(142\) 0 0
\(143\) 5.65685 + 9.79796i 0.473050 + 0.819346i
\(144\) 0 0
\(145\) −2.82843 + 4.89898i −0.234888 + 0.406838i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.00000 8.66025i 0.409616 0.709476i −0.585231 0.810867i \(-0.698996\pi\)
0.994847 + 0.101391i \(0.0323294\pi\)
\(150\) 0 0
\(151\) 8.00000 + 13.8564i 0.651031 + 1.12762i 0.982873 + 0.184284i \(0.0589965\pi\)
−0.331842 + 0.943335i \(0.607670\pi\)
\(152\) 0 0
\(153\) −28.2843 −2.28665
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) 0 0
\(157\) 7.07107 + 12.2474i 0.564333 + 0.977453i 0.997111 + 0.0759527i \(0.0241998\pi\)
−0.432779 + 0.901500i \(0.642467\pi\)
\(158\) 0 0
\(159\) 8.48528 14.6969i 0.672927 1.16554i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 10.0000 17.3205i 0.783260 1.35665i −0.146772 0.989170i \(-0.546888\pi\)
0.930033 0.367477i \(-0.119778\pi\)
\(164\) 0 0
\(165\) 16.0000 + 27.7128i 1.24560 + 2.15744i
\(166\) 0 0
\(167\) 5.65685 0.437741 0.218870 0.975754i \(-0.429763\pi\)
0.218870 + 0.975754i \(0.429763\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) −7.07107 12.2474i −0.540738 0.936586i
\(172\) 0 0
\(173\) 1.41421 2.44949i 0.107521 0.186231i −0.807245 0.590217i \(-0.799042\pi\)
0.914765 + 0.403986i \(0.132375\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 4.00000 6.92820i 0.300658 0.520756i
\(178\) 0 0
\(179\) −10.0000 17.3205i −0.747435 1.29460i −0.949048 0.315130i \(-0.897952\pi\)
0.201613 0.979465i \(-0.435382\pi\)
\(180\) 0 0
\(181\) 8.48528 0.630706 0.315353 0.948974i \(-0.397877\pi\)
0.315353 + 0.948974i \(0.397877\pi\)
\(182\) 0 0
\(183\) −40.0000 −2.95689
\(184\) 0 0
\(185\) −14.1421 24.4949i −1.03975 1.80090i
\(186\) 0 0
\(187\) 11.3137 19.5959i 0.827340 1.43300i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 20.7846i 0.868290 1.50392i 0.00454614 0.999990i \(-0.498553\pi\)
0.863743 0.503932i \(-0.168114\pi\)
\(192\) 0 0
\(193\) −5.00000 8.66025i −0.359908 0.623379i 0.628037 0.778183i \(-0.283859\pi\)
−0.987945 + 0.154805i \(0.950525\pi\)
\(194\) 0 0
\(195\) 22.6274 1.62038
\(196\) 0 0
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) 0 0
\(199\) 8.48528 + 14.6969i 0.601506 + 1.04184i 0.992593 + 0.121485i \(0.0387656\pi\)
−0.391088 + 0.920353i \(0.627901\pi\)
\(200\) 0 0
\(201\) −16.9706 + 29.3939i −1.19701 + 2.07328i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −8.00000 + 13.8564i −0.558744 + 0.967773i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.3137 0.782586
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.65685 + 9.79796i −0.385794 + 0.668215i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −8.00000 13.8564i −0.538138 0.932083i
\(222\) 0 0
\(223\) 11.3137 0.757622 0.378811 0.925474i \(-0.376333\pi\)
0.378811 + 0.925474i \(0.376333\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) 0 0
\(227\) 4.24264 + 7.34847i 0.281594 + 0.487735i 0.971778 0.235899i \(-0.0758036\pi\)
−0.690184 + 0.723634i \(0.742470\pi\)
\(228\) 0 0
\(229\) 12.7279 22.0454i 0.841085 1.45680i −0.0478936 0.998852i \(-0.515251\pi\)
0.888978 0.457949i \(-0.151416\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.00000 8.66025i 0.327561 0.567352i −0.654466 0.756091i \(-0.727107\pi\)
0.982027 + 0.188739i \(0.0604400\pi\)
\(234\) 0 0
\(235\) 8.00000 + 13.8564i 0.521862 + 0.903892i
\(236\) 0 0
\(237\) 22.6274 1.46981
\(238\) 0 0
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) −14.1421 24.4949i −0.910975 1.57786i −0.812690 0.582697i \(-0.801998\pi\)
−0.0982854 0.995158i \(-0.531336\pi\)
\(242\) 0 0
\(243\) −7.07107 + 12.2474i −0.453609 + 0.785674i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.00000 6.92820i 0.254514 0.440831i
\(248\) 0 0
\(249\) 20.0000 + 34.6410i 1.26745 + 2.19529i
\(250\) 0 0
\(251\) −14.1421 −0.892644 −0.446322 0.894873i \(-0.647266\pi\)
−0.446322 + 0.894873i \(0.647266\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −22.6274 39.1918i −1.41698 2.45429i
\(256\) 0 0
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −5.00000 + 8.66025i −0.309492 + 0.536056i
\(262\) 0 0
\(263\) −8.00000 13.8564i −0.493301 0.854423i 0.506669 0.862141i \(-0.330877\pi\)
−0.999970 + 0.00771799i \(0.997543\pi\)
\(264\) 0 0
\(265\) 16.9706 1.04249
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.07107 + 12.2474i 0.431131 + 0.746740i 0.996971 0.0777747i \(-0.0247815\pi\)
−0.565840 + 0.824515i \(0.691448\pi\)
\(270\) 0 0
\(271\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.00000 + 10.3923i −0.361814 + 0.626680i
\(276\) 0 0
\(277\) 5.00000 + 8.66025i 0.300421 + 0.520344i 0.976231 0.216731i \(-0.0695395\pi\)
−0.675810 + 0.737075i \(0.736206\pi\)
\(278\) 0 0
\(279\) 28.2843 1.69334
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −1.41421 2.44949i −0.0840663 0.145607i 0.820927 0.571034i \(-0.193457\pi\)
−0.904993 + 0.425427i \(0.860124\pi\)
\(284\) 0 0
\(285\) 11.3137 19.5959i 0.670166 1.16076i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −7.50000 + 12.9904i −0.441176 + 0.764140i
\(290\) 0 0
\(291\) 8.00000 + 13.8564i 0.468968 + 0.812277i
\(292\) 0 0
\(293\) 2.82843 0.165238 0.0826192 0.996581i \(-0.473671\pi\)
0.0826192 + 0.996581i \(0.473671\pi\)
\(294\) 0 0
\(295\) 8.00000 0.465778
\(296\) 0 0
\(297\) 11.3137 + 19.5959i 0.656488 + 1.13707i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −12.0000 + 20.7846i −0.689382 + 1.19404i
\(304\) 0 0
\(305\) −20.0000 34.6410i −1.14520 1.98354i
\(306\) 0 0
\(307\) −8.48528 −0.484281 −0.242140 0.970241i \(-0.577849\pi\)
−0.242140 + 0.970241i \(0.577849\pi\)
\(308\) 0 0
\(309\) −48.0000 −2.73062
\(310\) 0 0
\(311\) −11.3137 19.5959i −0.641542 1.11118i −0.985089 0.172047i \(-0.944962\pi\)
0.343547 0.939135i \(-0.388371\pi\)
\(312\) 0 0
\(313\) 8.48528 14.6969i 0.479616 0.830720i −0.520110 0.854099i \(-0.674109\pi\)
0.999727 + 0.0233791i \(0.00744247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.00000 15.5885i 0.505490 0.875535i −0.494489 0.869184i \(-0.664645\pi\)
0.999980 0.00635137i \(-0.00202172\pi\)
\(318\) 0 0
\(319\) −4.00000 6.92820i −0.223957 0.387905i
\(320\) 0 0
\(321\) −33.9411 −1.89441
\(322\) 0 0
\(323\) −16.0000 −0.890264
\(324\) 0 0
\(325\) 4.24264 + 7.34847i 0.235339 + 0.407620i
\(326\) 0 0
\(327\) 2.82843 4.89898i 0.156412 0.270914i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −10.0000 + 17.3205i −0.549650 + 0.952021i 0.448649 + 0.893708i \(0.351905\pi\)
−0.998298 + 0.0583130i \(0.981428\pi\)
\(332\) 0 0
\(333\) −25.0000 43.3013i −1.36999 2.37289i
\(334\) 0 0
\(335\) −33.9411 −1.85440
\(336\) 0 0
\(337\) −10.0000 −0.544735 −0.272367 0.962193i \(-0.587807\pi\)
−0.272367 + 0.962193i \(0.587807\pi\)
\(338\) 0 0
\(339\) 14.1421 + 24.4949i 0.768095 + 1.33038i
\(340\) 0 0
\(341\) −11.3137 + 19.5959i −0.612672 + 1.06118i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.0000 17.3205i −0.536828 0.929814i −0.999072 0.0430610i \(-0.986289\pi\)
0.462244 0.886753i \(-0.347044\pi\)
\(348\) 0 0
\(349\) −25.4558 −1.36262 −0.681310 0.731995i \(-0.738589\pi\)
−0.681310 + 0.731995i \(0.738589\pi\)
\(350\) 0 0
\(351\) 16.0000 0.854017
\(352\) 0 0
\(353\) −5.65685 9.79796i −0.301084 0.521493i 0.675298 0.737545i \(-0.264015\pi\)
−0.976382 + 0.216052i \(0.930682\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(360\) 0 0
\(361\) 5.50000 + 9.52628i 0.289474 + 0.501383i
\(362\) 0 0
\(363\) −14.1421 −0.742270
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 16.9706 + 29.3939i 0.885856 + 1.53435i 0.844729 + 0.535194i \(0.179761\pi\)
0.0411270 + 0.999154i \(0.486905\pi\)
\(368\) 0 0
\(369\) −14.1421 + 24.4949i −0.736210 + 1.27515i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 5.00000 8.66025i 0.258890 0.448411i −0.707055 0.707159i \(-0.749977\pi\)
0.965945 + 0.258748i \(0.0833099\pi\)
\(374\) 0 0
\(375\) −8.00000 13.8564i −0.413118 0.715542i
\(376\) 0 0
\(377\) −5.65685 −0.291343
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) −11.3137 19.5959i −0.579619 1.00393i
\(382\) 0 0
\(383\) 14.1421 24.4949i 0.722629 1.25163i −0.237313 0.971433i \(-0.576267\pi\)
0.959942 0.280198i \(-0.0904000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −10.0000 + 17.3205i −0.508329 + 0.880451i
\(388\) 0 0
\(389\) 11.0000 + 19.0526i 0.557722 + 0.966003i 0.997686 + 0.0679877i \(0.0216579\pi\)
−0.439964 + 0.898015i \(0.645009\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −40.0000 −2.01773
\(394\) 0 0
\(395\) 11.3137 + 19.5959i 0.569254 + 0.985978i
\(396\) 0 0
\(397\) −4.24264 + 7.34847i −0.212932 + 0.368809i −0.952631 0.304129i \(-0.901635\pi\)
0.739699 + 0.672938i \(0.234968\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.00000 + 5.19615i −0.149813 + 0.259483i −0.931158 0.364615i \(-0.881200\pi\)
0.781345 + 0.624099i \(0.214534\pi\)
\(402\) 0 0
\(403\) 8.00000 + 13.8564i 0.398508 + 0.690237i
\(404\) 0 0
\(405\) 2.82843 0.140546
\(406\) 0 0
\(407\) 40.0000 1.98273
\(408\) 0 0
\(409\) 8.48528 + 14.6969i 0.419570 + 0.726717i 0.995896 0.0905030i \(-0.0288475\pi\)
−0.576326 + 0.817220i \(0.695514\pi\)
\(410\) 0 0
\(411\) −14.1421 + 24.4949i −0.697580 + 1.20824i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −20.0000 + 34.6410i −0.981761 + 1.70046i
\(416\) 0 0
\(417\) −20.0000 34.6410i −0.979404 1.69638i
\(418\) 0 0
\(419\) −2.82843 −0.138178 −0.0690889 0.997611i \(-0.522009\pi\)
−0.0690889 + 0.997611i \(0.522009\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 0 0
\(423\) 14.1421 + 24.4949i 0.687614 + 1.19098i
\(424\) 0 0
\(425\) 8.48528 14.6969i 0.411597 0.712906i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −16.0000 + 27.7128i −0.772487 + 1.33799i
\(430\) 0 0
\(431\) 12.0000 + 20.7846i 0.578020 + 1.00116i 0.995706 + 0.0925683i \(0.0295076\pi\)
−0.417687 + 0.908591i \(0.637159\pi\)
\(432\) 0 0
\(433\) 5.65685 0.271851 0.135926 0.990719i \(-0.456599\pi\)
0.135926 + 0.990719i \(0.456599\pi\)
\(434\) 0 0
\(435\) −16.0000 −0.767141
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.00000 3.46410i 0.0950229 0.164584i −0.814595 0.580030i \(-0.803041\pi\)
0.909618 + 0.415445i \(0.136374\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 28.2843 1.33780
\(448\) 0 0
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) 0 0
\(451\) −11.3137 19.5959i −0.532742 0.922736i
\(452\) 0 0
\(453\) −22.6274 + 39.1918i −1.06313 + 1.84139i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −9.00000 + 15.5885i −0.421002 + 0.729197i −0.996038 0.0889312i \(-0.971655\pi\)
0.575036 + 0.818128i \(0.304988\pi\)
\(458\) 0 0
\(459\) −16.0000 27.7128i −0.746816 1.29352i
\(460\) 0 0
\(461\) −14.1421 −0.658665 −0.329332 0.944214i \(-0.606824\pi\)
−0.329332 + 0.944214i \(0.606824\pi\)
\(462\) 0 0
\(463\) −40.0000 −1.85896 −0.929479 0.368875i \(-0.879743\pi\)
−0.929479 + 0.368875i \(0.879743\pi\)
\(464\) 0 0
\(465\) 22.6274 + 39.1918i 1.04932 + 1.81748i
\(466\) 0 0
\(467\) 4.24264 7.34847i 0.196326 0.340047i −0.751008 0.660293i \(-0.770432\pi\)
0.947334 + 0.320246i \(0.103766\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −20.0000 + 34.6410i −0.921551 + 1.59617i
\(472\) 0 0
\(473\) −8.00000 13.8564i −0.367840 0.637118i
\(474\) 0 0
\(475\) 8.48528 0.389331
\(476\) 0 0
\(477\) 30.0000 1.37361
\(478\) 0 0
\(479\) −14.1421 24.4949i −0.646171 1.11920i −0.984030 0.178004i \(-0.943036\pi\)
0.337859 0.941197i \(-0.390297\pi\)
\(480\) 0 0
\(481\) 14.1421 24.4949i 0.644826 1.11687i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.00000 + 13.8564i −0.363261 + 0.629187i
\(486\) 0 0
\(487\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(488\) 0 0
\(489\) 56.5685 2.55812
\(490\) 0 0
\(491\) −4.00000 −0.180517 −0.0902587 0.995918i \(-0.528769\pi\)
−0.0902587 + 0.995918i \(0.528769\pi\)
\(492\) 0 0
\(493\) 5.65685 + 9.79796i 0.254772 + 0.441278i
\(494\) 0 0
\(495\) −28.2843 + 48.9898i −1.27128 + 2.20193i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 14.0000 24.2487i 0.626726 1.08552i −0.361478 0.932381i \(-0.617728\pi\)
0.988204 0.153141i \(-0.0489388\pi\)
\(500\) 0 0
\(501\) 8.00000 + 13.8564i 0.357414 + 0.619059i
\(502\) 0 0
\(503\) −11.3137 −0.504453 −0.252227 0.967668i \(-0.581163\pi\)
−0.252227 + 0.967668i \(0.581163\pi\)
\(504\) 0 0
\(505\) −24.0000 −1.06799
\(506\) 0 0
\(507\) −7.07107 12.2474i −0.314037 0.543928i
\(508\) 0 0
\(509\) 7.07107 12.2474i 0.313420 0.542859i −0.665681 0.746237i \(-0.731859\pi\)
0.979100 + 0.203378i \(0.0651920\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 8.00000 13.8564i 0.353209 0.611775i
\(514\) 0 0
\(515\) −24.0000 41.5692i −1.05757 1.83176i
\(516\) 0 0
\(517\) −22.6274 −0.995153
\(518\) 0 0
\(519\) 8.00000 0.351161
\(520\) 0 0
\(521\) 2.82843 + 4.89898i 0.123916 + 0.214628i 0.921309 0.388832i \(-0.127121\pi\)
−0.797393 + 0.603460i \(0.793788\pi\)
\(522\) 0 0
\(523\) 9.89949 17.1464i 0.432875 0.749761i −0.564245 0.825608i \(-0.690833\pi\)
0.997119 + 0.0758466i \(0.0241659\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.0000 27.7128i 0.696971 1.20719i
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 0 0
\(531\) 14.1421 0.613716
\(532\) 0 0
\(533\) −16.0000 −0.693037
\(534\) 0 0
\(535\) −16.9706 29.3939i −0.733701 1.27081i
\(536\) 0 0
\(537\) 28.2843 48.9898i 1.22056 2.11407i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.0000 29.4449i 0.730887 1.26593i −0.225617 0.974216i \(-0.572440\pi\)
0.956504 0.291718i \(-0.0942267\pi\)
\(542\) 0 0
\(543\) 12.0000 + 20.7846i 0.514969 + 0.891953i
\(544\) 0 0
\(545\) 5.65685 0.242313
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 0 0
\(549\) −35.3553 61.2372i −1.50893 2.61354i
\(550\) 0 0
\(551\) −2.82843 + 4.89898i −0.120495 + 0.208704i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 40.0000 69.2820i 1.69791 2.94086i
\(556\) 0 0
\(557\) −15.0000 25.9808i −0.635570 1.10084i −0.986394 0.164399i \(-0.947432\pi\)
0.350824 0.936442i \(-0.385902\pi\)
\(558\) 0 0
\(559\) −11.3137 −0.478519
\(560\) 0 0
\(561\) 64.0000 2.70208
\(562\) 0 0
\(563\) −21.2132 36.7423i −0.894030 1.54851i −0.835001 0.550249i \(-0.814533\pi\)
−0.0590293 0.998256i \(-0.518801\pi\)
\(564\) 0 0
\(565\) −14.1421 + 24.4949i −0.594964 + 1.03051i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15.0000 + 25.9808i −0.628833 + 1.08917i 0.358954 + 0.933355i \(0.383134\pi\)
−0.987786 + 0.155815i \(0.950200\pi\)
\(570\) 0 0
\(571\) −10.0000 17.3205i −0.418487 0.724841i 0.577301 0.816532i \(-0.304106\pi\)
−0.995788 + 0.0916910i \(0.970773\pi\)
\(572\) 0 0
\(573\) 67.8823 2.83582
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −16.9706 29.3939i −0.706494 1.22368i −0.966150 0.257982i \(-0.916942\pi\)
0.259656 0.965701i \(-0.416391\pi\)
\(578\) 0 0
\(579\) 14.1421 24.4949i 0.587727 1.01797i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −12.0000 + 20.7846i −0.496989 + 0.860811i
\(584\) 0 0
\(585\) 20.0000 + 34.6410i 0.826898 + 1.43223i
\(586\) 0 0
\(587\) 42.4264 1.75113 0.875563 0.483105i \(-0.160491\pi\)
0.875563 + 0.483105i \(0.160491\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) 31.1127 + 53.8888i 1.27981 + 2.21669i
\(592\) 0 0
\(593\) 5.65685 9.79796i 0.232299 0.402354i −0.726185 0.687499i \(-0.758708\pi\)
0.958484 + 0.285145i \(0.0920418\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −24.0000 + 41.5692i −0.982255 + 1.70131i
\(598\) 0 0
\(599\) 16.0000 + 27.7128i 0.653742 + 1.13231i 0.982208 + 0.187799i \(0.0601353\pi\)
−0.328465 + 0.944516i \(0.606531\pi\)
\(600\) 0 0
\(601\) −22.6274 −0.922992 −0.461496 0.887142i \(-0.652687\pi\)
−0.461496 + 0.887142i \(0.652687\pi\)
\(602\) 0 0
\(603\) −60.0000 −2.44339
\(604\) 0 0
\(605\) −7.07107 12.2474i −0.287480 0.497930i
\(606\) 0 0
\(607\) 11.3137 19.5959i 0.459209 0.795374i −0.539710 0.841851i \(-0.681466\pi\)
0.998919 + 0.0464772i \(0.0147995\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.00000 + 13.8564i −0.323645 + 0.560570i
\(612\) 0 0
\(613\) 3.00000 + 5.19615i 0.121169 + 0.209871i 0.920229 0.391381i \(-0.128002\pi\)
−0.799060 + 0.601251i \(0.794669\pi\)
\(614\) 0 0
\(615\) −45.2548 −1.82485
\(616\) 0 0
\(617\) 30.0000 1.20775 0.603877 0.797077i \(-0.293622\pi\)
0.603877 + 0.797077i \(0.293622\pi\)
\(618\) 0 0
\(619\) −7.07107 12.2474i −0.284210 0.492267i 0.688207 0.725514i \(-0.258398\pi\)
−0.972417 + 0.233248i \(0.925065\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15.5000 26.8468i 0.620000 1.07387i
\(626\) 0 0
\(627\) 16.0000 + 27.7128i 0.638978 + 1.10674i
\(628\) 0 0
\(629\) −56.5685 −2.25554
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) 5.65685 + 9.79796i 0.224840 + 0.389434i
\(634\) 0 0
\(635\) 11.3137 19.5959i 0.448971 0.777640i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5.00000 + 8.66025i 0.197488 + 0.342059i 0.947713 0.319123i \(-0.103388\pi\)
−0.750225 + 0.661182i \(0.770055\pi\)
\(642\) 0 0
\(643\) −25.4558 −1.00388 −0.501940 0.864902i \(-0.667380\pi\)
−0.501940 + 0.864902i \(0.667380\pi\)
\(644\) 0 0
\(645\) −32.0000 −1.26000
\(646\) 0 0
\(647\) 8.48528 + 14.6969i 0.333591 + 0.577796i 0.983213 0.182461i \(-0.0584063\pi\)
−0.649622 + 0.760257i \(0.725073\pi\)
\(648\) 0 0
\(649\) −5.65685 + 9.79796i −0.222051 + 0.384604i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.00000 12.1244i 0.273931 0.474463i −0.695934 0.718106i \(-0.745009\pi\)
0.969865 + 0.243643i \(0.0783426\pi\)
\(654\) 0 0
\(655\) −20.0000 34.6410i −0.781465 1.35354i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −7.07107 12.2474i −0.275033 0.476371i 0.695111 0.718903i \(-0.255355\pi\)
−0.970143 + 0.242532i \(0.922022\pi\)
\(662\) 0 0
\(663\) 22.6274 39.1918i 0.878776 1.52208i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 16.0000 + 27.7128i 0.618596 + 1.07144i
\(670\) 0 0
\(671\) 56.5685 2.18380
\(672\) 0 0
\(673\) 30.0000 1.15642 0.578208 0.815890i \(-0.303752\pi\)
0.578208 + 0.815890i \(0.303752\pi\)
\(674\) 0 0
\(675\) 8.48528 + 14.6969i 0.326599 + 0.565685i
\(676\) 0 0
\(677\) −4.24264 + 7.34847i −0.163058 + 0.282425i −0.935964 0.352096i \(-0.885469\pi\)
0.772906 + 0.634521i \(0.218802\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −12.0000 + 20.7846i −0.459841 + 0.796468i
\(682\) 0 0
\(683\) 10.0000 + 17.3205i 0.382639 + 0.662751i 0.991439 0.130573i \(-0.0416818\pi\)
−0.608799 + 0.793324i \(0.708349\pi\)
\(684\) 0 0
\(685\) −28.2843 −1.08069
\(686\) 0 0
\(687\) 72.0000 2.74697
\(688\) 0 0
\(689\) 8.48528 + 14.6969i 0.323263 + 0.559909i
\(690\) 0 0
\(691\) −7.07107 + 12.2474i −0.268996 + 0.465915i −0.968603 0.248613i \(-0.920025\pi\)
0.699607 + 0.714528i \(0.253359\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 20.0000 34.6410i 0.758643 1.31401i
\(696\) 0 0
\(697\) 16.0000 + 27.7128i 0.606043 + 1.04970i
\(698\) 0 0
\(699\) 28.2843 1.06981
\(700\) 0 0
\(701\) 34.0000 1.28416 0.642081 0.766637i \(-0.278071\pi\)
0.642081 + 0.766637i \(0.278071\pi\)
\(702\) 0 0
\(703\) −14.1421 24.4949i −0.533381 0.923843i
\(704\) 0 0
\(705\) −22.6274 + 39.1918i −0.852198 + 1.47605i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 11.0000 19.0526i 0.413114 0.715534i −0.582115 0.813107i \(-0.697775\pi\)
0.995228 + 0.0975728i \(0.0311079\pi\)
\(710\) 0 0
\(711\) 20.0000 + 34.6410i 0.750059 + 1.29914i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −32.0000 −1.19673
\(716\) 0 0
\(717\) 11.3137 + 19.5959i 0.422518 + 0.731823i
\(718\) 0 0
\(719\) −14.1421 + 24.4949i −0.527413 + 0.913506i 0.472077 + 0.881557i \(0.343504\pi\)
−0.999490 + 0.0319481i \(0.989829\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 40.0000 69.2820i 1.48762 2.57663i
\(724\) 0 0
\(725\) −3.00000 5.19615i −0.111417 0.192980i
\(726\) 0 0
\(727\) −28.2843 −1.04901 −0.524503 0.851409i \(-0.675749\pi\)
−0.524503 + 0.851409i \(0.675749\pi\)
\(728\) 0 0
\(729\) −43.0000 −1.59259
\(730\) 0 0
\(731\) 11.3137 + 19.5959i 0.418453 + 0.724781i
\(732\) 0 0
\(733\) −12.7279 + 22.0454i −0.470117 + 0.814266i −0.999416 0.0341693i \(-0.989121\pi\)
0.529300 + 0.848435i \(0.322455\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24.0000 41.5692i 0.884051 1.53122i
\(738\) 0 0
\(739\) −6.00000 10.3923i −0.220714 0.382287i 0.734311 0.678813i \(-0.237505\pi\)
−0.955025 + 0.296526i \(0.904172\pi\)
\(740\) 0 0
\(741\) 22.6274 0.831239
\(742\) 0 0
\(743\) 16.0000 0.586983 0.293492 0.955962i \(-0.405183\pi\)
0.293492 + 0.955962i \(0.405183\pi\)
\(744\) 0 0
\(745\) 14.1421 + 24.4949i 0.518128 + 0.897424i
\(746\) 0 0
\(747\) −35.3553 + 61.2372i −1.29358 + 2.24055i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −12.0000 + 20.7846i −0.437886 + 0.758441i −0.997526 0.0702946i \(-0.977606\pi\)
0.559640 + 0.828736i \(0.310939\pi\)
\(752\) 0 0
\(753\) −20.0000 34.6410i −0.728841 1.26239i
\(754\) 0 0
\(755\) −45.2548 −1.64699
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.1421 24.4949i 0.512652 0.887939i −0.487240 0.873268i \(-0.661996\pi\)
0.999892 0.0146714i \(-0.00467023\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 40.0000 69.2820i 1.44620 2.50490i
\(766\) 0 0
\(767\) 4.00000 + 6.92820i 0.144432 + 0.250163i
\(768\) 0 0
\(769\) 16.9706 0.611974 0.305987 0.952036i \(-0.401014\pi\)
0.305987 + 0.952036i \(0.401014\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 26.8701 + 46.5403i 0.966449 + 1.67394i 0.705671 + 0.708540i \(0.250646\pi\)
0.260778 + 0.965399i \(0.416021\pi\)
\(774\) 0 0
\(775\) −8.48528 + 14.6969i −0.304800 + 0.527930i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.00000 + 13.8564i −0.286630 + 0.496457i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −11.3137 −0.404319
\(784\) 0 0
\(785\) −40.0000 −1.42766
\(786\) 0 0
\(787\) 4.24264 + 7.34847i 0.151234 + 0.261945i 0.931681 0.363277i \(-0.118342\pi\)
−0.780447 + 0.625221i \(0.785009\pi\)
\(788\) 0 0
\(789\) 22.6274 39.1918i 0.805557 1.39527i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 20.0000 34.6410i 0.710221 1.23014i
\(794\) 0 0
\(795\) 24.0000 + 41.5692i 0.851192 + 1.47431i
\(796\) 0 0
\(797\) 8.48528 0.300564 0.150282 0.988643i \(-0.451982\pi\)
0.150282 + 0.988643i \(0.451982\pi\)
\(798\) 0 0
\(799\) 32.0000 1.13208
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −20.0000 + 34.6410i −0.704033 + 1.21942i
\(808\) 0 0
\(809\) −9.00000 15.5885i −0.316423 0.548061i 0.663316 0.748340i \(-0.269149\pi\)
−0.979739 + 0.200279i \(0.935815\pi\)
\(810\) 0 0
\(811\) 14.1421 0.496598 0.248299 0.968683i \(-0.420129\pi\)
0.248299 + 0.968683i \(0.420129\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 28.2843 + 48.9898i 0.990755 + 1.71604i
\(816\) 0 0
\(817\) −5.65685 + 9.79796i −0.197908 + 0.342787i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −27.0000 + 46.7654i −0.942306 + 1.63212i −0.181250 + 0.983437i \(0.558014\pi\)
−0.761056 + 0.648686i \(0.775319\pi\)
\(822\) 0 0
\(823\) −8.00000 13.8564i −0.278862 0.483004i 0.692240 0.721668i \(-0.256624\pi\)
−0.971102 + 0.238664i \(0.923291\pi\)
\(824\) 0 0
\(825\) −33.9411 −1.18168
\(826\) 0 0
\(827\) −20.0000 −0.695468 −0.347734 0.937593i \(-0.613049\pi\)
−0.347734 + 0.937593i \(0.613049\pi\)
\(828\) 0 0
\(829\) 15.5563 + 26.9444i 0.540294 + 0.935817i 0.998887 + 0.0471706i \(0.0150204\pi\)
−0.458593 + 0.888647i \(0.651646\pi\)
\(830\) 0 0
\(831\) −14.1421 + 24.4949i −0.490585 + 0.849719i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −8.00000 + 13.8564i −0.276851 + 0.479521i
\(836\) 0 0
\(837\) 16.0000 + 27.7128i 0.553041 + 0.957895i
\(838\) 0 0
\(839\) −28.2843 −0.976481 −0.488241 0.872709i \(-0.662361\pi\)
−0.488241 + 0.872709i \(0.662361\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 8.48528 + 14.6969i 0.292249 + 0.506189i
\(844\) 0 0
\(845\) 7.07107 12.2474i 0.243252 0.421325i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 4.00000 6.92820i 0.137280 0.237775i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 42.4264 1.45265 0.726326 0.687350i \(-0.241226\pi\)
0.726326 + 0.687350i \(0.241226\pi\)
\(854\) 0 0
\(855\) 40.0000 1.36797
\(856\) 0 0
\(857\) −14.1421 24.4949i −0.483086 0.836730i 0.516725 0.856151i \(-0.327151\pi\)
−0.999811 + 0.0194215i \(0.993818\pi\)
\(858\) 0 0
\(859\) −21.2132 + 36.7423i −0.723785 + 1.25363i 0.235687 + 0.971829i \(0.424266\pi\)
−0.959472 + 0.281804i \(0.909067\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12.0000 20.7846i 0.408485 0.707516i −0.586235 0.810141i \(-0.699391\pi\)
0.994720 + 0.102624i \(0.0327240\pi\)
\(864\) 0 0
\(865\) 4.00000 + 6.92820i 0.136004 + 0.235566i
\(866\) 0 0
\(867\) −42.4264 −1.44088
\(868\) 0 0
\(869\) −32.0000 −1.08553
\(870\) 0 0
\(871\) −16.9706 29.3939i −0.575026 0.995974i
\(872\) 0 0
\(873\) −14.1421 + 24.4949i −0.478639 + 0.829027i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.00000 + 1.73205i −0.0337676 + 0.0584872i −0.882415 0.470471i \(-0.844084\pi\)
0.848648 + 0.528958i \(0.177417\pi\)
\(878\) 0 0
\(879\) 4.00000 + 6.92820i 0.134917 + 0.233682i
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) 11.3137 + 19.5959i 0.380306 + 0.658710i
\(886\) 0 0
\(887\) 14.1421 24.4949i 0.474846 0.822458i −0.524739 0.851263i \(-0.675837\pi\)
0.999585 + 0.0288053i \(0.00917026\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −2.00000 + 3.46410i −0.0670025 + 0.116052i
\(892\) 0 0
\(893\) 8.00000 + 13.8564i 0.267710 + 0.463687i
\(894\) 0 0
\(895\) 56.5685 1.89088
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.65685 9.79796i −0.188667 0.326780i
\(900\) 0 0
\(901\) 16.9706 29.3939i 0.565371 0.979252i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12.0000 + 20.7846i −0.398893 + 0.690904i
\(906\) 0 0
\(907\) 10.0000 + 17.3205i 0.332045 + 0.575118i 0.982913 0.184073i \(-0.0589282\pi\)
−0.650868 + 0.759191i \(0.725595\pi\)
\(908\) 0 0
\(909\) −42.4264 −1.40720
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) −28.2843 48.9898i −0.936073 1.62133i
\(914\) 0 0
\(915\) 56.5685 97.9796i 1.87010 3.23911i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −16.0000 + 27.7128i −0.527791 + 0.914161i 0.471684 + 0.881768i \(0.343646\pi\)
−0.999475 + 0.0323936i \(0.989687\pi\)
\(920\) 0 0
\(921\) −12.0000 20.7846i −0.395413 0.684876i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 30.0000 0.986394
\(926\) 0 0
\(927\) −42.4264 73.4847i −1.39347 2.41355i
\(928\) 0 0
\(929\) −19.7990 + 34.2929i −0.649584 + 1.12511i 0.333639 + 0.942701i \(0.391723\pi\)
−0.983222 + 0.182411i \(0.941610\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 32.0000 55.4256i 1.04763 1.81455i
\(934\) 0 0
\(935\) 32.0000 + 55.4256i 1.04651 + 1.81261i
\(936\) 0 0
\(937\) −22.6274 −0.739205 −0.369603 0.929190i \(-0.620506\pi\)
−0.369603 + 0.929190i \(0.620506\pi\)
\(938\) 0 0
\(939\) 48.0000 1.56642
\(940\) 0 0
\(941\) −7.07107 12.2474i −0.230510 0.399255i 0.727448 0.686163i \(-0.240706\pi\)
−0.957958 + 0.286907i \(0.907373\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.00000 + 10.3923i −0.194974 + 0.337705i −0.946892 0.321552i \(-0.895796\pi\)
0.751918 + 0.659256i \(0.229129\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 50.9117 1.65092
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 33.9411 + 58.7878i 1.09831 + 1.90233i
\(956\) 0 0
\(957\) 11.3137 19.5959i 0.365720 0.633446i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.500000 + 0.866025i −0.0161290 + 0.0279363i
\(962\) 0 0
\(963\) −30.0000 51.9615i −0.966736 1.67444i
\(964\) 0 0
\(965\) 28.2843 0.910503
\(966\) 0 0
\(967\) −48.0000 −1.54358 −0.771788 0.635880i \(-0.780637\pi\)
−0.771788 + 0.635880i \(0.780637\pi\)
\(968\) 0 0
\(969\) −22.6274 39.1918i −0.726897 1.25902i
\(970\) 0 0
\(971\) 9.89949 17.1464i 0.317690 0.550255i −0.662316 0.749225i \(-0.730426\pi\)
0.980006 + 0.198970i \(0.0637596\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −12.0000 + 20.7846i −0.384308 + 0.665640i
\(976\) 0 0
\(977\) 9.00000 + 15.5885i 0.287936 + 0.498719i 0.973317 0.229465i \(-0.0736978\pi\)
−0.685381 + 0.728184i \(0.740364\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) 0 0
\(983\) −19.7990 34.2929i −0.631490 1.09377i −0.987247 0.159194i \(-0.949110\pi\)
0.355758 0.934578i \(-0.384223\pi\)
\(984\) 0 0
\(985\) −31.1127 + 53.8888i −0.991333 + 1.71704i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 4.00000 + 6.92820i 0.127064 + 0.220082i 0.922538 0.385906i \(-0.126111\pi\)
−0.795474 + 0.605988i \(0.792778\pi\)
\(992\) 0 0
\(993\) −56.5685 −1.79515
\(994\) 0 0
\(995\) −48.0000 −1.52170
\(996\) 0 0
\(997\) −18.3848 31.8434i −0.582252 1.00849i −0.995212 0.0977405i \(-0.968838\pi\)
0.412960 0.910749i \(-0.364495\pi\)
\(998\) 0 0
\(999\) 28.2843 48.9898i 0.894875 1.54997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.i.k.177.2 4
4.3 odd 2 392.2.i.g.177.1 4
7.2 even 3 784.2.a.n.1.1 2
7.3 odd 6 inner 784.2.i.k.753.1 4
7.4 even 3 inner 784.2.i.k.753.2 4
7.5 odd 6 784.2.a.n.1.2 2
7.6 odd 2 inner 784.2.i.k.177.1 4
12.11 even 2 3528.2.s.be.3313.2 4
21.2 odd 6 7056.2.a.cj.1.1 2
21.5 even 6 7056.2.a.cj.1.2 2
28.3 even 6 392.2.i.g.361.2 4
28.11 odd 6 392.2.i.g.361.1 4
28.19 even 6 392.2.a.h.1.1 2
28.23 odd 6 392.2.a.h.1.2 yes 2
28.27 even 2 392.2.i.g.177.2 4
56.5 odd 6 3136.2.a.bq.1.1 2
56.19 even 6 3136.2.a.bt.1.2 2
56.37 even 6 3136.2.a.bq.1.2 2
56.51 odd 6 3136.2.a.bt.1.1 2
84.11 even 6 3528.2.s.be.361.2 4
84.23 even 6 3528.2.a.bj.1.1 2
84.47 odd 6 3528.2.a.bj.1.2 2
84.59 odd 6 3528.2.s.be.361.1 4
84.83 odd 2 3528.2.s.be.3313.1 4
140.19 even 6 9800.2.a.bw.1.2 2
140.79 odd 6 9800.2.a.bw.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
392.2.a.h.1.1 2 28.19 even 6
392.2.a.h.1.2 yes 2 28.23 odd 6
392.2.i.g.177.1 4 4.3 odd 2
392.2.i.g.177.2 4 28.27 even 2
392.2.i.g.361.1 4 28.11 odd 6
392.2.i.g.361.2 4 28.3 even 6
784.2.a.n.1.1 2 7.2 even 3
784.2.a.n.1.2 2 7.5 odd 6
784.2.i.k.177.1 4 7.6 odd 2 inner
784.2.i.k.177.2 4 1.1 even 1 trivial
784.2.i.k.753.1 4 7.3 odd 6 inner
784.2.i.k.753.2 4 7.4 even 3 inner
3136.2.a.bq.1.1 2 56.5 odd 6
3136.2.a.bq.1.2 2 56.37 even 6
3136.2.a.bt.1.1 2 56.51 odd 6
3136.2.a.bt.1.2 2 56.19 even 6
3528.2.a.bj.1.1 2 84.23 even 6
3528.2.a.bj.1.2 2 84.47 odd 6
3528.2.s.be.361.1 4 84.59 odd 6
3528.2.s.be.361.2 4 84.11 even 6
3528.2.s.be.3313.1 4 84.83 odd 2
3528.2.s.be.3313.2 4 12.11 even 2
7056.2.a.cj.1.1 2 21.2 odd 6
7056.2.a.cj.1.2 2 21.5 even 6
9800.2.a.bw.1.1 2 140.79 odd 6
9800.2.a.bw.1.2 2 140.19 even 6