Properties

Label 392.2.y.a.65.4
Level $392$
Weight $2$
Character 392.65
Analytic conductor $3.130$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,2,Mod(9,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.y (of order \(21\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.13013575923\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(7\) over \(\Q(\zeta_{21})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{21}]$

Embedding invariants

Embedding label 65.4
Character \(\chi\) \(=\) 392.65
Dual form 392.2.y.a.193.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0247290 - 0.329985i) q^{3} +(-1.09829 + 0.748802i) q^{5} +(-2.39796 - 1.11795i) q^{7} +(2.85821 - 0.430806i) q^{9} +(3.93140 + 0.592563i) q^{11} +(2.53251 - 3.17567i) q^{13} +(0.274253 + 0.343903i) q^{15} +(5.78695 - 1.78504i) q^{17} +(2.43803 - 4.22279i) q^{19} +(-0.309607 + 0.818935i) q^{21} +(-2.69032 - 0.829855i) q^{23} +(-1.18117 + 3.00956i) q^{25} +(-0.433744 - 1.90036i) q^{27} +(-1.04067 + 4.55949i) q^{29} +(-1.29611 - 2.24492i) q^{31} +(0.0983175 - 1.31196i) q^{33} +(3.47078 - 0.567761i) q^{35} +(4.15258 + 3.85303i) q^{37} +(-1.11055 - 0.757161i) q^{39} +(-5.14698 - 2.47865i) q^{41} +(-8.70663 + 4.19289i) q^{43} +(-2.81656 + 2.61339i) q^{45} +(-2.96130 - 7.54527i) q^{47} +(4.50038 + 5.36158i) q^{49} +(-0.732141 - 1.86546i) q^{51} +(9.90956 - 9.19473i) q^{53} +(-4.76153 + 2.29303i) q^{55} +(-1.45375 - 0.700088i) q^{57} +(10.9531 + 7.46772i) q^{59} +(2.06626 + 1.91721i) q^{61} +(-7.33549 - 2.16228i) q^{63} +(-0.403488 + 5.38417i) q^{65} +(-4.76846 - 8.25921i) q^{67} +(-0.207311 + 0.908288i) q^{69} +(0.702213 + 3.07659i) q^{71} +(-3.48349 + 8.87578i) q^{73} +(1.02232 + 0.315344i) q^{75} +(-8.76486 - 5.81604i) q^{77} +(-7.30122 + 12.6461i) q^{79} +(7.66988 - 2.36585i) q^{81} +(1.50601 + 1.88848i) q^{83} +(-5.01912 + 6.29377i) q^{85} +(1.53030 + 0.230655i) q^{87} +(-11.5242 + 1.73700i) q^{89} +(-9.62310 + 4.78390i) q^{91} +(-0.708740 + 0.483211i) q^{93} +(0.484370 + 6.46346i) q^{95} -15.5042 q^{97} +11.4921 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 8 q^{3} - q^{5} + 4 q^{7} + 41 q^{9} + q^{11} - 2 q^{13} + q^{15} - 5 q^{17} - 13 q^{19} + 12 q^{21} - 5 q^{23} + 2 q^{25} + 4 q^{27} - 21 q^{29} + 23 q^{31} - 17 q^{33} - 22 q^{35} - 60 q^{37}+ \cdots - 94 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{10}{21}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0247290 0.329985i −0.0142773 0.190517i −0.999782 0.0208701i \(-0.993356\pi\)
0.985505 0.169647i \(-0.0542627\pi\)
\(4\) 0 0
\(5\) −1.09829 + 0.748802i −0.491171 + 0.334875i −0.783446 0.621460i \(-0.786540\pi\)
0.292275 + 0.956334i \(0.405588\pi\)
\(6\) 0 0
\(7\) −2.39796 1.11795i −0.906342 0.422545i
\(8\) 0 0
\(9\) 2.85821 0.430806i 0.952738 0.143602i
\(10\) 0 0
\(11\) 3.93140 + 0.592563i 1.18536 + 0.178664i 0.711984 0.702196i \(-0.247797\pi\)
0.473377 + 0.880860i \(0.343035\pi\)
\(12\) 0 0
\(13\) 2.53251 3.17567i 0.702393 0.880773i −0.294807 0.955557i \(-0.595255\pi\)
0.997200 + 0.0747837i \(0.0238266\pi\)
\(14\) 0 0
\(15\) 0.274253 + 0.343903i 0.0708119 + 0.0887953i
\(16\) 0 0
\(17\) 5.78695 1.78504i 1.40354 0.432935i 0.501715 0.865033i \(-0.332703\pi\)
0.901827 + 0.432098i \(0.142227\pi\)
\(18\) 0 0
\(19\) 2.43803 4.22279i 0.559323 0.968776i −0.438230 0.898863i \(-0.644395\pi\)
0.997553 0.0699128i \(-0.0222721\pi\)
\(20\) 0 0
\(21\) −0.309607 + 0.818935i −0.0675619 + 0.178706i
\(22\) 0 0
\(23\) −2.69032 0.829855i −0.560971 0.173037i 0.00128589 0.999999i \(-0.499591\pi\)
−0.562257 + 0.826962i \(0.690067\pi\)
\(24\) 0 0
\(25\) −1.18117 + 3.00956i −0.236233 + 0.601912i
\(26\) 0 0
\(27\) −0.433744 1.90036i −0.0834740 0.365724i
\(28\) 0 0
\(29\) −1.04067 + 4.55949i −0.193248 + 0.846676i 0.781595 + 0.623786i \(0.214406\pi\)
−0.974844 + 0.222890i \(0.928451\pi\)
\(30\) 0 0
\(31\) −1.29611 2.24492i −0.232788 0.403200i 0.725840 0.687864i \(-0.241451\pi\)
−0.958627 + 0.284664i \(0.908118\pi\)
\(32\) 0 0
\(33\) 0.0983175 1.31196i 0.0171149 0.228382i
\(34\) 0 0
\(35\) 3.47078 0.567761i 0.586668 0.0959691i
\(36\) 0 0
\(37\) 4.15258 + 3.85303i 0.682679 + 0.633434i 0.943274 0.332014i \(-0.107728\pi\)
−0.260595 + 0.965448i \(0.583919\pi\)
\(38\) 0 0
\(39\) −1.11055 0.757161i −0.177830 0.121243i
\(40\) 0 0
\(41\) −5.14698 2.47865i −0.803823 0.387101i −0.0135902 0.999908i \(-0.504326\pi\)
−0.790233 + 0.612807i \(0.790040\pi\)
\(42\) 0 0
\(43\) −8.70663 + 4.19289i −1.32775 + 0.639410i −0.957206 0.289406i \(-0.906542\pi\)
−0.370542 + 0.928816i \(0.620828\pi\)
\(44\) 0 0
\(45\) −2.81656 + 2.61339i −0.419868 + 0.389581i
\(46\) 0 0
\(47\) −2.96130 7.54527i −0.431950 1.10059i −0.966775 0.255628i \(-0.917718\pi\)
0.534825 0.844963i \(-0.320378\pi\)
\(48\) 0 0
\(49\) 4.50038 + 5.36158i 0.642911 + 0.765941i
\(50\) 0 0
\(51\) −0.732141 1.86546i −0.102520 0.261217i
\(52\) 0 0
\(53\) 9.90956 9.19473i 1.36118 1.26299i 0.427913 0.903820i \(-0.359249\pi\)
0.933271 0.359174i \(-0.116941\pi\)
\(54\) 0 0
\(55\) −4.76153 + 2.29303i −0.642045 + 0.309193i
\(56\) 0 0
\(57\) −1.45375 0.700088i −0.192554 0.0927290i
\(58\) 0 0
\(59\) 10.9531 + 7.46772i 1.42598 + 0.972215i 0.997645 + 0.0685939i \(0.0218513\pi\)
0.428333 + 0.903621i \(0.359101\pi\)
\(60\) 0 0
\(61\) 2.06626 + 1.91721i 0.264558 + 0.245474i 0.801286 0.598282i \(-0.204150\pi\)
−0.536728 + 0.843755i \(0.680340\pi\)
\(62\) 0 0
\(63\) −7.33549 2.16228i −0.924185 0.272422i
\(64\) 0 0
\(65\) −0.403488 + 5.38417i −0.0500465 + 0.667824i
\(66\) 0 0
\(67\) −4.76846 8.25921i −0.582560 1.00902i −0.995175 0.0981178i \(-0.968718\pi\)
0.412615 0.910906i \(-0.364616\pi\)
\(68\) 0 0
\(69\) −0.207311 + 0.908288i −0.0249573 + 0.109345i
\(70\) 0 0
\(71\) 0.702213 + 3.07659i 0.0833373 + 0.365125i 0.999351 0.0360224i \(-0.0114688\pi\)
−0.916014 + 0.401147i \(0.868612\pi\)
\(72\) 0 0
\(73\) −3.48349 + 8.87578i −0.407711 + 1.03883i 0.568630 + 0.822594i \(0.307474\pi\)
−0.976341 + 0.216238i \(0.930621\pi\)
\(74\) 0 0
\(75\) 1.02232 + 0.315344i 0.118047 + 0.0364128i
\(76\) 0 0
\(77\) −8.76486 5.81604i −0.998849 0.662800i
\(78\) 0 0
\(79\) −7.30122 + 12.6461i −0.821452 + 1.42280i 0.0831492 + 0.996537i \(0.473502\pi\)
−0.904601 + 0.426259i \(0.859831\pi\)
\(80\) 0 0
\(81\) 7.66988 2.36585i 0.852209 0.262872i
\(82\) 0 0
\(83\) 1.50601 + 1.88848i 0.165306 + 0.207288i 0.857584 0.514343i \(-0.171964\pi\)
−0.692278 + 0.721631i \(0.743393\pi\)
\(84\) 0 0
\(85\) −5.01912 + 6.29377i −0.544400 + 0.682656i
\(86\) 0 0
\(87\) 1.53030 + 0.230655i 0.164065 + 0.0247288i
\(88\) 0 0
\(89\) −11.5242 + 1.73700i −1.22156 + 0.184121i −0.727993 0.685584i \(-0.759547\pi\)
−0.493571 + 0.869706i \(0.664309\pi\)
\(90\) 0 0
\(91\) −9.62310 + 4.78390i −1.00877 + 0.501489i
\(92\) 0 0
\(93\) −0.708740 + 0.483211i −0.0734929 + 0.0501066i
\(94\) 0 0
\(95\) 0.484370 + 6.46346i 0.0496953 + 0.663137i
\(96\) 0 0
\(97\) −15.5042 −1.57421 −0.787105 0.616819i \(-0.788421\pi\)
−0.787105 + 0.616819i \(0.788421\pi\)
\(98\) 0 0
\(99\) 11.4921 1.15500
\(100\) 0 0
\(101\) −0.106289 1.41833i −0.0105762 0.141129i 0.989416 0.145107i \(-0.0463528\pi\)
−0.999992 + 0.00397807i \(0.998734\pi\)
\(102\) 0 0
\(103\) 4.65161 3.17141i 0.458336 0.312489i −0.312050 0.950066i \(-0.601016\pi\)
0.770387 + 0.637577i \(0.220063\pi\)
\(104\) 0 0
\(105\) −0.273181 1.13126i −0.0266598 0.110400i
\(106\) 0 0
\(107\) 8.92492 1.34522i 0.862805 0.130047i 0.297292 0.954787i \(-0.403916\pi\)
0.565513 + 0.824740i \(0.308678\pi\)
\(108\) 0 0
\(109\) 1.36894 + 0.206334i 0.131121 + 0.0197632i 0.214275 0.976773i \(-0.431261\pi\)
−0.0831541 + 0.996537i \(0.526499\pi\)
\(110\) 0 0
\(111\) 1.16875 1.46557i 0.110933 0.139106i
\(112\) 0 0
\(113\) −8.08063 10.1328i −0.760162 0.953213i 0.239682 0.970851i \(-0.422957\pi\)
−0.999844 + 0.0176383i \(0.994385\pi\)
\(114\) 0 0
\(115\) 3.57616 1.10310i 0.333478 0.102864i
\(116\) 0 0
\(117\) 5.87037 10.1678i 0.542716 0.940011i
\(118\) 0 0
\(119\) −15.8724 2.18908i −1.45502 0.200672i
\(120\) 0 0
\(121\) 4.59346 + 1.41689i 0.417587 + 0.128809i
\(122\) 0 0
\(123\) −0.690639 + 1.75972i −0.0622728 + 0.158669i
\(124\) 0 0
\(125\) −2.43525 10.6695i −0.217815 0.954312i
\(126\) 0 0
\(127\) −2.74707 + 12.0357i −0.243763 + 1.06799i 0.693797 + 0.720171i \(0.255936\pi\)
−0.937560 + 0.347824i \(0.886921\pi\)
\(128\) 0 0
\(129\) 1.59890 + 2.76937i 0.140775 + 0.243829i
\(130\) 0 0
\(131\) 0.247732 3.30576i 0.0216445 0.288826i −0.975869 0.218355i \(-0.929931\pi\)
0.997514 0.0704705i \(-0.0224501\pi\)
\(132\) 0 0
\(133\) −10.5672 + 7.40048i −0.916289 + 0.641703i
\(134\) 0 0
\(135\) 1.89937 + 1.76236i 0.163472 + 0.151679i
\(136\) 0 0
\(137\) 4.89427 + 3.33686i 0.418146 + 0.285087i 0.754060 0.656806i \(-0.228093\pi\)
−0.335914 + 0.941893i \(0.609045\pi\)
\(138\) 0 0
\(139\) −4.61054 2.22032i −0.391061 0.188325i 0.228012 0.973658i \(-0.426777\pi\)
−0.619073 + 0.785333i \(0.712492\pi\)
\(140\) 0 0
\(141\) −2.41660 + 1.16377i −0.203514 + 0.0980073i
\(142\) 0 0
\(143\) 11.8381 10.9842i 0.989952 0.918542i
\(144\) 0 0
\(145\) −2.27119 5.78691i −0.188612 0.480576i
\(146\) 0 0
\(147\) 1.65795 1.61764i 0.136746 0.133421i
\(148\) 0 0
\(149\) 5.96562 + 15.2002i 0.488723 + 1.24525i 0.936363 + 0.351032i \(0.114169\pi\)
−0.447641 + 0.894214i \(0.647736\pi\)
\(150\) 0 0
\(151\) 0.634167 0.588421i 0.0516078 0.0478850i −0.653947 0.756540i \(-0.726888\pi\)
0.705555 + 0.708655i \(0.250698\pi\)
\(152\) 0 0
\(153\) 15.7713 7.59507i 1.27504 0.614025i
\(154\) 0 0
\(155\) 3.10451 + 1.49505i 0.249360 + 0.120086i
\(156\) 0 0
\(157\) −0.654478 0.446216i −0.0522330 0.0356119i 0.536922 0.843632i \(-0.319587\pi\)
−0.589155 + 0.808020i \(0.700539\pi\)
\(158\) 0 0
\(159\) −3.27918 3.04263i −0.260056 0.241296i
\(160\) 0 0
\(161\) 5.52354 + 4.99760i 0.435316 + 0.393866i
\(162\) 0 0
\(163\) −0.761747 + 10.1648i −0.0596646 + 0.796169i 0.884467 + 0.466602i \(0.154522\pi\)
−0.944132 + 0.329567i \(0.893097\pi\)
\(164\) 0 0
\(165\) 0.874414 + 1.51453i 0.0680731 + 0.117906i
\(166\) 0 0
\(167\) −3.91027 + 17.1320i −0.302586 + 1.32571i 0.563623 + 0.826032i \(0.309407\pi\)
−0.866209 + 0.499682i \(0.833450\pi\)
\(168\) 0 0
\(169\) −0.778496 3.41081i −0.0598843 0.262370i
\(170\) 0 0
\(171\) 5.14921 13.1200i 0.393770 1.00331i
\(172\) 0 0
\(173\) 7.05609 + 2.17652i 0.536465 + 0.165477i 0.551137 0.834415i \(-0.314194\pi\)
−0.0146721 + 0.999892i \(0.504670\pi\)
\(174\) 0 0
\(175\) 6.19692 5.89631i 0.468443 0.445719i
\(176\) 0 0
\(177\) 2.19338 3.79904i 0.164864 0.285553i
\(178\) 0 0
\(179\) 6.59849 2.03536i 0.493194 0.152130i −0.0381743 0.999271i \(-0.512154\pi\)
0.531368 + 0.847141i \(0.321678\pi\)
\(180\) 0 0
\(181\) −13.8911 17.4189i −1.03252 1.29474i −0.954635 0.297778i \(-0.903754\pi\)
−0.0778858 0.996962i \(-0.524817\pi\)
\(182\) 0 0
\(183\) 0.581554 0.729245i 0.0429897 0.0539074i
\(184\) 0 0
\(185\) −7.44589 1.12229i −0.547433 0.0825123i
\(186\) 0 0
\(187\) 23.8085 3.58856i 1.74105 0.262422i
\(188\) 0 0
\(189\) −1.08440 + 5.04187i −0.0788787 + 0.366742i
\(190\) 0 0
\(191\) −0.446308 + 0.304288i −0.0322937 + 0.0220175i −0.579359 0.815072i \(-0.696697\pi\)
0.547066 + 0.837090i \(0.315745\pi\)
\(192\) 0 0
\(193\) −1.17545 15.6853i −0.0846109 1.12905i −0.864330 0.502925i \(-0.832257\pi\)
0.779719 0.626129i \(-0.215362\pi\)
\(194\) 0 0
\(195\) 1.78667 0.127946
\(196\) 0 0
\(197\) −8.85459 −0.630863 −0.315432 0.948948i \(-0.602149\pi\)
−0.315432 + 0.948948i \(0.602149\pi\)
\(198\) 0 0
\(199\) 1.42731 + 19.0461i 0.101179 + 1.35014i 0.784547 + 0.620069i \(0.212896\pi\)
−0.683368 + 0.730074i \(0.739485\pi\)
\(200\) 0 0
\(201\) −2.60750 + 1.77776i −0.183919 + 0.125394i
\(202\) 0 0
\(203\) 7.59277 9.77003i 0.532908 0.685722i
\(204\) 0 0
\(205\) 7.50890 1.13179i 0.524445 0.0790473i
\(206\) 0 0
\(207\) −8.04703 1.21289i −0.559307 0.0843020i
\(208\) 0 0
\(209\) 12.0871 15.1568i 0.836085 1.04842i
\(210\) 0 0
\(211\) 13.3127 + 16.6936i 0.916484 + 1.14923i 0.988407 + 0.151825i \(0.0485149\pi\)
−0.0719233 + 0.997410i \(0.522914\pi\)
\(212\) 0 0
\(213\) 0.997865 0.307801i 0.0683726 0.0210901i
\(214\) 0 0
\(215\) 6.42277 11.1246i 0.438029 0.758689i
\(216\) 0 0
\(217\) 0.598297 + 6.83221i 0.0406150 + 0.463801i
\(218\) 0 0
\(219\) 3.01502 + 0.930009i 0.203736 + 0.0628442i
\(220\) 0 0
\(221\) 8.98684 22.8981i 0.604520 1.54029i
\(222\) 0 0
\(223\) −0.981286 4.29930i −0.0657118 0.287902i 0.931386 0.364033i \(-0.118600\pi\)
−0.997098 + 0.0761309i \(0.975743\pi\)
\(224\) 0 0
\(225\) −2.07949 + 9.11083i −0.138632 + 0.607388i
\(226\) 0 0
\(227\) 7.40903 + 12.8328i 0.491755 + 0.851744i 0.999955 0.00949463i \(-0.00302228\pi\)
−0.508200 + 0.861239i \(0.669689\pi\)
\(228\) 0 0
\(229\) −0.798026 + 10.6489i −0.0527350 + 0.703700i 0.906701 + 0.421774i \(0.138592\pi\)
−0.959436 + 0.281926i \(0.909027\pi\)
\(230\) 0 0
\(231\) −1.70246 + 3.03610i −0.112014 + 0.199761i
\(232\) 0 0
\(233\) −15.8433 14.7004i −1.03793 0.963058i −0.0385848 0.999255i \(-0.512285\pi\)
−0.999345 + 0.0361975i \(0.988475\pi\)
\(234\) 0 0
\(235\) 8.90229 + 6.06948i 0.580721 + 0.395929i
\(236\) 0 0
\(237\) 4.35357 + 2.09657i 0.282795 + 0.136187i
\(238\) 0 0
\(239\) 9.76927 4.70463i 0.631921 0.304317i −0.0903678 0.995908i \(-0.528804\pi\)
0.722289 + 0.691591i \(0.243090\pi\)
\(240\) 0 0
\(241\) 6.58829 6.11304i 0.424389 0.393776i −0.438859 0.898556i \(-0.644617\pi\)
0.863248 + 0.504781i \(0.168427\pi\)
\(242\) 0 0
\(243\) −3.10676 7.91589i −0.199299 0.507805i
\(244\) 0 0
\(245\) −8.95750 2.51869i −0.572273 0.160913i
\(246\) 0 0
\(247\) −7.23586 18.4367i −0.460407 1.17310i
\(248\) 0 0
\(249\) 0.585928 0.543662i 0.0371317 0.0344532i
\(250\) 0 0
\(251\) −1.40751 + 0.677822i −0.0888414 + 0.0427838i −0.477777 0.878481i \(-0.658557\pi\)
0.388935 + 0.921265i \(0.372843\pi\)
\(252\) 0 0
\(253\) −10.0850 4.85668i −0.634038 0.305337i
\(254\) 0 0
\(255\) 2.20097 + 1.50059i 0.137830 + 0.0939709i
\(256\) 0 0
\(257\) 7.89389 + 7.32446i 0.492407 + 0.456887i 0.886866 0.462026i \(-0.152877\pi\)
−0.394459 + 0.918914i \(0.629068\pi\)
\(258\) 0 0
\(259\) −5.65020 13.8818i −0.351086 0.862570i
\(260\) 0 0
\(261\) −1.01021 + 13.4803i −0.0625305 + 0.834411i
\(262\) 0 0
\(263\) 1.69904 + 2.94283i 0.104767 + 0.181463i 0.913643 0.406517i \(-0.133257\pi\)
−0.808876 + 0.587980i \(0.799924\pi\)
\(264\) 0 0
\(265\) −3.99855 + 17.5188i −0.245629 + 1.07617i
\(266\) 0 0
\(267\) 0.858164 + 3.75986i 0.0525188 + 0.230100i
\(268\) 0 0
\(269\) −0.523532 + 1.33394i −0.0319203 + 0.0813317i −0.945945 0.324326i \(-0.894862\pi\)
0.914025 + 0.405658i \(0.132958\pi\)
\(270\) 0 0
\(271\) −30.4868 9.40393i −1.85194 0.571248i −0.998768 0.0496185i \(-0.984199\pi\)
−0.853172 0.521629i \(-0.825324\pi\)
\(272\) 0 0
\(273\) 1.81658 + 3.05718i 0.109945 + 0.185029i
\(274\) 0 0
\(275\) −6.42699 + 11.1319i −0.387562 + 0.671277i
\(276\) 0 0
\(277\) −3.56738 + 1.10039i −0.214343 + 0.0661160i −0.400067 0.916486i \(-0.631013\pi\)
0.185724 + 0.982602i \(0.440537\pi\)
\(278\) 0 0
\(279\) −4.67168 5.85810i −0.279686 0.350715i
\(280\) 0 0
\(281\) −1.44123 + 1.80725i −0.0859767 + 0.107811i −0.822959 0.568100i \(-0.807679\pi\)
0.736983 + 0.675912i \(0.236250\pi\)
\(282\) 0 0
\(283\) 9.38213 + 1.41413i 0.557710 + 0.0840613i 0.421848 0.906667i \(-0.361382\pi\)
0.135862 + 0.990728i \(0.456620\pi\)
\(284\) 0 0
\(285\) 2.12087 0.319669i 0.125629 0.0189356i
\(286\) 0 0
\(287\) 9.57121 + 11.6978i 0.564971 + 0.690497i
\(288\) 0 0
\(289\) 16.2564 11.0834i 0.956257 0.651965i
\(290\) 0 0
\(291\) 0.383402 + 5.11615i 0.0224754 + 0.299914i
\(292\) 0 0
\(293\) −16.6942 −0.975287 −0.487644 0.873043i \(-0.662143\pi\)
−0.487644 + 0.873043i \(0.662143\pi\)
\(294\) 0 0
\(295\) −17.6216 −1.02597
\(296\) 0 0
\(297\) −0.579139 7.72807i −0.0336051 0.448428i
\(298\) 0 0
\(299\) −9.44863 + 6.44197i −0.546428 + 0.372549i
\(300\) 0 0
\(301\) 25.5655 0.320798i 1.47357 0.0184905i
\(302\) 0 0
\(303\) −0.465400 + 0.0701478i −0.0267365 + 0.00402988i
\(304\) 0 0
\(305\) −3.70497 0.558434i −0.212146 0.0319758i
\(306\) 0 0
\(307\) −0.726351 + 0.910815i −0.0414550 + 0.0519830i −0.802127 0.597154i \(-0.796298\pi\)
0.760672 + 0.649137i \(0.224870\pi\)
\(308\) 0 0
\(309\) −1.16155 1.45653i −0.0660781 0.0828594i
\(310\) 0 0
\(311\) 7.07320 2.18179i 0.401084 0.123718i −0.0876488 0.996151i \(-0.527935\pi\)
0.488733 + 0.872433i \(0.337459\pi\)
\(312\) 0 0
\(313\) −14.3138 + 24.7922i −0.809063 + 1.40134i 0.104450 + 0.994530i \(0.466692\pi\)
−0.913513 + 0.406809i \(0.866642\pi\)
\(314\) 0 0
\(315\) 9.67563 3.11801i 0.545160 0.175680i
\(316\) 0 0
\(317\) 14.2206 + 4.38646i 0.798706 + 0.246368i 0.667133 0.744938i \(-0.267521\pi\)
0.131573 + 0.991307i \(0.457997\pi\)
\(318\) 0 0
\(319\) −6.79309 + 17.3085i −0.380340 + 0.969090i
\(320\) 0 0
\(321\) −0.664605 2.91182i −0.0370946 0.162522i
\(322\) 0 0
\(323\) 6.57092 28.7891i 0.365616 1.60187i
\(324\) 0 0
\(325\) 6.56607 + 11.3728i 0.364220 + 0.630847i
\(326\) 0 0
\(327\) 0.0342348 0.456832i 0.00189319 0.0252628i
\(328\) 0 0
\(329\) −1.33416 + 21.4038i −0.0735548 + 1.18003i
\(330\) 0 0
\(331\) −23.1305 21.4620i −1.27137 1.17966i −0.974413 0.224766i \(-0.927838\pi\)
−0.296956 0.954891i \(-0.595971\pi\)
\(332\) 0 0
\(333\) 13.5289 + 9.22382i 0.741377 + 0.505462i
\(334\) 0 0
\(335\) 11.4217 + 5.50039i 0.624033 + 0.300518i
\(336\) 0 0
\(337\) 5.13756 2.47412i 0.279861 0.134774i −0.288688 0.957423i \(-0.593219\pi\)
0.568549 + 0.822649i \(0.307505\pi\)
\(338\) 0 0
\(339\) −3.14384 + 2.91706i −0.170750 + 0.158433i
\(340\) 0 0
\(341\) −3.76526 9.59372i −0.203900 0.519529i
\(342\) 0 0
\(343\) −4.79773 17.8880i −0.259053 0.965863i
\(344\) 0 0
\(345\) −0.452440 1.15280i −0.0243586 0.0620646i
\(346\) 0 0
\(347\) −18.2224 + 16.9079i −0.978231 + 0.907666i −0.995742 0.0921808i \(-0.970616\pi\)
0.0175111 + 0.999847i \(0.494426\pi\)
\(348\) 0 0
\(349\) 8.32432 4.00878i 0.445591 0.214585i −0.197613 0.980280i \(-0.563319\pi\)
0.643204 + 0.765695i \(0.277605\pi\)
\(350\) 0 0
\(351\) −7.13337 3.43525i −0.380751 0.183360i
\(352\) 0 0
\(353\) −24.5375 16.7294i −1.30600 0.890416i −0.307863 0.951431i \(-0.599614\pi\)
−0.998137 + 0.0610152i \(0.980566\pi\)
\(354\) 0 0
\(355\) −3.07500 2.85318i −0.163204 0.151431i
\(356\) 0 0
\(357\) −0.329853 + 5.29180i −0.0174577 + 0.280072i
\(358\) 0 0
\(359\) −0.207560 + 2.76969i −0.0109546 + 0.146179i −0.999999 0.00143979i \(-0.999542\pi\)
0.989044 + 0.147618i \(0.0471607\pi\)
\(360\) 0 0
\(361\) −2.38800 4.13613i −0.125684 0.217691i
\(362\) 0 0
\(363\) 0.353962 1.55081i 0.0185782 0.0813964i
\(364\) 0 0
\(365\) −2.82032 12.3566i −0.147622 0.646776i
\(366\) 0 0
\(367\) −1.99885 + 5.09299i −0.104339 + 0.265852i −0.973504 0.228671i \(-0.926562\pi\)
0.869164 + 0.494523i \(0.164657\pi\)
\(368\) 0 0
\(369\) −15.7790 4.86717i −0.821421 0.253375i
\(370\) 0 0
\(371\) −34.0419 + 10.9702i −1.76737 + 0.569543i
\(372\) 0 0
\(373\) −14.3447 + 24.8458i −0.742743 + 1.28647i 0.208500 + 0.978022i \(0.433142\pi\)
−0.951242 + 0.308445i \(0.900191\pi\)
\(374\) 0 0
\(375\) −3.46056 + 1.06744i −0.178703 + 0.0551225i
\(376\) 0 0
\(377\) 11.8439 + 14.8518i 0.609993 + 0.764907i
\(378\) 0 0
\(379\) −6.25401 + 7.84228i −0.321247 + 0.402831i −0.916065 0.401029i \(-0.868653\pi\)
0.594818 + 0.803860i \(0.297224\pi\)
\(380\) 0 0
\(381\) 4.03953 + 0.608861i 0.206951 + 0.0311929i
\(382\) 0 0
\(383\) 27.8754 4.20154i 1.42436 0.214688i 0.608786 0.793334i \(-0.291657\pi\)
0.815579 + 0.578646i \(0.196419\pi\)
\(384\) 0 0
\(385\) 13.9814 0.175440i 0.712560 0.00894124i
\(386\) 0 0
\(387\) −23.0791 + 15.7351i −1.17318 + 0.799858i
\(388\) 0 0
\(389\) 1.65608 + 22.0989i 0.0839668 + 1.12046i 0.866943 + 0.498408i \(0.166082\pi\)
−0.782976 + 0.622052i \(0.786299\pi\)
\(390\) 0 0
\(391\) −17.0501 −0.862260
\(392\) 0 0
\(393\) −1.09698 −0.0553352
\(394\) 0 0
\(395\) −1.45055 19.3563i −0.0729852 0.973919i
\(396\) 0 0
\(397\) −2.66260 + 1.81533i −0.133632 + 0.0911088i −0.628291 0.777978i \(-0.716245\pi\)
0.494659 + 0.869087i \(0.335293\pi\)
\(398\) 0 0
\(399\) 2.70336 + 3.30400i 0.135337 + 0.165407i
\(400\) 0 0
\(401\) 24.3170 3.66520i 1.21433 0.183031i 0.489530 0.871987i \(-0.337168\pi\)
0.724804 + 0.688955i \(0.241930\pi\)
\(402\) 0 0
\(403\) −10.4116 1.56929i −0.518637 0.0781719i
\(404\) 0 0
\(405\) −6.65222 + 8.34161i −0.330551 + 0.414498i
\(406\) 0 0
\(407\) 14.0423 + 17.6084i 0.696049 + 0.872818i
\(408\) 0 0
\(409\) −33.5586 + 10.3514i −1.65936 + 0.511846i −0.975915 0.218152i \(-0.929997\pi\)
−0.683450 + 0.729998i \(0.739521\pi\)
\(410\) 0 0
\(411\) 0.980082 1.69755i 0.0483439 0.0837341i
\(412\) 0 0
\(413\) −17.9166 30.1523i −0.881618 1.48370i
\(414\) 0 0
\(415\) −3.06814 0.946396i −0.150609 0.0464567i
\(416\) 0 0
\(417\) −0.618658 + 1.57631i −0.0302958 + 0.0771925i
\(418\) 0 0
\(419\) 4.15641 + 18.2104i 0.203054 + 0.889637i 0.969064 + 0.246809i \(0.0793819\pi\)
−0.766010 + 0.642828i \(0.777761\pi\)
\(420\) 0 0
\(421\) −0.405376 + 1.77607i −0.0197568 + 0.0865603i −0.983845 0.179021i \(-0.942707\pi\)
0.964088 + 0.265582i \(0.0855640\pi\)
\(422\) 0 0
\(423\) −11.7146 20.2903i −0.569583 0.986546i
\(424\) 0 0
\(425\) −1.46317 + 19.5246i −0.0709740 + 0.947083i
\(426\) 0 0
\(427\) −2.81146 6.90736i −0.136056 0.334270i
\(428\) 0 0
\(429\) −3.91735 3.63477i −0.189132 0.175488i
\(430\) 0 0
\(431\) −4.82277 3.28811i −0.232304 0.158382i 0.441574 0.897225i \(-0.354420\pi\)
−0.673878 + 0.738842i \(0.735373\pi\)
\(432\) 0 0
\(433\) 25.6397 + 12.3474i 1.23217 + 0.593380i 0.932675 0.360719i \(-0.117469\pi\)
0.299492 + 0.954099i \(0.403183\pi\)
\(434\) 0 0
\(435\) −1.85343 + 0.892564i −0.0888651 + 0.0427952i
\(436\) 0 0
\(437\) −10.0634 + 9.33747i −0.481398 + 0.446672i
\(438\) 0 0
\(439\) 14.5231 + 37.0043i 0.693151 + 1.76612i 0.641077 + 0.767477i \(0.278488\pi\)
0.0520740 + 0.998643i \(0.483417\pi\)
\(440\) 0 0
\(441\) 15.1729 + 13.3858i 0.722517 + 0.637417i
\(442\) 0 0
\(443\) −5.78442 14.7385i −0.274826 0.700246i −0.999933 0.0116090i \(-0.996305\pi\)
0.725106 0.688637i \(-0.241791\pi\)
\(444\) 0 0
\(445\) 11.3563 10.5371i 0.538339 0.499506i
\(446\) 0 0
\(447\) 4.86830 2.34445i 0.230263 0.110889i
\(448\) 0 0
\(449\) 20.1211 + 9.68983i 0.949576 + 0.457292i 0.843537 0.537070i \(-0.180469\pi\)
0.106038 + 0.994362i \(0.466183\pi\)
\(450\) 0 0
\(451\) −18.7661 12.7945i −0.883659 0.602469i
\(452\) 0 0
\(453\) −0.209852 0.194714i −0.00985972 0.00914848i
\(454\) 0 0
\(455\) 6.98677 12.4599i 0.327545 0.584130i
\(456\) 0 0
\(457\) 1.99644 26.6406i 0.0933894 1.24619i −0.731871 0.681443i \(-0.761353\pi\)
0.825261 0.564752i \(-0.191028\pi\)
\(458\) 0 0
\(459\) −5.90226 10.2230i −0.275494 0.477169i
\(460\) 0 0
\(461\) 0.389263 1.70547i 0.0181298 0.0794317i −0.965054 0.262052i \(-0.915601\pi\)
0.983184 + 0.182620i \(0.0584579\pi\)
\(462\) 0 0
\(463\) 0.439409 + 1.92518i 0.0204211 + 0.0894705i 0.984112 0.177551i \(-0.0568176\pi\)
−0.963690 + 0.267022i \(0.913960\pi\)
\(464\) 0 0
\(465\) 0.416574 1.06141i 0.0193181 0.0492218i
\(466\) 0 0
\(467\) −10.9636 3.38183i −0.507336 0.156492i 0.0305118 0.999534i \(-0.490286\pi\)
−0.537848 + 0.843042i \(0.680762\pi\)
\(468\) 0 0
\(469\) 2.20117 + 25.1361i 0.101641 + 1.16068i
\(470\) 0 0
\(471\) −0.131060 + 0.227002i −0.00603892 + 0.0104597i
\(472\) 0 0
\(473\) −36.7138 + 11.3247i −1.68810 + 0.520710i
\(474\) 0 0
\(475\) 9.82904 + 12.3252i 0.450987 + 0.565520i
\(476\) 0 0
\(477\) 24.3625 30.5496i 1.11548 1.39877i
\(478\) 0 0
\(479\) −15.3307 2.31073i −0.700476 0.105580i −0.210858 0.977517i \(-0.567626\pi\)
−0.489618 + 0.871937i \(0.662864\pi\)
\(480\) 0 0
\(481\) 22.7524 3.42937i 1.03742 0.156366i
\(482\) 0 0
\(483\) 1.51254 1.94627i 0.0688230 0.0885584i
\(484\) 0 0
\(485\) 17.0281 11.6096i 0.773206 0.527163i
\(486\) 0 0
\(487\) −2.83768 37.8661i −0.128587 1.71588i −0.572580 0.819849i \(-0.694058\pi\)
0.443993 0.896030i \(-0.353561\pi\)
\(488\) 0 0
\(489\) 3.37307 0.152536
\(490\) 0 0
\(491\) 24.4091 1.10157 0.550784 0.834648i \(-0.314329\pi\)
0.550784 + 0.834648i \(0.314329\pi\)
\(492\) 0 0
\(493\) 2.11653 + 28.2432i 0.0953239 + 1.27201i
\(494\) 0 0
\(495\) −12.6216 + 8.60528i −0.567300 + 0.386779i
\(496\) 0 0
\(497\) 1.75560 8.16257i 0.0787495 0.366142i
\(498\) 0 0
\(499\) 32.0079 4.82441i 1.43287 0.215970i 0.613708 0.789533i \(-0.289677\pi\)
0.819161 + 0.573563i \(0.194439\pi\)
\(500\) 0 0
\(501\) 5.75000 + 0.866673i 0.256891 + 0.0387201i
\(502\) 0 0
\(503\) 17.3441 21.7488i 0.773335 0.969731i −0.226656 0.973975i \(-0.572779\pi\)
0.999991 + 0.00424376i \(0.00135084\pi\)
\(504\) 0 0
\(505\) 1.17879 + 1.47815i 0.0524554 + 0.0657769i
\(506\) 0 0
\(507\) −1.10627 + 0.341238i −0.0491310 + 0.0151549i
\(508\) 0 0
\(509\) 5.69883 9.87066i 0.252596 0.437509i −0.711644 0.702540i \(-0.752049\pi\)
0.964240 + 0.265031i \(0.0853823\pi\)
\(510\) 0 0
\(511\) 18.2759 17.3894i 0.808479 0.769260i
\(512\) 0 0
\(513\) −9.08229 2.80152i −0.400993 0.123690i
\(514\) 0 0
\(515\) −2.73406 + 6.96627i −0.120477 + 0.306970i
\(516\) 0 0
\(517\) −7.17101 31.4182i −0.315381 1.38177i
\(518\) 0 0
\(519\) 0.543728 2.38223i 0.0238670 0.104568i
\(520\) 0 0
\(521\) −5.19371 8.99577i −0.227541 0.394112i 0.729538 0.683940i \(-0.239735\pi\)
−0.957079 + 0.289828i \(0.906402\pi\)
\(522\) 0 0
\(523\) −0.874759 + 11.6728i −0.0382505 + 0.510418i 0.944868 + 0.327450i \(0.106189\pi\)
−0.983119 + 0.182968i \(0.941430\pi\)
\(524\) 0 0
\(525\) −2.09894 1.89908i −0.0916051 0.0828827i
\(526\) 0 0
\(527\) −11.5078 10.6777i −0.501287 0.465126i
\(528\) 0 0
\(529\) −12.4543 8.49120i −0.541492 0.369183i
\(530\) 0 0
\(531\) 34.5236 + 16.6257i 1.49820 + 0.721493i
\(532\) 0 0
\(533\) −20.9062 + 10.0679i −0.905548 + 0.436089i
\(534\) 0 0
\(535\) −8.79487 + 8.16044i −0.380235 + 0.352807i
\(536\) 0 0
\(537\) −0.834813 2.12707i −0.0360248 0.0917898i
\(538\) 0 0
\(539\) 14.5157 + 23.7453i 0.625236 + 1.02278i
\(540\) 0 0
\(541\) −12.2189 31.1333i −0.525332 1.33852i −0.909670 0.415332i \(-0.863665\pi\)
0.384338 0.923193i \(-0.374430\pi\)
\(542\) 0 0
\(543\) −5.40448 + 5.01462i −0.231928 + 0.215198i
\(544\) 0 0
\(545\) −1.65800 + 0.798449i −0.0710208 + 0.0342018i
\(546\) 0 0
\(547\) −7.70942 3.71266i −0.329631 0.158742i 0.261747 0.965137i \(-0.415701\pi\)
−0.591378 + 0.806395i \(0.701416\pi\)
\(548\) 0 0
\(549\) 6.73176 + 4.58964i 0.287305 + 0.195881i
\(550\) 0 0
\(551\) 16.7166 + 15.5107i 0.712151 + 0.660779i
\(552\) 0 0
\(553\) 31.6457 22.1624i 1.34571 0.942440i
\(554\) 0 0
\(555\) −0.186209 + 2.48479i −0.00790413 + 0.105473i
\(556\) 0 0
\(557\) 14.0384 + 24.3153i 0.594827 + 1.03027i 0.993571 + 0.113209i \(0.0361129\pi\)
−0.398744 + 0.917062i \(0.630554\pi\)
\(558\) 0 0
\(559\) −8.73441 + 38.2680i −0.369426 + 1.61856i
\(560\) 0 0
\(561\) −1.77293 7.76772i −0.0748532 0.327953i
\(562\) 0 0
\(563\) 4.13546 10.5370i 0.174289 0.444081i −0.816860 0.576836i \(-0.804287\pi\)
0.991149 + 0.132755i \(0.0423824\pi\)
\(564\) 0 0
\(565\) 16.4624 + 5.07796i 0.692576 + 0.213632i
\(566\) 0 0
\(567\) −21.0369 2.90135i −0.883468 0.121845i
\(568\) 0 0
\(569\) −12.1236 + 20.9988i −0.508249 + 0.880313i 0.491705 + 0.870762i \(0.336374\pi\)
−0.999954 + 0.00955172i \(0.996960\pi\)
\(570\) 0 0
\(571\) −19.3429 + 5.96648i −0.809473 + 0.249689i −0.671747 0.740781i \(-0.734456\pi\)
−0.137726 + 0.990470i \(0.543979\pi\)
\(572\) 0 0
\(573\) 0.111447 + 0.139750i 0.00465577 + 0.00583815i
\(574\) 0 0
\(575\) 5.67522 7.11650i 0.236673 0.296779i
\(576\) 0 0
\(577\) 12.2409 + 1.84502i 0.509595 + 0.0768091i 0.398807 0.917035i \(-0.369424\pi\)
0.110788 + 0.993844i \(0.464662\pi\)
\(578\) 0 0
\(579\) −5.14685 + 0.775763i −0.213896 + 0.0322396i
\(580\) 0 0
\(581\) −1.50013 6.21214i −0.0622357 0.257723i
\(582\) 0 0
\(583\) 44.4069 30.2761i 1.83915 1.25391i
\(584\) 0 0
\(585\) 1.16628 + 15.5629i 0.0482198 + 0.643448i
\(586\) 0 0
\(587\) −45.5194 −1.87879 −0.939393 0.342842i \(-0.888610\pi\)
−0.939393 + 0.342842i \(0.888610\pi\)
\(588\) 0 0
\(589\) −12.6398 −0.520814
\(590\) 0 0
\(591\) 0.218965 + 2.92188i 0.00900700 + 0.120190i
\(592\) 0 0
\(593\) −22.1788 + 15.1212i −0.910772 + 0.620954i −0.925422 0.378939i \(-0.876289\pi\)
0.0146495 + 0.999893i \(0.495337\pi\)
\(594\) 0 0
\(595\) 19.0717 9.48107i 0.781865 0.388686i
\(596\) 0 0
\(597\) 6.24964 0.941981i 0.255781 0.0385527i
\(598\) 0 0
\(599\) 31.7505 + 4.78562i 1.29729 + 0.195535i 0.761141 0.648587i \(-0.224640\pi\)
0.536151 + 0.844122i \(0.319878\pi\)
\(600\) 0 0
\(601\) −5.60195 + 7.02462i −0.228508 + 0.286540i −0.882846 0.469662i \(-0.844376\pi\)
0.654338 + 0.756202i \(0.272947\pi\)
\(602\) 0 0
\(603\) −17.1874 21.5523i −0.699925 0.877678i
\(604\) 0 0
\(605\) −6.10593 + 1.88343i −0.248241 + 0.0765723i
\(606\) 0 0
\(607\) 8.33069 14.4292i 0.338132 0.585662i −0.645949 0.763380i \(-0.723538\pi\)
0.984081 + 0.177718i \(0.0568716\pi\)
\(608\) 0 0
\(609\) −3.41172 2.26390i −0.138250 0.0917377i
\(610\) 0 0
\(611\) −31.4609 9.70439i −1.27277 0.392598i
\(612\) 0 0
\(613\) 15.8001 40.2579i 0.638158 1.62600i −0.134304 0.990940i \(-0.542880\pi\)
0.772462 0.635061i \(-0.219025\pi\)
\(614\) 0 0
\(615\) −0.559159 2.44984i −0.0225475 0.0987870i
\(616\) 0 0
\(617\) 10.0283 43.9370i 0.403726 1.76884i −0.208366 0.978051i \(-0.566815\pi\)
0.612092 0.790787i \(-0.290328\pi\)
\(618\) 0 0
\(619\) −6.71948 11.6385i −0.270079 0.467790i 0.698803 0.715314i \(-0.253716\pi\)
−0.968882 + 0.247524i \(0.920383\pi\)
\(620\) 0 0
\(621\) −0.410108 + 5.47251i −0.0164571 + 0.219604i
\(622\) 0 0
\(623\) 29.5764 + 8.71825i 1.18495 + 0.349289i
\(624\) 0 0
\(625\) −1.18599 1.10043i −0.0474394 0.0440173i
\(626\) 0 0
\(627\) −5.30042 3.61376i −0.211678 0.144320i
\(628\) 0 0
\(629\) 30.9085 + 14.8848i 1.23240 + 0.593495i
\(630\) 0 0
\(631\) 32.2345 15.5233i 1.28323 0.617973i 0.337015 0.941499i \(-0.390583\pi\)
0.946219 + 0.323527i \(0.104869\pi\)
\(632\) 0 0
\(633\) 5.17943 4.80581i 0.205864 0.191014i
\(634\) 0 0
\(635\) −5.99527 15.2757i −0.237915 0.606198i
\(636\) 0 0
\(637\) 28.4239 0.713442i 1.12620 0.0282676i
\(638\) 0 0
\(639\) 3.33249 + 8.49105i 0.131831 + 0.335901i
\(640\) 0 0
\(641\) −20.2357 + 18.7759i −0.799261 + 0.741605i −0.969841 0.243738i \(-0.921626\pi\)
0.170580 + 0.985344i \(0.445436\pi\)
\(642\) 0 0
\(643\) 22.1695 10.6763i 0.874280 0.421031i 0.0577480 0.998331i \(-0.481608\pi\)
0.816532 + 0.577300i \(0.195894\pi\)
\(644\) 0 0
\(645\) −3.82977 1.84432i −0.150797 0.0726200i
\(646\) 0 0
\(647\) −0.787172 0.536685i −0.0309469 0.0210993i 0.547748 0.836644i \(-0.315485\pi\)
−0.578695 + 0.815544i \(0.696438\pi\)
\(648\) 0 0
\(649\) 38.6361 + 35.8490i 1.51660 + 1.40720i
\(650\) 0 0
\(651\) 2.23973 0.366382i 0.0877820 0.0143597i
\(652\) 0 0
\(653\) −1.96890 + 26.2731i −0.0770488 + 1.02815i 0.815961 + 0.578107i \(0.196209\pi\)
−0.893010 + 0.450038i \(0.851411\pi\)
\(654\) 0 0
\(655\) 2.20328 + 3.81619i 0.0860892 + 0.149111i
\(656\) 0 0
\(657\) −6.13281 + 26.8696i −0.239264 + 1.04828i
\(658\) 0 0
\(659\) −2.36990 10.3832i −0.0923182 0.404472i 0.907563 0.419917i \(-0.137941\pi\)
−0.999881 + 0.0154446i \(0.995084\pi\)
\(660\) 0 0
\(661\) −3.95854 + 10.0862i −0.153969 + 0.392307i −0.986957 0.160984i \(-0.948533\pi\)
0.832988 + 0.553291i \(0.186628\pi\)
\(662\) 0 0
\(663\) −7.77826 2.39928i −0.302083 0.0931802i
\(664\) 0 0
\(665\) 6.06433 16.0406i 0.235164 0.622028i
\(666\) 0 0
\(667\) 6.58346 11.4029i 0.254913 0.441522i
\(668\) 0 0
\(669\) −1.39444 + 0.430127i −0.0539120 + 0.0166297i
\(670\) 0 0
\(671\) 6.98722 + 8.76170i 0.269739 + 0.338242i
\(672\) 0 0
\(673\) 21.2157 26.6037i 0.817806 1.02550i −0.181308 0.983426i \(-0.558033\pi\)
0.999115 0.0420703i \(-0.0133953\pi\)
\(674\) 0 0
\(675\) 6.23156 + 0.939257i 0.239853 + 0.0361520i
\(676\) 0 0
\(677\) −36.6409 + 5.52272i −1.40822 + 0.212256i −0.808756 0.588144i \(-0.799859\pi\)
−0.599467 + 0.800399i \(0.704621\pi\)
\(678\) 0 0
\(679\) 37.1783 + 17.3329i 1.42677 + 0.665175i
\(680\) 0 0
\(681\) 4.05142 2.76221i 0.155251 0.105848i
\(682\) 0 0
\(683\) 1.39095 + 18.5609i 0.0532230 + 0.710212i 0.958446 + 0.285275i \(0.0920849\pi\)
−0.905223 + 0.424937i \(0.860296\pi\)
\(684\) 0 0
\(685\) −7.87398 −0.300849
\(686\) 0 0
\(687\) 3.53372 0.134820
\(688\) 0 0
\(689\) −4.10334 54.7553i −0.156325 2.08601i
\(690\) 0 0
\(691\) −15.0523 + 10.2625i −0.572615 + 0.390402i −0.814726 0.579846i \(-0.803113\pi\)
0.242111 + 0.970249i \(0.422160\pi\)
\(692\) 0 0
\(693\) −27.5574 12.8475i −1.04682 0.488037i
\(694\) 0 0
\(695\) 6.72630 1.01383i 0.255143 0.0384566i
\(696\) 0 0
\(697\) −34.2098 5.15630i −1.29579 0.195309i
\(698\) 0 0
\(699\) −4.45914 + 5.59158i −0.168660 + 0.211493i
\(700\) 0 0
\(701\) 7.47771 + 9.37676i 0.282429 + 0.354155i 0.902729 0.430210i \(-0.141560\pi\)
−0.620300 + 0.784365i \(0.712989\pi\)
\(702\) 0 0
\(703\) 26.3947 8.14167i 0.995493 0.307069i
\(704\) 0 0
\(705\) 1.78269 3.08771i 0.0671401 0.116290i
\(706\) 0 0
\(707\) −1.33075 + 3.51992i −0.0500479 + 0.132380i
\(708\) 0 0
\(709\) −25.5636 7.88532i −0.960060 0.296139i −0.225165 0.974321i \(-0.572292\pi\)
−0.734895 + 0.678181i \(0.762768\pi\)
\(710\) 0 0
\(711\) −15.4204 + 39.2906i −0.578312 + 1.47351i
\(712\) 0 0
\(713\) 1.62399 + 7.11515i 0.0608188 + 0.266465i
\(714\) 0 0
\(715\) −4.77673 + 20.9282i −0.178640 + 0.782671i
\(716\) 0 0
\(717\) −1.79404 3.10737i −0.0669997 0.116047i
\(718\) 0 0
\(719\) −0.210089 + 2.80345i −0.00783501 + 0.104551i −0.999750 0.0223519i \(-0.992885\pi\)
0.991915 + 0.126903i \(0.0405036\pi\)
\(720\) 0 0
\(721\) −14.6998 + 2.40464i −0.547450 + 0.0895536i
\(722\) 0 0
\(723\) −2.18013 2.02287i −0.0810800 0.0752313i
\(724\) 0 0
\(725\) −12.4929 8.51749i −0.463973 0.316331i
\(726\) 0 0
\(727\) 33.8221 + 16.2879i 1.25439 + 0.604084i 0.938686 0.344773i \(-0.112044\pi\)
0.315707 + 0.948857i \(0.397758\pi\)
\(728\) 0 0
\(729\) 19.1595 9.22674i 0.709612 0.341731i
\(730\) 0 0
\(731\) −42.9004 + 39.8057i −1.58673 + 1.47227i
\(732\) 0 0
\(733\) −15.9600 40.6654i −0.589496 1.50201i −0.844763 0.535141i \(-0.820258\pi\)
0.255267 0.966871i \(-0.417837\pi\)
\(734\) 0 0
\(735\) −0.609619 + 3.01812i −0.0224861 + 0.111325i
\(736\) 0 0
\(737\) −13.8526 35.2959i −0.510267 1.30014i
\(738\) 0 0
\(739\) 7.63564 7.08484i 0.280881 0.260620i −0.527133 0.849783i \(-0.676733\pi\)
0.808014 + 0.589163i \(0.200542\pi\)
\(740\) 0 0
\(741\) −5.90489 + 2.84365i −0.216922 + 0.104464i
\(742\) 0 0
\(743\) 10.5523 + 5.08171i 0.387126 + 0.186430i 0.617315 0.786716i \(-0.288220\pi\)
−0.230190 + 0.973146i \(0.573935\pi\)
\(744\) 0 0
\(745\) −17.9339 12.2271i −0.657048 0.447967i
\(746\) 0 0
\(747\) 5.11808 + 4.74888i 0.187261 + 0.173752i
\(748\) 0 0
\(749\) −22.9055 6.75184i −0.836947 0.246707i
\(750\) 0 0
\(751\) −1.40361 + 18.7299i −0.0512186 + 0.683465i 0.911212 + 0.411938i \(0.135148\pi\)
−0.962431 + 0.271528i \(0.912471\pi\)
\(752\) 0 0
\(753\) 0.258478 + 0.447696i 0.00941945 + 0.0163150i
\(754\) 0 0
\(755\) −0.255889 + 1.12112i −0.00931276 + 0.0408018i
\(756\) 0 0
\(757\) 6.53759 + 28.6431i 0.237613 + 1.04105i 0.943147 + 0.332375i \(0.107850\pi\)
−0.705535 + 0.708675i \(0.749293\pi\)
\(758\) 0 0
\(759\) −1.35324 + 3.44800i −0.0491195 + 0.125154i
\(760\) 0 0
\(761\) −5.22663 1.61220i −0.189465 0.0584423i 0.198571 0.980087i \(-0.436370\pi\)
−0.388036 + 0.921644i \(0.626846\pi\)
\(762\) 0 0
\(763\) −3.05198 2.02518i −0.110489 0.0733166i
\(764\) 0 0
\(765\) −11.6343 + 20.1512i −0.420639 + 0.728569i
\(766\) 0 0
\(767\) 51.4540 15.8715i 1.85790 0.573086i
\(768\) 0 0
\(769\) −8.42289 10.5620i −0.303737 0.380874i 0.606415 0.795148i \(-0.292607\pi\)
−0.910152 + 0.414274i \(0.864036\pi\)
\(770\) 0 0
\(771\) 2.22175 2.78599i 0.0800145 0.100335i
\(772\) 0 0
\(773\) 9.12128 + 1.37481i 0.328070 + 0.0494485i 0.311012 0.950406i \(-0.399332\pi\)
0.0170576 + 0.999855i \(0.494570\pi\)
\(774\) 0 0
\(775\) 8.28716 1.24909i 0.297683 0.0448686i
\(776\) 0 0
\(777\) −4.44105 + 2.20776i −0.159322 + 0.0792031i
\(778\) 0 0
\(779\) −23.0153 + 15.6916i −0.824610 + 0.562210i
\(780\) 0 0
\(781\) 0.937602 + 12.5114i 0.0335500 + 0.447694i
\(782\) 0 0
\(783\) 9.11603 0.325780
\(784\) 0 0
\(785\) 1.05293 0.0375809
\(786\) 0 0
\(787\) 1.88952 + 25.2139i 0.0673541 + 0.898779i 0.923882 + 0.382678i \(0.124998\pi\)
−0.856528 + 0.516101i \(0.827383\pi\)
\(788\) 0 0
\(789\) 0.929073 0.633431i 0.0330759 0.0225508i
\(790\) 0 0
\(791\) 8.04905 + 33.3317i 0.286191 + 1.18514i
\(792\) 0 0
\(793\) 11.3213 1.70641i 0.402030 0.0605963i
\(794\) 0 0
\(795\) 5.87982 + 0.886240i 0.208536 + 0.0314317i
\(796\) 0 0
\(797\) 25.2505 31.6631i 0.894417 1.12156i −0.0975702 0.995229i \(-0.531107\pi\)
0.991988 0.126335i \(-0.0403215\pi\)
\(798\) 0 0
\(799\) −30.6055 38.3781i −1.08274 1.35772i
\(800\) 0 0
\(801\) −32.1904 + 9.92941i −1.13739 + 0.350838i
\(802\) 0 0
\(803\) −18.9544 + 32.8300i −0.668887 + 1.15855i
\(804\) 0 0
\(805\) −9.80867 1.35278i −0.345710 0.0476793i
\(806\) 0 0
\(807\) 0.453126 + 0.139771i 0.0159508 + 0.00492017i
\(808\) 0 0
\(809\) −10.4697 + 26.6764i −0.368095 + 0.937891i 0.620077 + 0.784541i \(0.287101\pi\)
−0.988172 + 0.153350i \(0.950994\pi\)
\(810\) 0 0
\(811\) −11.7296 51.3908i −0.411883 1.80458i −0.575213 0.818004i \(-0.695081\pi\)
0.163330 0.986571i \(-0.447776\pi\)
\(812\) 0 0
\(813\) −2.34925 + 10.2927i −0.0823917 + 0.360982i
\(814\) 0 0
\(815\) −6.77481 11.7343i −0.237311 0.411035i
\(816\) 0 0
\(817\) −3.52132 + 46.9887i −0.123195 + 1.64393i
\(818\) 0 0
\(819\) −25.4439 + 17.8191i −0.889083 + 0.622650i
\(820\) 0 0
\(821\) −30.8245 28.6009i −1.07578 0.998179i −0.999999 0.00105425i \(-0.999664\pi\)
−0.0757814 0.997124i \(-0.524145\pi\)
\(822\) 0 0
\(823\) −31.8450 21.7115i −1.11005 0.756816i −0.137726 0.990470i \(-0.543979\pi\)
−0.972320 + 0.233654i \(0.924932\pi\)
\(824\) 0 0
\(825\) 3.83228 + 1.84553i 0.133423 + 0.0642531i
\(826\) 0 0
\(827\) −17.3821 + 8.37076i −0.604434 + 0.291080i −0.710963 0.703230i \(-0.751741\pi\)
0.106529 + 0.994310i \(0.466026\pi\)
\(828\) 0 0
\(829\) 28.7634 26.6885i 0.998993 0.926930i 0.00166604 0.999999i \(-0.499470\pi\)
0.997327 + 0.0730686i \(0.0232792\pi\)
\(830\) 0 0
\(831\) 0.451329 + 1.14997i 0.0156564 + 0.0398920i
\(832\) 0 0
\(833\) 35.6141 + 22.9939i 1.23396 + 0.796690i
\(834\) 0 0
\(835\) −8.53387 21.7439i −0.295327 0.752480i
\(836\) 0 0
\(837\) −3.70397 + 3.43679i −0.128028 + 0.118793i
\(838\) 0 0
\(839\) 7.30675 3.51875i 0.252257 0.121481i −0.303483 0.952837i \(-0.598149\pi\)
0.555740 + 0.831356i \(0.312435\pi\)
\(840\) 0 0
\(841\) 6.42216 + 3.09275i 0.221454 + 0.106647i
\(842\) 0 0
\(843\) 0.632005 + 0.430894i 0.0217674 + 0.0148408i
\(844\) 0 0
\(845\) 3.40904 + 3.16313i 0.117275 + 0.108815i
\(846\) 0 0
\(847\) −9.43089 8.53290i −0.324049 0.293194i
\(848\) 0 0
\(849\) 0.234631 3.13093i 0.00805252 0.107453i
\(850\) 0 0
\(851\) −7.97432 13.8119i −0.273356 0.473467i
\(852\) 0 0
\(853\) −5.05830 + 22.1619i −0.173193 + 0.758808i 0.811478 + 0.584384i \(0.198664\pi\)
−0.984671 + 0.174425i \(0.944193\pi\)
\(854\) 0 0
\(855\) 4.16893 + 18.2653i 0.142575 + 0.624660i
\(856\) 0 0
\(857\) 2.18242 5.56071i 0.0745500 0.189950i −0.888741 0.458410i \(-0.848419\pi\)
0.963291 + 0.268459i \(0.0865145\pi\)
\(858\) 0 0
\(859\) 18.5037 + 5.70763i 0.631338 + 0.194742i 0.593877 0.804556i \(-0.297597\pi\)
0.0374614 + 0.999298i \(0.488073\pi\)
\(860\) 0 0
\(861\) 3.62340 3.44763i 0.123485 0.117495i
\(862\) 0 0
\(863\) −8.99785 + 15.5847i −0.306290 + 0.530510i −0.977548 0.210714i \(-0.932421\pi\)
0.671257 + 0.741224i \(0.265754\pi\)
\(864\) 0 0
\(865\) −9.37942 + 2.89317i −0.318910 + 0.0983707i
\(866\) 0 0
\(867\) −4.05936 5.09028i −0.137863 0.172875i
\(868\) 0 0
\(869\) −36.1976 + 45.3904i −1.22792 + 1.53976i
\(870\) 0 0
\(871\) −38.3047 5.77351i −1.29791 0.195628i
\(872\) 0 0
\(873\) −44.3143 + 6.67930i −1.49981 + 0.226060i
\(874\) 0 0
\(875\) −6.08837 + 28.3075i −0.205824 + 0.956970i
\(876\) 0 0
\(877\) −20.2836 + 13.8291i −0.684928 + 0.466976i −0.855117 0.518436i \(-0.826515\pi\)
0.170189 + 0.985411i \(0.445562\pi\)
\(878\) 0 0
\(879\) 0.412831 + 5.50884i 0.0139244 + 0.185809i
\(880\) 0 0
\(881\) 15.4666 0.521083 0.260541 0.965463i \(-0.416099\pi\)
0.260541 + 0.965463i \(0.416099\pi\)
\(882\) 0 0
\(883\) −8.22258 −0.276712 −0.138356 0.990383i \(-0.544182\pi\)
−0.138356 + 0.990383i \(0.544182\pi\)
\(884\) 0 0
\(885\) 0.435763 + 5.81486i 0.0146480 + 0.195464i
\(886\) 0 0
\(887\) −24.4317 + 16.6573i −0.820336 + 0.559296i −0.899174 0.437592i \(-0.855832\pi\)
0.0788374 + 0.996887i \(0.474879\pi\)
\(888\) 0 0
\(889\) 20.0426 25.7900i 0.672208 0.864967i
\(890\) 0 0
\(891\) 31.5553 4.75619i 1.05714 0.159338i
\(892\) 0 0
\(893\) −39.0819 5.89065i −1.30783 0.197123i
\(894\) 0 0
\(895\) −5.72298 + 7.17638i −0.191298 + 0.239880i
\(896\) 0 0
\(897\) 2.35941 + 2.95860i 0.0787783 + 0.0987849i
\(898\) 0 0
\(899\) 11.5845 3.57335i 0.386366 0.119178i
\(900\) 0 0
\(901\) 40.9332 70.8984i 1.36368 2.36197i
\(902\) 0 0
\(903\) −0.738068 8.42831i −0.0245614 0.280477i
\(904\) 0 0
\(905\) 28.2999 + 8.72936i 0.940720 + 0.290174i
\(906\) 0 0
\(907\) −3.80095 + 9.68466i −0.126208 + 0.321574i −0.979987 0.199063i \(-0.936210\pi\)
0.853778 + 0.520637i \(0.174305\pi\)
\(908\) 0 0
\(909\) −0.914825 4.00811i −0.0303428 0.132941i
\(910\) 0 0
\(911\) 4.77731 20.9308i 0.158279 0.693467i −0.832046 0.554706i \(-0.812831\pi\)
0.990326 0.138761i \(-0.0443121\pi\)
\(912\) 0 0
\(913\) 4.80169 + 8.31677i 0.158913 + 0.275245i
\(914\) 0 0
\(915\) −0.0926548 + 1.23639i −0.00306307 + 0.0408739i
\(916\) 0 0
\(917\) −4.28972 + 7.65011i −0.141659 + 0.252629i
\(918\) 0 0
\(919\) −26.8030 24.8695i −0.884148 0.820370i 0.100497 0.994937i \(-0.467957\pi\)
−0.984645 + 0.174568i \(0.944147\pi\)
\(920\) 0 0
\(921\) 0.318517 + 0.217161i 0.0104955 + 0.00715571i
\(922\) 0 0
\(923\) 11.5486 + 5.56152i 0.380128 + 0.183060i
\(924\) 0 0
\(925\) −16.5008 + 7.94637i −0.542543 + 0.261275i
\(926\) 0 0
\(927\) 11.9290 11.0685i 0.391801 0.363538i
\(928\) 0 0
\(929\) −11.5326 29.3845i −0.378372 0.964075i −0.985531 0.169495i \(-0.945786\pi\)
0.607160 0.794580i \(-0.292309\pi\)
\(930\) 0 0
\(931\) 33.6129 5.93247i 1.10162 0.194429i
\(932\) 0 0
\(933\) −0.894872 2.28010i −0.0292968 0.0746470i
\(934\) 0 0
\(935\) −23.4616 + 21.7692i −0.767276 + 0.711928i
\(936\) 0 0
\(937\) −30.8895 + 14.8756i −1.00912 + 0.485964i −0.864022 0.503454i \(-0.832062\pi\)
−0.145093 + 0.989418i \(0.546348\pi\)
\(938\) 0 0
\(939\) 8.53502 + 4.11025i 0.278530 + 0.134133i
\(940\) 0 0
\(941\) 25.9342 + 17.6816i 0.845431 + 0.576405i 0.906729 0.421714i \(-0.138571\pi\)
−0.0612976 + 0.998120i \(0.519524\pi\)
\(942\) 0 0
\(943\) 11.7901 + 10.9396i 0.383939 + 0.356243i
\(944\) 0 0
\(945\) −2.58437 6.34945i −0.0840697 0.206547i
\(946\) 0 0
\(947\) −1.58126 + 21.1004i −0.0513839 + 0.685671i 0.910726 + 0.413010i \(0.135523\pi\)
−0.962110 + 0.272661i \(0.912096\pi\)
\(948\) 0 0
\(949\) 19.3646 + 33.5405i 0.628601 + 1.08877i
\(950\) 0 0
\(951\) 1.09581 4.80104i 0.0355340 0.155685i
\(952\) 0 0
\(953\) 5.34539 + 23.4197i 0.173154 + 0.758639i 0.984687 + 0.174332i \(0.0557765\pi\)
−0.811533 + 0.584307i \(0.801366\pi\)
\(954\) 0 0
\(955\) 0.262325 0.668393i 0.00848864 0.0216287i
\(956\) 0 0
\(957\) 5.87953 + 1.81360i 0.190058 + 0.0586252i
\(958\) 0 0
\(959\) −8.00580 13.4732i −0.258521 0.435071i
\(960\) 0 0
\(961\) 12.1402 21.0275i 0.391620 0.678305i
\(962\) 0 0
\(963\) 24.9298 7.68983i 0.803352 0.247801i
\(964\) 0 0
\(965\) 13.0362 + 16.3469i 0.419650 + 0.526224i
\(966\) 0 0
\(967\) −8.13329 + 10.1988i −0.261549 + 0.327972i −0.895215 0.445635i \(-0.852978\pi\)
0.633666 + 0.773607i \(0.281549\pi\)
\(968\) 0 0
\(969\) −9.66245 1.45638i −0.310403 0.0467857i
\(970\) 0 0
\(971\) 24.5732 3.70381i 0.788591 0.118861i 0.257615 0.966248i \(-0.417063\pi\)
0.530976 + 0.847387i \(0.321825\pi\)
\(972\) 0 0
\(973\) 8.57366 + 10.4786i 0.274859 + 0.335928i
\(974\) 0 0
\(975\) 3.59047 2.44794i 0.114987 0.0783968i
\(976\) 0 0
\(977\) −1.00039 13.3492i −0.0320052 0.427080i −0.990075 0.140543i \(-0.955115\pi\)
0.958069 0.286537i \(-0.0925040\pi\)
\(978\) 0 0
\(979\) −46.3355 −1.48089
\(980\) 0 0
\(981\) 4.00161 0.127762
\(982\) 0 0
\(983\) 1.02084 + 13.6222i 0.0325598 + 0.434480i 0.989533 + 0.144305i \(0.0460945\pi\)
−0.956974 + 0.290175i \(0.906286\pi\)
\(984\) 0 0
\(985\) 9.72492 6.63034i 0.309862 0.211260i
\(986\) 0 0
\(987\) 7.09593 0.0890401i 0.225866 0.00283418i
\(988\) 0 0
\(989\) 26.9031 4.05500i 0.855470 0.128941i
\(990\) 0 0
\(991\) 16.6218 + 2.50533i 0.528008 + 0.0795844i 0.407636 0.913145i \(-0.366353\pi\)
0.120372 + 0.992729i \(0.461591\pi\)
\(992\) 0 0
\(993\) −6.51014 + 8.16346i −0.206593 + 0.259059i
\(994\) 0 0
\(995\) −15.8294 19.8494i −0.501825 0.629269i
\(996\) 0 0
\(997\) 13.1735 4.06349i 0.417209 0.128692i −0.0790415 0.996871i \(-0.525186\pi\)
0.496250 + 0.868179i \(0.334710\pi\)
\(998\) 0 0
\(999\) 5.52097 9.56259i 0.174676 0.302547i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.2.y.a.65.4 84
4.3 odd 2 784.2.bg.f.65.4 84
49.46 even 21 inner 392.2.y.a.193.4 yes 84
196.95 odd 42 784.2.bg.f.193.4 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
392.2.y.a.65.4 84 1.1 even 1 trivial
392.2.y.a.193.4 yes 84 49.46 even 21 inner
784.2.bg.f.65.4 84 4.3 odd 2
784.2.bg.f.193.4 84 196.95 odd 42