Properties

Label 392.6.a.m.1.2
Level $392$
Weight $6$
Character 392.1
Self dual yes
Analytic conductor $62.870$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,6,Mod(1,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 392.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.8704573667\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 328x^{4} - 1328x^{3} + 25933x^{2} + 205840x + 390334 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{4}\cdot 7^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-8.15844\) of defining polynomial
Character \(\chi\) \(=\) 392.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.3662 q^{3} -51.0131 q^{5} +24.8528 q^{9} -273.428 q^{11} +369.233 q^{13} +834.891 q^{15} +1036.23 q^{17} +2183.85 q^{19} -1013.90 q^{23} -522.662 q^{25} +3570.24 q^{27} -212.806 q^{29} -229.712 q^{31} +4474.99 q^{33} -9118.74 q^{37} -6042.94 q^{39} +16772.9 q^{41} +16121.9 q^{43} -1267.82 q^{45} -1125.47 q^{47} -16959.2 q^{51} +34164.1 q^{53} +13948.4 q^{55} -35741.3 q^{57} -11191.2 q^{59} -35993.1 q^{61} -18835.7 q^{65} -57518.6 q^{67} +16593.8 q^{69} -20951.5 q^{71} -56427.0 q^{73} +8554.00 q^{75} +48161.1 q^{79} -64470.6 q^{81} +64392.7 q^{83} -52861.3 q^{85} +3482.82 q^{87} -62496.2 q^{89} +3759.51 q^{93} -111405. q^{95} -35202.8 q^{97} -6795.46 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 122 q^{9} + 248 q^{11} - 376 q^{15} - 2904 q^{23} + 1510 q^{25} - 408 q^{29} - 18648 q^{37} - 15240 q^{39} - 10584 q^{43} + 3016 q^{51} - 66772 q^{53} - 56264 q^{57} - 55316 q^{65} - 169632 q^{67}+ \cdots - 173512 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −16.3662 −1.04989 −0.524946 0.851135i \(-0.675915\pi\)
−0.524946 + 0.851135i \(0.675915\pi\)
\(4\) 0 0
\(5\) −51.0131 −0.912550 −0.456275 0.889839i \(-0.650817\pi\)
−0.456275 + 0.889839i \(0.650817\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 24.8528 0.102275
\(10\) 0 0
\(11\) −273.428 −0.681337 −0.340668 0.940183i \(-0.610653\pi\)
−0.340668 + 0.940183i \(0.610653\pi\)
\(12\) 0 0
\(13\) 369.233 0.605957 0.302979 0.952997i \(-0.402019\pi\)
0.302979 + 0.952997i \(0.402019\pi\)
\(14\) 0 0
\(15\) 834.891 0.958080
\(16\) 0 0
\(17\) 1036.23 0.869628 0.434814 0.900520i \(-0.356814\pi\)
0.434814 + 0.900520i \(0.356814\pi\)
\(18\) 0 0
\(19\) 2183.85 1.38784 0.693918 0.720054i \(-0.255883\pi\)
0.693918 + 0.720054i \(0.255883\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1013.90 −0.399648 −0.199824 0.979832i \(-0.564037\pi\)
−0.199824 + 0.979832i \(0.564037\pi\)
\(24\) 0 0
\(25\) −522.662 −0.167252
\(26\) 0 0
\(27\) 3570.24 0.942515
\(28\) 0 0
\(29\) −212.806 −0.0469881 −0.0234941 0.999724i \(-0.507479\pi\)
−0.0234941 + 0.999724i \(0.507479\pi\)
\(30\) 0 0
\(31\) −229.712 −0.0429318 −0.0214659 0.999770i \(-0.506833\pi\)
−0.0214659 + 0.999770i \(0.506833\pi\)
\(32\) 0 0
\(33\) 4474.99 0.715331
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −9118.74 −1.09504 −0.547521 0.836792i \(-0.684428\pi\)
−0.547521 + 0.836792i \(0.684428\pi\)
\(38\) 0 0
\(39\) −6042.94 −0.636190
\(40\) 0 0
\(41\) 16772.9 1.55829 0.779144 0.626845i \(-0.215654\pi\)
0.779144 + 0.626845i \(0.215654\pi\)
\(42\) 0 0
\(43\) 16121.9 1.32968 0.664838 0.746987i \(-0.268500\pi\)
0.664838 + 0.746987i \(0.268500\pi\)
\(44\) 0 0
\(45\) −1267.82 −0.0933310
\(46\) 0 0
\(47\) −1125.47 −0.0743170 −0.0371585 0.999309i \(-0.511831\pi\)
−0.0371585 + 0.999309i \(0.511831\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −16959.2 −0.913017
\(52\) 0 0
\(53\) 34164.1 1.67063 0.835315 0.549771i \(-0.185285\pi\)
0.835315 + 0.549771i \(0.185285\pi\)
\(54\) 0 0
\(55\) 13948.4 0.621754
\(56\) 0 0
\(57\) −35741.3 −1.45708
\(58\) 0 0
\(59\) −11191.2 −0.418549 −0.209275 0.977857i \(-0.567110\pi\)
−0.209275 + 0.977857i \(0.567110\pi\)
\(60\) 0 0
\(61\) −35993.1 −1.23850 −0.619248 0.785195i \(-0.712563\pi\)
−0.619248 + 0.785195i \(0.712563\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −18835.7 −0.552966
\(66\) 0 0
\(67\) −57518.6 −1.56538 −0.782692 0.622409i \(-0.786154\pi\)
−0.782692 + 0.622409i \(0.786154\pi\)
\(68\) 0 0
\(69\) 16593.8 0.419587
\(70\) 0 0
\(71\) −20951.5 −0.493253 −0.246627 0.969111i \(-0.579322\pi\)
−0.246627 + 0.969111i \(0.579322\pi\)
\(72\) 0 0
\(73\) −56427.0 −1.23931 −0.619655 0.784874i \(-0.712727\pi\)
−0.619655 + 0.784874i \(0.712727\pi\)
\(74\) 0 0
\(75\) 8554.00 0.175597
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 48161.1 0.868217 0.434108 0.900861i \(-0.357063\pi\)
0.434108 + 0.900861i \(0.357063\pi\)
\(80\) 0 0
\(81\) −64470.6 −1.09181
\(82\) 0 0
\(83\) 64392.7 1.02599 0.512993 0.858393i \(-0.328537\pi\)
0.512993 + 0.858393i \(0.328537\pi\)
\(84\) 0 0
\(85\) −52861.3 −0.793580
\(86\) 0 0
\(87\) 3482.82 0.0493325
\(88\) 0 0
\(89\) −62496.2 −0.836332 −0.418166 0.908371i \(-0.637327\pi\)
−0.418166 + 0.908371i \(0.637327\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3759.51 0.0450738
\(94\) 0 0
\(95\) −111405. −1.26647
\(96\) 0 0
\(97\) −35202.8 −0.379881 −0.189941 0.981796i \(-0.560830\pi\)
−0.189941 + 0.981796i \(0.560830\pi\)
\(98\) 0 0
\(99\) −6795.46 −0.0696837
\(100\) 0 0
\(101\) −82338.6 −0.803156 −0.401578 0.915825i \(-0.631538\pi\)
−0.401578 + 0.915825i \(0.631538\pi\)
\(102\) 0 0
\(103\) −98841.9 −0.918011 −0.459006 0.888433i \(-0.651794\pi\)
−0.459006 + 0.888433i \(0.651794\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 216402. 1.82727 0.913633 0.406539i \(-0.133265\pi\)
0.913633 + 0.406539i \(0.133265\pi\)
\(108\) 0 0
\(109\) −181858. −1.46611 −0.733056 0.680168i \(-0.761907\pi\)
−0.733056 + 0.680168i \(0.761907\pi\)
\(110\) 0 0
\(111\) 149239. 1.14968
\(112\) 0 0
\(113\) −191197. −1.40859 −0.704296 0.709907i \(-0.748737\pi\)
−0.704296 + 0.709907i \(0.748737\pi\)
\(114\) 0 0
\(115\) 51722.4 0.364699
\(116\) 0 0
\(117\) 9176.47 0.0619742
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −86287.9 −0.535780
\(122\) 0 0
\(123\) −274508. −1.63604
\(124\) 0 0
\(125\) 186079. 1.06518
\(126\) 0 0
\(127\) −136702. −0.752083 −0.376041 0.926603i \(-0.622715\pi\)
−0.376041 + 0.926603i \(0.622715\pi\)
\(128\) 0 0
\(129\) −263855. −1.39602
\(130\) 0 0
\(131\) −85421.7 −0.434900 −0.217450 0.976071i \(-0.569774\pi\)
−0.217450 + 0.976071i \(0.569774\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −182129. −0.860092
\(136\) 0 0
\(137\) −41279.3 −0.187902 −0.0939508 0.995577i \(-0.529950\pi\)
−0.0939508 + 0.995577i \(0.529950\pi\)
\(138\) 0 0
\(139\) 245593. 1.07815 0.539075 0.842258i \(-0.318774\pi\)
0.539075 + 0.842258i \(0.318774\pi\)
\(140\) 0 0
\(141\) 18419.6 0.0780249
\(142\) 0 0
\(143\) −100959. −0.412861
\(144\) 0 0
\(145\) 10855.9 0.0428790
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −327658. −1.20908 −0.604539 0.796575i \(-0.706643\pi\)
−0.604539 + 0.796575i \(0.706643\pi\)
\(150\) 0 0
\(151\) 372670. 1.33009 0.665047 0.746802i \(-0.268411\pi\)
0.665047 + 0.746802i \(0.268411\pi\)
\(152\) 0 0
\(153\) 25753.2 0.0889412
\(154\) 0 0
\(155\) 11718.3 0.0391774
\(156\) 0 0
\(157\) −210988. −0.683139 −0.341569 0.939857i \(-0.610958\pi\)
−0.341569 + 0.939857i \(0.610958\pi\)
\(158\) 0 0
\(159\) −559137. −1.75398
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −192821. −0.568440 −0.284220 0.958759i \(-0.591735\pi\)
−0.284220 + 0.958759i \(0.591735\pi\)
\(164\) 0 0
\(165\) −228283. −0.652775
\(166\) 0 0
\(167\) 507788. 1.40893 0.704467 0.709736i \(-0.251186\pi\)
0.704467 + 0.709736i \(0.251186\pi\)
\(168\) 0 0
\(169\) −234960. −0.632816
\(170\) 0 0
\(171\) 54274.7 0.141941
\(172\) 0 0
\(173\) 563675. 1.43190 0.715951 0.698150i \(-0.245993\pi\)
0.715951 + 0.698150i \(0.245993\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 183157. 0.439432
\(178\) 0 0
\(179\) 190315. 0.443957 0.221978 0.975052i \(-0.428749\pi\)
0.221978 + 0.975052i \(0.428749\pi\)
\(180\) 0 0
\(181\) 428708. 0.972670 0.486335 0.873772i \(-0.338333\pi\)
0.486335 + 0.873772i \(0.338333\pi\)
\(182\) 0 0
\(183\) 589071. 1.30029
\(184\) 0 0
\(185\) 465175. 0.999280
\(186\) 0 0
\(187\) −283335. −0.592510
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −231675. −0.459510 −0.229755 0.973248i \(-0.573793\pi\)
−0.229755 + 0.973248i \(0.573793\pi\)
\(192\) 0 0
\(193\) −421807. −0.815118 −0.407559 0.913179i \(-0.633620\pi\)
−0.407559 + 0.913179i \(0.633620\pi\)
\(194\) 0 0
\(195\) 308269. 0.580555
\(196\) 0 0
\(197\) −708516. −1.30072 −0.650360 0.759626i \(-0.725382\pi\)
−0.650360 + 0.759626i \(0.725382\pi\)
\(198\) 0 0
\(199\) −642566. −1.15023 −0.575116 0.818072i \(-0.695043\pi\)
−0.575116 + 0.818072i \(0.695043\pi\)
\(200\) 0 0
\(201\) 941361. 1.64349
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −855637. −1.42202
\(206\) 0 0
\(207\) −25198.4 −0.0408739
\(208\) 0 0
\(209\) −597126. −0.945584
\(210\) 0 0
\(211\) 916183. 1.41669 0.708347 0.705864i \(-0.249441\pi\)
0.708347 + 0.705864i \(0.249441\pi\)
\(212\) 0 0
\(213\) 342897. 0.517863
\(214\) 0 0
\(215\) −822430. −1.21340
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 923496. 1.30114
\(220\) 0 0
\(221\) 382610. 0.526958
\(222\) 0 0
\(223\) −965140. −1.29966 −0.649828 0.760081i \(-0.725159\pi\)
−0.649828 + 0.760081i \(0.725159\pi\)
\(224\) 0 0
\(225\) −12989.6 −0.0171057
\(226\) 0 0
\(227\) 893402. 1.15075 0.575377 0.817888i \(-0.304855\pi\)
0.575377 + 0.817888i \(0.304855\pi\)
\(228\) 0 0
\(229\) 1.21753e6 1.53423 0.767117 0.641508i \(-0.221691\pi\)
0.767117 + 0.641508i \(0.221691\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.24507e6 1.50247 0.751234 0.660037i \(-0.229459\pi\)
0.751234 + 0.660037i \(0.229459\pi\)
\(234\) 0 0
\(235\) 57413.6 0.0678180
\(236\) 0 0
\(237\) −788214. −0.911535
\(238\) 0 0
\(239\) −223953. −0.253607 −0.126803 0.991928i \(-0.540472\pi\)
−0.126803 + 0.991928i \(0.540472\pi\)
\(240\) 0 0
\(241\) −401523. −0.445316 −0.222658 0.974897i \(-0.571473\pi\)
−0.222658 + 0.974897i \(0.571473\pi\)
\(242\) 0 0
\(243\) 187570. 0.203773
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 806348. 0.840970
\(248\) 0 0
\(249\) −1.05386e6 −1.07718
\(250\) 0 0
\(251\) −406156. −0.406920 −0.203460 0.979083i \(-0.565219\pi\)
−0.203460 + 0.979083i \(0.565219\pi\)
\(252\) 0 0
\(253\) 277230. 0.272295
\(254\) 0 0
\(255\) 865139. 0.833173
\(256\) 0 0
\(257\) −830971. −0.784790 −0.392395 0.919797i \(-0.628353\pi\)
−0.392395 + 0.919797i \(0.628353\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −5288.82 −0.00480571
\(262\) 0 0
\(263\) 1.65945e6 1.47936 0.739681 0.672958i \(-0.234976\pi\)
0.739681 + 0.672958i \(0.234976\pi\)
\(264\) 0 0
\(265\) −1.74282e6 −1.52453
\(266\) 0 0
\(267\) 1.02283e6 0.878059
\(268\) 0 0
\(269\) −105517. −0.0889079 −0.0444539 0.999011i \(-0.514155\pi\)
−0.0444539 + 0.999011i \(0.514155\pi\)
\(270\) 0 0
\(271\) −1.75495e6 −1.45158 −0.725791 0.687915i \(-0.758526\pi\)
−0.725791 + 0.687915i \(0.758526\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 142911. 0.113955
\(276\) 0 0
\(277\) 2.15001e6 1.68361 0.841803 0.539785i \(-0.181494\pi\)
0.841803 + 0.539785i \(0.181494\pi\)
\(278\) 0 0
\(279\) −5708.98 −0.00439084
\(280\) 0 0
\(281\) −1.94418e6 −1.46883 −0.734415 0.678701i \(-0.762543\pi\)
−0.734415 + 0.678701i \(0.762543\pi\)
\(282\) 0 0
\(283\) 428457. 0.318010 0.159005 0.987278i \(-0.449171\pi\)
0.159005 + 0.987278i \(0.449171\pi\)
\(284\) 0 0
\(285\) 1.82328e6 1.32966
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −346085. −0.243747
\(290\) 0 0
\(291\) 576136. 0.398835
\(292\) 0 0
\(293\) −1.75383e6 −1.19349 −0.596746 0.802430i \(-0.703540\pi\)
−0.596746 + 0.802430i \(0.703540\pi\)
\(294\) 0 0
\(295\) 570898. 0.381947
\(296\) 0 0
\(297\) −976206. −0.642170
\(298\) 0 0
\(299\) −374367. −0.242169
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.34757e6 0.843228
\(304\) 0 0
\(305\) 1.83612e6 1.13019
\(306\) 0 0
\(307\) −2.02249e6 −1.22473 −0.612364 0.790576i \(-0.709781\pi\)
−0.612364 + 0.790576i \(0.709781\pi\)
\(308\) 0 0
\(309\) 1.61767e6 0.963813
\(310\) 0 0
\(311\) 1.42625e6 0.836169 0.418085 0.908408i \(-0.362702\pi\)
0.418085 + 0.908408i \(0.362702\pi\)
\(312\) 0 0
\(313\) 53273.6 0.0307363 0.0153681 0.999882i \(-0.495108\pi\)
0.0153681 + 0.999882i \(0.495108\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.62481e6 −1.46707 −0.733533 0.679654i \(-0.762130\pi\)
−0.733533 + 0.679654i \(0.762130\pi\)
\(318\) 0 0
\(319\) 58187.1 0.0320147
\(320\) 0 0
\(321\) −3.54168e6 −1.91843
\(322\) 0 0
\(323\) 2.26297e6 1.20690
\(324\) 0 0
\(325\) −192984. −0.101348
\(326\) 0 0
\(327\) 2.97633e6 1.53926
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.30348e6 0.653936 0.326968 0.945035i \(-0.393973\pi\)
0.326968 + 0.945035i \(0.393973\pi\)
\(332\) 0 0
\(333\) −226626. −0.111995
\(334\) 0 0
\(335\) 2.93420e6 1.42849
\(336\) 0 0
\(337\) −1.33530e6 −0.640476 −0.320238 0.947337i \(-0.603763\pi\)
−0.320238 + 0.947337i \(0.603763\pi\)
\(338\) 0 0
\(339\) 3.12917e6 1.47887
\(340\) 0 0
\(341\) 62809.7 0.0292510
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −846500. −0.382894
\(346\) 0 0
\(347\) 1.72459e6 0.768887 0.384443 0.923149i \(-0.374393\pi\)
0.384443 + 0.923149i \(0.374393\pi\)
\(348\) 0 0
\(349\) 2.97845e6 1.30896 0.654481 0.756079i \(-0.272887\pi\)
0.654481 + 0.756079i \(0.272887\pi\)
\(350\) 0 0
\(351\) 1.31825e6 0.571124
\(352\) 0 0
\(353\) −518454. −0.221449 −0.110725 0.993851i \(-0.535317\pi\)
−0.110725 + 0.993851i \(0.535317\pi\)
\(354\) 0 0
\(355\) 1.06880e6 0.450118
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −253455. −0.103792 −0.0518961 0.998652i \(-0.516526\pi\)
−0.0518961 + 0.998652i \(0.516526\pi\)
\(360\) 0 0
\(361\) 2.29309e6 0.926091
\(362\) 0 0
\(363\) 1.41221e6 0.562512
\(364\) 0 0
\(365\) 2.87852e6 1.13093
\(366\) 0 0
\(367\) 639610. 0.247885 0.123943 0.992289i \(-0.460446\pi\)
0.123943 + 0.992289i \(0.460446\pi\)
\(368\) 0 0
\(369\) 416853. 0.159374
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −3.10000e6 −1.15369 −0.576845 0.816854i \(-0.695716\pi\)
−0.576845 + 0.816854i \(0.695716\pi\)
\(374\) 0 0
\(375\) −3.04540e6 −1.11832
\(376\) 0 0
\(377\) −78574.8 −0.0284728
\(378\) 0 0
\(379\) −746368. −0.266904 −0.133452 0.991055i \(-0.542606\pi\)
−0.133452 + 0.991055i \(0.542606\pi\)
\(380\) 0 0
\(381\) 2.23729e6 0.789606
\(382\) 0 0
\(383\) 1.12449e6 0.391703 0.195852 0.980634i \(-0.437253\pi\)
0.195852 + 0.980634i \(0.437253\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 400675. 0.135993
\(388\) 0 0
\(389\) 885972. 0.296856 0.148428 0.988923i \(-0.452579\pi\)
0.148428 + 0.988923i \(0.452579\pi\)
\(390\) 0 0
\(391\) −1.05064e6 −0.347545
\(392\) 0 0
\(393\) 1.39803e6 0.456599
\(394\) 0 0
\(395\) −2.45685e6 −0.792292
\(396\) 0 0
\(397\) 1.77037e6 0.563752 0.281876 0.959451i \(-0.409043\pi\)
0.281876 + 0.959451i \(0.409043\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.07709e6 1.26616 0.633082 0.774085i \(-0.281790\pi\)
0.633082 + 0.774085i \(0.281790\pi\)
\(402\) 0 0
\(403\) −84817.1 −0.0260148
\(404\) 0 0
\(405\) 3.28884e6 0.996336
\(406\) 0 0
\(407\) 2.49332e6 0.746092
\(408\) 0 0
\(409\) 349030. 0.103170 0.0515852 0.998669i \(-0.483573\pi\)
0.0515852 + 0.998669i \(0.483573\pi\)
\(410\) 0 0
\(411\) 675585. 0.197277
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −3.28487e6 −0.936264
\(416\) 0 0
\(417\) −4.01943e6 −1.13194
\(418\) 0 0
\(419\) −3.72353e6 −1.03614 −0.518072 0.855337i \(-0.673350\pi\)
−0.518072 + 0.855337i \(0.673350\pi\)
\(420\) 0 0
\(421\) −5.31261e6 −1.46084 −0.730421 0.682998i \(-0.760676\pi\)
−0.730421 + 0.682998i \(0.760676\pi\)
\(422\) 0 0
\(423\) −27971.0 −0.00760077
\(424\) 0 0
\(425\) −541598. −0.145447
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.65231e6 0.433460
\(430\) 0 0
\(431\) −3.73245e6 −0.967835 −0.483917 0.875114i \(-0.660786\pi\)
−0.483917 + 0.875114i \(0.660786\pi\)
\(432\) 0 0
\(433\) −1.39251e6 −0.356927 −0.178464 0.983947i \(-0.557113\pi\)
−0.178464 + 0.983947i \(0.557113\pi\)
\(434\) 0 0
\(435\) −177670. −0.0450184
\(436\) 0 0
\(437\) −2.21421e6 −0.554646
\(438\) 0 0
\(439\) −3.09041e6 −0.765340 −0.382670 0.923885i \(-0.624995\pi\)
−0.382670 + 0.923885i \(0.624995\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.17066e6 −1.00971 −0.504853 0.863205i \(-0.668453\pi\)
−0.504853 + 0.863205i \(0.668453\pi\)
\(444\) 0 0
\(445\) 3.18813e6 0.763195
\(446\) 0 0
\(447\) 5.36251e6 1.26940
\(448\) 0 0
\(449\) −4.50893e6 −1.05550 −0.527749 0.849400i \(-0.676964\pi\)
−0.527749 + 0.849400i \(0.676964\pi\)
\(450\) 0 0
\(451\) −4.58618e6 −1.06172
\(452\) 0 0
\(453\) −6.09920e6 −1.39646
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 521324. 0.116766 0.0583831 0.998294i \(-0.481406\pi\)
0.0583831 + 0.998294i \(0.481406\pi\)
\(458\) 0 0
\(459\) 3.69959e6 0.819638
\(460\) 0 0
\(461\) 4.45956e6 0.977327 0.488663 0.872472i \(-0.337485\pi\)
0.488663 + 0.872472i \(0.337485\pi\)
\(462\) 0 0
\(463\) −7.41318e6 −1.60713 −0.803567 0.595214i \(-0.797067\pi\)
−0.803567 + 0.595214i \(0.797067\pi\)
\(464\) 0 0
\(465\) −191784. −0.0411321
\(466\) 0 0
\(467\) −6.07670e6 −1.28936 −0.644682 0.764451i \(-0.723010\pi\)
−0.644682 + 0.764451i \(0.723010\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 3.45308e6 0.717223
\(472\) 0 0
\(473\) −4.40820e6 −0.905958
\(474\) 0 0
\(475\) −1.14142e6 −0.232118
\(476\) 0 0
\(477\) 849074. 0.170864
\(478\) 0 0
\(479\) −7.82188e6 −1.55766 −0.778829 0.627236i \(-0.784186\pi\)
−0.778829 + 0.627236i \(0.784186\pi\)
\(480\) 0 0
\(481\) −3.36694e6 −0.663548
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.79580e6 0.346661
\(486\) 0 0
\(487\) −7.64488e6 −1.46066 −0.730328 0.683097i \(-0.760633\pi\)
−0.730328 + 0.683097i \(0.760633\pi\)
\(488\) 0 0
\(489\) 3.15575e6 0.596801
\(490\) 0 0
\(491\) −4.62867e6 −0.866468 −0.433234 0.901282i \(-0.642628\pi\)
−0.433234 + 0.901282i \(0.642628\pi\)
\(492\) 0 0
\(493\) −220516. −0.0408622
\(494\) 0 0
\(495\) 346658. 0.0635899
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 344781. 0.0619858 0.0309929 0.999520i \(-0.490133\pi\)
0.0309929 + 0.999520i \(0.490133\pi\)
\(500\) 0 0
\(501\) −8.31056e6 −1.47923
\(502\) 0 0
\(503\) −2.44839e6 −0.431479 −0.215740 0.976451i \(-0.569216\pi\)
−0.215740 + 0.976451i \(0.569216\pi\)
\(504\) 0 0
\(505\) 4.20035e6 0.732921
\(506\) 0 0
\(507\) 3.84541e6 0.664389
\(508\) 0 0
\(509\) −4.39844e6 −0.752497 −0.376248 0.926519i \(-0.622786\pi\)
−0.376248 + 0.926519i \(0.622786\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 7.79687e6 1.30806
\(514\) 0 0
\(515\) 5.04223e6 0.837731
\(516\) 0 0
\(517\) 307735. 0.0506349
\(518\) 0 0
\(519\) −9.22522e6 −1.50334
\(520\) 0 0
\(521\) 3.90229e6 0.629833 0.314916 0.949119i \(-0.398024\pi\)
0.314916 + 0.949119i \(0.398024\pi\)
\(522\) 0 0
\(523\) 2.95595e6 0.472544 0.236272 0.971687i \(-0.424074\pi\)
0.236272 + 0.971687i \(0.424074\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −238034. −0.0373347
\(528\) 0 0
\(529\) −5.40834e6 −0.840282
\(530\) 0 0
\(531\) −278133. −0.0428071
\(532\) 0 0
\(533\) 6.19310e6 0.944256
\(534\) 0 0
\(535\) −1.10393e7 −1.66747
\(536\) 0 0
\(537\) −3.11474e6 −0.466107
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.64995e6 −0.242369 −0.121185 0.992630i \(-0.538669\pi\)
−0.121185 + 0.992630i \(0.538669\pi\)
\(542\) 0 0
\(543\) −7.01633e6 −1.02120
\(544\) 0 0
\(545\) 9.27716e6 1.33790
\(546\) 0 0
\(547\) −8.86766e6 −1.26719 −0.633594 0.773666i \(-0.718421\pi\)
−0.633594 + 0.773666i \(0.718421\pi\)
\(548\) 0 0
\(549\) −894530. −0.126667
\(550\) 0 0
\(551\) −464735. −0.0652119
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −7.61316e6 −1.04914
\(556\) 0 0
\(557\) −6.29582e6 −0.859833 −0.429917 0.902869i \(-0.641457\pi\)
−0.429917 + 0.902869i \(0.641457\pi\)
\(558\) 0 0
\(559\) 5.95275e6 0.805727
\(560\) 0 0
\(561\) 4.63711e6 0.622072
\(562\) 0 0
\(563\) −8.35369e6 −1.11073 −0.555364 0.831608i \(-0.687421\pi\)
−0.555364 + 0.831608i \(0.687421\pi\)
\(564\) 0 0
\(565\) 9.75355e6 1.28541
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.48798e6 −0.322155 −0.161078 0.986942i \(-0.551497\pi\)
−0.161078 + 0.986942i \(0.551497\pi\)
\(570\) 0 0
\(571\) 2.44174e6 0.313408 0.156704 0.987646i \(-0.449913\pi\)
0.156704 + 0.987646i \(0.449913\pi\)
\(572\) 0 0
\(573\) 3.79164e6 0.482436
\(574\) 0 0
\(575\) 529930. 0.0668419
\(576\) 0 0
\(577\) 2.14056e6 0.267663 0.133831 0.991004i \(-0.457272\pi\)
0.133831 + 0.991004i \(0.457272\pi\)
\(578\) 0 0
\(579\) 6.90338e6 0.855786
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −9.34144e6 −1.13826
\(584\) 0 0
\(585\) −468120. −0.0565546
\(586\) 0 0
\(587\) 16057.9 0.00192350 0.000961752 1.00000i \(-0.499694\pi\)
0.000961752 1.00000i \(0.499694\pi\)
\(588\) 0 0
\(589\) −501655. −0.0595823
\(590\) 0 0
\(591\) 1.15957e7 1.36562
\(592\) 0 0
\(593\) −1.21715e7 −1.42137 −0.710684 0.703511i \(-0.751614\pi\)
−0.710684 + 0.703511i \(0.751614\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.05164e7 1.20762
\(598\) 0 0
\(599\) −7.60810e6 −0.866382 −0.433191 0.901302i \(-0.642612\pi\)
−0.433191 + 0.901302i \(0.642612\pi\)
\(600\) 0 0
\(601\) 1.38834e7 1.56786 0.783932 0.620847i \(-0.213211\pi\)
0.783932 + 0.620847i \(0.213211\pi\)
\(602\) 0 0
\(603\) −1.42950e6 −0.160100
\(604\) 0 0
\(605\) 4.40181e6 0.488926
\(606\) 0 0
\(607\) 9.28458e6 1.02280 0.511400 0.859343i \(-0.329127\pi\)
0.511400 + 0.859343i \(0.329127\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −415560. −0.0450329
\(612\) 0 0
\(613\) −1.63186e6 −0.175401 −0.0877006 0.996147i \(-0.527952\pi\)
−0.0877006 + 0.996147i \(0.527952\pi\)
\(614\) 0 0
\(615\) 1.40035e7 1.49297
\(616\) 0 0
\(617\) 8.30019e6 0.877758 0.438879 0.898546i \(-0.355376\pi\)
0.438879 + 0.898546i \(0.355376\pi\)
\(618\) 0 0
\(619\) 9.66890e6 1.01426 0.507131 0.861869i \(-0.330706\pi\)
0.507131 + 0.861869i \(0.330706\pi\)
\(620\) 0 0
\(621\) −3.61988e6 −0.376674
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.85913e6 −0.804775
\(626\) 0 0
\(627\) 9.77269e6 0.992762
\(628\) 0 0
\(629\) −9.44911e6 −0.952279
\(630\) 0 0
\(631\) −8.91041e6 −0.890891 −0.445445 0.895309i \(-0.646955\pi\)
−0.445445 + 0.895309i \(0.646955\pi\)
\(632\) 0 0
\(633\) −1.49944e7 −1.48738
\(634\) 0 0
\(635\) 6.97359e6 0.686313
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −520704. −0.0504474
\(640\) 0 0
\(641\) 1.09470e7 1.05233 0.526164 0.850383i \(-0.323630\pi\)
0.526164 + 0.850383i \(0.323630\pi\)
\(642\) 0 0
\(643\) −1.81902e7 −1.73504 −0.867522 0.497399i \(-0.834288\pi\)
−0.867522 + 0.497399i \(0.834288\pi\)
\(644\) 0 0
\(645\) 1.34601e7 1.27394
\(646\) 0 0
\(647\) −2.34882e6 −0.220592 −0.110296 0.993899i \(-0.535180\pi\)
−0.110296 + 0.993899i \(0.535180\pi\)
\(648\) 0 0
\(649\) 3.05999e6 0.285173
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.10635e6 −0.468627 −0.234314 0.972161i \(-0.575284\pi\)
−0.234314 + 0.972161i \(0.575284\pi\)
\(654\) 0 0
\(655\) 4.35762e6 0.396868
\(656\) 0 0
\(657\) −1.40237e6 −0.126750
\(658\) 0 0
\(659\) 1.94777e7 1.74713 0.873563 0.486711i \(-0.161803\pi\)
0.873563 + 0.486711i \(0.161803\pi\)
\(660\) 0 0
\(661\) 1.63826e6 0.145841 0.0729204 0.997338i \(-0.476768\pi\)
0.0729204 + 0.997338i \(0.476768\pi\)
\(662\) 0 0
\(663\) −6.26188e6 −0.553249
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 215764. 0.0187787
\(668\) 0 0
\(669\) 1.57957e7 1.36450
\(670\) 0 0
\(671\) 9.84154e6 0.843834
\(672\) 0 0
\(673\) −989610. −0.0842222 −0.0421111 0.999113i \(-0.513408\pi\)
−0.0421111 + 0.999113i \(0.513408\pi\)
\(674\) 0 0
\(675\) −1.86603e6 −0.157638
\(676\) 0 0
\(677\) −1.89639e7 −1.59022 −0.795108 0.606467i \(-0.792586\pi\)
−0.795108 + 0.606467i \(0.792586\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.46216e7 −1.20817
\(682\) 0 0
\(683\) −3.61093e6 −0.296188 −0.148094 0.988973i \(-0.547314\pi\)
−0.148094 + 0.988973i \(0.547314\pi\)
\(684\) 0 0
\(685\) 2.10578e6 0.171470
\(686\) 0 0
\(687\) −1.99264e7 −1.61078
\(688\) 0 0
\(689\) 1.26145e7 1.01233
\(690\) 0 0
\(691\) 1.91835e7 1.52838 0.764192 0.644989i \(-0.223138\pi\)
0.764192 + 0.644989i \(0.223138\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.25285e7 −0.983866
\(696\) 0 0
\(697\) 1.73805e7 1.35513
\(698\) 0 0
\(699\) −2.03771e7 −1.57743
\(700\) 0 0
\(701\) −1.10240e7 −0.847314 −0.423657 0.905823i \(-0.639254\pi\)
−0.423657 + 0.905823i \(0.639254\pi\)
\(702\) 0 0
\(703\) −1.99139e7 −1.51974
\(704\) 0 0
\(705\) −939643. −0.0712016
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 2.05337e7 1.53409 0.767047 0.641591i \(-0.221726\pi\)
0.767047 + 0.641591i \(0.221726\pi\)
\(710\) 0 0
\(711\) 1.19694e6 0.0887968
\(712\) 0 0
\(713\) 232906. 0.0171576
\(714\) 0 0
\(715\) 5.15022e6 0.376756
\(716\) 0 0
\(717\) 3.66525e6 0.266260
\(718\) 0 0
\(719\) 8.09121e6 0.583702 0.291851 0.956464i \(-0.405729\pi\)
0.291851 + 0.956464i \(0.405729\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 6.57141e6 0.467534
\(724\) 0 0
\(725\) 111226. 0.00785886
\(726\) 0 0
\(727\) −1.58746e7 −1.11396 −0.556978 0.830527i \(-0.688039\pi\)
−0.556978 + 0.830527i \(0.688039\pi\)
\(728\) 0 0
\(729\) 1.25965e7 0.877875
\(730\) 0 0
\(731\) 1.67060e7 1.15632
\(732\) 0 0
\(733\) −4.52547e6 −0.311102 −0.155551 0.987828i \(-0.549715\pi\)
−0.155551 + 0.987828i \(0.549715\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.57272e7 1.06655
\(738\) 0 0
\(739\) −1.07043e7 −0.721022 −0.360511 0.932755i \(-0.617398\pi\)
−0.360511 + 0.932755i \(0.617398\pi\)
\(740\) 0 0
\(741\) −1.31969e7 −0.882928
\(742\) 0 0
\(743\) 1.76704e7 1.17429 0.587144 0.809482i \(-0.300252\pi\)
0.587144 + 0.809482i \(0.300252\pi\)
\(744\) 0 0
\(745\) 1.67148e7 1.10334
\(746\) 0 0
\(747\) 1.60034e6 0.104933
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.17795e7 0.762125 0.381062 0.924549i \(-0.375558\pi\)
0.381062 + 0.924549i \(0.375558\pi\)
\(752\) 0 0
\(753\) 6.64724e6 0.427222
\(754\) 0 0
\(755\) −1.90111e7 −1.21378
\(756\) 0 0
\(757\) −2.89421e7 −1.83565 −0.917827 0.396981i \(-0.870058\pi\)
−0.917827 + 0.396981i \(0.870058\pi\)
\(758\) 0 0
\(759\) −4.53721e6 −0.285880
\(760\) 0 0
\(761\) 1.33672e7 0.836715 0.418358 0.908282i \(-0.362606\pi\)
0.418358 + 0.908282i \(0.362606\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.31375e6 −0.0811633
\(766\) 0 0
\(767\) −4.13216e6 −0.253623
\(768\) 0 0
\(769\) −2.23666e7 −1.36390 −0.681952 0.731397i \(-0.738869\pi\)
−0.681952 + 0.731397i \(0.738869\pi\)
\(770\) 0 0
\(771\) 1.35999e7 0.823945
\(772\) 0 0
\(773\) 5.67731e6 0.341738 0.170869 0.985294i \(-0.445342\pi\)
0.170869 + 0.985294i \(0.445342\pi\)
\(774\) 0 0
\(775\) 120062. 0.00718043
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.66294e7 2.16265
\(780\) 0 0
\(781\) 5.72874e6 0.336072
\(782\) 0 0
\(783\) −759768. −0.0442870
\(784\) 0 0
\(785\) 1.07632e7 0.623399
\(786\) 0 0
\(787\) 1.56192e7 0.898924 0.449462 0.893300i \(-0.351616\pi\)
0.449462 + 0.893300i \(0.351616\pi\)
\(788\) 0 0
\(789\) −2.71589e7 −1.55317
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1.32898e7 −0.750476
\(794\) 0 0
\(795\) 2.85233e7 1.60060
\(796\) 0 0
\(797\) −1.18054e7 −0.658317 −0.329159 0.944275i \(-0.606765\pi\)
−0.329159 + 0.944275i \(0.606765\pi\)
\(798\) 0 0
\(799\) −1.16624e6 −0.0646282
\(800\) 0 0
\(801\) −1.55321e6 −0.0855358
\(802\) 0 0
\(803\) 1.54287e7 0.844388
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.72691e6 0.0933437
\(808\) 0 0
\(809\) 1.62838e7 0.874753 0.437376 0.899278i \(-0.355908\pi\)
0.437376 + 0.899278i \(0.355908\pi\)
\(810\) 0 0
\(811\) −2.34229e7 −1.25051 −0.625257 0.780419i \(-0.715006\pi\)
−0.625257 + 0.780419i \(0.715006\pi\)
\(812\) 0 0
\(813\) 2.87219e7 1.52401
\(814\) 0 0
\(815\) 9.83639e6 0.518730
\(816\) 0 0
\(817\) 3.52079e7 1.84537
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.76011e7 1.42912 0.714559 0.699575i \(-0.246627\pi\)
0.714559 + 0.699575i \(0.246627\pi\)
\(822\) 0 0
\(823\) −3.71262e7 −1.91065 −0.955325 0.295557i \(-0.904495\pi\)
−0.955325 + 0.295557i \(0.904495\pi\)
\(824\) 0 0
\(825\) −2.33891e6 −0.119640
\(826\) 0 0
\(827\) 1.18296e7 0.601459 0.300729 0.953710i \(-0.402770\pi\)
0.300729 + 0.953710i \(0.402770\pi\)
\(828\) 0 0
\(829\) −2.56615e7 −1.29687 −0.648433 0.761271i \(-0.724576\pi\)
−0.648433 + 0.761271i \(0.724576\pi\)
\(830\) 0 0
\(831\) −3.51875e7 −1.76761
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −2.59038e7 −1.28572
\(836\) 0 0
\(837\) −820127. −0.0404639
\(838\) 0 0
\(839\) 2.86405e7 1.40467 0.702336 0.711845i \(-0.252140\pi\)
0.702336 + 0.711845i \(0.252140\pi\)
\(840\) 0 0
\(841\) −2.04659e7 −0.997792
\(842\) 0 0
\(843\) 3.18189e7 1.54211
\(844\) 0 0
\(845\) 1.19860e7 0.577476
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −7.01222e6 −0.333877
\(850\) 0 0
\(851\) 9.24553e6 0.437631
\(852\) 0 0
\(853\) −3.22929e7 −1.51962 −0.759809 0.650146i \(-0.774708\pi\)
−0.759809 + 0.650146i \(0.774708\pi\)
\(854\) 0 0
\(855\) −2.76872e6 −0.129528
\(856\) 0 0
\(857\) 1.72977e7 0.804520 0.402260 0.915525i \(-0.368225\pi\)
0.402260 + 0.915525i \(0.368225\pi\)
\(858\) 0 0
\(859\) 3.79054e7 1.75274 0.876372 0.481635i \(-0.159957\pi\)
0.876372 + 0.481635i \(0.159957\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.73660e6 0.353609 0.176804 0.984246i \(-0.443424\pi\)
0.176804 + 0.984246i \(0.443424\pi\)
\(864\) 0 0
\(865\) −2.87548e7 −1.30668
\(866\) 0 0
\(867\) 5.66410e6 0.255908
\(868\) 0 0
\(869\) −1.31686e7 −0.591548
\(870\) 0 0
\(871\) −2.12377e7 −0.948556
\(872\) 0 0
\(873\) −874888. −0.0388523
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.07875e6 0.0473612 0.0236806 0.999720i \(-0.492462\pi\)
0.0236806 + 0.999720i \(0.492462\pi\)
\(878\) 0 0
\(879\) 2.87036e7 1.25304
\(880\) 0 0
\(881\) 1.88089e7 0.816440 0.408220 0.912884i \(-0.366150\pi\)
0.408220 + 0.912884i \(0.366150\pi\)
\(882\) 0 0
\(883\) 3.12763e7 1.34994 0.674968 0.737847i \(-0.264158\pi\)
0.674968 + 0.737847i \(0.264158\pi\)
\(884\) 0 0
\(885\) −9.34343e6 −0.401004
\(886\) 0 0
\(887\) −2.69104e7 −1.14845 −0.574223 0.818699i \(-0.694696\pi\)
−0.574223 + 0.818699i \(0.694696\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.76281e7 0.743894
\(892\) 0 0
\(893\) −2.45785e6 −0.103140
\(894\) 0 0
\(895\) −9.70857e6 −0.405133
\(896\) 0 0
\(897\) 6.12696e6 0.254252
\(898\) 0 0
\(899\) 48884.0 0.00201728
\(900\) 0 0
\(901\) 3.54019e7 1.45283
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.18698e7 −0.887610
\(906\) 0 0
\(907\) 4.54725e7 1.83540 0.917699 0.397277i \(-0.130045\pi\)
0.917699 + 0.397277i \(0.130045\pi\)
\(908\) 0 0
\(909\) −2.04635e6 −0.0821428
\(910\) 0 0
\(911\) −4.44792e7 −1.77567 −0.887833 0.460165i \(-0.847790\pi\)
−0.887833 + 0.460165i \(0.847790\pi\)
\(912\) 0 0
\(913\) −1.76068e7 −0.699042
\(914\) 0 0
\(915\) −3.00503e7 −1.18658
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −4.51961e7 −1.76527 −0.882637 0.470055i \(-0.844234\pi\)
−0.882637 + 0.470055i \(0.844234\pi\)
\(920\) 0 0
\(921\) 3.31004e7 1.28583
\(922\) 0 0
\(923\) −7.73599e6 −0.298890
\(924\) 0 0
\(925\) 4.76602e6 0.183148
\(926\) 0 0
\(927\) −2.45650e6 −0.0938895
\(928\) 0 0
\(929\) 197419. 0.00750500 0.00375250 0.999993i \(-0.498806\pi\)
0.00375250 + 0.999993i \(0.498806\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −2.33423e7 −0.877888
\(934\) 0 0
\(935\) 1.44538e7 0.540695
\(936\) 0 0
\(937\) 2.35263e7 0.875394 0.437697 0.899122i \(-0.355794\pi\)
0.437697 + 0.899122i \(0.355794\pi\)
\(938\) 0 0
\(939\) −871888. −0.0322698
\(940\) 0 0
\(941\) 4.57924e7 1.68585 0.842925 0.538031i \(-0.180832\pi\)
0.842925 + 0.538031i \(0.180832\pi\)
\(942\) 0 0
\(943\) −1.70061e7 −0.622766
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.78958e6 0.318488 0.159244 0.987239i \(-0.449094\pi\)
0.159244 + 0.987239i \(0.449094\pi\)
\(948\) 0 0
\(949\) −2.08347e7 −0.750969
\(950\) 0 0
\(951\) 4.29582e7 1.54026
\(952\) 0 0
\(953\) 2.97668e7 1.06170 0.530848 0.847467i \(-0.321874\pi\)
0.530848 + 0.847467i \(0.321874\pi\)
\(954\) 0 0
\(955\) 1.18184e7 0.419326
\(956\) 0 0
\(957\) −952302. −0.0336121
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.85764e7 −0.998157
\(962\) 0 0
\(963\) 5.37820e6 0.186884
\(964\) 0 0
\(965\) 2.15177e7 0.743836
\(966\) 0 0
\(967\) 1.40282e7 0.482433 0.241217 0.970471i \(-0.422454\pi\)
0.241217 + 0.970471i \(0.422454\pi\)
\(968\) 0 0
\(969\) −3.70362e7 −1.26712
\(970\) 0 0
\(971\) −2.04446e7 −0.695872 −0.347936 0.937518i \(-0.613117\pi\)
−0.347936 + 0.937518i \(0.613117\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 3.15842e6 0.106404
\(976\) 0 0
\(977\) −2.12878e7 −0.713500 −0.356750 0.934200i \(-0.616115\pi\)
−0.356750 + 0.934200i \(0.616115\pi\)
\(978\) 0 0
\(979\) 1.70882e7 0.569824
\(980\) 0 0
\(981\) −4.51969e6 −0.149946
\(982\) 0 0
\(983\) −4.04387e7 −1.33479 −0.667396 0.744703i \(-0.732591\pi\)
−0.667396 + 0.744703i \(0.732591\pi\)
\(984\) 0 0
\(985\) 3.61436e7 1.18697
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.63461e7 −0.531402
\(990\) 0 0
\(991\) −2.47373e7 −0.800145 −0.400072 0.916484i \(-0.631015\pi\)
−0.400072 + 0.916484i \(0.631015\pi\)
\(992\) 0 0
\(993\) −2.13331e7 −0.686562
\(994\) 0 0
\(995\) 3.27793e7 1.04964
\(996\) 0 0
\(997\) −2.09230e7 −0.666631 −0.333316 0.942815i \(-0.608167\pi\)
−0.333316 + 0.942815i \(0.608167\pi\)
\(998\) 0 0
\(999\) −3.25561e7 −1.03209
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.6.a.m.1.2 6
4.3 odd 2 784.6.a.bn.1.5 6
7.2 even 3 392.6.i.q.361.5 12
7.3 odd 6 392.6.i.q.177.2 12
7.4 even 3 392.6.i.q.177.5 12
7.5 odd 6 392.6.i.q.361.2 12
7.6 odd 2 inner 392.6.a.m.1.5 yes 6
28.27 even 2 784.6.a.bn.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
392.6.a.m.1.2 6 1.1 even 1 trivial
392.6.a.m.1.5 yes 6 7.6 odd 2 inner
392.6.i.q.177.2 12 7.3 odd 6
392.6.i.q.177.5 12 7.4 even 3
392.6.i.q.361.2 12 7.5 odd 6
392.6.i.q.361.5 12 7.2 even 3
784.6.a.bn.1.2 6 28.27 even 2
784.6.a.bn.1.5 6 4.3 odd 2