Properties

Label 392.6.i.q.361.2
Level $392$
Weight $6$
Character 392.361
Analytic conductor $62.870$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,6,Mod(177,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.177");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 392.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.8704573667\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 638 x^{10} - 2656 x^{9} + 153618 x^{8} + 1282848 x^{7} - 13837748 x^{6} - 207709824 x^{5} + \cdots + 219426904900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8}\cdot 7^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.2
Root \(-10.2798 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 392.361
Dual form 392.6.i.q.177.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.18310 + 14.1736i) q^{3} +(-25.5066 - 44.1787i) q^{5} +(-12.4264 - 21.5232i) q^{9} +(136.714 - 236.796i) q^{11} -369.233 q^{13} +834.891 q^{15} +(518.115 - 897.401i) q^{17} +(1091.92 + 1891.27i) q^{19} +(506.952 + 878.067i) q^{23} +(261.331 - 452.639i) q^{25} -3570.24 q^{27} -212.806 q^{29} +(-114.856 + 198.936i) q^{31} +(2237.49 + 3875.45i) q^{33} +(4559.37 + 7897.06i) q^{37} +(3021.47 - 5233.34i) q^{39} -16772.9 q^{41} +16121.9 q^{43} +(-633.909 + 1097.96i) q^{45} +(-562.734 - 974.683i) q^{47} +(8479.58 + 14687.1i) q^{51} +(-17082.1 + 29587.0i) q^{53} -13948.4 q^{55} -35741.3 q^{57} +(-5595.60 + 9691.86i) q^{59} +(-17996.6 - 31171.0i) q^{61} +(9417.86 + 16312.2i) q^{65} +(28759.3 - 49812.5i) q^{67} -16593.8 q^{69} -20951.5 q^{71} +(-28213.5 + 48867.2i) q^{73} +(4277.00 + 7407.98i) q^{75} +(-24080.5 - 41708.7i) q^{79} +(32235.3 - 55833.2i) q^{81} -64392.7 q^{83} -52861.3 q^{85} +(1741.41 - 3016.21i) q^{87} +(-31248.1 - 54123.3i) q^{89} +(-1879.76 - 3255.83i) q^{93} +(55702.4 - 96479.4i) q^{95} +35202.8 q^{97} -6795.46 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 122 q^{9} - 248 q^{11} - 752 q^{15} + 2904 q^{23} - 1510 q^{25} - 816 q^{29} + 18648 q^{37} + 15240 q^{39} - 21168 q^{43} - 3016 q^{51} + 66772 q^{53} - 112528 q^{57} + 55316 q^{65} + 169632 q^{67}+ \cdots - 347024 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −8.18310 + 14.1736i −0.524946 + 0.909234i 0.474632 + 0.880185i \(0.342581\pi\)
−0.999578 + 0.0290493i \(0.990752\pi\)
\(4\) 0 0
\(5\) −25.5066 44.1787i −0.456275 0.790292i 0.542485 0.840065i \(-0.317483\pi\)
−0.998761 + 0.0497735i \(0.984150\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −12.4264 21.5232i −0.0511375 0.0885727i
\(10\) 0 0
\(11\) 136.714 236.796i 0.340668 0.590055i −0.643889 0.765119i \(-0.722680\pi\)
0.984557 + 0.175064i \(0.0560133\pi\)
\(12\) 0 0
\(13\) −369.233 −0.605957 −0.302979 0.952997i \(-0.597981\pi\)
−0.302979 + 0.952997i \(0.597981\pi\)
\(14\) 0 0
\(15\) 834.891 0.958080
\(16\) 0 0
\(17\) 518.115 897.401i 0.434814 0.753120i −0.562466 0.826820i \(-0.690147\pi\)
0.997280 + 0.0737000i \(0.0234807\pi\)
\(18\) 0 0
\(19\) 1091.92 + 1891.27i 0.693918 + 1.20190i 0.970544 + 0.240924i \(0.0774505\pi\)
−0.276626 + 0.960978i \(0.589216\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 506.952 + 878.067i 0.199824 + 0.346105i 0.948471 0.316863i \(-0.102630\pi\)
−0.748647 + 0.662968i \(0.769296\pi\)
\(24\) 0 0
\(25\) 261.331 452.639i 0.0836260 0.144844i
\(26\) 0 0
\(27\) −3570.24 −0.942515
\(28\) 0 0
\(29\) −212.806 −0.0469881 −0.0234941 0.999724i \(-0.507479\pi\)
−0.0234941 + 0.999724i \(0.507479\pi\)
\(30\) 0 0
\(31\) −114.856 + 198.936i −0.0214659 + 0.0371800i −0.876559 0.481295i \(-0.840167\pi\)
0.855093 + 0.518475i \(0.173500\pi\)
\(32\) 0 0
\(33\) 2237.49 + 3875.45i 0.357665 + 0.619495i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4559.37 + 7897.06i 0.547521 + 0.948333i 0.998444 + 0.0557706i \(0.0177616\pi\)
−0.450923 + 0.892563i \(0.648905\pi\)
\(38\) 0 0
\(39\) 3021.47 5233.34i 0.318095 0.550957i
\(40\) 0 0
\(41\) −16772.9 −1.55829 −0.779144 0.626845i \(-0.784346\pi\)
−0.779144 + 0.626845i \(0.784346\pi\)
\(42\) 0 0
\(43\) 16121.9 1.32968 0.664838 0.746987i \(-0.268500\pi\)
0.664838 + 0.746987i \(0.268500\pi\)
\(44\) 0 0
\(45\) −633.909 + 1097.96i −0.0466655 + 0.0808270i
\(46\) 0 0
\(47\) −562.734 974.683i −0.0371585 0.0643604i 0.846848 0.531835i \(-0.178497\pi\)
−0.884007 + 0.467474i \(0.845164\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 8479.58 + 14687.1i 0.456508 + 0.790696i
\(52\) 0 0
\(53\) −17082.1 + 29587.0i −0.835315 + 1.44681i 0.0584585 + 0.998290i \(0.481381\pi\)
−0.893774 + 0.448518i \(0.851952\pi\)
\(54\) 0 0
\(55\) −13948.4 −0.621754
\(56\) 0 0
\(57\) −35741.3 −1.45708
\(58\) 0 0
\(59\) −5595.60 + 9691.86i −0.209275 + 0.362474i −0.951486 0.307691i \(-0.900444\pi\)
0.742212 + 0.670166i \(0.233777\pi\)
\(60\) 0 0
\(61\) −17996.6 31171.0i −0.619248 1.07257i −0.989623 0.143687i \(-0.954104\pi\)
0.370375 0.928882i \(-0.379229\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9417.86 + 16312.2i 0.276483 + 0.478883i
\(66\) 0 0
\(67\) 28759.3 49812.5i 0.782692 1.35566i −0.147676 0.989036i \(-0.547179\pi\)
0.930368 0.366627i \(-0.119488\pi\)
\(68\) 0 0
\(69\) −16593.8 −0.419587
\(70\) 0 0
\(71\) −20951.5 −0.493253 −0.246627 0.969111i \(-0.579322\pi\)
−0.246627 + 0.969111i \(0.579322\pi\)
\(72\) 0 0
\(73\) −28213.5 + 48867.2i −0.619655 + 1.07327i 0.369894 + 0.929074i \(0.379394\pi\)
−0.989549 + 0.144200i \(0.953939\pi\)
\(74\) 0 0
\(75\) 4277.00 + 7407.98i 0.0877983 + 0.152071i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −24080.5 41708.7i −0.434108 0.751898i 0.563114 0.826379i \(-0.309603\pi\)
−0.997222 + 0.0744813i \(0.976270\pi\)
\(80\) 0 0
\(81\) 32235.3 55833.2i 0.545907 0.945539i
\(82\) 0 0
\(83\) −64392.7 −1.02599 −0.512993 0.858393i \(-0.671463\pi\)
−0.512993 + 0.858393i \(0.671463\pi\)
\(84\) 0 0
\(85\) −52861.3 −0.793580
\(86\) 0 0
\(87\) 1741.41 3016.21i 0.0246662 0.0427232i
\(88\) 0 0
\(89\) −31248.1 54123.3i −0.418166 0.724285i 0.577589 0.816328i \(-0.303994\pi\)
−0.995755 + 0.0920428i \(0.970660\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1879.76 3255.83i −0.0225369 0.0390350i
\(94\) 0 0
\(95\) 55702.4 96479.4i 0.633235 1.09680i
\(96\) 0 0
\(97\) 35202.8 0.379881 0.189941 0.981796i \(-0.439170\pi\)
0.189941 + 0.981796i \(0.439170\pi\)
\(98\) 0 0
\(99\) −6795.46 −0.0696837
\(100\) 0 0
\(101\) −41169.3 + 71307.3i −0.401578 + 0.695554i −0.993917 0.110135i \(-0.964872\pi\)
0.592338 + 0.805689i \(0.298205\pi\)
\(102\) 0 0
\(103\) −49420.9 85599.6i −0.459006 0.795021i 0.539903 0.841727i \(-0.318461\pi\)
−0.998909 + 0.0467062i \(0.985128\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −108201. 187410.i −0.913633 1.58246i −0.808890 0.587960i \(-0.799931\pi\)
−0.104743 0.994499i \(-0.533402\pi\)
\(108\) 0 0
\(109\) 90929.2 157494.i 0.733056 1.26969i −0.222515 0.974929i \(-0.571427\pi\)
0.955571 0.294761i \(-0.0952399\pi\)
\(110\) 0 0
\(111\) −149239. −1.14968
\(112\) 0 0
\(113\) −191197. −1.40859 −0.704296 0.709907i \(-0.748737\pi\)
−0.704296 + 0.709907i \(0.748737\pi\)
\(114\) 0 0
\(115\) 25861.2 44792.9i 0.182349 0.315838i
\(116\) 0 0
\(117\) 4588.24 + 7947.06i 0.0309871 + 0.0536712i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 43143.9 + 74727.5i 0.267890 + 0.463999i
\(122\) 0 0
\(123\) 137254. 237731.i 0.818018 1.41685i
\(124\) 0 0
\(125\) −186079. −1.06518
\(126\) 0 0
\(127\) −136702. −0.752083 −0.376041 0.926603i \(-0.622715\pi\)
−0.376041 + 0.926603i \(0.622715\pi\)
\(128\) 0 0
\(129\) −131927. + 228505.i −0.698009 + 1.20899i
\(130\) 0 0
\(131\) −42710.8 73977.3i −0.217450 0.376635i 0.736578 0.676353i \(-0.236441\pi\)
−0.954028 + 0.299718i \(0.903107\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 91064.6 + 157729.i 0.430046 + 0.744862i
\(136\) 0 0
\(137\) 20639.6 35748.9i 0.0939508 0.162728i −0.815219 0.579152i \(-0.803384\pi\)
0.909170 + 0.416425i \(0.136717\pi\)
\(138\) 0 0
\(139\) −245593. −1.07815 −0.539075 0.842258i \(-0.681226\pi\)
−0.539075 + 0.842258i \(0.681226\pi\)
\(140\) 0 0
\(141\) 18419.6 0.0780249
\(142\) 0 0
\(143\) −50479.4 + 87432.8i −0.206431 + 0.357548i
\(144\) 0 0
\(145\) 5427.94 + 9401.47i 0.0214395 + 0.0371343i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 163829. + 283760.i 0.604539 + 1.04709i 0.992124 + 0.125259i \(0.0399761\pi\)
−0.387585 + 0.921834i \(0.626691\pi\)
\(150\) 0 0
\(151\) −186335. + 322742.i −0.665047 + 1.15190i 0.314226 + 0.949348i \(0.398255\pi\)
−0.979273 + 0.202547i \(0.935078\pi\)
\(152\) 0 0
\(153\) −25753.2 −0.0889412
\(154\) 0 0
\(155\) 11718.3 0.0391774
\(156\) 0 0
\(157\) −105494. + 182721.i −0.341569 + 0.591616i −0.984724 0.174120i \(-0.944292\pi\)
0.643155 + 0.765736i \(0.277625\pi\)
\(158\) 0 0
\(159\) −279568. 484227.i −0.876991 1.51899i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 96410.4 + 166988.i 0.284220 + 0.492284i 0.972420 0.233238i \(-0.0749320\pi\)
−0.688200 + 0.725521i \(0.741599\pi\)
\(164\) 0 0
\(165\) 114141. 197699.i 0.326388 0.565320i
\(166\) 0 0
\(167\) −507788. −1.40893 −0.704467 0.709736i \(-0.748814\pi\)
−0.704467 + 0.709736i \(0.748814\pi\)
\(168\) 0 0
\(169\) −234960. −0.632816
\(170\) 0 0
\(171\) 27137.4 47003.3i 0.0709704 0.122924i
\(172\) 0 0
\(173\) 281838. + 488157.i 0.715951 + 1.24006i 0.962591 + 0.270957i \(0.0873402\pi\)
−0.246640 + 0.969107i \(0.579327\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −91578.7 158619.i −0.219716 0.380559i
\(178\) 0 0
\(179\) −95157.5 + 164818.i −0.221978 + 0.384478i −0.955409 0.295287i \(-0.904585\pi\)
0.733430 + 0.679765i \(0.237918\pi\)
\(180\) 0 0
\(181\) −428708. −0.972670 −0.486335 0.873772i \(-0.661667\pi\)
−0.486335 + 0.873772i \(0.661667\pi\)
\(182\) 0 0
\(183\) 589071. 1.30029
\(184\) 0 0
\(185\) 232588. 402854.i 0.499640 0.865402i
\(186\) 0 0
\(187\) −141667. 245375.i −0.296255 0.513129i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 115837. + 200636.i 0.229755 + 0.397947i 0.957735 0.287650i \(-0.0928741\pi\)
−0.727980 + 0.685598i \(0.759541\pi\)
\(192\) 0 0
\(193\) 210903. 365296.i 0.407559 0.705913i −0.587057 0.809546i \(-0.699713\pi\)
0.994616 + 0.103633i \(0.0330468\pi\)
\(194\) 0 0
\(195\) −308269. −0.580555
\(196\) 0 0
\(197\) −708516. −1.30072 −0.650360 0.759626i \(-0.725382\pi\)
−0.650360 + 0.759626i \(0.725382\pi\)
\(198\) 0 0
\(199\) −321283. + 556479.i −0.575116 + 0.996130i 0.420913 + 0.907101i \(0.361710\pi\)
−0.996029 + 0.0890289i \(0.971624\pi\)
\(200\) 0 0
\(201\) 470681. + 815243.i 0.821743 + 1.42330i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 427818. + 741003.i 0.711008 + 1.23150i
\(206\) 0 0
\(207\) 12599.2 21822.4i 0.0204370 0.0353979i
\(208\) 0 0
\(209\) 597126. 0.945584
\(210\) 0 0
\(211\) 916183. 1.41669 0.708347 0.705864i \(-0.249441\pi\)
0.708347 + 0.705864i \(0.249441\pi\)
\(212\) 0 0
\(213\) 171449. 296958.i 0.258931 0.448482i
\(214\) 0 0
\(215\) −411215. 712245.i −0.606698 1.05083i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −461748. 799771.i −0.650571 1.12682i
\(220\) 0 0
\(221\) −191305. + 331350.i −0.263479 + 0.456359i
\(222\) 0 0
\(223\) 965140. 1.29966 0.649828 0.760081i \(-0.274841\pi\)
0.649828 + 0.760081i \(0.274841\pi\)
\(224\) 0 0
\(225\) −12989.6 −0.0171057
\(226\) 0 0
\(227\) 446701. 773709.i 0.575377 0.996582i −0.420624 0.907235i \(-0.638189\pi\)
0.996001 0.0893469i \(-0.0284780\pi\)
\(228\) 0 0
\(229\) 608766. + 1.05441e6i 0.767117 + 1.32869i 0.939120 + 0.343589i \(0.111643\pi\)
−0.172003 + 0.985096i \(0.555024\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −622536. 1.07826e6i −0.751234 1.30117i −0.947225 0.320569i \(-0.896126\pi\)
0.195992 0.980606i \(-0.437207\pi\)
\(234\) 0 0
\(235\) −28706.8 + 49721.6i −0.0339090 + 0.0587321i
\(236\) 0 0
\(237\) 788214. 0.911535
\(238\) 0 0
\(239\) −223953. −0.253607 −0.126803 0.991928i \(-0.540472\pi\)
−0.126803 + 0.991928i \(0.540472\pi\)
\(240\) 0 0
\(241\) −200762. + 347729.i −0.222658 + 0.385655i −0.955614 0.294621i \(-0.904807\pi\)
0.732956 + 0.680276i \(0.238140\pi\)
\(242\) 0 0
\(243\) 93784.9 + 162440.i 0.101887 + 0.176473i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −403174. 698318.i −0.420485 0.728301i
\(248\) 0 0
\(249\) 526932. 912674.i 0.538588 0.932862i
\(250\) 0 0
\(251\) 406156. 0.406920 0.203460 0.979083i \(-0.434781\pi\)
0.203460 + 0.979083i \(0.434781\pi\)
\(252\) 0 0
\(253\) 277230. 0.272295
\(254\) 0 0
\(255\) 432570. 749232.i 0.416587 0.721549i
\(256\) 0 0
\(257\) −415486. 719642.i −0.392395 0.679648i 0.600370 0.799722i \(-0.295020\pi\)
−0.992765 + 0.120075i \(0.961687\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2644.41 + 4580.25i 0.00240285 + 0.00416186i
\(262\) 0 0
\(263\) −829724. + 1.43712e6i −0.739681 + 1.28117i 0.212958 + 0.977061i \(0.431690\pi\)
−0.952639 + 0.304104i \(0.901643\pi\)
\(264\) 0 0
\(265\) 1.74282e6 1.52453
\(266\) 0 0
\(267\) 1.02283e6 0.878059
\(268\) 0 0
\(269\) −52758.3 + 91380.1i −0.0444539 + 0.0769965i −0.887396 0.461007i \(-0.847488\pi\)
0.842942 + 0.538004i \(0.180821\pi\)
\(270\) 0 0
\(271\) −877475. 1.51983e6i −0.725791 1.25711i −0.958648 0.284596i \(-0.908141\pi\)
0.232857 0.972511i \(-0.425193\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −71455.4 123764.i −0.0569775 0.0986879i
\(276\) 0 0
\(277\) −1.07500e6 + 1.86196e6i −0.841803 + 1.45805i 0.0465659 + 0.998915i \(0.485172\pi\)
−0.888369 + 0.459130i \(0.848161\pi\)
\(278\) 0 0
\(279\) 5708.98 0.00439084
\(280\) 0 0
\(281\) −1.94418e6 −1.46883 −0.734415 0.678701i \(-0.762543\pi\)
−0.734415 + 0.678701i \(0.762543\pi\)
\(282\) 0 0
\(283\) 214228. 371055.i 0.159005 0.275405i −0.775505 0.631341i \(-0.782505\pi\)
0.934510 + 0.355936i \(0.115838\pi\)
\(284\) 0 0
\(285\) 911638. + 1.57900e6i 0.664829 + 1.15152i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 173043. + 299719.i 0.121873 + 0.211091i
\(290\) 0 0
\(291\) −288068. + 498949.i −0.199417 + 0.345401i
\(292\) 0 0
\(293\) 1.75383e6 1.19349 0.596746 0.802430i \(-0.296460\pi\)
0.596746 + 0.802430i \(0.296460\pi\)
\(294\) 0 0
\(295\) 570898. 0.381947
\(296\) 0 0
\(297\) −488103. + 845419.i −0.321085 + 0.556136i
\(298\) 0 0
\(299\) −187183. 324211.i −0.121085 0.209725i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −673786. 1.16703e6i −0.421614 0.730257i
\(304\) 0 0
\(305\) −918060. + 1.59013e6i −0.565095 + 0.978774i
\(306\) 0 0
\(307\) 2.02249e6 1.22473 0.612364 0.790576i \(-0.290219\pi\)
0.612364 + 0.790576i \(0.290219\pi\)
\(308\) 0 0
\(309\) 1.61767e6 0.963813
\(310\) 0 0
\(311\) 713124. 1.23517e6i 0.418085 0.724144i −0.577662 0.816276i \(-0.696035\pi\)
0.995747 + 0.0921321i \(0.0293682\pi\)
\(312\) 0 0
\(313\) 26636.8 + 46136.3i 0.0153681 + 0.0266184i 0.873607 0.486632i \(-0.161775\pi\)
−0.858239 + 0.513250i \(0.828441\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.31241e6 + 2.27315e6i 0.733533 + 1.27052i 0.955364 + 0.295432i \(0.0954634\pi\)
−0.221831 + 0.975085i \(0.571203\pi\)
\(318\) 0 0
\(319\) −29093.6 + 50391.5i −0.0160074 + 0.0277256i
\(320\) 0 0
\(321\) 3.54168e6 1.91843
\(322\) 0 0
\(323\) 2.26297e6 1.20690
\(324\) 0 0
\(325\) −96492.1 + 167129.i −0.0506738 + 0.0877696i
\(326\) 0 0
\(327\) 1.48817e6 + 2.57758e6i 0.769630 + 1.33304i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −651741. 1.12885e6i −0.326968 0.566325i 0.654941 0.755680i \(-0.272694\pi\)
−0.981909 + 0.189355i \(0.939360\pi\)
\(332\) 0 0
\(333\) 113313. 196264.i 0.0559976 0.0969907i
\(334\) 0 0
\(335\) −2.93420e6 −1.42849
\(336\) 0 0
\(337\) −1.33530e6 −0.640476 −0.320238 0.947337i \(-0.603763\pi\)
−0.320238 + 0.947337i \(0.603763\pi\)
\(338\) 0 0
\(339\) 1.56459e6 2.70994e6i 0.739435 1.28074i
\(340\) 0 0
\(341\) 31404.9 + 54394.8i 0.0146255 + 0.0253321i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 423250. + 733090.i 0.191447 + 0.331596i
\(346\) 0 0
\(347\) −862296. + 1.49354e6i −0.384443 + 0.665876i −0.991692 0.128636i \(-0.958940\pi\)
0.607248 + 0.794512i \(0.292273\pi\)
\(348\) 0 0
\(349\) −2.97845e6 −1.30896 −0.654481 0.756079i \(-0.727113\pi\)
−0.654481 + 0.756079i \(0.727113\pi\)
\(350\) 0 0
\(351\) 1.31825e6 0.571124
\(352\) 0 0
\(353\) −259227. + 448995.i −0.110725 + 0.191781i −0.916063 0.401035i \(-0.868650\pi\)
0.805338 + 0.592816i \(0.201984\pi\)
\(354\) 0 0
\(355\) 534401. + 925610.i 0.225059 + 0.389814i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 126728. + 219499.i 0.0518961 + 0.0898868i 0.890806 0.454383i \(-0.150140\pi\)
−0.838910 + 0.544270i \(0.816807\pi\)
\(360\) 0 0
\(361\) −1.14655e6 + 1.98588e6i −0.463045 + 0.802018i
\(362\) 0 0
\(363\) −1.41221e6 −0.562512
\(364\) 0 0
\(365\) 2.87852e6 1.13093
\(366\) 0 0
\(367\) 319805. 553919.i 0.123943 0.214675i −0.797377 0.603482i \(-0.793779\pi\)
0.921319 + 0.388807i \(0.127113\pi\)
\(368\) 0 0
\(369\) 208426. + 361005.i 0.0796869 + 0.138022i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.55000e6 + 2.68468e6i 0.576845 + 0.999125i 0.995838 + 0.0911357i \(0.0290497\pi\)
−0.418993 + 0.907989i \(0.637617\pi\)
\(374\) 0 0
\(375\) 1.52270e6 2.63740e6i 0.559160 0.968494i
\(376\) 0 0
\(377\) 78574.8 0.0284728
\(378\) 0 0
\(379\) −746368. −0.266904 −0.133452 0.991055i \(-0.542606\pi\)
−0.133452 + 0.991055i \(0.542606\pi\)
\(380\) 0 0
\(381\) 1.11865e6 1.93755e6i 0.394803 0.683819i
\(382\) 0 0
\(383\) 562243. + 973833.i 0.195852 + 0.339225i 0.947179 0.320704i \(-0.103920\pi\)
−0.751328 + 0.659929i \(0.770586\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −200338. 346995.i −0.0679963 0.117773i
\(388\) 0 0
\(389\) −442986. + 767274.i −0.148428 + 0.257085i −0.930647 0.365919i \(-0.880755\pi\)
0.782219 + 0.623004i \(0.214088\pi\)
\(390\) 0 0
\(391\) 1.05064e6 0.347545
\(392\) 0 0
\(393\) 1.39803e6 0.456599
\(394\) 0 0
\(395\) −1.22842e6 + 2.12769e6i −0.396146 + 0.686145i
\(396\) 0 0
\(397\) 885186. + 1.53319e6i 0.281876 + 0.488224i 0.971847 0.235614i \(-0.0757100\pi\)
−0.689971 + 0.723837i \(0.742377\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.03855e6 3.53087e6i −0.633082 1.09653i −0.986918 0.161222i \(-0.948456\pi\)
0.353836 0.935307i \(-0.384877\pi\)
\(402\) 0 0
\(403\) 42408.6 73453.8i 0.0130074 0.0225295i
\(404\) 0 0
\(405\) −3.28884e6 −0.996336
\(406\) 0 0
\(407\) 2.49332e6 0.746092
\(408\) 0 0
\(409\) 174515. 302269.i 0.0515852 0.0893482i −0.839080 0.544008i \(-0.816906\pi\)
0.890665 + 0.454660i \(0.150239\pi\)
\(410\) 0 0
\(411\) 337793. + 585074.i 0.0986383 + 0.170847i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.64244e6 + 2.84478e6i 0.468132 + 0.810829i
\(416\) 0 0
\(417\) 2.00971e6 3.48093e6i 0.565971 0.980291i
\(418\) 0 0
\(419\) 3.72353e6 1.03614 0.518072 0.855337i \(-0.326650\pi\)
0.518072 + 0.855337i \(0.326650\pi\)
\(420\) 0 0
\(421\) −5.31261e6 −1.46084 −0.730421 0.682998i \(-0.760676\pi\)
−0.730421 + 0.682998i \(0.760676\pi\)
\(422\) 0 0
\(423\) −13985.5 + 24223.6i −0.00380038 + 0.00658246i
\(424\) 0 0
\(425\) −270799. 469038.i −0.0727235 0.125961i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −826156. 1.43094e6i −0.216730 0.375387i
\(430\) 0 0
\(431\) 1.86623e6 3.23240e6i 0.483917 0.838169i −0.515912 0.856642i \(-0.672547\pi\)
0.999829 + 0.0184721i \(0.00588019\pi\)
\(432\) 0 0
\(433\) 1.39251e6 0.356927 0.178464 0.983947i \(-0.442887\pi\)
0.178464 + 0.983947i \(0.442887\pi\)
\(434\) 0 0
\(435\) −177670. −0.0450184
\(436\) 0 0
\(437\) −1.10711e6 + 1.91756e6i −0.277323 + 0.480337i
\(438\) 0 0
\(439\) −1.54520e6 2.67637e6i −0.382670 0.662804i 0.608773 0.793345i \(-0.291662\pi\)
−0.991443 + 0.130541i \(0.958329\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.08533e6 + 3.61190e6i 0.504853 + 0.874432i 0.999984 + 0.00561334i \(0.00178679\pi\)
−0.495131 + 0.868818i \(0.664880\pi\)
\(444\) 0 0
\(445\) −1.59406e6 + 2.76100e6i −0.381598 + 0.660946i
\(446\) 0 0
\(447\) −5.36251e6 −1.26940
\(448\) 0 0
\(449\) −4.50893e6 −1.05550 −0.527749 0.849400i \(-0.676964\pi\)
−0.527749 + 0.849400i \(0.676964\pi\)
\(450\) 0 0
\(451\) −2.29309e6 + 3.97175e6i −0.530860 + 0.919476i
\(452\) 0 0
\(453\) −3.04960e6 5.28206e6i −0.698228 1.20937i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −260662. 451480.i −0.0583831 0.101122i 0.835357 0.549708i \(-0.185261\pi\)
−0.893740 + 0.448586i \(0.851928\pi\)
\(458\) 0 0
\(459\) −1.84980e6 + 3.20394e6i −0.409819 + 0.709827i
\(460\) 0 0
\(461\) −4.45956e6 −0.977327 −0.488663 0.872472i \(-0.662515\pi\)
−0.488663 + 0.872472i \(0.662515\pi\)
\(462\) 0 0
\(463\) −7.41318e6 −1.60713 −0.803567 0.595214i \(-0.797067\pi\)
−0.803567 + 0.595214i \(0.797067\pi\)
\(464\) 0 0
\(465\) −95892.2 + 166090.i −0.0205660 + 0.0356214i
\(466\) 0 0
\(467\) −3.03835e6 5.26258e6i −0.644682 1.11662i −0.984375 0.176086i \(-0.943656\pi\)
0.339692 0.940537i \(-0.389677\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.72654e6 2.99045e6i −0.358611 0.621133i
\(472\) 0 0
\(473\) 2.20410e6 3.81761e6i 0.452979 0.784583i
\(474\) 0 0
\(475\) 1.14142e6 0.232118
\(476\) 0 0
\(477\) 849074. 0.170864
\(478\) 0 0
\(479\) −3.91094e6 + 6.77395e6i −0.778829 + 1.34897i 0.153788 + 0.988104i \(0.450853\pi\)
−0.932617 + 0.360868i \(0.882480\pi\)
\(480\) 0 0
\(481\) −1.68347e6 2.91585e6i −0.331774 0.574649i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −897902. 1.55521e6i −0.173330 0.300217i
\(486\) 0 0
\(487\) 3.82244e6 6.62066e6i 0.730328 1.26497i −0.226415 0.974031i \(-0.572701\pi\)
0.956743 0.290934i \(-0.0939661\pi\)
\(488\) 0 0
\(489\) −3.15575e6 −0.596801
\(490\) 0 0
\(491\) −4.62867e6 −0.866468 −0.433234 0.901282i \(-0.642628\pi\)
−0.433234 + 0.901282i \(0.642628\pi\)
\(492\) 0 0
\(493\) −110258. + 190972.i −0.0204311 + 0.0353877i
\(494\) 0 0
\(495\) 173329. + 300214.i 0.0317949 + 0.0550704i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −172391. 298589.i −0.0309929 0.0536813i 0.850113 0.526600i \(-0.176534\pi\)
−0.881106 + 0.472919i \(0.843200\pi\)
\(500\) 0 0
\(501\) 4.15528e6 7.19715e6i 0.739615 1.28105i
\(502\) 0 0
\(503\) 2.44839e6 0.431479 0.215740 0.976451i \(-0.430784\pi\)
0.215740 + 0.976451i \(0.430784\pi\)
\(504\) 0 0
\(505\) 4.20035e6 0.732921
\(506\) 0 0
\(507\) 1.92270e6 3.33022e6i 0.332194 0.575378i
\(508\) 0 0
\(509\) −2.19922e6 3.80916e6i −0.376248 0.651681i 0.614265 0.789100i \(-0.289453\pi\)
−0.990513 + 0.137419i \(0.956119\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −3.89843e6 6.75228e6i −0.654029 1.13281i
\(514\) 0 0
\(515\) −2.52112e6 + 4.36670e6i −0.418866 + 0.725497i
\(516\) 0 0
\(517\) −307735. −0.0506349
\(518\) 0 0
\(519\) −9.22522e6 −1.50334
\(520\) 0 0
\(521\) 1.95115e6 3.37948e6i 0.314916 0.545451i −0.664503 0.747285i \(-0.731357\pi\)
0.979420 + 0.201834i \(0.0646902\pi\)
\(522\) 0 0
\(523\) 1.47797e6 + 2.55992e6i 0.236272 + 0.409235i 0.959642 0.281226i \(-0.0907410\pi\)
−0.723370 + 0.690461i \(0.757408\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 119017. + 206144.i 0.0186673 + 0.0323328i
\(528\) 0 0
\(529\) 2.70417e6 4.68376e6i 0.420141 0.727705i
\(530\) 0 0
\(531\) 278133. 0.0428071
\(532\) 0 0
\(533\) 6.19310e6 0.944256
\(534\) 0 0
\(535\) −5.51967e6 + 9.56035e6i −0.833736 + 1.44407i
\(536\) 0 0
\(537\) −1.55737e6 2.69744e6i −0.233053 0.403661i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 824975. + 1.42890e6i 0.121185 + 0.209898i 0.920235 0.391366i \(-0.127997\pi\)
−0.799050 + 0.601264i \(0.794664\pi\)
\(542\) 0 0
\(543\) 3.50817e6 6.07632e6i 0.510600 0.884385i
\(544\) 0 0
\(545\) −9.27716e6 −1.33790
\(546\) 0 0
\(547\) −8.86766e6 −1.26719 −0.633594 0.773666i \(-0.718421\pi\)
−0.633594 + 0.773666i \(0.718421\pi\)
\(548\) 0 0
\(549\) −447265. + 774686.i −0.0633336 + 0.109697i
\(550\) 0 0
\(551\) −232368. 402472.i −0.0326059 0.0564751i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 3.80658e6 + 6.59319e6i 0.524569 + 0.908579i
\(556\) 0 0
\(557\) 3.14791e6 5.45234e6i 0.429917 0.744637i −0.566949 0.823753i \(-0.691876\pi\)
0.996865 + 0.0791157i \(0.0252096\pi\)
\(558\) 0 0
\(559\) −5.95275e6 −0.805727
\(560\) 0 0
\(561\) 4.63711e6 0.622072
\(562\) 0 0
\(563\) −4.17685e6 + 7.23451e6i −0.555364 + 0.961918i 0.442511 + 0.896763i \(0.354088\pi\)
−0.997875 + 0.0651553i \(0.979246\pi\)
\(564\) 0 0
\(565\) 4.87678e6 + 8.44683e6i 0.642705 + 1.11320i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.24399e6 + 2.15465e6i 0.161078 + 0.278995i 0.935255 0.353973i \(-0.115170\pi\)
−0.774178 + 0.632968i \(0.781836\pi\)
\(570\) 0 0
\(571\) −1.22087e6 + 2.11461e6i −0.156704 + 0.271419i −0.933678 0.358113i \(-0.883420\pi\)
0.776974 + 0.629532i \(0.216754\pi\)
\(572\) 0 0
\(573\) −3.79164e6 −0.482436
\(574\) 0 0
\(575\) 529930. 0.0668419
\(576\) 0 0
\(577\) 1.07028e6 1.85378e6i 0.133831 0.231803i −0.791319 0.611403i \(-0.790605\pi\)
0.925150 + 0.379601i \(0.123939\pi\)
\(578\) 0 0
\(579\) 3.45169e6 + 5.97850e6i 0.427893 + 0.741133i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 4.67072e6 + 8.08992e6i 0.569131 + 0.985764i
\(584\) 0 0
\(585\) 234060. 405404.i 0.0282773 0.0489777i
\(586\) 0 0
\(587\) −16057.9 −0.00192350 −0.000961752 1.00000i \(-0.500306\pi\)
−0.000961752 1.00000i \(0.500306\pi\)
\(588\) 0 0
\(589\) −501655. −0.0595823
\(590\) 0 0
\(591\) 5.79786e6 1.00422e7i 0.682809 1.18266i
\(592\) 0 0
\(593\) −6.08574e6 1.05408e7i −0.710684 1.23094i −0.964601 0.263715i \(-0.915052\pi\)
0.253917 0.967226i \(-0.418281\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5.25819e6 9.10745e6i −0.603810 1.04583i
\(598\) 0 0
\(599\) 3.80405e6 6.58881e6i 0.433191 0.750308i −0.563955 0.825805i \(-0.690721\pi\)
0.997146 + 0.0754969i \(0.0240543\pi\)
\(600\) 0 0
\(601\) −1.38834e7 −1.56786 −0.783932 0.620847i \(-0.786789\pi\)
−0.783932 + 0.620847i \(0.786789\pi\)
\(602\) 0 0
\(603\) −1.42950e6 −0.160100
\(604\) 0 0
\(605\) 2.20091e6 3.81208e6i 0.244463 0.423422i
\(606\) 0 0
\(607\) 4.64229e6 + 8.04068e6i 0.511400 + 0.885771i 0.999913 + 0.0132139i \(0.00420623\pi\)
−0.488513 + 0.872557i \(0.662460\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 207780. + 359885.i 0.0225165 + 0.0389997i
\(612\) 0 0
\(613\) 815932. 1.41323e6i 0.0877006 0.151902i −0.818838 0.574024i \(-0.805381\pi\)
0.906539 + 0.422122i \(0.138715\pi\)
\(614\) 0 0
\(615\) −1.40035e7 −1.49297
\(616\) 0 0
\(617\) 8.30019e6 0.877758 0.438879 0.898546i \(-0.355376\pi\)
0.438879 + 0.898546i \(0.355376\pi\)
\(618\) 0 0
\(619\) 4.83445e6 8.37351e6i 0.507131 0.878377i −0.492835 0.870123i \(-0.664039\pi\)
0.999966 0.00825399i \(-0.00262736\pi\)
\(620\) 0 0
\(621\) −1.80994e6 3.13491e6i −0.188337 0.326209i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3.92956e6 + 6.80621e6i 0.402387 + 0.696955i
\(626\) 0 0
\(627\) −4.88635e6 + 8.46340e6i −0.496381 + 0.859757i
\(628\) 0 0
\(629\) 9.44911e6 0.952279
\(630\) 0 0
\(631\) −8.91041e6 −0.890891 −0.445445 0.895309i \(-0.646955\pi\)
−0.445445 + 0.895309i \(0.646955\pi\)
\(632\) 0 0
\(633\) −7.49722e6 + 1.29856e7i −0.743688 + 1.28811i
\(634\) 0 0
\(635\) 3.48680e6 + 6.03931e6i 0.343157 + 0.594365i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 260352. + 450943.i 0.0252237 + 0.0436887i
\(640\) 0 0
\(641\) −5.47351e6 + 9.48040e6i −0.526164 + 0.911342i 0.473372 + 0.880863i \(0.343037\pi\)
−0.999535 + 0.0304793i \(0.990297\pi\)
\(642\) 0 0
\(643\) 1.81902e7 1.73504 0.867522 0.497399i \(-0.165712\pi\)
0.867522 + 0.497399i \(0.165712\pi\)
\(644\) 0 0
\(645\) 1.34601e7 1.27394
\(646\) 0 0
\(647\) −1.17441e6 + 2.03414e6i −0.110296 + 0.191038i −0.915890 0.401430i \(-0.868513\pi\)
0.805594 + 0.592468i \(0.201846\pi\)
\(648\) 0 0
\(649\) 1.53000e6 + 2.65003e6i 0.142587 + 0.246967i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.55317e6 + 4.42223e6i 0.234314 + 0.405843i 0.959073 0.283159i \(-0.0913824\pi\)
−0.724759 + 0.689002i \(0.758049\pi\)
\(654\) 0 0
\(655\) −2.17881e6 + 3.77381e6i −0.198434 + 0.343698i
\(656\) 0 0
\(657\) 1.40237e6 0.126750
\(658\) 0 0
\(659\) 1.94777e7 1.74713 0.873563 0.486711i \(-0.161803\pi\)
0.873563 + 0.486711i \(0.161803\pi\)
\(660\) 0 0
\(661\) 819130. 1.41877e6i 0.0729204 0.126302i −0.827260 0.561820i \(-0.810101\pi\)
0.900180 + 0.435518i \(0.143435\pi\)
\(662\) 0 0
\(663\) −3.13094e6 5.42294e6i −0.276624 0.479128i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −107882. 186858.i −0.00938935 0.0162628i
\(668\) 0 0
\(669\) −7.89785e6 + 1.36795e7i −0.682250 + 1.18169i
\(670\) 0 0
\(671\) −9.84154e6 −0.843834
\(672\) 0 0
\(673\) −989610. −0.0842222 −0.0421111 0.999113i \(-0.513408\pi\)
−0.0421111 + 0.999113i \(0.513408\pi\)
\(674\) 0 0
\(675\) −933016. + 1.61603e6i −0.0788188 + 0.136518i
\(676\) 0 0
\(677\) −9.48196e6 1.64232e7i −0.795108 1.37717i −0.922770 0.385350i \(-0.874081\pi\)
0.127662 0.991818i \(-0.459253\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 7.31081e6 + 1.26627e7i 0.604084 + 1.04630i
\(682\) 0 0
\(683\) 1.80547e6 3.12716e6i 0.148094 0.256506i −0.782429 0.622740i \(-0.786019\pi\)
0.930523 + 0.366233i \(0.119353\pi\)
\(684\) 0 0
\(685\) −2.10578e6 −0.171470
\(686\) 0 0
\(687\) −1.99264e7 −1.61078
\(688\) 0 0
\(689\) 6.30725e6 1.09245e7i 0.506165 0.876704i
\(690\) 0 0
\(691\) 9.59174e6 + 1.66134e7i 0.764192 + 1.32362i 0.940673 + 0.339315i \(0.110195\pi\)
−0.176481 + 0.984304i \(0.556471\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.26424e6 + 1.08500e7i 0.491933 + 0.852053i
\(696\) 0 0
\(697\) −8.69027e6 + 1.50520e7i −0.677566 + 1.17358i
\(698\) 0 0
\(699\) 2.03771e7 1.57743
\(700\) 0 0
\(701\) −1.10240e7 −0.847314 −0.423657 0.905823i \(-0.639254\pi\)
−0.423657 + 0.905823i \(0.639254\pi\)
\(702\) 0 0
\(703\) −9.95697e6 + 1.72460e7i −0.759869 + 1.31613i
\(704\) 0 0
\(705\) −469821. 813755.i −0.0356008 0.0616624i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.02669e7 1.77827e7i −0.767047 1.32856i −0.939158 0.343486i \(-0.888392\pi\)
0.172111 0.985078i \(-0.444941\pi\)
\(710\) 0 0
\(711\) −598469. + 1.03658e6i −0.0443984 + 0.0769003i
\(712\) 0 0
\(713\) −232906. −0.0171576
\(714\) 0 0
\(715\) 5.15022e6 0.376756
\(716\) 0 0
\(717\) 1.83263e6 3.17420e6i 0.133130 0.230588i
\(718\) 0 0
\(719\) 4.04561e6 + 7.00719e6i 0.291851 + 0.505501i 0.974247 0.225481i \(-0.0723955\pi\)
−0.682396 + 0.730982i \(0.739062\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −3.28571e6 5.69101e6i −0.233767 0.404896i
\(724\) 0 0
\(725\) −55612.8 + 96324.1i −0.00392943 + 0.00680597i
\(726\) 0 0
\(727\) 1.58746e7 1.11396 0.556978 0.830527i \(-0.311961\pi\)
0.556978 + 0.830527i \(0.311961\pi\)
\(728\) 0 0
\(729\) 1.25965e7 0.877875
\(730\) 0 0
\(731\) 8.35301e6 1.44678e7i 0.578162 1.00141i
\(732\) 0 0
\(733\) −2.26273e6 3.91917e6i −0.155551 0.269423i 0.777708 0.628625i \(-0.216382\pi\)
−0.933260 + 0.359203i \(0.883049\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7.86361e6 1.36202e7i −0.533277 0.923663i
\(738\) 0 0
\(739\) 5.35216e6 9.27022e6i 0.360511 0.624423i −0.627534 0.778589i \(-0.715936\pi\)
0.988045 + 0.154166i \(0.0492690\pi\)
\(740\) 0 0
\(741\) 1.31969e7 0.882928
\(742\) 0 0
\(743\) 1.76704e7 1.17429 0.587144 0.809482i \(-0.300252\pi\)
0.587144 + 0.809482i \(0.300252\pi\)
\(744\) 0 0
\(745\) 8.35741e6 1.44755e7i 0.551672 0.955525i
\(746\) 0 0
\(747\) 800170. + 1.38593e6i 0.0524663 + 0.0908744i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −5.88974e6 1.02013e7i −0.381062 0.660019i 0.610152 0.792284i \(-0.291108\pi\)
−0.991214 + 0.132265i \(0.957775\pi\)
\(752\) 0 0
\(753\) −3.32362e6 + 5.75668e6i −0.213611 + 0.369985i
\(754\) 0 0
\(755\) 1.90111e7 1.21378
\(756\) 0 0
\(757\) −2.89421e7 −1.83565 −0.917827 0.396981i \(-0.870058\pi\)
−0.917827 + 0.396981i \(0.870058\pi\)
\(758\) 0 0
\(759\) −2.26860e6 + 3.92934e6i −0.142940 + 0.247580i
\(760\) 0 0
\(761\) 6.68358e6 + 1.15763e7i 0.418358 + 0.724616i 0.995774 0.0918330i \(-0.0292726\pi\)
−0.577417 + 0.816449i \(0.695939\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 656876. + 1.13774e6i 0.0405816 + 0.0702895i
\(766\) 0 0
\(767\) 2.06608e6 3.57855e6i 0.126811 0.219644i
\(768\) 0 0
\(769\) 2.23666e7 1.36390 0.681952 0.731397i \(-0.261131\pi\)
0.681952 + 0.731397i \(0.261131\pi\)
\(770\) 0 0
\(771\) 1.35999e7 0.823945
\(772\) 0 0
\(773\) 2.83865e6 4.91669e6i 0.170869 0.295954i −0.767855 0.640624i \(-0.778676\pi\)
0.938724 + 0.344670i \(0.112009\pi\)
\(774\) 0 0
\(775\) 60030.9 + 103976.i 0.00359021 + 0.00621843i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.83147e7 3.17220e7i −1.08132 1.87291i
\(780\) 0 0
\(781\) −2.86437e6 + 4.96124e6i −0.168036 + 0.291047i
\(782\) 0 0
\(783\) 759768. 0.0442870
\(784\) 0 0
\(785\) 1.07632e7 0.623399
\(786\) 0 0
\(787\) 7.80962e6 1.35267e7i 0.449462 0.778491i −0.548889 0.835895i \(-0.684949\pi\)
0.998351 + 0.0574044i \(0.0182824\pi\)
\(788\) 0 0
\(789\) −1.35794e7 2.35203e7i −0.776586 1.34509i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.64492e6 + 1.15093e7i 0.375238 + 0.649931i
\(794\) 0 0
\(795\) −1.42617e7 + 2.47019e7i −0.800299 + 1.38616i
\(796\) 0 0
\(797\) 1.18054e7 0.658317 0.329159 0.944275i \(-0.393235\pi\)
0.329159 + 0.944275i \(0.393235\pi\)
\(798\) 0 0
\(799\) −1.16624e6 −0.0646282
\(800\) 0 0
\(801\) −776603. + 1.34512e6i −0.0427679 + 0.0740762i
\(802\) 0 0
\(803\) 7.71437e6 + 1.33617e7i 0.422194 + 0.731261i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −863454. 1.49555e6i −0.0466719 0.0808380i
\(808\) 0 0
\(809\) −8.14192e6 + 1.41022e7i −0.437376 + 0.757558i −0.997486 0.0708601i \(-0.977426\pi\)
0.560110 + 0.828418i \(0.310759\pi\)
\(810\) 0 0
\(811\) 2.34229e7 1.25051 0.625257 0.780419i \(-0.284994\pi\)
0.625257 + 0.780419i \(0.284994\pi\)
\(812\) 0 0
\(813\) 2.87219e7 1.52401
\(814\) 0 0
\(815\) 4.91819e6 8.51856e6i 0.259365 0.449234i
\(816\) 0 0
\(817\) 1.76039e7 + 3.04909e7i 0.922687 + 1.59814i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.38005e7 2.39032e7i −0.714559 1.23765i −0.963129 0.269039i \(-0.913294\pi\)
0.248570 0.968614i \(-0.420039\pi\)
\(822\) 0 0
\(823\) 1.85631e7 3.21523e7i 0.955325 1.65467i 0.221703 0.975114i \(-0.428839\pi\)
0.733622 0.679557i \(-0.237828\pi\)
\(824\) 0 0
\(825\) 2.33891e6 0.119640
\(826\) 0 0
\(827\) 1.18296e7 0.601459 0.300729 0.953710i \(-0.402770\pi\)
0.300729 + 0.953710i \(0.402770\pi\)
\(828\) 0 0
\(829\) −1.28307e7 + 2.22235e7i −0.648433 + 1.12312i 0.335064 + 0.942195i \(0.391242\pi\)
−0.983497 + 0.180924i \(0.942091\pi\)
\(830\) 0 0
\(831\) −1.75937e7 3.04732e7i −0.883803 1.53079i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1.29519e7 + 2.24334e7i 0.642862 + 1.11347i
\(836\) 0 0
\(837\) 410063. 710250.i 0.0202319 0.0350427i
\(838\) 0 0
\(839\) −2.86405e7 −1.40467 −0.702336 0.711845i \(-0.747860\pi\)
−0.702336 + 0.711845i \(0.747860\pi\)
\(840\) 0 0
\(841\) −2.04659e7 −0.997792
\(842\) 0 0
\(843\) 1.59095e7 2.75560e7i 0.771057 1.33551i
\(844\) 0 0
\(845\) 5.99302e6 + 1.03802e7i 0.288738 + 0.500109i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 3.50611e6 + 6.07276e6i 0.166938 + 0.289146i
\(850\) 0 0
\(851\) −4.62276e6 + 8.00686e6i −0.218815 + 0.378999i
\(852\) 0 0
\(853\) 3.22929e7 1.51962 0.759809 0.650146i \(-0.225292\pi\)
0.759809 + 0.650146i \(0.225292\pi\)
\(854\) 0 0
\(855\) −2.76872e6 −0.129528
\(856\) 0 0
\(857\) 8.64886e6 1.49803e7i 0.402260 0.696735i −0.591738 0.806130i \(-0.701558\pi\)
0.993998 + 0.109395i \(0.0348914\pi\)
\(858\) 0 0
\(859\) 1.89527e7 + 3.28271e7i 0.876372 + 1.51792i 0.855294 + 0.518143i \(0.173376\pi\)
0.0210779 + 0.999778i \(0.493290\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.86830e6 6.70009e6i −0.176804 0.306234i 0.763980 0.645240i \(-0.223243\pi\)
−0.940784 + 0.339006i \(0.889909\pi\)
\(864\) 0 0
\(865\) 1.43774e7 2.49024e7i 0.653342 1.13162i
\(866\) 0 0
\(867\) −5.66410e6 −0.255908
\(868\) 0 0
\(869\) −1.31686e7 −0.591548
\(870\) 0 0
\(871\) −1.06189e7 + 1.83924e7i −0.474278 + 0.821474i
\(872\) 0 0
\(873\) −437444. 757675.i −0.0194262 0.0336471i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −539376. 934226.i −0.0236806 0.0410160i 0.853942 0.520368i \(-0.174205\pi\)
−0.877623 + 0.479352i \(0.840872\pi\)
\(878\) 0 0
\(879\) −1.43518e7 + 2.48581e7i −0.626519 + 1.08516i
\(880\) 0 0
\(881\) −1.88089e7 −0.816440 −0.408220 0.912884i \(-0.633850\pi\)
−0.408220 + 0.912884i \(0.633850\pi\)
\(882\) 0 0
\(883\) 3.12763e7 1.34994 0.674968 0.737847i \(-0.264158\pi\)
0.674968 + 0.737847i \(0.264158\pi\)
\(884\) 0 0
\(885\) −4.67172e6 + 8.09165e6i −0.200502 + 0.347279i
\(886\) 0 0
\(887\) −1.34552e7 2.33051e7i −0.574223 0.994584i −0.996126 0.0879427i \(-0.971971\pi\)
0.421902 0.906641i \(-0.361363\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −8.81404e6 1.52664e7i −0.371947 0.644231i
\(892\) 0 0
\(893\) 1.22892e6 2.12856e6i 0.0515699 0.0893218i
\(894\) 0 0
\(895\) 9.70857e6 0.405133
\(896\) 0 0
\(897\) 6.12696e6 0.254252
\(898\) 0 0
\(899\) 24442.0 42334.7i 0.00100864 0.00174702i
\(900\) 0 0
\(901\) 1.77009e7 + 3.06589e7i 0.726414 + 1.25819i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.09349e7 + 1.89398e7i 0.443805 + 0.768693i
\(906\) 0 0
\(907\) −2.27362e7 + 3.93803e7i −0.917699 + 1.58950i −0.114798 + 0.993389i \(0.536622\pi\)
−0.802901 + 0.596112i \(0.796711\pi\)
\(908\) 0 0
\(909\) 2.04635e6 0.0821428
\(910\) 0 0
\(911\) −4.44792e7 −1.77567 −0.887833 0.460165i \(-0.847790\pi\)
−0.887833 + 0.460165i \(0.847790\pi\)
\(912\) 0 0
\(913\) −8.80340e6 + 1.52479e7i −0.349521 + 0.605389i
\(914\) 0 0
\(915\) −1.50252e7 2.60244e7i −0.593289 1.02761i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 2.25980e7 + 3.91410e7i 0.882637 + 1.52877i 0.848398 + 0.529359i \(0.177567\pi\)
0.0342388 + 0.999414i \(0.489099\pi\)
\(920\) 0 0
\(921\) −1.65502e7 + 2.86658e7i −0.642916 + 1.11356i
\(922\) 0 0
\(923\) 7.73599e6 0.298890
\(924\) 0 0
\(925\) 4.76602e6 0.183148
\(926\) 0 0
\(927\) −1.22825e6 + 2.12739e6i −0.0469448 + 0.0813107i
\(928\) 0 0
\(929\) 98709.7 + 170970.i 0.00375250 + 0.00649952i 0.867896 0.496747i \(-0.165472\pi\)
−0.864143 + 0.503246i \(0.832139\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.16711e7 + 2.02150e7i 0.438944 + 0.760274i
\(934\) 0 0
\(935\) −7.22689e6 + 1.25173e7i −0.270348 + 0.468256i
\(936\) 0 0
\(937\) −2.35263e7 −0.875394 −0.437697 0.899122i \(-0.644206\pi\)
−0.437697 + 0.899122i \(0.644206\pi\)
\(938\) 0 0
\(939\) −871888. −0.0322698
\(940\) 0 0
\(941\) 2.28962e7 3.96573e7i 0.842925 1.45999i −0.0444861 0.999010i \(-0.514165\pi\)
0.887411 0.460979i \(-0.152502\pi\)
\(942\) 0 0
\(943\) −8.50304e6 1.47277e7i −0.311383 0.539331i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.39479e6 7.61200e6i −0.159244 0.275819i 0.775352 0.631529i \(-0.217572\pi\)
−0.934596 + 0.355710i \(0.884239\pi\)
\(948\) 0 0
\(949\) 1.04174e7 1.80434e7i 0.375484 0.650358i
\(950\) 0 0
\(951\) −4.29582e7 −1.54026
\(952\) 0 0
\(953\) 2.97668e7 1.06170 0.530848 0.847467i \(-0.321874\pi\)
0.530848 + 0.847467i \(0.321874\pi\)
\(954\) 0 0
\(955\) 5.90922e6 1.02351e7i 0.209663 0.363147i
\(956\) 0 0
\(957\) −476151. 824718.i −0.0168060 0.0291089i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.42882e7 + 2.47479e7i 0.499078 + 0.864429i
\(962\) 0 0
\(963\) −2.68910e6 + 4.65766e6i −0.0934418 + 0.161846i
\(964\) 0 0
\(965\) −2.15177e7 −0.743836
\(966\) 0 0
\(967\) 1.40282e7 0.482433 0.241217 0.970471i \(-0.422454\pi\)
0.241217 + 0.970471i \(0.422454\pi\)
\(968\) 0 0
\(969\) −1.85181e7 + 3.20743e7i −0.633559 + 1.09736i
\(970\) 0 0
\(971\) −1.02223e7 1.77055e7i −0.347936 0.602643i 0.637946 0.770081i \(-0.279784\pi\)
−0.985883 + 0.167437i \(0.946451\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −1.57921e6 2.73527e6i −0.0532020 0.0921486i
\(976\) 0 0
\(977\) 1.06439e7 1.84358e7i 0.356750 0.617909i −0.630666 0.776055i \(-0.717218\pi\)
0.987416 + 0.158145i \(0.0505514\pi\)
\(978\) 0 0
\(979\) −1.70882e7 −0.569824
\(980\) 0 0
\(981\) −4.51969e6 −0.149946
\(982\) 0 0
\(983\) −2.02194e7 + 3.50210e7i −0.667396 + 1.15596i 0.311234 + 0.950333i \(0.399258\pi\)
−0.978630 + 0.205630i \(0.934076\pi\)
\(984\) 0 0
\(985\) 1.80718e7 + 3.13013e7i 0.593487 + 1.02795i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.17305e6 + 1.41561e7i 0.265701 + 0.460208i
\(990\) 0 0
\(991\) 1.23687e7 2.14231e7i 0.400072 0.692946i −0.593662 0.804715i \(-0.702318\pi\)
0.993734 + 0.111769i \(0.0356517\pi\)
\(992\) 0 0
\(993\) 2.13331e7 0.686562
\(994\) 0 0
\(995\) 3.27793e7 1.04964
\(996\) 0 0
\(997\) −1.04615e7 + 1.81198e7i −0.333316 + 0.577320i −0.983160 0.182748i \(-0.941501\pi\)
0.649844 + 0.760067i \(0.274834\pi\)
\(998\) 0 0
\(999\) −1.62781e7 2.81944e7i −0.516046 0.893819i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.6.i.q.361.2 12
7.2 even 3 inner 392.6.i.q.177.2 12
7.3 odd 6 392.6.a.m.1.2 6
7.4 even 3 392.6.a.m.1.5 yes 6
7.5 odd 6 inner 392.6.i.q.177.5 12
7.6 odd 2 inner 392.6.i.q.361.5 12
28.3 even 6 784.6.a.bn.1.5 6
28.11 odd 6 784.6.a.bn.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
392.6.a.m.1.2 6 7.3 odd 6
392.6.a.m.1.5 yes 6 7.4 even 3
392.6.i.q.177.2 12 7.2 even 3 inner
392.6.i.q.177.5 12 7.5 odd 6 inner
392.6.i.q.361.2 12 1.1 even 1 trivial
392.6.i.q.361.5 12 7.6 odd 2 inner
784.6.a.bn.1.2 6 28.11 odd 6
784.6.a.bn.1.5 6 28.3 even 6