Properties

Label 3920.1.di.a.1359.2
Level $3920$
Weight $1$
Character 3920.1359
Analytic conductor $1.956$
Analytic rank $0$
Dimension $12$
Projective image $D_{14}$
CM discriminant -20
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3920,1,Mod(239,3920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3920, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 0, 7, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3920.239");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3920.di (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.95633484952\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{28})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{14}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{14} + \cdots)\)

Embedding invariants

Embedding label 1359.2
Root \(0.433884 - 0.900969i\) of defining polynomial
Character \(\chi\) \(=\) 3920.1359
Dual form 3920.1.di.a.799.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.974928 + 1.22252i) q^{3} +(-0.623490 - 0.781831i) q^{5} +(-0.433884 - 0.900969i) q^{7} +(-0.321552 + 1.40881i) q^{9} +(0.347948 - 1.52446i) q^{15} +(0.678448 - 1.40881i) q^{21} +(1.40881 - 0.678448i) q^{23} +(-0.222521 + 0.974928i) q^{25} +(-0.626980 + 0.301938i) q^{27} +(1.62349 + 0.781831i) q^{29} +(-0.433884 + 0.900969i) q^{35} +(0.277479 + 0.347948i) q^{41} +(1.21572 - 1.52446i) q^{43} +(1.30194 - 0.626980i) q^{45} +(-0.347948 - 1.52446i) q^{47} +(-0.623490 + 0.781831i) q^{49} +(1.12349 + 0.541044i) q^{61} +(1.40881 - 0.321552i) q^{63} +(2.20291 + 1.06086i) q^{69} +(-1.40881 + 0.678448i) q^{75} +(0.321552 + 0.154851i) q^{81} +(-0.193096 + 0.846011i) q^{83} +(0.626980 + 2.74698i) q^{87} +(0.400969 - 1.75676i) q^{89} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{5} - 12 q^{9} - 2 q^{25} + 10 q^{29} + 4 q^{41} - 2 q^{45} + 2 q^{49} + 4 q^{61} + 12 q^{81} - 4 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3920\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1471\) \(3041\) \(3137\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{2}{7}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.974928 + 1.22252i 0.974928 + 1.22252i 0.974928 + 0.222521i \(0.0714286\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) −0.623490 0.781831i −0.623490 0.781831i
\(6\) 0 0
\(7\) −0.433884 0.900969i −0.433884 0.900969i
\(8\) 0 0
\(9\) −0.321552 + 1.40881i −0.321552 + 1.40881i
\(10\) 0 0
\(11\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(12\) 0 0
\(13\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(14\) 0 0
\(15\) 0.347948 1.52446i 0.347948 1.52446i
\(16\) 0 0
\(17\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0.678448 1.40881i 0.678448 1.40881i
\(22\) 0 0
\(23\) 1.40881 0.678448i 1.40881 0.678448i 0.433884 0.900969i \(-0.357143\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(24\) 0 0
\(25\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(26\) 0 0
\(27\) −0.626980 + 0.301938i −0.626980 + 0.301938i
\(28\) 0 0
\(29\) 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 \(0\)
0.623490 + 0.781831i \(0.285714\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.433884 + 0.900969i −0.433884 + 0.900969i
\(36\) 0 0
\(37\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.277479 + 0.347948i 0.277479 + 0.347948i 0.900969 0.433884i \(-0.142857\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(42\) 0 0
\(43\) 1.21572 1.52446i 1.21572 1.52446i 0.433884 0.900969i \(-0.357143\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(44\) 0 0
\(45\) 1.30194 0.626980i 1.30194 0.626980i
\(46\) 0 0
\(47\) −0.347948 1.52446i −0.347948 1.52446i −0.781831 0.623490i \(-0.785714\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(48\) 0 0
\(49\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(60\) 0 0
\(61\) 1.12349 + 0.541044i 1.12349 + 0.541044i 0.900969 0.433884i \(-0.142857\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(62\) 0 0
\(63\) 1.40881 0.321552i 1.40881 0.321552i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 2.20291 + 1.06086i 2.20291 + 1.06086i
\(70\) 0 0
\(71\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(72\) 0 0
\(73\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(74\) 0 0
\(75\) −1.40881 + 0.678448i −1.40881 + 0.678448i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0.321552 + 0.154851i 0.321552 + 0.154851i
\(82\) 0 0
\(83\) −0.193096 + 0.846011i −0.193096 + 0.846011i 0.781831 + 0.623490i \(0.214286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.626980 + 2.74698i 0.626980 + 2.74698i
\(88\) 0 0
\(89\) 0.400969 1.75676i 0.400969 1.75676i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(102\) 0 0
\(103\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(104\) 0 0
\(105\) −1.52446 + 0.347948i −1.52446 + 0.347948i
\(106\) 0 0
\(107\) −0.193096 + 0.846011i −0.193096 + 0.846011i 0.781831 + 0.623490i \(0.214286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(108\) 0 0
\(109\) 0.445042 + 1.94986i 0.445042 + 1.94986i 0.222521 + 0.974928i \(0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(114\) 0 0
\(115\) −1.40881 0.678448i −1.40881 0.678448i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(122\) 0 0
\(123\) −0.154851 + 0.678448i −0.154851 + 0.678448i
\(124\) 0 0
\(125\) 0.900969 0.433884i 0.900969 0.433884i
\(126\) 0 0
\(127\) −1.75676 0.846011i −1.75676 0.846011i −0.974928 0.222521i \(-0.928571\pi\)
−0.781831 0.623490i \(-0.785714\pi\)
\(128\) 0 0
\(129\) 3.04892 3.04892
\(130\) 0 0
\(131\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.626980 + 0.301938i 0.626980 + 0.301938i
\(136\) 0 0
\(137\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(138\) 0 0
\(139\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(140\) 0 0
\(141\) 1.52446 1.91161i 1.52446 1.91161i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −0.400969 1.75676i −0.400969 1.75676i
\(146\) 0 0
\(147\) −1.56366 −1.56366
\(148\) 0 0
\(149\) −0.400969 1.75676i −0.400969 1.75676i −0.623490 0.781831i \(-0.714286\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(150\) 0 0
\(151\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.22252 0.974928i −1.22252 0.974928i
\(162\) 0 0
\(163\) −0.541044 + 0.678448i −0.541044 + 0.678448i −0.974928 0.222521i \(-0.928571\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.75676 0.846011i −1.75676 0.846011i −0.974928 0.222521i \(-0.928571\pi\)
−0.781831 0.623490i \(-0.785714\pi\)
\(168\) 0 0
\(169\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(174\) 0 0
\(175\) 0.974928 0.222521i 0.974928 0.222521i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(180\) 0 0
\(181\) −0.445042 + 1.94986i −0.445042 + 1.94986i −0.222521 + 0.974928i \(0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(182\) 0 0
\(183\) 0.433884 + 1.90097i 0.433884 + 1.90097i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0.544073 + 0.433884i 0.544073 + 0.433884i
\(190\) 0 0
\(191\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(192\) 0 0
\(193\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.80194i 1.80194i
\(204\) 0 0
\(205\) 0.0990311 0.433884i 0.0990311 0.433884i
\(206\) 0 0
\(207\) 0.502799 + 2.20291i 0.502799 + 2.20291i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.94986 −1.94986
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.75676 + 0.846011i −1.75676 + 0.846011i −0.781831 + 0.623490i \(0.785714\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(224\) 0 0
\(225\) −1.30194 0.626980i −1.30194 0.626980i
\(226\) 0 0
\(227\) 1.94986 1.94986 0.974928 0.222521i \(-0.0714286\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(228\) 0 0
\(229\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(234\) 0 0
\(235\) −0.974928 + 1.22252i −0.974928 + 1.22252i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(240\) 0 0
\(241\) −0.400969 + 0.193096i −0.400969 + 0.193096i −0.623490 0.781831i \(-0.714286\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(242\) 0 0
\(243\) 0.279032 + 1.22252i 0.279032 + 1.22252i
\(244\) 0 0
\(245\) 1.00000 1.00000
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −1.22252 + 0.588735i −1.22252 + 0.588735i
\(250\) 0 0
\(251\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.62349 + 2.03579i −1.62349 + 2.03579i
\(262\) 0 0
\(263\) −0.867767 −0.867767 −0.433884 0.900969i \(-0.642857\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.53859 1.22252i 2.53859 1.22252i
\(268\) 0 0
\(269\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i 0.900969 + 0.433884i \(0.142857\pi\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.277479 + 1.21572i 0.277479 + 1.21572i 0.900969 + 0.433884i \(0.142857\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(282\) 0 0
\(283\) 0.347948 + 1.52446i 0.347948 + 1.52446i 0.781831 + 0.623490i \(0.214286\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.193096 0.400969i 0.193096 0.400969i
\(288\) 0 0
\(289\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −1.90097 0.433884i −1.90097 0.433884i
\(302\) 0 0
\(303\) 0.626980 2.74698i 0.626980 2.74698i
\(304\) 0 0
\(305\) −0.277479 1.21572i −0.277479 1.21572i
\(306\) 0 0
\(307\) −0.433884 1.90097i −0.433884 1.90097i −0.433884 0.900969i \(-0.642857\pi\)
1.00000i \(-0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) −1.12978 0.900969i −1.12978 0.900969i
\(316\) 0 0
\(317\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −1.22252 + 0.588735i −1.22252 + 0.588735i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1.94986 + 2.44504i −1.94986 + 2.44504i
\(328\) 0 0
\(329\) −1.22252 + 0.974928i −1.22252 + 0.974928i
\(330\) 0 0
\(331\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.974928 + 0.222521i 0.974928 + 0.222521i
\(344\) 0 0
\(345\) −0.544073 2.38374i −0.544073 2.38374i
\(346\) 0 0
\(347\) 1.75676 0.846011i 1.75676 0.846011i 0.781831 0.623490i \(-0.214286\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(348\) 0 0
\(349\) −0.277479 + 0.347948i −0.277479 + 0.347948i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) −1.40881 0.678448i −1.40881 0.678448i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0.433884 1.90097i 0.433884 1.90097i 1.00000i \(-0.5\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(368\) 0 0
\(369\) −0.579417 + 0.279032i −0.579417 + 0.279032i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 1.40881 + 0.678448i 1.40881 + 0.678448i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(380\) 0 0
\(381\) −0.678448 2.97247i −0.678448 2.97247i
\(382\) 0 0
\(383\) −0.193096 + 0.846011i −0.193096 + 0.846011i 0.781831 + 0.623490i \(0.214286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.75676 + 2.20291i 1.75676 + 2.20291i
\(388\) 0 0
\(389\) 1.12349 + 1.40881i 1.12349 + 1.40881i 0.900969 + 0.433884i \(0.142857\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i \(0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −0.0794168 0.347948i −0.0794168 0.347948i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.400969 0.193096i −0.400969 0.193096i 0.222521 0.974928i \(-0.428571\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0.781831 0.376510i 0.781831 0.376510i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(420\) 0 0
\(421\) 1.12349 + 0.541044i 1.12349 + 0.541044i 0.900969 0.433884i \(-0.142857\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(422\) 0 0
\(423\) 2.25956 2.25956
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.24698i 1.24698i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(432\) 0 0
\(433\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(434\) 0 0
\(435\) 1.75676 2.20291i 1.75676 2.20291i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(440\) 0 0
\(441\) −0.900969 1.12978i −0.900969 1.12978i
\(442\) 0 0
\(443\) −0.193096 0.846011i −0.193096 0.846011i −0.974928 0.222521i \(-0.928571\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(444\) 0 0
\(445\) −1.62349 + 0.781831i −1.62349 + 0.781831i
\(446\) 0 0
\(447\) 1.75676 2.20291i 1.75676 2.20291i
\(448\) 0 0
\(449\) −0.777479 0.974928i −0.777479 0.974928i 0.222521 0.974928i \(-0.428571\pi\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(462\) 0 0
\(463\) −0.781831 + 0.376510i −0.781831 + 0.376510i −0.781831 0.623490i \(-0.785714\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 2.44504i 2.44504i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0.974928 + 1.22252i 0.974928 + 1.22252i 0.974928 + 0.222521i \(0.0714286\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) −1.35690 −1.35690
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(500\) 0 0
\(501\) −0.678448 2.97247i −0.678448 2.97247i
\(502\) 0 0
\(503\) −0.433884 1.90097i −0.433884 1.90097i −0.433884 0.900969i \(-0.642857\pi\)
1.00000i \(-0.5\pi\)
\(504\) 0 0
\(505\) −0.400969 + 1.75676i −0.400969 + 1.75676i
\(506\) 0 0
\(507\) −1.40881 0.678448i −1.40881 0.678448i
\(508\) 0 0
\(509\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(522\) 0 0
\(523\) 0.541044 0.678448i 0.541044 0.678448i −0.433884 0.900969i \(-0.642857\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(524\) 0 0
\(525\) 1.22252 + 0.974928i 1.22252 + 0.974928i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0.900969 1.12978i 0.900969 1.12978i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.781831 0.376510i 0.781831 0.376510i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −0.277479 1.21572i −0.277479 1.21572i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(542\) 0 0
\(543\) −2.81762 + 1.35690i −2.81762 + 1.35690i
\(544\) 0 0
\(545\) 1.24698 1.56366i 1.24698 1.56366i
\(546\) 0 0
\(547\) 0.974928 + 1.22252i 0.974928 + 1.22252i 0.974928 + 0.222521i \(0.0714286\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) −1.12349 + 1.40881i −1.12349 + 1.40881i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.193096 0.846011i 0.193096 0.846011i −0.781831 0.623490i \(-0.785714\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.356896i 0.356896i
\(568\) 0 0
\(569\) 0.445042 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(570\) 0 0
\(571\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.347948 + 1.52446i 0.347948 + 1.52446i
\(576\) 0 0
\(577\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.846011 0.193096i 0.846011 0.193096i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.867767 0.867767 0.433884 0.900969i \(-0.357143\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(600\) 0 0
\(601\) −0.400969 1.75676i −0.400969 1.75676i −0.623490 0.781831i \(-0.714286\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(606\) 0 0
\(607\) 0.867767 0.867767 0.433884 0.900969i \(-0.357143\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(608\) 0 0
\(609\) 2.20291 1.75676i 2.20291 1.75676i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(614\) 0 0
\(615\) 0.626980 0.301938i 0.626980 0.301938i
\(616\) 0 0
\(617\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) −0.678448 + 0.850747i −0.678448 + 0.850747i
\(622\) 0 0
\(623\) −1.75676 + 0.400969i −1.75676 + 0.400969i
\(624\) 0 0
\(625\) −0.900969 0.433884i −0.900969 0.433884i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.433884 + 1.90097i 0.433884 + 1.90097i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.12349 0.541044i 1.12349 0.541044i 0.222521 0.974928i \(-0.428571\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(642\) 0 0
\(643\) −1.21572 + 1.52446i −1.21572 + 1.52446i −0.433884 + 0.900969i \(0.642857\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(644\) 0 0
\(645\) −1.90097 2.38374i −1.90097 2.38374i
\(646\) 0 0
\(647\) −1.21572 + 1.52446i −1.21572 + 1.52446i −0.433884 + 0.900969i \(0.642857\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(660\) 0 0
\(661\) −0.400969 + 1.75676i −0.400969 + 1.75676i 0.222521 + 0.974928i \(0.428571\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.81762 2.81762
\(668\) 0 0
\(669\) −2.74698 1.32288i −2.74698 1.32288i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(674\) 0 0
\(675\) −0.154851 0.678448i −0.154851 0.678448i
\(676\) 0 0
\(677\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.90097 + 2.38374i 1.90097 + 2.38374i
\(682\) 0 0
\(683\) −1.21572 1.52446i −1.21572 1.52446i −0.781831 0.623490i \(-0.785714\pi\)
−0.433884 0.900969i \(-0.642857\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −2.81762 −2.81762
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0.277479 1.21572i 0.277479 1.21572i −0.623490 0.781831i \(-0.714286\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −2.44504 −2.44504
\(706\) 0 0
\(707\) −0.781831 + 1.62349i −0.781831 + 1.62349i
\(708\) 0 0
\(709\) 1.62349 0.781831i 1.62349 0.781831i 0.623490 0.781831i \(-0.285714\pi\)
1.00000 \(0\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −0.626980 0.301938i −0.626980 0.301938i
\(724\) 0 0
\(725\) −1.12349 + 1.40881i −1.12349 + 1.40881i
\(726\) 0 0
\(727\) 0.541044 + 0.678448i 0.541044 + 0.678448i 0.974928 0.222521i \(-0.0714286\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(728\) 0 0
\(729\) −1.00000 + 1.25396i −1.00000 + 1.25396i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(734\) 0 0
\(735\) 0.974928 + 1.22252i 0.974928 + 1.22252i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.21572 + 1.52446i 1.21572 + 1.52446i 0.781831 + 0.623490i \(0.214286\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(744\) 0 0
\(745\) −1.12349 + 1.40881i −1.12349 + 1.40881i
\(746\) 0 0
\(747\) −1.12978 0.544073i −1.12978 0.544073i
\(748\) 0 0
\(749\) 0.846011 0.193096i 0.846011 0.193096i
\(750\) 0 0
\(751\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.400969 0.193096i 0.400969 0.193096i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(762\) 0 0
\(763\) 1.56366 1.24698i 1.56366 1.24698i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0.0990311 0.433884i 0.0990311 0.433884i −0.900969 0.433884i \(-0.857143\pi\)
1.00000 \(0\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −1.25396 −1.25396
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −0.541044 0.678448i −0.541044 0.678448i 0.433884 0.900969i \(-0.357143\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(788\) 0 0
\(789\) −0.846011 1.06086i −0.846011 1.06086i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 2.34601 + 1.12978i 2.34601 + 1.12978i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 1.56366i 1.56366i
\(806\) 0 0
\(807\) −0.626980 + 0.301938i −0.626980 + 0.301938i
\(808\) 0 0
\(809\) −0.445042 + 1.94986i −0.445042 + 1.94986i −0.222521 + 0.974928i \(0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(810\) 0 0
\(811\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.867767 0.867767
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.400969 0.193096i −0.400969 0.193096i 0.222521 0.974928i \(-0.428571\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(822\) 0 0
\(823\) −1.21572 + 1.52446i −1.21572 + 1.52446i −0.433884 + 0.900969i \(0.642857\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.974928 1.22252i 0.974928 1.22252i 1.00000i \(-0.5\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(828\) 0 0
\(829\) −1.62349 + 0.781831i −1.62349 + 0.781831i −0.623490 + 0.781831i \(0.714286\pi\)
−1.00000 \(1.00000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0.433884 + 1.90097i 0.433884 + 1.90097i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(840\) 0 0
\(841\) 1.40097 + 1.75676i 1.40097 + 1.75676i
\(842\) 0 0
\(843\) −1.21572 + 1.52446i −1.21572 + 1.52446i
\(844\) 0 0
\(845\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(846\) 0 0
\(847\) 0.781831 + 0.623490i 0.781831 + 0.623490i
\(848\) 0 0
\(849\) −1.52446 + 1.91161i −1.52446 + 1.91161i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(858\) 0 0
\(859\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(860\) 0 0
\(861\) 0.678448 0.154851i 0.678448 0.154851i
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −0.347948 + 1.52446i −0.347948 + 1.52446i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.781831 0.623490i −0.781831 0.623490i
\(876\) 0 0
\(877\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) −1.94986 −1.94986 −0.974928 0.222521i \(-0.928571\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −0.974928 1.22252i −0.974928 1.22252i −0.974928 0.222521i \(-0.928571\pi\)
1.00000i \(-0.5\pi\)
\(888\) 0 0
\(889\) 1.94986i 1.94986i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −1.32288 2.74698i −1.32288 2.74698i
\(904\) 0 0
\(905\) 1.80194 0.867767i 1.80194 0.867767i
\(906\) 0 0
\(907\) −0.347948 + 1.52446i −0.347948 + 1.52446i 0.433884 + 0.900969i \(0.357143\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(908\) 0 0
\(909\) 2.34601 1.12978i 2.34601 1.12978i
\(910\) 0 0
\(911\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 1.21572 1.52446i 1.21572 1.52446i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(920\) 0 0
\(921\) 1.90097 2.38374i 1.90097 2.38374i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.277479 + 1.21572i 0.277479 + 1.21572i 0.900969 + 0.433884i \(0.142857\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(942\) 0 0
\(943\) 0.626980 + 0.301938i 0.626980 + 0.301938i
\(944\) 0 0
\(945\) 0.695895i 0.695895i
\(946\) 0 0
\(947\) 1.21572 1.52446i 1.21572 1.52446i 0.433884 0.900969i \(-0.357143\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) −1.12978 0.544073i −1.12978 0.544073i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.347948 1.52446i −0.347948 1.52446i −0.781831 0.623490i \(-0.785714\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −2.89008 −2.89008
\(982\) 0 0
\(983\) 0.974928 + 1.22252i 0.974928 + 1.22252i 0.974928 + 0.222521i \(0.0714286\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2.38374 0.544073i −2.38374 0.544073i
\(988\) 0 0
\(989\) 0.678448 2.97247i 0.678448 2.97247i
\(990\) 0 0
\(991\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3920.1.di.a.1359.2 yes 12
4.3 odd 2 inner 3920.1.di.a.1359.1 yes 12
5.4 even 2 inner 3920.1.di.a.1359.1 yes 12
20.19 odd 2 CM 3920.1.di.a.1359.2 yes 12
49.15 even 7 inner 3920.1.di.a.799.2 yes 12
196.15 odd 14 inner 3920.1.di.a.799.1 12
245.64 even 14 inner 3920.1.di.a.799.1 12
980.799 odd 14 inner 3920.1.di.a.799.2 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3920.1.di.a.799.1 12 196.15 odd 14 inner
3920.1.di.a.799.1 12 245.64 even 14 inner
3920.1.di.a.799.2 yes 12 49.15 even 7 inner
3920.1.di.a.799.2 yes 12 980.799 odd 14 inner
3920.1.di.a.1359.1 yes 12 4.3 odd 2 inner
3920.1.di.a.1359.1 yes 12 5.4 even 2 inner
3920.1.di.a.1359.2 yes 12 1.1 even 1 trivial
3920.1.di.a.1359.2 yes 12 20.19 odd 2 CM