Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3920,2,Mod(1,3920)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3920, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3920.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3920.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 70) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3920.2.a.be | 1 | |
4.b | odd | 2 | 1 | 490.2.a.g | 1 | ||
7.b | odd | 2 | 1 | 3920.2.a.g | 1 | ||
7.c | even | 3 | 2 | 560.2.q.d | 2 | ||
12.b | even | 2 | 1 | 4410.2.a.m | 1 | ||
20.d | odd | 2 | 1 | 2450.2.a.p | 1 | ||
20.e | even | 4 | 2 | 2450.2.c.f | 2 | ||
28.d | even | 2 | 1 | 490.2.a.j | 1 | ||
28.f | even | 6 | 2 | 490.2.e.a | 2 | ||
28.g | odd | 6 | 2 | 70.2.e.b | ✓ | 2 | |
84.h | odd | 2 | 1 | 4410.2.a.c | 1 | ||
84.n | even | 6 | 2 | 630.2.k.e | 2 | ||
140.c | even | 2 | 1 | 2450.2.a.f | 1 | ||
140.j | odd | 4 | 2 | 2450.2.c.p | 2 | ||
140.p | odd | 6 | 2 | 350.2.e.h | 2 | ||
140.w | even | 12 | 4 | 350.2.j.a | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
70.2.e.b | ✓ | 2 | 28.g | odd | 6 | 2 | |
350.2.e.h | 2 | 140.p | odd | 6 | 2 | ||
350.2.j.a | 4 | 140.w | even | 12 | 4 | ||
490.2.a.g | 1 | 4.b | odd | 2 | 1 | ||
490.2.a.j | 1 | 28.d | even | 2 | 1 | ||
490.2.e.a | 2 | 28.f | even | 6 | 2 | ||
560.2.q.d | 2 | 7.c | even | 3 | 2 | ||
630.2.k.e | 2 | 84.n | even | 6 | 2 | ||
2450.2.a.f | 1 | 140.c | even | 2 | 1 | ||
2450.2.a.p | 1 | 20.d | odd | 2 | 1 | ||
2450.2.c.f | 2 | 20.e | even | 4 | 2 | ||
2450.2.c.p | 2 | 140.j | odd | 4 | 2 | ||
3920.2.a.g | 1 | 7.b | odd | 2 | 1 | ||
3920.2.a.be | 1 | 1.a | even | 1 | 1 | trivial | |
4410.2.a.c | 1 | 84.h | odd | 2 | 1 | ||
4410.2.a.m | 1 | 12.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|