Properties

Label 630.2.k.e
Level 630630
Weight 22
Character orbit 630.k
Analytic conductor 5.0315.031
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,2,Mod(361,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 630=23257 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 630.k (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.030575327345.03057532734
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ6q2+(ζ61)q4ζ6q5+(2ζ61)q7q8+(ζ6+1)q10+(3ζ6+3)q11+5q13+(3ζ6+2)q14ζ6q16++(5ζ68)q98+O(q100) q + \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{4} - \zeta_{6} q^{5} + ( - 2 \zeta_{6} - 1) q^{7} - q^{8} + ( - \zeta_{6} + 1) q^{10} + ( - 3 \zeta_{6} + 3) q^{11} + 5 q^{13} + ( - 3 \zeta_{6} + 2) q^{14} - \zeta_{6} q^{16} + \cdots + (5 \zeta_{6} - 8) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2q4q54q72q8+q10+3q11+10q13+q14q16+6q17+q19+2q20+6q22+3q23q25+5q26+5q28+12q29+11q98+O(q100) 2 q + q^{2} - q^{4} - q^{5} - 4 q^{7} - 2 q^{8} + q^{10} + 3 q^{11} + 10 q^{13} + q^{14} - q^{16} + 6 q^{17} + q^{19} + 2 q^{20} + 6 q^{22} + 3 q^{23} - q^{25} + 5 q^{26} + 5 q^{28} + 12 q^{29}+ \cdots - 11 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/630Z)×\left(\mathbb{Z}/630\mathbb{Z}\right)^\times.

nn 127127 281281 451451
χ(n)\chi(n) 11 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 + 0.866025i 0 −0.500000 + 0.866025i −0.500000 0.866025i 0 −2.00000 1.73205i −1.00000 0 0.500000 0.866025i
541.1 0.500000 0.866025i 0 −0.500000 0.866025i −0.500000 + 0.866025i 0 −2.00000 + 1.73205i −1.00000 0 0.500000 + 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 630.2.k.e 2
3.b odd 2 1 70.2.e.b 2
7.c even 3 1 inner 630.2.k.e 2
7.c even 3 1 4410.2.a.m 1
7.d odd 6 1 4410.2.a.c 1
12.b even 2 1 560.2.q.d 2
15.d odd 2 1 350.2.e.h 2
15.e even 4 2 350.2.j.a 4
21.c even 2 1 490.2.e.a 2
21.g even 6 1 490.2.a.j 1
21.g even 6 1 490.2.e.a 2
21.h odd 6 1 70.2.e.b 2
21.h odd 6 1 490.2.a.g 1
84.j odd 6 1 3920.2.a.g 1
84.n even 6 1 560.2.q.d 2
84.n even 6 1 3920.2.a.be 1
105.o odd 6 1 350.2.e.h 2
105.o odd 6 1 2450.2.a.p 1
105.p even 6 1 2450.2.a.f 1
105.w odd 12 2 2450.2.c.p 2
105.x even 12 2 350.2.j.a 4
105.x even 12 2 2450.2.c.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.e.b 2 3.b odd 2 1
70.2.e.b 2 21.h odd 6 1
350.2.e.h 2 15.d odd 2 1
350.2.e.h 2 105.o odd 6 1
350.2.j.a 4 15.e even 4 2
350.2.j.a 4 105.x even 12 2
490.2.a.g 1 21.h odd 6 1
490.2.a.j 1 21.g even 6 1
490.2.e.a 2 21.c even 2 1
490.2.e.a 2 21.g even 6 1
560.2.q.d 2 12.b even 2 1
560.2.q.d 2 84.n even 6 1
630.2.k.e 2 1.a even 1 1 trivial
630.2.k.e 2 7.c even 3 1 inner
2450.2.a.f 1 105.p even 6 1
2450.2.a.p 1 105.o odd 6 1
2450.2.c.f 2 105.x even 12 2
2450.2.c.p 2 105.w odd 12 2
3920.2.a.g 1 84.j odd 6 1
3920.2.a.be 1 84.n even 6 1
4410.2.a.c 1 7.d odd 6 1
4410.2.a.m 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(630,[χ])S_{2}^{\mathrm{new}}(630, [\chi]):

T1123T11+9 T_{11}^{2} - 3T_{11} + 9 Copy content Toggle raw display
T135 T_{13} - 5 Copy content Toggle raw display
T1726T17+36 T_{17}^{2} - 6T_{17} + 36 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
77 T2+4T+7 T^{2} + 4T + 7 Copy content Toggle raw display
1111 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
1313 (T5)2 (T - 5)^{2} Copy content Toggle raw display
1717 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
1919 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
2323 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
2929 (T6)2 (T - 6)^{2} Copy content Toggle raw display
3131 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
3737 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
4141 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
4343 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
4747 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
5353 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
6767 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
7171 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
7373 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
7979 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
8383 (T12)2 (T - 12)^{2} Copy content Toggle raw display
8989 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
9797 (T14)2 (T - 14)^{2} Copy content Toggle raw display
show more
show less