Properties

Label 3920.2.a.p.1.1
Level $3920$
Weight $2$
Character 3920.1
Self dual yes
Analytic conductor $31.301$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3920,2,Mod(1,3920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3920.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3920.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.3013575923\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3920.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{5} -2.00000 q^{9} +6.00000 q^{11} -4.00000 q^{13} +1.00000 q^{15} -2.00000 q^{19} +3.00000 q^{23} +1.00000 q^{25} +5.00000 q^{27} -3.00000 q^{29} -8.00000 q^{31} -6.00000 q^{33} -4.00000 q^{37} +4.00000 q^{39} +9.00000 q^{41} +7.00000 q^{43} +2.00000 q^{45} -6.00000 q^{53} -6.00000 q^{55} +2.00000 q^{57} +6.00000 q^{59} +5.00000 q^{61} +4.00000 q^{65} -5.00000 q^{67} -3.00000 q^{69} +6.00000 q^{71} -16.0000 q^{73} -1.00000 q^{75} -2.00000 q^{79} +1.00000 q^{81} -3.00000 q^{83} +3.00000 q^{87} -15.0000 q^{89} +8.00000 q^{93} +2.00000 q^{95} +14.0000 q^{97} -12.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 6.00000 1.80907 0.904534 0.426401i \(-0.140219\pi\)
0.904534 + 0.426401i \(0.140219\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) −6.00000 −1.04447
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) 4.00000 0.640513
\(40\) 0 0
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 0 0
\(43\) 7.00000 1.06749 0.533745 0.845645i \(-0.320784\pi\)
0.533745 + 0.845645i \(0.320784\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −5.00000 −0.610847 −0.305424 0.952217i \(-0.598798\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) 0 0
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) −16.0000 −1.87266 −0.936329 0.351123i \(-0.885800\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.00000 −0.225018 −0.112509 0.993651i \(-0.535889\pi\)
−0.112509 + 0.993651i \(0.535889\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −3.00000 −0.329293 −0.164646 0.986353i \(-0.552648\pi\)
−0.164646 + 0.986353i \(0.552648\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.00000 0.321634
\(88\) 0 0
\(89\) −15.0000 −1.59000 −0.794998 0.606612i \(-0.792528\pi\)
−0.794998 + 0.606612i \(0.792528\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 8.00000 0.829561
\(94\) 0 0
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) −12.0000 −1.20605
\(100\) 0 0
\(101\) 15.0000 1.49256 0.746278 0.665635i \(-0.231839\pi\)
0.746278 + 0.665635i \(0.231839\pi\)
\(102\) 0 0
\(103\) 1.00000 0.0985329 0.0492665 0.998786i \(-0.484312\pi\)
0.0492665 + 0.998786i \(0.484312\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.0000 1.45010 0.725052 0.688694i \(-0.241816\pi\)
0.725052 + 0.688694i \(0.241816\pi\)
\(108\) 0 0
\(109\) 11.0000 1.05361 0.526804 0.849987i \(-0.323390\pi\)
0.526804 + 0.849987i \(0.323390\pi\)
\(110\) 0 0
\(111\) 4.00000 0.379663
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) −3.00000 −0.279751
\(116\) 0 0
\(117\) 8.00000 0.739600
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 0 0
\(123\) −9.00000 −0.811503
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) −7.00000 −0.616316
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −24.0000 −2.00698
\(144\) 0 0
\(145\) 3.00000 0.249136
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.0000 1.22885 0.614424 0.788976i \(-0.289388\pi\)
0.614424 + 0.788976i \(0.289388\pi\)
\(150\) 0 0
\(151\) 4.00000 0.325515 0.162758 0.986666i \(-0.447961\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) 6.00000 0.467099
\(166\) 0 0
\(167\) 3.00000 0.232147 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −6.00000 −0.450988
\(178\) 0 0
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) 11.0000 0.817624 0.408812 0.912619i \(-0.365943\pi\)
0.408812 + 0.912619i \(0.365943\pi\)
\(182\) 0 0
\(183\) −5.00000 −0.369611
\(184\) 0 0
\(185\) 4.00000 0.294086
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) −4.00000 −0.286446
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 0 0
\(201\) 5.00000 0.352673
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −9.00000 −0.628587
\(206\) 0 0
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) 10.0000 0.688428 0.344214 0.938891i \(-0.388145\pi\)
0.344214 + 0.938891i \(0.388145\pi\)
\(212\) 0 0
\(213\) −6.00000 −0.411113
\(214\) 0 0
\(215\) −7.00000 −0.477396
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 16.0000 1.08118
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 28.0000 1.87502 0.937509 0.347960i \(-0.113126\pi\)
0.937509 + 0.347960i \(0.113126\pi\)
\(224\) 0 0
\(225\) −2.00000 −0.133333
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.0000 −0.786146 −0.393073 0.919507i \(-0.628588\pi\)
−0.393073 + 0.919507i \(0.628588\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2.00000 0.129914
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) 3.00000 0.190117
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) 21.0000 1.29492 0.647458 0.762101i \(-0.275832\pi\)
0.647458 + 0.762101i \(0.275832\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) 15.0000 0.917985
\(268\) 0 0
\(269\) 15.0000 0.914566 0.457283 0.889321i \(-0.348823\pi\)
0.457283 + 0.889321i \(0.348823\pi\)
\(270\) 0 0
\(271\) −2.00000 −0.121491 −0.0607457 0.998153i \(-0.519348\pi\)
−0.0607457 + 0.998153i \(0.519348\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.00000 0.361814
\(276\) 0 0
\(277\) 8.00000 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(278\) 0 0
\(279\) 16.0000 0.957895
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) −2.00000 −0.118470
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) −14.0000 −0.820695
\(292\) 0 0
\(293\) 12.0000 0.701047 0.350524 0.936554i \(-0.386004\pi\)
0.350524 + 0.936554i \(0.386004\pi\)
\(294\) 0 0
\(295\) −6.00000 −0.349334
\(296\) 0 0
\(297\) 30.0000 1.74078
\(298\) 0 0
\(299\) −12.0000 −0.693978
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −15.0000 −0.861727
\(304\) 0 0
\(305\) −5.00000 −0.286299
\(306\) 0 0
\(307\) −5.00000 −0.285365 −0.142683 0.989769i \(-0.545573\pi\)
−0.142683 + 0.989769i \(0.545573\pi\)
\(308\) 0 0
\(309\) −1.00000 −0.0568880
\(310\) 0 0
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.0000 0.673987 0.336994 0.941507i \(-0.390590\pi\)
0.336994 + 0.941507i \(0.390590\pi\)
\(318\) 0 0
\(319\) −18.0000 −1.00781
\(320\) 0 0
\(321\) −15.0000 −0.837218
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) −11.0000 −0.608301
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 28.0000 1.53902 0.769510 0.638635i \(-0.220501\pi\)
0.769510 + 0.638635i \(0.220501\pi\)
\(332\) 0 0
\(333\) 8.00000 0.438397
\(334\) 0 0
\(335\) 5.00000 0.273179
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) −48.0000 −2.59935
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 3.00000 0.161515
\(346\) 0 0
\(347\) −9.00000 −0.483145 −0.241573 0.970383i \(-0.577663\pi\)
−0.241573 + 0.970383i \(0.577663\pi\)
\(348\) 0 0
\(349\) 17.0000 0.909989 0.454995 0.890494i \(-0.349641\pi\)
0.454995 + 0.890494i \(0.349641\pi\)
\(350\) 0 0
\(351\) −20.0000 −1.06752
\(352\) 0 0
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) −6.00000 −0.318447
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) −25.0000 −1.31216
\(364\) 0 0
\(365\) 16.0000 0.837478
\(366\) 0 0
\(367\) −35.0000 −1.82699 −0.913493 0.406855i \(-0.866625\pi\)
−0.913493 + 0.406855i \(0.866625\pi\)
\(368\) 0 0
\(369\) −18.0000 −0.937043
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) 34.0000 1.74646 0.873231 0.487306i \(-0.162020\pi\)
0.873231 + 0.487306i \(0.162020\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) 15.0000 0.766464 0.383232 0.923652i \(-0.374811\pi\)
0.383232 + 0.923652i \(0.374811\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −14.0000 −0.711660
\(388\) 0 0
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.00000 0.100631
\(396\) 0 0
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15.0000 0.749064 0.374532 0.927214i \(-0.377803\pi\)
0.374532 + 0.927214i \(0.377803\pi\)
\(402\) 0 0
\(403\) 32.0000 1.59403
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) −13.0000 −0.642809 −0.321404 0.946942i \(-0.604155\pi\)
−0.321404 + 0.946942i \(0.604155\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3.00000 0.147264
\(416\) 0 0
\(417\) −10.0000 −0.489702
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 17.0000 0.828529 0.414265 0.910156i \(-0.364039\pi\)
0.414265 + 0.910156i \(0.364039\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 24.0000 1.15873
\(430\) 0 0
\(431\) −30.0000 −1.44505 −0.722525 0.691345i \(-0.757018\pi\)
−0.722525 + 0.691345i \(0.757018\pi\)
\(432\) 0 0
\(433\) −22.0000 −1.05725 −0.528626 0.848855i \(-0.677293\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(434\) 0 0
\(435\) −3.00000 −0.143839
\(436\) 0 0
\(437\) −6.00000 −0.287019
\(438\) 0 0
\(439\) 28.0000 1.33637 0.668184 0.743996i \(-0.267072\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −21.0000 −0.997740 −0.498870 0.866677i \(-0.666252\pi\)
−0.498870 + 0.866677i \(0.666252\pi\)
\(444\) 0 0
\(445\) 15.0000 0.711068
\(446\) 0 0
\(447\) −15.0000 −0.709476
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) 54.0000 2.54276
\(452\) 0 0
\(453\) −4.00000 −0.187936
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 32.0000 1.49690 0.748448 0.663193i \(-0.230799\pi\)
0.748448 + 0.663193i \(0.230799\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) 13.0000 0.604161 0.302081 0.953282i \(-0.402319\pi\)
0.302081 + 0.953282i \(0.402319\pi\)
\(464\) 0 0
\(465\) −8.00000 −0.370991
\(466\) 0 0
\(467\) 15.0000 0.694117 0.347059 0.937843i \(-0.387180\pi\)
0.347059 + 0.937843i \(0.387180\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 22.0000 1.01371
\(472\) 0 0
\(473\) 42.0000 1.93116
\(474\) 0 0
\(475\) −2.00000 −0.0917663
\(476\) 0 0
\(477\) 12.0000 0.549442
\(478\) 0 0
\(479\) −12.0000 −0.548294 −0.274147 0.961688i \(-0.588395\pi\)
−0.274147 + 0.961688i \(0.588395\pi\)
\(480\) 0 0
\(481\) 16.0000 0.729537
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.0000 −0.635707
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 12.0000 0.539360
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 22.0000 0.984855 0.492428 0.870353i \(-0.336110\pi\)
0.492428 + 0.870353i \(0.336110\pi\)
\(500\) 0 0
\(501\) −3.00000 −0.134030
\(502\) 0 0
\(503\) −21.0000 −0.936344 −0.468172 0.883637i \(-0.655087\pi\)
−0.468172 + 0.883637i \(0.655087\pi\)
\(504\) 0 0
\(505\) −15.0000 −0.667491
\(506\) 0 0
\(507\) −3.00000 −0.133235
\(508\) 0 0
\(509\) 21.0000 0.930809 0.465404 0.885098i \(-0.345909\pi\)
0.465404 + 0.885098i \(0.345909\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −10.0000 −0.441511
\(514\) 0 0
\(515\) −1.00000 −0.0440653
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) 28.0000 1.22435 0.612177 0.790721i \(-0.290294\pi\)
0.612177 + 0.790721i \(0.290294\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) −36.0000 −1.55933
\(534\) 0 0
\(535\) −15.0000 −0.648507
\(536\) 0 0
\(537\) −24.0000 −1.03568
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −25.0000 −1.07483 −0.537417 0.843317i \(-0.680600\pi\)
−0.537417 + 0.843317i \(0.680600\pi\)
\(542\) 0 0
\(543\) −11.0000 −0.472055
\(544\) 0 0
\(545\) −11.0000 −0.471188
\(546\) 0 0
\(547\) 19.0000 0.812381 0.406191 0.913788i \(-0.366857\pi\)
0.406191 + 0.913788i \(0.366857\pi\)
\(548\) 0 0
\(549\) −10.0000 −0.426790
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.00000 −0.169791
\(556\) 0 0
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) −28.0000 −1.18427
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −27.0000 −1.13791 −0.568957 0.822367i \(-0.692653\pi\)
−0.568957 + 0.822367i \(0.692653\pi\)
\(564\) 0 0
\(565\) −6.00000 −0.252422
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 22.0000 0.920671 0.460336 0.887745i \(-0.347729\pi\)
0.460336 + 0.887745i \(0.347729\pi\)
\(572\) 0 0
\(573\) −6.00000 −0.250654
\(574\) 0 0
\(575\) 3.00000 0.125109
\(576\) 0 0
\(577\) 26.0000 1.08239 0.541197 0.840896i \(-0.317971\pi\)
0.541197 + 0.840896i \(0.317971\pi\)
\(578\) 0 0
\(579\) −2.00000 −0.0831172
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −36.0000 −1.49097
\(584\) 0 0
\(585\) −8.00000 −0.330759
\(586\) 0 0
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) 6.00000 0.246807
\(592\) 0 0
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.00000 −0.163709
\(598\) 0 0
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) −46.0000 −1.87638 −0.938190 0.346122i \(-0.887498\pi\)
−0.938190 + 0.346122i \(0.887498\pi\)
\(602\) 0 0
\(603\) 10.0000 0.407231
\(604\) 0 0
\(605\) −25.0000 −1.01639
\(606\) 0 0
\(607\) −23.0000 −0.933541 −0.466771 0.884378i \(-0.654583\pi\)
−0.466771 + 0.884378i \(0.654583\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −16.0000 −0.646234 −0.323117 0.946359i \(-0.604731\pi\)
−0.323117 + 0.946359i \(0.604731\pi\)
\(614\) 0 0
\(615\) 9.00000 0.362915
\(616\) 0 0
\(617\) −12.0000 −0.483102 −0.241551 0.970388i \(-0.577656\pi\)
−0.241551 + 0.970388i \(0.577656\pi\)
\(618\) 0 0
\(619\) −14.0000 −0.562708 −0.281354 0.959604i \(-0.590783\pi\)
−0.281354 + 0.959604i \(0.590783\pi\)
\(620\) 0 0
\(621\) 15.0000 0.601929
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 12.0000 0.479234
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −14.0000 −0.557331 −0.278666 0.960388i \(-0.589892\pi\)
−0.278666 + 0.960388i \(0.589892\pi\)
\(632\) 0 0
\(633\) −10.0000 −0.397464
\(634\) 0 0
\(635\) 8.00000 0.317470
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −12.0000 −0.474713
\(640\) 0 0
\(641\) −3.00000 −0.118493 −0.0592464 0.998243i \(-0.518870\pi\)
−0.0592464 + 0.998243i \(0.518870\pi\)
\(642\) 0 0
\(643\) −20.0000 −0.788723 −0.394362 0.918955i \(-0.629034\pi\)
−0.394362 + 0.918955i \(0.629034\pi\)
\(644\) 0 0
\(645\) 7.00000 0.275625
\(646\) 0 0
\(647\) −3.00000 −0.117942 −0.0589711 0.998260i \(-0.518782\pi\)
−0.0589711 + 0.998260i \(0.518782\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −48.0000 −1.87839 −0.939193 0.343391i \(-0.888424\pi\)
−0.939193 + 0.343391i \(0.888424\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 32.0000 1.24844
\(658\) 0 0
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) 41.0000 1.59472 0.797358 0.603507i \(-0.206231\pi\)
0.797358 + 0.603507i \(0.206231\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −9.00000 −0.348481
\(668\) 0 0
\(669\) −28.0000 −1.08254
\(670\) 0 0
\(671\) 30.0000 1.15814
\(672\) 0 0
\(673\) 8.00000 0.308377 0.154189 0.988041i \(-0.450724\pi\)
0.154189 + 0.988041i \(0.450724\pi\)
\(674\) 0 0
\(675\) 5.00000 0.192450
\(676\) 0 0
\(677\) 12.0000 0.461197 0.230599 0.973049i \(-0.425932\pi\)
0.230599 + 0.973049i \(0.425932\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) −9.00000 −0.344375 −0.172188 0.985064i \(-0.555084\pi\)
−0.172188 + 0.985064i \(0.555084\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 0 0
\(687\) −14.0000 −0.534133
\(688\) 0 0
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) 22.0000 0.836919 0.418460 0.908235i \(-0.362570\pi\)
0.418460 + 0.908235i \(0.362570\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.0000 −0.379322
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 12.0000 0.453882
\(700\) 0 0
\(701\) −3.00000 −0.113308 −0.0566542 0.998394i \(-0.518043\pi\)
−0.0566542 + 0.998394i \(0.518043\pi\)
\(702\) 0 0
\(703\) 8.00000 0.301726
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −31.0000 −1.16423 −0.582115 0.813107i \(-0.697775\pi\)
−0.582115 + 0.813107i \(0.697775\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 0 0
\(713\) −24.0000 −0.898807
\(714\) 0 0
\(715\) 24.0000 0.897549
\(716\) 0 0
\(717\) 12.0000 0.448148
\(718\) 0 0
\(719\) 18.0000 0.671287 0.335643 0.941989i \(-0.391046\pi\)
0.335643 + 0.941989i \(0.391046\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −2.00000 −0.0743808
\(724\) 0 0
\(725\) −3.00000 −0.111417
\(726\) 0 0
\(727\) 19.0000 0.704671 0.352335 0.935874i \(-0.385388\pi\)
0.352335 + 0.935874i \(0.385388\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −34.0000 −1.25582 −0.627909 0.778287i \(-0.716089\pi\)
−0.627909 + 0.778287i \(0.716089\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −30.0000 −1.10506
\(738\) 0 0
\(739\) −26.0000 −0.956425 −0.478213 0.878244i \(-0.658715\pi\)
−0.478213 + 0.878244i \(0.658715\pi\)
\(740\) 0 0
\(741\) −8.00000 −0.293887
\(742\) 0 0
\(743\) −39.0000 −1.43077 −0.715386 0.698730i \(-0.753749\pi\)
−0.715386 + 0.698730i \(0.753749\pi\)
\(744\) 0 0
\(745\) −15.0000 −0.549557
\(746\) 0 0
\(747\) 6.00000 0.219529
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 4.00000 0.145962 0.0729810 0.997333i \(-0.476749\pi\)
0.0729810 + 0.997333i \(0.476749\pi\)
\(752\) 0 0
\(753\) −12.0000 −0.437304
\(754\) 0 0
\(755\) −4.00000 −0.145575
\(756\) 0 0
\(757\) −28.0000 −1.01768 −0.508839 0.860862i \(-0.669925\pi\)
−0.508839 + 0.860862i \(0.669925\pi\)
\(758\) 0 0
\(759\) −18.0000 −0.653359
\(760\) 0 0
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −24.0000 −0.866590
\(768\) 0 0
\(769\) 50.0000 1.80305 0.901523 0.432731i \(-0.142450\pi\)
0.901523 + 0.432731i \(0.142450\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −12.0000 −0.431610 −0.215805 0.976436i \(-0.569238\pi\)
−0.215805 + 0.976436i \(0.569238\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −18.0000 −0.644917
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) −15.0000 −0.536056
\(784\) 0 0
\(785\) 22.0000 0.785214
\(786\) 0 0
\(787\) 43.0000 1.53278 0.766392 0.642373i \(-0.222050\pi\)
0.766392 + 0.642373i \(0.222050\pi\)
\(788\) 0 0
\(789\) −21.0000 −0.747620
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −20.0000 −0.710221
\(794\) 0 0
\(795\) −6.00000 −0.212798
\(796\) 0 0
\(797\) −48.0000 −1.70025 −0.850124 0.526583i \(-0.823473\pi\)
−0.850124 + 0.526583i \(0.823473\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 30.0000 1.06000
\(802\) 0 0
\(803\) −96.0000 −3.38777
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −15.0000 −0.528025
\(808\) 0 0
\(809\) 21.0000 0.738321 0.369160 0.929366i \(-0.379645\pi\)
0.369160 + 0.929366i \(0.379645\pi\)
\(810\) 0 0
\(811\) 16.0000 0.561836 0.280918 0.959732i \(-0.409361\pi\)
0.280918 + 0.959732i \(0.409361\pi\)
\(812\) 0 0
\(813\) 2.00000 0.0701431
\(814\) 0 0
\(815\) −4.00000 −0.140114
\(816\) 0 0
\(817\) −14.0000 −0.489798
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −18.0000 −0.628204 −0.314102 0.949389i \(-0.601703\pi\)
−0.314102 + 0.949389i \(0.601703\pi\)
\(822\) 0 0
\(823\) 19.0000 0.662298 0.331149 0.943578i \(-0.392564\pi\)
0.331149 + 0.943578i \(0.392564\pi\)
\(824\) 0 0
\(825\) −6.00000 −0.208893
\(826\) 0 0
\(827\) −15.0000 −0.521601 −0.260801 0.965393i \(-0.583986\pi\)
−0.260801 + 0.965393i \(0.583986\pi\)
\(828\) 0 0
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) −8.00000 −0.277517
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −3.00000 −0.103819
\(836\) 0 0
\(837\) −40.0000 −1.38260
\(838\) 0 0
\(839\) 30.0000 1.03572 0.517858 0.855467i \(-0.326730\pi\)
0.517858 + 0.855467i \(0.326730\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) 6.00000 0.206651
\(844\) 0 0
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −4.00000 −0.137280
\(850\) 0 0
\(851\) −12.0000 −0.411355
\(852\) 0 0
\(853\) −46.0000 −1.57501 −0.787505 0.616308i \(-0.788628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) 0 0
\(855\) −4.00000 −0.136797
\(856\) 0 0
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) −32.0000 −1.09183 −0.545913 0.837842i \(-0.683817\pi\)
−0.545913 + 0.837842i \(0.683817\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −27.0000 −0.919091 −0.459545 0.888154i \(-0.651988\pi\)
−0.459545 + 0.888154i \(0.651988\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 17.0000 0.577350
\(868\) 0 0
\(869\) −12.0000 −0.407072
\(870\) 0 0
\(871\) 20.0000 0.677674
\(872\) 0 0
\(873\) −28.0000 −0.947656
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.00000 0.0675352 0.0337676 0.999430i \(-0.489249\pi\)
0.0337676 + 0.999430i \(0.489249\pi\)
\(878\) 0 0
\(879\) −12.0000 −0.404750
\(880\) 0 0
\(881\) 57.0000 1.92038 0.960189 0.279350i \(-0.0901189\pi\)
0.960189 + 0.279350i \(0.0901189\pi\)
\(882\) 0 0
\(883\) 52.0000 1.74994 0.874970 0.484178i \(-0.160881\pi\)
0.874970 + 0.484178i \(0.160881\pi\)
\(884\) 0 0
\(885\) 6.00000 0.201688
\(886\) 0 0
\(887\) 21.0000 0.705111 0.352555 0.935791i \(-0.385313\pi\)
0.352555 + 0.935791i \(0.385313\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 6.00000 0.201008
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −24.0000 −0.802232
\(896\) 0 0
\(897\) 12.0000 0.400668
\(898\) 0 0
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −11.0000 −0.365652
\(906\) 0 0
\(907\) 25.0000 0.830111 0.415056 0.909796i \(-0.363762\pi\)
0.415056 + 0.909796i \(0.363762\pi\)
\(908\) 0 0
\(909\) −30.0000 −0.995037
\(910\) 0 0
\(911\) −18.0000 −0.596367 −0.298183 0.954509i \(-0.596381\pi\)
−0.298183 + 0.954509i \(0.596381\pi\)
\(912\) 0 0
\(913\) −18.0000 −0.595713
\(914\) 0 0
\(915\) 5.00000 0.165295
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −14.0000 −0.461817 −0.230909 0.972975i \(-0.574170\pi\)
−0.230909 + 0.972975i \(0.574170\pi\)
\(920\) 0 0
\(921\) 5.00000 0.164756
\(922\) 0 0
\(923\) −24.0000 −0.789970
\(924\) 0 0
\(925\) −4.00000 −0.131519
\(926\) 0 0
\(927\) −2.00000 −0.0656886
\(928\) 0 0
\(929\) −21.0000 −0.688988 −0.344494 0.938789i \(-0.611949\pi\)
−0.344494 + 0.938789i \(0.611949\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −18.0000 −0.589294
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −28.0000 −0.914720 −0.457360 0.889282i \(-0.651205\pi\)
−0.457360 + 0.889282i \(0.651205\pi\)
\(938\) 0 0
\(939\) −8.00000 −0.261070
\(940\) 0 0
\(941\) −6.00000 −0.195594 −0.0977972 0.995206i \(-0.531180\pi\)
−0.0977972 + 0.995206i \(0.531180\pi\)
\(942\) 0 0
\(943\) 27.0000 0.879241
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.00000 0.0974869 0.0487435 0.998811i \(-0.484478\pi\)
0.0487435 + 0.998811i \(0.484478\pi\)
\(948\) 0 0
\(949\) 64.0000 2.07753
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) 60.0000 1.94359 0.971795 0.235826i \(-0.0757795\pi\)
0.971795 + 0.235826i \(0.0757795\pi\)
\(954\) 0 0
\(955\) −6.00000 −0.194155
\(956\) 0 0
\(957\) 18.0000 0.581857
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) −30.0000 −0.966736
\(964\) 0 0
\(965\) −2.00000 −0.0643823
\(966\) 0 0
\(967\) −35.0000 −1.12552 −0.562762 0.826619i \(-0.690261\pi\)
−0.562762 + 0.826619i \(0.690261\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 4.00000 0.128103
\(976\) 0 0
\(977\) −6.00000 −0.191957 −0.0959785 0.995383i \(-0.530598\pi\)
−0.0959785 + 0.995383i \(0.530598\pi\)
\(978\) 0 0
\(979\) −90.0000 −2.87641
\(980\) 0 0
\(981\) −22.0000 −0.702406
\(982\) 0 0
\(983\) −39.0000 −1.24391 −0.621953 0.783054i \(-0.713661\pi\)
−0.621953 + 0.783054i \(0.713661\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 21.0000 0.667761
\(990\) 0 0
\(991\) 28.0000 0.889449 0.444725 0.895667i \(-0.353302\pi\)
0.444725 + 0.895667i \(0.353302\pi\)
\(992\) 0 0
\(993\) −28.0000 −0.888553
\(994\) 0 0
\(995\) −4.00000 −0.126809
\(996\) 0 0
\(997\) 14.0000 0.443384 0.221692 0.975117i \(-0.428842\pi\)
0.221692 + 0.975117i \(0.428842\pi\)
\(998\) 0 0
\(999\) −20.0000 −0.632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3920.2.a.p.1.1 1
4.3 odd 2 490.2.a.c.1.1 1
7.2 even 3 560.2.q.g.81.1 2
7.4 even 3 560.2.q.g.401.1 2
7.6 odd 2 3920.2.a.bc.1.1 1
12.11 even 2 4410.2.a.bm.1.1 1
20.3 even 4 2450.2.c.g.99.2 2
20.7 even 4 2450.2.c.g.99.1 2
20.19 odd 2 2450.2.a.w.1.1 1
28.3 even 6 490.2.e.h.471.1 2
28.11 odd 6 70.2.e.c.51.1 yes 2
28.19 even 6 490.2.e.h.361.1 2
28.23 odd 6 70.2.e.c.11.1 2
28.27 even 2 490.2.a.b.1.1 1
84.11 even 6 630.2.k.b.541.1 2
84.23 even 6 630.2.k.b.361.1 2
84.83 odd 2 4410.2.a.bd.1.1 1
140.23 even 12 350.2.j.b.249.2 4
140.27 odd 4 2450.2.c.l.99.1 2
140.39 odd 6 350.2.e.e.51.1 2
140.67 even 12 350.2.j.b.149.2 4
140.79 odd 6 350.2.e.e.151.1 2
140.83 odd 4 2450.2.c.l.99.2 2
140.107 even 12 350.2.j.b.249.1 4
140.123 even 12 350.2.j.b.149.1 4
140.139 even 2 2450.2.a.bc.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.2.e.c.11.1 2 28.23 odd 6
70.2.e.c.51.1 yes 2 28.11 odd 6
350.2.e.e.51.1 2 140.39 odd 6
350.2.e.e.151.1 2 140.79 odd 6
350.2.j.b.149.1 4 140.123 even 12
350.2.j.b.149.2 4 140.67 even 12
350.2.j.b.249.1 4 140.107 even 12
350.2.j.b.249.2 4 140.23 even 12
490.2.a.b.1.1 1 28.27 even 2
490.2.a.c.1.1 1 4.3 odd 2
490.2.e.h.361.1 2 28.19 even 6
490.2.e.h.471.1 2 28.3 even 6
560.2.q.g.81.1 2 7.2 even 3
560.2.q.g.401.1 2 7.4 even 3
630.2.k.b.361.1 2 84.23 even 6
630.2.k.b.541.1 2 84.11 even 6
2450.2.a.w.1.1 1 20.19 odd 2
2450.2.a.bc.1.1 1 140.139 even 2
2450.2.c.g.99.1 2 20.7 even 4
2450.2.c.g.99.2 2 20.3 even 4
2450.2.c.l.99.1 2 140.27 odd 4
2450.2.c.l.99.2 2 140.83 odd 4
3920.2.a.p.1.1 1 1.1 even 1 trivial
3920.2.a.bc.1.1 1 7.6 odd 2
4410.2.a.bd.1.1 1 84.83 odd 2
4410.2.a.bm.1.1 1 12.11 even 2