Properties

Label 630.2.k.b.361.1
Level $630$
Weight $2$
Character 630.361
Analytic conductor $5.031$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,2,Mod(361,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 630.361
Dual form 630.2.k.b.541.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(-0.500000 - 2.59808i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{10} +(-3.00000 + 5.19615i) q^{11} -4.00000 q^{13} +(-2.00000 + 1.73205i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(-1.00000 - 1.73205i) q^{19} +1.00000 q^{20} +6.00000 q^{22} +(-1.50000 - 2.59808i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(2.00000 + 3.46410i) q^{26} +(2.50000 + 0.866025i) q^{28} +3.00000 q^{29} +(-4.00000 + 6.92820i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(-2.00000 + 1.73205i) q^{35} +(2.00000 + 3.46410i) q^{37} +(-1.00000 + 1.73205i) q^{38} +(-0.500000 - 0.866025i) q^{40} -9.00000 q^{41} -7.00000 q^{43} +(-3.00000 - 5.19615i) q^{44} +(-1.50000 + 2.59808i) q^{46} +(-6.50000 + 2.59808i) q^{49} +1.00000 q^{50} +(2.00000 - 3.46410i) q^{52} +(-3.00000 + 5.19615i) q^{53} +6.00000 q^{55} +(-0.500000 - 2.59808i) q^{56} +(-1.50000 - 2.59808i) q^{58} +(-3.00000 + 5.19615i) q^{59} +(-2.50000 - 4.33013i) q^{61} +8.00000 q^{62} +1.00000 q^{64} +(2.00000 + 3.46410i) q^{65} +(-2.50000 + 4.33013i) q^{67} +(2.50000 + 0.866025i) q^{70} +6.00000 q^{71} +(8.00000 - 13.8564i) q^{73} +(2.00000 - 3.46410i) q^{74} +2.00000 q^{76} +(15.0000 + 5.19615i) q^{77} +(-1.00000 - 1.73205i) q^{79} +(-0.500000 + 0.866025i) q^{80} +(4.50000 + 7.79423i) q^{82} -3.00000 q^{83} +(3.50000 + 6.06218i) q^{86} +(-3.00000 + 5.19615i) q^{88} +(-7.50000 - 12.9904i) q^{89} +(2.00000 + 10.3923i) q^{91} +3.00000 q^{92} +(-1.00000 + 1.73205i) q^{95} +14.0000 q^{97} +(5.50000 + 4.33013i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - q^{5} - q^{7} + 2 q^{8} - q^{10} - 6 q^{11} - 8 q^{13} - 4 q^{14} - q^{16} - 2 q^{19} + 2 q^{20} + 12 q^{22} - 3 q^{23} - q^{25} + 4 q^{26} + 5 q^{28} + 6 q^{29} - 8 q^{31}+ \cdots + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) −0.500000 2.59808i −0.188982 0.981981i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −0.500000 + 0.866025i −0.158114 + 0.273861i
\(11\) −3.00000 + 5.19615i −0.904534 + 1.56670i −0.0829925 + 0.996550i \(0.526448\pi\)
−0.821541 + 0.570149i \(0.806886\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) −2.00000 + 1.73205i −0.534522 + 0.462910i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) −1.00000 1.73205i −0.229416 0.397360i 0.728219 0.685344i \(-0.240348\pi\)
−0.957635 + 0.287984i \(0.907015\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 6.00000 1.27920
\(23\) −1.50000 2.59808i −0.312772 0.541736i 0.666190 0.745782i \(-0.267924\pi\)
−0.978961 + 0.204046i \(0.934591\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 2.00000 + 3.46410i 0.392232 + 0.679366i
\(27\) 0 0
\(28\) 2.50000 + 0.866025i 0.472456 + 0.163663i
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) −4.00000 + 6.92820i −0.718421 + 1.24434i 0.243204 + 0.969975i \(0.421802\pi\)
−0.961625 + 0.274367i \(0.911532\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 0 0
\(35\) −2.00000 + 1.73205i −0.338062 + 0.292770i
\(36\) 0 0
\(37\) 2.00000 + 3.46410i 0.328798 + 0.569495i 0.982274 0.187453i \(-0.0600231\pi\)
−0.653476 + 0.756948i \(0.726690\pi\)
\(38\) −1.00000 + 1.73205i −0.162221 + 0.280976i
\(39\) 0 0
\(40\) −0.500000 0.866025i −0.0790569 0.136931i
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) 0 0
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) −3.00000 5.19615i −0.452267 0.783349i
\(45\) 0 0
\(46\) −1.50000 + 2.59808i −0.221163 + 0.383065i
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 0 0
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 2.00000 3.46410i 0.277350 0.480384i
\(53\) −3.00000 + 5.19615i −0.412082 + 0.713746i −0.995117 0.0987002i \(-0.968532\pi\)
0.583036 + 0.812447i \(0.301865\pi\)
\(54\) 0 0
\(55\) 6.00000 0.809040
\(56\) −0.500000 2.59808i −0.0668153 0.347183i
\(57\) 0 0
\(58\) −1.50000 2.59808i −0.196960 0.341144i
\(59\) −3.00000 + 5.19615i −0.390567 + 0.676481i −0.992524 0.122047i \(-0.961054\pi\)
0.601958 + 0.798528i \(0.294388\pi\)
\(60\) 0 0
\(61\) −2.50000 4.33013i −0.320092 0.554416i 0.660415 0.750901i \(-0.270381\pi\)
−0.980507 + 0.196485i \(0.937047\pi\)
\(62\) 8.00000 1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.00000 + 3.46410i 0.248069 + 0.429669i
\(66\) 0 0
\(67\) −2.50000 + 4.33013i −0.305424 + 0.529009i −0.977356 0.211604i \(-0.932131\pi\)
0.671932 + 0.740613i \(0.265465\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 2.50000 + 0.866025i 0.298807 + 0.103510i
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 8.00000 13.8564i 0.936329 1.62177i 0.164083 0.986447i \(-0.447534\pi\)
0.772246 0.635323i \(-0.219133\pi\)
\(74\) 2.00000 3.46410i 0.232495 0.402694i
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) 15.0000 + 5.19615i 1.70941 + 0.592157i
\(78\) 0 0
\(79\) −1.00000 1.73205i −0.112509 0.194871i 0.804272 0.594261i \(-0.202555\pi\)
−0.916781 + 0.399390i \(0.869222\pi\)
\(80\) −0.500000 + 0.866025i −0.0559017 + 0.0968246i
\(81\) 0 0
\(82\) 4.50000 + 7.79423i 0.496942 + 0.860729i
\(83\) −3.00000 −0.329293 −0.164646 0.986353i \(-0.552648\pi\)
−0.164646 + 0.986353i \(0.552648\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 3.50000 + 6.06218i 0.377415 + 0.653701i
\(87\) 0 0
\(88\) −3.00000 + 5.19615i −0.319801 + 0.553912i
\(89\) −7.50000 12.9904i −0.794998 1.37698i −0.922840 0.385183i \(-0.874138\pi\)
0.127842 0.991795i \(-0.459195\pi\)
\(90\) 0 0
\(91\) 2.00000 + 10.3923i 0.209657 + 1.08941i
\(92\) 3.00000 0.312772
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 + 1.73205i −0.102598 + 0.177705i
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 5.50000 + 4.33013i 0.555584 + 0.437409i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) 7.50000 12.9904i 0.746278 1.29259i −0.203317 0.979113i \(-0.565172\pi\)
0.949595 0.313478i \(-0.101494\pi\)
\(102\) 0 0
\(103\) 0.500000 + 0.866025i 0.0492665 + 0.0853320i 0.889607 0.456727i \(-0.150978\pi\)
−0.840341 + 0.542059i \(0.817645\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) −7.50000 12.9904i −0.725052 1.25583i −0.958952 0.283567i \(-0.908482\pi\)
0.233900 0.972261i \(-0.424851\pi\)
\(108\) 0 0
\(109\) −5.50000 + 9.52628i −0.526804 + 0.912452i 0.472708 + 0.881219i \(0.343277\pi\)
−0.999512 + 0.0312328i \(0.990057\pi\)
\(110\) −3.00000 5.19615i −0.286039 0.495434i
\(111\) 0 0
\(112\) −2.00000 + 1.73205i −0.188982 + 0.163663i
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) −1.50000 + 2.59808i −0.139876 + 0.242272i
\(116\) −1.50000 + 2.59808i −0.139272 + 0.241225i
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) 0 0
\(120\) 0 0
\(121\) −12.5000 21.6506i −1.13636 1.96824i
\(122\) −2.50000 + 4.33013i −0.226339 + 0.392031i
\(123\) 0 0
\(124\) −4.00000 6.92820i −0.359211 0.622171i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 2.00000 3.46410i 0.175412 0.303822i
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) −4.00000 + 3.46410i −0.346844 + 0.300376i
\(134\) 5.00000 0.431934
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000 10.3923i 0.512615 0.887875i −0.487278 0.873247i \(-0.662010\pi\)
0.999893 0.0146279i \(-0.00465636\pi\)
\(138\) 0 0
\(139\) −10.0000 −0.848189 −0.424094 0.905618i \(-0.639408\pi\)
−0.424094 + 0.905618i \(0.639408\pi\)
\(140\) −0.500000 2.59808i −0.0422577 0.219578i
\(141\) 0 0
\(142\) −3.00000 5.19615i −0.251754 0.436051i
\(143\) 12.0000 20.7846i 1.00349 1.73810i
\(144\) 0 0
\(145\) −1.50000 2.59808i −0.124568 0.215758i
\(146\) −16.0000 −1.32417
\(147\) 0 0
\(148\) −4.00000 −0.328798
\(149\) 7.50000 + 12.9904i 0.614424 + 1.06421i 0.990485 + 0.137619i \(0.0439449\pi\)
−0.376061 + 0.926595i \(0.622722\pi\)
\(150\) 0 0
\(151\) 2.00000 3.46410i 0.162758 0.281905i −0.773099 0.634285i \(-0.781294\pi\)
0.935857 + 0.352381i \(0.114628\pi\)
\(152\) −1.00000 1.73205i −0.0811107 0.140488i
\(153\) 0 0
\(154\) −3.00000 15.5885i −0.241747 1.25615i
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) 11.0000 19.0526i 0.877896 1.52056i 0.0242497 0.999706i \(-0.492280\pi\)
0.853646 0.520854i \(-0.174386\pi\)
\(158\) −1.00000 + 1.73205i −0.0795557 + 0.137795i
\(159\) 0 0
\(160\) 1.00000 0.0790569
\(161\) −6.00000 + 5.19615i −0.472866 + 0.409514i
\(162\) 0 0
\(163\) 2.00000 + 3.46410i 0.156652 + 0.271329i 0.933659 0.358162i \(-0.116597\pi\)
−0.777007 + 0.629492i \(0.783263\pi\)
\(164\) 4.50000 7.79423i 0.351391 0.608627i
\(165\) 0 0
\(166\) 1.50000 + 2.59808i 0.116423 + 0.201650i
\(167\) 3.00000 0.232147 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 3.50000 6.06218i 0.266872 0.462237i
\(173\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) 0 0
\(175\) 2.50000 + 0.866025i 0.188982 + 0.0654654i
\(176\) 6.00000 0.452267
\(177\) 0 0
\(178\) −7.50000 + 12.9904i −0.562149 + 0.973670i
\(179\) −12.0000 + 20.7846i −0.896922 + 1.55351i −0.0655145 + 0.997852i \(0.520869\pi\)
−0.831408 + 0.555663i \(0.812464\pi\)
\(180\) 0 0
\(181\) 11.0000 0.817624 0.408812 0.912619i \(-0.365943\pi\)
0.408812 + 0.912619i \(0.365943\pi\)
\(182\) 8.00000 6.92820i 0.592999 0.513553i
\(183\) 0 0
\(184\) −1.50000 2.59808i −0.110581 0.191533i
\(185\) 2.00000 3.46410i 0.147043 0.254686i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 2.00000 0.145095
\(191\) −3.00000 5.19615i −0.217072 0.375980i 0.736839 0.676068i \(-0.236317\pi\)
−0.953912 + 0.300088i \(0.902984\pi\)
\(192\) 0 0
\(193\) −1.00000 + 1.73205i −0.0719816 + 0.124676i −0.899770 0.436365i \(-0.856266\pi\)
0.827788 + 0.561041i \(0.189599\pi\)
\(194\) −7.00000 12.1244i −0.502571 0.870478i
\(195\) 0 0
\(196\) 1.00000 6.92820i 0.0714286 0.494872i
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) 2.00000 3.46410i 0.141776 0.245564i −0.786389 0.617731i \(-0.788052\pi\)
0.928166 + 0.372168i \(0.121385\pi\)
\(200\) −0.500000 + 0.866025i −0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) −15.0000 −1.05540
\(203\) −1.50000 7.79423i −0.105279 0.547048i
\(204\) 0 0
\(205\) 4.50000 + 7.79423i 0.314294 + 0.544373i
\(206\) 0.500000 0.866025i 0.0348367 0.0603388i
\(207\) 0 0
\(208\) 2.00000 + 3.46410i 0.138675 + 0.240192i
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) −10.0000 −0.688428 −0.344214 0.938891i \(-0.611855\pi\)
−0.344214 + 0.938891i \(0.611855\pi\)
\(212\) −3.00000 5.19615i −0.206041 0.356873i
\(213\) 0 0
\(214\) −7.50000 + 12.9904i −0.512689 + 0.888004i
\(215\) 3.50000 + 6.06218i 0.238698 + 0.413437i
\(216\) 0 0
\(217\) 20.0000 + 6.92820i 1.35769 + 0.470317i
\(218\) 11.0000 0.745014
\(219\) 0 0
\(220\) −3.00000 + 5.19615i −0.202260 + 0.350325i
\(221\) 0 0
\(222\) 0 0
\(223\) −28.0000 −1.87502 −0.937509 0.347960i \(-0.886874\pi\)
−0.937509 + 0.347960i \(0.886874\pi\)
\(224\) 2.50000 + 0.866025i 0.167038 + 0.0578638i
\(225\) 0 0
\(226\) 3.00000 + 5.19615i 0.199557 + 0.345643i
\(227\) −6.00000 + 10.3923i −0.398234 + 0.689761i −0.993508 0.113761i \(-0.963710\pi\)
0.595274 + 0.803523i \(0.297043\pi\)
\(228\) 0 0
\(229\) −7.00000 12.1244i −0.462573 0.801200i 0.536515 0.843891i \(-0.319740\pi\)
−0.999088 + 0.0426906i \(0.986407\pi\)
\(230\) 3.00000 0.197814
\(231\) 0 0
\(232\) 3.00000 0.196960
\(233\) −6.00000 10.3923i −0.393073 0.680823i 0.599780 0.800165i \(-0.295255\pi\)
−0.992853 + 0.119342i \(0.961921\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −3.00000 5.19615i −0.195283 0.338241i
\(237\) 0 0
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) −1.00000 + 1.73205i −0.0644157 + 0.111571i −0.896435 0.443176i \(-0.853852\pi\)
0.832019 + 0.554747i \(0.187185\pi\)
\(242\) −12.5000 + 21.6506i −0.803530 + 1.39176i
\(243\) 0 0
\(244\) 5.00000 0.320092
\(245\) 5.50000 + 4.33013i 0.351382 + 0.276642i
\(246\) 0 0
\(247\) 4.00000 + 6.92820i 0.254514 + 0.440831i
\(248\) −4.00000 + 6.92820i −0.254000 + 0.439941i
\(249\) 0 0
\(250\) −0.500000 0.866025i −0.0316228 0.0547723i
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) −4.00000 6.92820i −0.250982 0.434714i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) 8.00000 6.92820i 0.497096 0.430498i
\(260\) −4.00000 −0.248069
\(261\) 0 0
\(262\) 0 0
\(263\) −10.5000 + 18.1865i −0.647458 + 1.12143i 0.336270 + 0.941766i \(0.390834\pi\)
−0.983728 + 0.179664i \(0.942499\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 5.00000 + 1.73205i 0.306570 + 0.106199i
\(267\) 0 0
\(268\) −2.50000 4.33013i −0.152712 0.264505i
\(269\) 7.50000 12.9904i 0.457283 0.792038i −0.541533 0.840679i \(-0.682156\pi\)
0.998816 + 0.0486418i \(0.0154893\pi\)
\(270\) 0 0
\(271\) −1.00000 1.73205i −0.0607457 0.105215i 0.834053 0.551684i \(-0.186015\pi\)
−0.894799 + 0.446469i \(0.852681\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −12.0000 −0.724947
\(275\) −3.00000 5.19615i −0.180907 0.313340i
\(276\) 0 0
\(277\) −4.00000 + 6.92820i −0.240337 + 0.416275i −0.960810 0.277207i \(-0.910591\pi\)
0.720473 + 0.693482i \(0.243925\pi\)
\(278\) 5.00000 + 8.66025i 0.299880 + 0.519408i
\(279\) 0 0
\(280\) −2.00000 + 1.73205i −0.119523 + 0.103510i
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 2.00000 3.46410i 0.118888 0.205919i −0.800439 0.599414i \(-0.795400\pi\)
0.919327 + 0.393494i \(0.128734\pi\)
\(284\) −3.00000 + 5.19615i −0.178017 + 0.308335i
\(285\) 0 0
\(286\) −24.0000 −1.41915
\(287\) 4.50000 + 23.3827i 0.265627 + 1.38024i
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) −1.50000 + 2.59808i −0.0880830 + 0.152564i
\(291\) 0 0
\(292\) 8.00000 + 13.8564i 0.468165 + 0.810885i
\(293\) −12.0000 −0.701047 −0.350524 0.936554i \(-0.613996\pi\)
−0.350524 + 0.936554i \(0.613996\pi\)
\(294\) 0 0
\(295\) 6.00000 0.349334
\(296\) 2.00000 + 3.46410i 0.116248 + 0.201347i
\(297\) 0 0
\(298\) 7.50000 12.9904i 0.434463 0.752513i
\(299\) 6.00000 + 10.3923i 0.346989 + 0.601003i
\(300\) 0 0
\(301\) 3.50000 + 18.1865i 0.201737 + 1.04825i
\(302\) −4.00000 −0.230174
\(303\) 0 0
\(304\) −1.00000 + 1.73205i −0.0573539 + 0.0993399i
\(305\) −2.50000 + 4.33013i −0.143150 + 0.247942i
\(306\) 0 0
\(307\) 5.00000 0.285365 0.142683 0.989769i \(-0.454427\pi\)
0.142683 + 0.989769i \(0.454427\pi\)
\(308\) −12.0000 + 10.3923i −0.683763 + 0.592157i
\(309\) 0 0
\(310\) −4.00000 6.92820i −0.227185 0.393496i
\(311\) −9.00000 + 15.5885i −0.510343 + 0.883940i 0.489585 + 0.871956i \(0.337148\pi\)
−0.999928 + 0.0119847i \(0.996185\pi\)
\(312\) 0 0
\(313\) −4.00000 6.92820i −0.226093 0.391605i 0.730554 0.682855i \(-0.239262\pi\)
−0.956647 + 0.291250i \(0.905929\pi\)
\(314\) −22.0000 −1.24153
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) 6.00000 + 10.3923i 0.336994 + 0.583690i 0.983866 0.178908i \(-0.0572566\pi\)
−0.646872 + 0.762598i \(0.723923\pi\)
\(318\) 0 0
\(319\) −9.00000 + 15.5885i −0.503903 + 0.872786i
\(320\) −0.500000 0.866025i −0.0279508 0.0484123i
\(321\) 0 0
\(322\) 7.50000 + 2.59808i 0.417959 + 0.144785i
\(323\) 0 0
\(324\) 0 0
\(325\) 2.00000 3.46410i 0.110940 0.192154i
\(326\) 2.00000 3.46410i 0.110770 0.191859i
\(327\) 0 0
\(328\) −9.00000 −0.496942
\(329\) 0 0
\(330\) 0 0
\(331\) 14.0000 + 24.2487i 0.769510 + 1.33283i 0.937829 + 0.347097i \(0.112833\pi\)
−0.168320 + 0.985732i \(0.553834\pi\)
\(332\) 1.50000 2.59808i 0.0823232 0.142588i
\(333\) 0 0
\(334\) −1.50000 2.59808i −0.0820763 0.142160i
\(335\) 5.00000 0.273179
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) −1.50000 2.59808i −0.0815892 0.141317i
\(339\) 0 0
\(340\) 0 0
\(341\) −24.0000 41.5692i −1.29967 2.25110i
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) −7.00000 −0.377415
\(345\) 0 0
\(346\) 0 0
\(347\) 4.50000 7.79423i 0.241573 0.418416i −0.719590 0.694399i \(-0.755670\pi\)
0.961162 + 0.275983i \(0.0890035\pi\)
\(348\) 0 0
\(349\) 17.0000 0.909989 0.454995 0.890494i \(-0.349641\pi\)
0.454995 + 0.890494i \(0.349641\pi\)
\(350\) −0.500000 2.59808i −0.0267261 0.138873i
\(351\) 0 0
\(352\) −3.00000 5.19615i −0.159901 0.276956i
\(353\) −3.00000 + 5.19615i −0.159674 + 0.276563i −0.934751 0.355303i \(-0.884378\pi\)
0.775077 + 0.631867i \(0.217711\pi\)
\(354\) 0 0
\(355\) −3.00000 5.19615i −0.159223 0.275783i
\(356\) 15.0000 0.794998
\(357\) 0 0
\(358\) 24.0000 1.26844
\(359\) 12.0000 + 20.7846i 0.633336 + 1.09697i 0.986865 + 0.161546i \(0.0516481\pi\)
−0.353529 + 0.935423i \(0.615019\pi\)
\(360\) 0 0
\(361\) 7.50000 12.9904i 0.394737 0.683704i
\(362\) −5.50000 9.52628i −0.289074 0.500690i
\(363\) 0 0
\(364\) −10.0000 3.46410i −0.524142 0.181568i
\(365\) −16.0000 −0.837478
\(366\) 0 0
\(367\) −17.5000 + 30.3109i −0.913493 + 1.58222i −0.104399 + 0.994535i \(0.533292\pi\)
−0.809093 + 0.587680i \(0.800041\pi\)
\(368\) −1.50000 + 2.59808i −0.0781929 + 0.135434i
\(369\) 0 0
\(370\) −4.00000 −0.207950
\(371\) 15.0000 + 5.19615i 0.778761 + 0.269771i
\(372\) 0 0
\(373\) 2.00000 + 3.46410i 0.103556 + 0.179364i 0.913147 0.407630i \(-0.133645\pi\)
−0.809591 + 0.586994i \(0.800311\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) −34.0000 −1.74646 −0.873231 0.487306i \(-0.837980\pi\)
−0.873231 + 0.487306i \(0.837980\pi\)
\(380\) −1.00000 1.73205i −0.0512989 0.0888523i
\(381\) 0 0
\(382\) −3.00000 + 5.19615i −0.153493 + 0.265858i
\(383\) −7.50000 12.9904i −0.383232 0.663777i 0.608290 0.793715i \(-0.291856\pi\)
−0.991522 + 0.129937i \(0.958522\pi\)
\(384\) 0 0
\(385\) −3.00000 15.5885i −0.152894 0.794461i
\(386\) 2.00000 0.101797
\(387\) 0 0
\(388\) −7.00000 + 12.1244i −0.355371 + 0.615521i
\(389\) −15.0000 + 25.9808i −0.760530 + 1.31728i 0.182047 + 0.983290i \(0.441728\pi\)
−0.942578 + 0.333987i \(0.891606\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −6.50000 + 2.59808i −0.328300 + 0.131223i
\(393\) 0 0
\(394\) −3.00000 5.19615i −0.151138 0.261778i
\(395\) −1.00000 + 1.73205i −0.0503155 + 0.0871489i
\(396\) 0 0
\(397\) −7.00000 12.1244i −0.351320 0.608504i 0.635161 0.772380i \(-0.280934\pi\)
−0.986481 + 0.163876i \(0.947600\pi\)
\(398\) −4.00000 −0.200502
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 7.50000 + 12.9904i 0.374532 + 0.648709i 0.990257 0.139253i \(-0.0444700\pi\)
−0.615725 + 0.787961i \(0.711137\pi\)
\(402\) 0 0
\(403\) 16.0000 27.7128i 0.797017 1.38047i
\(404\) 7.50000 + 12.9904i 0.373139 + 0.646296i
\(405\) 0 0
\(406\) −6.00000 + 5.19615i −0.297775 + 0.257881i
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) 6.50000 11.2583i 0.321404 0.556689i −0.659374 0.751815i \(-0.729178\pi\)
0.980778 + 0.195127i \(0.0625118\pi\)
\(410\) 4.50000 7.79423i 0.222239 0.384930i
\(411\) 0 0
\(412\) −1.00000 −0.0492665
\(413\) 15.0000 + 5.19615i 0.738102 + 0.255686i
\(414\) 0 0
\(415\) 1.50000 + 2.59808i 0.0736321 + 0.127535i
\(416\) 2.00000 3.46410i 0.0980581 0.169842i
\(417\) 0 0
\(418\) −6.00000 10.3923i −0.293470 0.508304i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 17.0000 0.828529 0.414265 0.910156i \(-0.364039\pi\)
0.414265 + 0.910156i \(0.364039\pi\)
\(422\) 5.00000 + 8.66025i 0.243396 + 0.421575i
\(423\) 0 0
\(424\) −3.00000 + 5.19615i −0.145693 + 0.252347i
\(425\) 0 0
\(426\) 0 0
\(427\) −10.0000 + 8.66025i −0.483934 + 0.419099i
\(428\) 15.0000 0.725052
\(429\) 0 0
\(430\) 3.50000 6.06218i 0.168785 0.292344i
\(431\) 15.0000 25.9808i 0.722525 1.25145i −0.237460 0.971397i \(-0.576315\pi\)
0.959985 0.280052i \(-0.0903517\pi\)
\(432\) 0 0
\(433\) −22.0000 −1.05725 −0.528626 0.848855i \(-0.677293\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(434\) −4.00000 20.7846i −0.192006 0.997693i
\(435\) 0 0
\(436\) −5.50000 9.52628i −0.263402 0.456226i
\(437\) −3.00000 + 5.19615i −0.143509 + 0.248566i
\(438\) 0 0
\(439\) 14.0000 + 24.2487i 0.668184 + 1.15733i 0.978412 + 0.206666i \(0.0662612\pi\)
−0.310228 + 0.950662i \(0.600405\pi\)
\(440\) 6.00000 0.286039
\(441\) 0 0
\(442\) 0 0
\(443\) 10.5000 + 18.1865i 0.498870 + 0.864068i 0.999999 0.00130426i \(-0.000415158\pi\)
−0.501129 + 0.865373i \(0.667082\pi\)
\(444\) 0 0
\(445\) −7.50000 + 12.9904i −0.355534 + 0.615803i
\(446\) 14.0000 + 24.2487i 0.662919 + 1.14821i
\(447\) 0 0
\(448\) −0.500000 2.59808i −0.0236228 0.122748i
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) 0 0
\(451\) 27.0000 46.7654i 1.27138 2.20210i
\(452\) 3.00000 5.19615i 0.141108 0.244406i
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) 8.00000 6.92820i 0.375046 0.324799i
\(456\) 0 0
\(457\) −16.0000 27.7128i −0.748448 1.29635i −0.948566 0.316579i \(-0.897466\pi\)
0.200118 0.979772i \(-0.435868\pi\)
\(458\) −7.00000 + 12.1244i −0.327089 + 0.566534i
\(459\) 0 0
\(460\) −1.50000 2.59808i −0.0699379 0.121136i
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) −13.0000 −0.604161 −0.302081 0.953282i \(-0.597681\pi\)
−0.302081 + 0.953282i \(0.597681\pi\)
\(464\) −1.50000 2.59808i −0.0696358 0.120613i
\(465\) 0 0
\(466\) −6.00000 + 10.3923i −0.277945 + 0.481414i
\(467\) −7.50000 12.9904i −0.347059 0.601123i 0.638667 0.769483i \(-0.279486\pi\)
−0.985726 + 0.168360i \(0.946153\pi\)
\(468\) 0 0
\(469\) 12.5000 + 4.33013i 0.577196 + 0.199947i
\(470\) 0 0
\(471\) 0 0
\(472\) −3.00000 + 5.19615i −0.138086 + 0.239172i
\(473\) 21.0000 36.3731i 0.965581 1.67244i
\(474\) 0 0
\(475\) 2.00000 0.0917663
\(476\) 0 0
\(477\) 0 0
\(478\) 6.00000 + 10.3923i 0.274434 + 0.475333i
\(479\) 6.00000 10.3923i 0.274147 0.474837i −0.695773 0.718262i \(-0.744938\pi\)
0.969920 + 0.243426i \(0.0782712\pi\)
\(480\) 0 0
\(481\) −8.00000 13.8564i −0.364769 0.631798i
\(482\) 2.00000 0.0910975
\(483\) 0 0
\(484\) 25.0000 1.13636
\(485\) −7.00000 12.1244i −0.317854 0.550539i
\(486\) 0 0
\(487\) 8.00000 13.8564i 0.362515 0.627894i −0.625859 0.779936i \(-0.715252\pi\)
0.988374 + 0.152042i \(0.0485850\pi\)
\(488\) −2.50000 4.33013i −0.113170 0.196016i
\(489\) 0 0
\(490\) 1.00000 6.92820i 0.0451754 0.312984i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 4.00000 6.92820i 0.179969 0.311715i
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) −3.00000 15.5885i −0.134568 0.699238i
\(498\) 0 0
\(499\) 11.0000 + 19.0526i 0.492428 + 0.852910i 0.999962 0.00872186i \(-0.00277629\pi\)
−0.507534 + 0.861632i \(0.669443\pi\)
\(500\) −0.500000 + 0.866025i −0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) −6.00000 10.3923i −0.267793 0.463831i
\(503\) −21.0000 −0.936344 −0.468172 0.883637i \(-0.655087\pi\)
−0.468172 + 0.883637i \(0.655087\pi\)
\(504\) 0 0
\(505\) −15.0000 −0.667491
\(506\) −9.00000 15.5885i −0.400099 0.692991i
\(507\) 0 0
\(508\) −4.00000 + 6.92820i −0.177471 + 0.307389i
\(509\) 10.5000 + 18.1865i 0.465404 + 0.806104i 0.999220 0.0394971i \(-0.0125756\pi\)
−0.533815 + 0.845601i \(0.679242\pi\)
\(510\) 0 0
\(511\) −40.0000 13.8564i −1.76950 0.612971i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 0 0
\(515\) 0.500000 0.866025i 0.0220326 0.0381616i
\(516\) 0 0
\(517\) 0 0
\(518\) −10.0000 3.46410i −0.439375 0.152204i
\(519\) 0 0
\(520\) 2.00000 + 3.46410i 0.0877058 + 0.151911i
\(521\) −9.00000 + 15.5885i −0.394297 + 0.682943i −0.993011 0.118020i \(-0.962345\pi\)
0.598714 + 0.800963i \(0.295679\pi\)
\(522\) 0 0
\(523\) 14.0000 + 24.2487i 0.612177 + 1.06032i 0.990873 + 0.134801i \(0.0430394\pi\)
−0.378695 + 0.925521i \(0.623627\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 21.0000 0.915644
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) −3.00000 5.19615i −0.130312 0.225706i
\(531\) 0 0
\(532\) −1.00000 5.19615i −0.0433555 0.225282i
\(533\) 36.0000 1.55933
\(534\) 0 0
\(535\) −7.50000 + 12.9904i −0.324253 + 0.561623i
\(536\) −2.50000 + 4.33013i −0.107984 + 0.187033i
\(537\) 0 0
\(538\) −15.0000 −0.646696
\(539\) 6.00000 41.5692i 0.258438 1.79051i
\(540\) 0 0
\(541\) 12.5000 + 21.6506i 0.537417 + 0.930834i 0.999042 + 0.0437584i \(0.0139332\pi\)
−0.461625 + 0.887075i \(0.652733\pi\)
\(542\) −1.00000 + 1.73205i −0.0429537 + 0.0743980i
\(543\) 0 0
\(544\) 0 0
\(545\) 11.0000 0.471188
\(546\) 0 0
\(547\) −19.0000 −0.812381 −0.406191 0.913788i \(-0.633143\pi\)
−0.406191 + 0.913788i \(0.633143\pi\)
\(548\) 6.00000 + 10.3923i 0.256307 + 0.443937i
\(549\) 0 0
\(550\) −3.00000 + 5.19615i −0.127920 + 0.221565i
\(551\) −3.00000 5.19615i −0.127804 0.221364i
\(552\) 0 0
\(553\) −4.00000 + 3.46410i −0.170097 + 0.147309i
\(554\) 8.00000 0.339887
\(555\) 0 0
\(556\) 5.00000 8.66025i 0.212047 0.367277i
\(557\) −9.00000 + 15.5885i −0.381342 + 0.660504i −0.991254 0.131965i \(-0.957871\pi\)
0.609912 + 0.792469i \(0.291205\pi\)
\(558\) 0 0
\(559\) 28.0000 1.18427
\(560\) 2.50000 + 0.866025i 0.105644 + 0.0365963i
\(561\) 0 0
\(562\) −3.00000 5.19615i −0.126547 0.219186i
\(563\) 13.5000 23.3827i 0.568957 0.985463i −0.427712 0.903915i \(-0.640680\pi\)
0.996669 0.0815478i \(-0.0259863\pi\)
\(564\) 0 0
\(565\) 3.00000 + 5.19615i 0.126211 + 0.218604i
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) 0 0
\(571\) 11.0000 19.0526i 0.460336 0.797325i −0.538642 0.842535i \(-0.681062\pi\)
0.998978 + 0.0452101i \(0.0143957\pi\)
\(572\) 12.0000 + 20.7846i 0.501745 + 0.869048i
\(573\) 0 0
\(574\) 18.0000 15.5885i 0.751305 0.650650i
\(575\) 3.00000 0.125109
\(576\) 0 0
\(577\) −13.0000 + 22.5167i −0.541197 + 0.937381i 0.457639 + 0.889138i \(0.348695\pi\)
−0.998836 + 0.0482425i \(0.984638\pi\)
\(578\) 8.50000 14.7224i 0.353553 0.612372i
\(579\) 0 0
\(580\) 3.00000 0.124568
\(581\) 1.50000 + 7.79423i 0.0622305 + 0.323359i
\(582\) 0 0
\(583\) −18.0000 31.1769i −0.745484 1.29122i
\(584\) 8.00000 13.8564i 0.331042 0.573382i
\(585\) 0 0
\(586\) 6.00000 + 10.3923i 0.247858 + 0.429302i
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) −3.00000 5.19615i −0.123508 0.213922i
\(591\) 0 0
\(592\) 2.00000 3.46410i 0.0821995 0.142374i
\(593\) 3.00000 + 5.19615i 0.123195 + 0.213380i 0.921026 0.389501i \(-0.127353\pi\)
−0.797831 + 0.602881i \(0.794019\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −15.0000 −0.614424
\(597\) 0 0
\(598\) 6.00000 10.3923i 0.245358 0.424973i
\(599\) 6.00000 10.3923i 0.245153 0.424618i −0.717021 0.697051i \(-0.754495\pi\)
0.962175 + 0.272433i \(0.0878284\pi\)
\(600\) 0 0
\(601\) −46.0000 −1.87638 −0.938190 0.346122i \(-0.887498\pi\)
−0.938190 + 0.346122i \(0.887498\pi\)
\(602\) 14.0000 12.1244i 0.570597 0.494152i
\(603\) 0 0
\(604\) 2.00000 + 3.46410i 0.0813788 + 0.140952i
\(605\) −12.5000 + 21.6506i −0.508197 + 0.880223i
\(606\) 0 0
\(607\) −11.5000 19.9186i −0.466771 0.808470i 0.532509 0.846424i \(-0.321249\pi\)
−0.999279 + 0.0379540i \(0.987916\pi\)
\(608\) 2.00000 0.0811107
\(609\) 0 0
\(610\) 5.00000 0.202444
\(611\) 0 0
\(612\) 0 0
\(613\) 8.00000 13.8564i 0.323117 0.559655i −0.658012 0.753007i \(-0.728603\pi\)
0.981129 + 0.193352i \(0.0619359\pi\)
\(614\) −2.50000 4.33013i −0.100892 0.174750i
\(615\) 0 0
\(616\) 15.0000 + 5.19615i 0.604367 + 0.209359i
\(617\) 12.0000 0.483102 0.241551 0.970388i \(-0.422344\pi\)
0.241551 + 0.970388i \(0.422344\pi\)
\(618\) 0 0
\(619\) −7.00000 + 12.1244i −0.281354 + 0.487319i −0.971718 0.236143i \(-0.924117\pi\)
0.690365 + 0.723462i \(0.257450\pi\)
\(620\) −4.00000 + 6.92820i −0.160644 + 0.278243i
\(621\) 0 0
\(622\) 18.0000 0.721734
\(623\) −30.0000 + 25.9808i −1.20192 + 1.04090i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −4.00000 + 6.92820i −0.159872 + 0.276907i
\(627\) 0 0
\(628\) 11.0000 + 19.0526i 0.438948 + 0.760280i
\(629\) 0 0
\(630\) 0 0
\(631\) 14.0000 0.557331 0.278666 0.960388i \(-0.410108\pi\)
0.278666 + 0.960388i \(0.410108\pi\)
\(632\) −1.00000 1.73205i −0.0397779 0.0688973i
\(633\) 0 0
\(634\) 6.00000 10.3923i 0.238290 0.412731i
\(635\) −4.00000 6.92820i −0.158735 0.274937i
\(636\) 0 0
\(637\) 26.0000 10.3923i 1.03016 0.411758i
\(638\) 18.0000 0.712627
\(639\) 0 0
\(640\) −0.500000 + 0.866025i −0.0197642 + 0.0342327i
\(641\) −1.50000 + 2.59808i −0.0592464 + 0.102618i −0.894127 0.447813i \(-0.852203\pi\)
0.834881 + 0.550431i \(0.185536\pi\)
\(642\) 0 0
\(643\) 20.0000 0.788723 0.394362 0.918955i \(-0.370966\pi\)
0.394362 + 0.918955i \(0.370966\pi\)
\(644\) −1.50000 7.79423i −0.0591083 0.307136i
\(645\) 0 0
\(646\) 0 0
\(647\) 1.50000 2.59808i 0.0589711 0.102141i −0.835033 0.550200i \(-0.814551\pi\)
0.894004 + 0.448059i \(0.147885\pi\)
\(648\) 0 0
\(649\) −18.0000 31.1769i −0.706562 1.22380i
\(650\) −4.00000 −0.156893
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) −24.0000 41.5692i −0.939193 1.62673i −0.766982 0.641669i \(-0.778242\pi\)
−0.172211 0.985060i \(-0.555091\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 4.50000 + 7.79423i 0.175695 + 0.304314i
\(657\) 0 0
\(658\) 0 0
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) −20.5000 + 35.5070i −0.797358 + 1.38106i 0.123974 + 0.992286i \(0.460436\pi\)
−0.921331 + 0.388778i \(0.872897\pi\)
\(662\) 14.0000 24.2487i 0.544125 0.942453i
\(663\) 0 0
\(664\) −3.00000 −0.116423
\(665\) 5.00000 + 1.73205i 0.193892 + 0.0671660i
\(666\) 0 0
\(667\) −4.50000 7.79423i −0.174241 0.301794i
\(668\) −1.50000 + 2.59808i −0.0580367 + 0.100523i
\(669\) 0 0
\(670\) −2.50000 4.33013i −0.0965834 0.167287i
\(671\) 30.0000 1.15814
\(672\) 0 0
\(673\) 8.00000 0.308377 0.154189 0.988041i \(-0.450724\pi\)
0.154189 + 0.988041i \(0.450724\pi\)
\(674\) 11.0000 + 19.0526i 0.423704 + 0.733877i
\(675\) 0 0
\(676\) −1.50000 + 2.59808i −0.0576923 + 0.0999260i
\(677\) 6.00000 + 10.3923i 0.230599 + 0.399409i 0.957984 0.286820i \(-0.0925982\pi\)
−0.727386 + 0.686229i \(0.759265\pi\)
\(678\) 0 0
\(679\) −7.00000 36.3731i −0.268635 1.39587i
\(680\) 0 0
\(681\) 0 0
\(682\) −24.0000 + 41.5692i −0.919007 + 1.59177i
\(683\) 4.50000 7.79423i 0.172188 0.298238i −0.766997 0.641651i \(-0.778250\pi\)
0.939184 + 0.343413i \(0.111583\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 8.50000 16.4545i 0.324532 0.628235i
\(687\) 0 0
\(688\) 3.50000 + 6.06218i 0.133436 + 0.231118i
\(689\) 12.0000 20.7846i 0.457164 0.791831i
\(690\) 0 0
\(691\) 11.0000 + 19.0526i 0.418460 + 0.724793i 0.995785 0.0917209i \(-0.0292368\pi\)
−0.577325 + 0.816514i \(0.695903\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −9.00000 −0.341635
\(695\) 5.00000 + 8.66025i 0.189661 + 0.328502i
\(696\) 0 0
\(697\) 0 0
\(698\) −8.50000 14.7224i −0.321730 0.557252i
\(699\) 0 0
\(700\) −2.00000 + 1.73205i −0.0755929 + 0.0654654i
\(701\) 3.00000 0.113308 0.0566542 0.998394i \(-0.481957\pi\)
0.0566542 + 0.998394i \(0.481957\pi\)
\(702\) 0 0
\(703\) 4.00000 6.92820i 0.150863 0.261302i
\(704\) −3.00000 + 5.19615i −0.113067 + 0.195837i
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) −37.5000 12.9904i −1.41033 0.488554i
\(708\) 0 0
\(709\) 15.5000 + 26.8468i 0.582115 + 1.00825i 0.995228 + 0.0975728i \(0.0311079\pi\)
−0.413114 + 0.910679i \(0.635559\pi\)
\(710\) −3.00000 + 5.19615i −0.112588 + 0.195008i
\(711\) 0 0
\(712\) −7.50000 12.9904i −0.281074 0.486835i
\(713\) 24.0000 0.898807
\(714\) 0 0
\(715\) −24.0000 −0.897549
\(716\) −12.0000 20.7846i −0.448461 0.776757i
\(717\) 0 0
\(718\) 12.0000 20.7846i 0.447836 0.775675i
\(719\) −9.00000 15.5885i −0.335643 0.581351i 0.647965 0.761670i \(-0.275620\pi\)
−0.983608 + 0.180319i \(0.942287\pi\)
\(720\) 0 0
\(721\) 2.00000 1.73205i 0.0744839 0.0645049i
\(722\) −15.0000 −0.558242
\(723\) 0 0
\(724\) −5.50000 + 9.52628i −0.204406 + 0.354041i
\(725\) −1.50000 + 2.59808i −0.0557086 + 0.0964901i
\(726\) 0 0
\(727\) −19.0000 −0.704671 −0.352335 0.935874i \(-0.614612\pi\)
−0.352335 + 0.935874i \(0.614612\pi\)
\(728\) 2.00000 + 10.3923i 0.0741249 + 0.385164i
\(729\) 0 0
\(730\) 8.00000 + 13.8564i 0.296093 + 0.512849i
\(731\) 0 0
\(732\) 0 0
\(733\) 17.0000 + 29.4449i 0.627909 + 1.08757i 0.987971 + 0.154642i \(0.0494225\pi\)
−0.360061 + 0.932929i \(0.617244\pi\)
\(734\) 35.0000 1.29187
\(735\) 0 0
\(736\) 3.00000 0.110581
\(737\) −15.0000 25.9808i −0.552532 0.957014i
\(738\) 0 0
\(739\) −13.0000 + 22.5167i −0.478213 + 0.828289i −0.999688 0.0249776i \(-0.992049\pi\)
0.521475 + 0.853266i \(0.325382\pi\)
\(740\) 2.00000 + 3.46410i 0.0735215 + 0.127343i
\(741\) 0 0
\(742\) −3.00000 15.5885i −0.110133 0.572270i
\(743\) −39.0000 −1.43077 −0.715386 0.698730i \(-0.753749\pi\)
−0.715386 + 0.698730i \(0.753749\pi\)
\(744\) 0 0
\(745\) 7.50000 12.9904i 0.274779 0.475931i
\(746\) 2.00000 3.46410i 0.0732252 0.126830i
\(747\) 0 0
\(748\) 0 0
\(749\) −30.0000 + 25.9808i −1.09618 + 0.949316i
\(750\) 0 0
\(751\) 2.00000 + 3.46410i 0.0729810 + 0.126407i 0.900207 0.435463i \(-0.143415\pi\)
−0.827225 + 0.561870i \(0.810082\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 6.00000 + 10.3923i 0.218507 + 0.378465i
\(755\) −4.00000 −0.145575
\(756\) 0 0
\(757\) −28.0000 −1.01768 −0.508839 0.860862i \(-0.669925\pi\)
−0.508839 + 0.860862i \(0.669925\pi\)
\(758\) 17.0000 + 29.4449i 0.617468 + 1.06949i
\(759\) 0 0
\(760\) −1.00000 + 1.73205i −0.0362738 + 0.0628281i
\(761\) 21.0000 + 36.3731i 0.761249 + 1.31852i 0.942207 + 0.335032i \(0.108747\pi\)
−0.180957 + 0.983491i \(0.557920\pi\)
\(762\) 0 0
\(763\) 27.5000 + 9.52628i 0.995567 + 0.344874i
\(764\) 6.00000 0.217072
\(765\) 0 0
\(766\) −7.50000 + 12.9904i −0.270986 + 0.469362i
\(767\) 12.0000 20.7846i 0.433295 0.750489i
\(768\) 0 0
\(769\) 50.0000 1.80305 0.901523 0.432731i \(-0.142450\pi\)
0.901523 + 0.432731i \(0.142450\pi\)
\(770\) −12.0000 + 10.3923i −0.432450 + 0.374513i
\(771\) 0 0
\(772\) −1.00000 1.73205i −0.0359908 0.0623379i
\(773\) −6.00000 + 10.3923i −0.215805 + 0.373785i −0.953521 0.301326i \(-0.902571\pi\)
0.737716 + 0.675111i \(0.235904\pi\)
\(774\) 0 0
\(775\) −4.00000 6.92820i −0.143684 0.248868i
\(776\) 14.0000 0.502571
\(777\) 0 0
\(778\) 30.0000 1.07555
\(779\) 9.00000 + 15.5885i 0.322458 + 0.558514i
\(780\) 0 0
\(781\) −18.0000 + 31.1769i −0.644091 + 1.11560i
\(782\) 0 0
\(783\) 0 0
\(784\) 5.50000 + 4.33013i 0.196429 + 0.154647i
\(785\) −22.0000 −0.785214
\(786\) 0 0
\(787\) 21.5000 37.2391i 0.766392 1.32743i −0.173115 0.984902i \(-0.555383\pi\)
0.939507 0.342529i \(-0.111283\pi\)
\(788\) −3.00000 + 5.19615i −0.106871 + 0.185105i
\(789\) 0 0
\(790\) 2.00000 0.0711568
\(791\) 3.00000 + 15.5885i 0.106668 + 0.554262i
\(792\) 0 0
\(793\) 10.0000 + 17.3205i 0.355110 + 0.615069i
\(794\) −7.00000 + 12.1244i −0.248421 + 0.430277i
\(795\) 0 0
\(796\) 2.00000 + 3.46410i 0.0708881 + 0.122782i
\(797\) 48.0000 1.70025 0.850124 0.526583i \(-0.176527\pi\)
0.850124 + 0.526583i \(0.176527\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.500000 0.866025i −0.0176777 0.0306186i
\(801\) 0 0
\(802\) 7.50000 12.9904i 0.264834 0.458706i
\(803\) 48.0000 + 83.1384i 1.69388 + 2.93389i
\(804\) 0 0
\(805\) 7.50000 + 2.59808i 0.264340 + 0.0915702i
\(806\) −32.0000 −1.12715
\(807\) 0 0
\(808\) 7.50000 12.9904i 0.263849 0.457000i
\(809\) 10.5000 18.1865i 0.369160 0.639404i −0.620274 0.784385i \(-0.712979\pi\)
0.989434 + 0.144981i \(0.0463120\pi\)
\(810\) 0 0
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) 7.50000 + 2.59808i 0.263198 + 0.0911746i
\(813\) 0 0
\(814\) 12.0000 + 20.7846i 0.420600 + 0.728500i
\(815\) 2.00000 3.46410i 0.0700569 0.121342i
\(816\) 0 0
\(817\) 7.00000 + 12.1244i 0.244899 + 0.424178i
\(818\) −13.0000 −0.454534
\(819\) 0 0
\(820\) −9.00000 −0.314294
\(821\) −9.00000 15.5885i −0.314102 0.544041i 0.665144 0.746715i \(-0.268370\pi\)
−0.979246 + 0.202674i \(0.935037\pi\)
\(822\) 0 0
\(823\) 9.50000 16.4545i 0.331149 0.573567i −0.651588 0.758573i \(-0.725897\pi\)
0.982737 + 0.185006i \(0.0592303\pi\)
\(824\) 0.500000 + 0.866025i 0.0174183 + 0.0301694i
\(825\) 0 0
\(826\) −3.00000 15.5885i −0.104383 0.542392i
\(827\) −15.0000 −0.521601 −0.260801 0.965393i \(-0.583986\pi\)
−0.260801 + 0.965393i \(0.583986\pi\)
\(828\) 0 0
\(829\) −1.00000 + 1.73205i −0.0347314 + 0.0601566i −0.882869 0.469620i \(-0.844391\pi\)
0.848137 + 0.529777i \(0.177724\pi\)
\(830\) 1.50000 2.59808i 0.0520658 0.0901805i
\(831\) 0 0
\(832\) −4.00000 −0.138675
\(833\) 0 0
\(834\) 0 0
\(835\) −1.50000 2.59808i −0.0519096 0.0899101i
\(836\) −6.00000 + 10.3923i −0.207514 + 0.359425i
\(837\) 0 0
\(838\) 0 0
\(839\) 30.0000 1.03572 0.517858 0.855467i \(-0.326730\pi\)
0.517858 + 0.855467i \(0.326730\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) −8.50000 14.7224i −0.292929 0.507369i
\(843\) 0 0
\(844\) 5.00000 8.66025i 0.172107 0.298098i
\(845\) −1.50000 2.59808i −0.0516016 0.0893765i
\(846\) 0 0
\(847\) −50.0000 + 43.3013i −1.71802 + 1.48785i
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) 0 0
\(851\) 6.00000 10.3923i 0.205677 0.356244i
\(852\) 0 0
\(853\) −46.0000 −1.57501 −0.787505 0.616308i \(-0.788628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) 12.5000 + 4.33013i 0.427741 + 0.148174i
\(855\) 0 0
\(856\) −7.50000 12.9904i −0.256345 0.444002i
\(857\) 3.00000 5.19615i 0.102478 0.177497i −0.810227 0.586116i \(-0.800656\pi\)
0.912705 + 0.408619i \(0.133990\pi\)
\(858\) 0 0
\(859\) −16.0000 27.7128i −0.545913 0.945549i −0.998549 0.0538535i \(-0.982850\pi\)
0.452636 0.891695i \(-0.350484\pi\)
\(860\) −7.00000 −0.238698
\(861\) 0 0
\(862\) −30.0000 −1.02180
\(863\) 13.5000 + 23.3827i 0.459545 + 0.795956i 0.998937 0.0460992i \(-0.0146790\pi\)
−0.539392 + 0.842055i \(0.681346\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 11.0000 + 19.0526i 0.373795 + 0.647432i
\(867\) 0 0
\(868\) −16.0000 + 13.8564i −0.543075 + 0.470317i
\(869\) 12.0000 0.407072
\(870\) 0 0
\(871\) 10.0000 17.3205i 0.338837 0.586883i
\(872\) −5.50000 + 9.52628i −0.186254 + 0.322601i
\(873\) 0 0
\(874\) 6.00000 0.202953
\(875\) −0.500000 2.59808i −0.0169031 0.0878310i
\(876\) 0 0
\(877\) −1.00000 1.73205i −0.0337676 0.0584872i 0.848648 0.528958i \(-0.177417\pi\)
−0.882415 + 0.470471i \(0.844084\pi\)
\(878\) 14.0000 24.2487i 0.472477 0.818354i
\(879\) 0 0
\(880\) −3.00000 5.19615i −0.101130 0.175162i
\(881\) −57.0000 −1.92038 −0.960189 0.279350i \(-0.909881\pi\)
−0.960189 + 0.279350i \(0.909881\pi\)
\(882\) 0 0
\(883\) −52.0000 −1.74994 −0.874970 0.484178i \(-0.839119\pi\)
−0.874970 + 0.484178i \(0.839119\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 10.5000 18.1865i 0.352754 0.610989i
\(887\) −10.5000 18.1865i −0.352555 0.610644i 0.634141 0.773217i \(-0.281354\pi\)
−0.986696 + 0.162573i \(0.948021\pi\)
\(888\) 0 0
\(889\) −4.00000 20.7846i −0.134156 0.697093i
\(890\) 15.0000 0.502801
\(891\) 0 0
\(892\) 14.0000 24.2487i 0.468755 0.811907i
\(893\) 0 0
\(894\) 0 0
\(895\) 24.0000 0.802232
\(896\) −2.00000 + 1.73205i −0.0668153 + 0.0578638i
\(897\) 0 0
\(898\) −4.50000 7.79423i −0.150167 0.260097i
\(899\) −12.0000 + 20.7846i −0.400222 + 0.693206i
\(900\) 0 0
\(901\) 0 0
\(902\) −54.0000 −1.79800
\(903\) 0 0
\(904\) −6.00000 −0.199557
\(905\) −5.50000 9.52628i −0.182826 0.316664i
\(906\) 0 0
\(907\) 12.5000 21.6506i 0.415056 0.718898i −0.580379 0.814347i \(-0.697095\pi\)
0.995434 + 0.0954492i \(0.0304288\pi\)
\(908\) −6.00000 10.3923i −0.199117 0.344881i
\(909\) 0 0
\(910\) −10.0000 3.46410i −0.331497 0.114834i
\(911\) −18.0000 −0.596367 −0.298183 0.954509i \(-0.596381\pi\)
−0.298183 + 0.954509i \(0.596381\pi\)
\(912\) 0 0
\(913\) 9.00000 15.5885i 0.297857 0.515903i
\(914\) −16.0000 + 27.7128i −0.529233 + 0.916658i
\(915\) 0 0
\(916\) 14.0000 0.462573
\(917\) 0 0
\(918\) 0 0
\(919\) −7.00000 12.1244i −0.230909 0.399946i 0.727167 0.686461i \(-0.240837\pi\)
−0.958076 + 0.286515i \(0.907503\pi\)
\(920\) −1.50000 + 2.59808i −0.0494535 + 0.0856560i
\(921\) 0 0
\(922\) 9.00000 + 15.5885i 0.296399 + 0.513378i
\(923\) −24.0000 −0.789970
\(924\) 0 0
\(925\) −4.00000 −0.131519
\(926\) 6.50000 + 11.2583i 0.213603 + 0.369972i
\(927\) 0 0
\(928\) −1.50000 + 2.59808i −0.0492399 + 0.0852860i
\(929\) −10.5000 18.1865i −0.344494 0.596681i 0.640768 0.767735i \(-0.278616\pi\)
−0.985262 + 0.171054i \(0.945283\pi\)
\(930\) 0 0
\(931\) 11.0000 + 8.66025i 0.360510 + 0.283828i
\(932\) 12.0000 0.393073
\(933\) 0 0
\(934\) −7.50000 + 12.9904i −0.245407 + 0.425058i
\(935\) 0 0
\(936\) 0 0
\(937\) −28.0000 −0.914720 −0.457360 0.889282i \(-0.651205\pi\)
−0.457360 + 0.889282i \(0.651205\pi\)
\(938\) −2.50000 12.9904i −0.0816279 0.424151i
\(939\) 0 0
\(940\) 0 0
\(941\) −3.00000 + 5.19615i −0.0977972 + 0.169390i −0.910773 0.412908i \(-0.864513\pi\)
0.812975 + 0.582298i \(0.197846\pi\)
\(942\) 0 0
\(943\) 13.5000 + 23.3827i 0.439620 + 0.761445i
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) −42.0000 −1.36554
\(947\) −1.50000 2.59808i −0.0487435 0.0844261i 0.840624 0.541619i \(-0.182188\pi\)
−0.889368 + 0.457193i \(0.848855\pi\)
\(948\) 0 0
\(949\) −32.0000 + 55.4256i −1.03876 + 1.79919i
\(950\) −1.00000 1.73205i −0.0324443 0.0561951i
\(951\) 0 0
\(952\) 0 0
\(953\) −60.0000 −1.94359 −0.971795 0.235826i \(-0.924220\pi\)
−0.971795 + 0.235826i \(0.924220\pi\)
\(954\) 0 0
\(955\) −3.00000 + 5.19615i −0.0970777 + 0.168144i
\(956\) 6.00000 10.3923i 0.194054 0.336111i
\(957\) 0 0
\(958\) −12.0000 −0.387702
\(959\) −30.0000 10.3923i −0.968751 0.335585i
\(960\) 0 0
\(961\) −16.5000 28.5788i −0.532258 0.921898i
\(962\) −8.00000 + 13.8564i −0.257930 + 0.446748i
\(963\) 0 0
\(964\) −1.00000 1.73205i −0.0322078 0.0557856i
\(965\) 2.00000 0.0643823
\(966\) 0 0
\(967\) 35.0000 1.12552 0.562762 0.826619i \(-0.309739\pi\)
0.562762 + 0.826619i \(0.309739\pi\)
\(968\) −12.5000 21.6506i −0.401765 0.695878i
\(969\) 0 0
\(970\) −7.00000 + 12.1244i −0.224756 + 0.389290i
\(971\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(972\) 0 0
\(973\) 5.00000 + 25.9808i 0.160293 + 0.832905i
\(974\) −16.0000 −0.512673
\(975\) 0 0
\(976\) −2.50000 + 4.33013i −0.0800230 + 0.138604i
\(977\) −3.00000 + 5.19615i −0.0959785 + 0.166240i −0.910017 0.414572i \(-0.863931\pi\)
0.814038 + 0.580812i \(0.197265\pi\)
\(978\) 0 0
\(979\) 90.0000 2.87641
\(980\) −6.50000 + 2.59808i −0.207635 + 0.0829925i
\(981\) 0 0
\(982\) 0 0
\(983\) 19.5000 33.7750i 0.621953 1.07725i −0.367168 0.930155i \(-0.619673\pi\)
0.989122 0.147100i \(-0.0469940\pi\)
\(984\) 0 0
\(985\) −3.00000 5.19615i −0.0955879 0.165563i
\(986\) 0 0
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) 10.5000 + 18.1865i 0.333881 + 0.578298i
\(990\) 0 0
\(991\) 14.0000 24.2487i 0.444725 0.770286i −0.553308 0.832977i \(-0.686635\pi\)
0.998033 + 0.0626908i \(0.0199682\pi\)
\(992\) −4.00000 6.92820i −0.127000 0.219971i
\(993\) 0 0
\(994\) −12.0000 + 10.3923i −0.380617 + 0.329624i
\(995\) −4.00000 −0.126809
\(996\) 0 0
\(997\) −7.00000 + 12.1244i −0.221692 + 0.383982i −0.955322 0.295567i \(-0.904491\pi\)
0.733630 + 0.679549i \(0.237825\pi\)
\(998\) 11.0000 19.0526i 0.348199 0.603098i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.k.b.361.1 2
3.2 odd 2 70.2.e.c.11.1 2
7.2 even 3 inner 630.2.k.b.541.1 2
7.3 odd 6 4410.2.a.bd.1.1 1
7.4 even 3 4410.2.a.bm.1.1 1
12.11 even 2 560.2.q.g.81.1 2
15.2 even 4 350.2.j.b.249.1 4
15.8 even 4 350.2.j.b.249.2 4
15.14 odd 2 350.2.e.e.151.1 2
21.2 odd 6 70.2.e.c.51.1 yes 2
21.5 even 6 490.2.e.h.471.1 2
21.11 odd 6 490.2.a.c.1.1 1
21.17 even 6 490.2.a.b.1.1 1
21.20 even 2 490.2.e.h.361.1 2
84.11 even 6 3920.2.a.p.1.1 1
84.23 even 6 560.2.q.g.401.1 2
84.59 odd 6 3920.2.a.bc.1.1 1
105.2 even 12 350.2.j.b.149.2 4
105.17 odd 12 2450.2.c.l.99.1 2
105.23 even 12 350.2.j.b.149.1 4
105.32 even 12 2450.2.c.g.99.1 2
105.38 odd 12 2450.2.c.l.99.2 2
105.44 odd 6 350.2.e.e.51.1 2
105.53 even 12 2450.2.c.g.99.2 2
105.59 even 6 2450.2.a.bc.1.1 1
105.74 odd 6 2450.2.a.w.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.2.e.c.11.1 2 3.2 odd 2
70.2.e.c.51.1 yes 2 21.2 odd 6
350.2.e.e.51.1 2 105.44 odd 6
350.2.e.e.151.1 2 15.14 odd 2
350.2.j.b.149.1 4 105.23 even 12
350.2.j.b.149.2 4 105.2 even 12
350.2.j.b.249.1 4 15.2 even 4
350.2.j.b.249.2 4 15.8 even 4
490.2.a.b.1.1 1 21.17 even 6
490.2.a.c.1.1 1 21.11 odd 6
490.2.e.h.361.1 2 21.20 even 2
490.2.e.h.471.1 2 21.5 even 6
560.2.q.g.81.1 2 12.11 even 2
560.2.q.g.401.1 2 84.23 even 6
630.2.k.b.361.1 2 1.1 even 1 trivial
630.2.k.b.541.1 2 7.2 even 3 inner
2450.2.a.w.1.1 1 105.74 odd 6
2450.2.a.bc.1.1 1 105.59 even 6
2450.2.c.g.99.1 2 105.32 even 12
2450.2.c.g.99.2 2 105.53 even 12
2450.2.c.l.99.1 2 105.17 odd 12
2450.2.c.l.99.2 2 105.38 odd 12
3920.2.a.p.1.1 1 84.11 even 6
3920.2.a.bc.1.1 1 84.59 odd 6
4410.2.a.bd.1.1 1 7.3 odd 6
4410.2.a.bm.1.1 1 7.4 even 3