Properties

Label 396.2.i.e.133.4
Level $396$
Weight $2$
Character 396.133
Analytic conductor $3.162$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [396,2,Mod(133,396)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(396, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("396.133");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 396.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.16207592004\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.5206055409.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + x^{6} + 9x^{5} - 23x^{4} + 27x^{3} + 9x^{2} - 81x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 133.4
Root \(-1.72895 - 0.103515i\) of defining polynomial
Character \(\chi\) \(=\) 396.133
Dual form 396.2.i.e.265.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.72895 + 0.103515i) q^{3} +(-1.27483 - 2.20807i) q^{5} +(0.679294 - 1.17657i) q^{7} +(2.97857 + 0.357947i) q^{9} +(0.500000 - 0.866025i) q^{11} +(-0.345151 - 0.597819i) q^{13} +(-1.97556 - 3.94962i) q^{15} -0.859359 q^{17} +4.90825 q^{19} +(1.29626 - 1.96392i) q^{21} +(-3.52823 - 6.11107i) q^{23} +(-0.750386 + 1.29971i) q^{25} +(5.11276 + 0.927201i) q^{27} +(-1.88380 + 3.26284i) q^{29} +(3.13720 + 5.43380i) q^{31} +(0.954124 - 1.44556i) q^{33} -3.46394 q^{35} -1.95111 q^{37} +(-0.534867 - 1.06933i) q^{39} +(4.15786 + 7.20163i) q^{41} +(-5.93648 + 10.2823i) q^{43} +(-3.00680 - 7.03321i) q^{45} +(-0.619982 + 1.07384i) q^{47} +(2.57712 + 4.46370i) q^{49} +(-1.48579 - 0.0889568i) q^{51} +3.26684 q^{53} -2.54966 q^{55} +(8.48614 + 0.508079i) q^{57} +(-5.88759 - 10.1976i) q^{59} +(0.228955 - 0.396561i) q^{61} +(2.44447 - 3.26135i) q^{63} +(-0.880018 + 1.52424i) q^{65} +(-3.74961 - 6.49452i) q^{67} +(-5.46756 - 10.9310i) q^{69} -4.48478 q^{71} +9.26838 q^{73} +(-1.43192 + 2.16946i) q^{75} +(-0.679294 - 1.17657i) q^{77} +(-8.00379 + 13.8630i) q^{79} +(8.74375 + 2.13234i) q^{81} +(-4.38303 + 7.59163i) q^{83} +(1.09554 + 1.89753i) q^{85} +(-3.59477 + 5.44631i) q^{87} -3.59252 q^{89} -0.937836 q^{91} +(4.86160 + 9.71954i) q^{93} +(-6.25718 - 10.8378i) q^{95} +(-3.25340 + 5.63505i) q^{97} +(1.79928 - 2.40054i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 3 q^{3} - 4 q^{5} + q^{7} + 7 q^{9} + 4 q^{11} - q^{13} - 22 q^{15} + 2 q^{17} + 18 q^{19} + 21 q^{21} + q^{23} - 6 q^{25} + 9 q^{27} - 13 q^{31} - 3 q^{33} + 52 q^{35} - 28 q^{37} - 14 q^{39}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.72895 + 0.103515i 0.998212 + 0.0597646i
\(4\) 0 0
\(5\) −1.27483 2.20807i −0.570122 0.987479i −0.996553 0.0829595i \(-0.973563\pi\)
0.426431 0.904520i \(-0.359771\pi\)
\(6\) 0 0
\(7\) 0.679294 1.17657i 0.256749 0.444702i −0.708620 0.705590i \(-0.750682\pi\)
0.965369 + 0.260888i \(0.0840153\pi\)
\(8\) 0 0
\(9\) 2.97857 + 0.357947i 0.992856 + 0.119316i
\(10\) 0 0
\(11\) 0.500000 0.866025i 0.150756 0.261116i
\(12\) 0 0
\(13\) −0.345151 0.597819i −0.0957277 0.165805i 0.814184 0.580606i \(-0.197184\pi\)
−0.909912 + 0.414801i \(0.863851\pi\)
\(14\) 0 0
\(15\) −1.97556 3.94962i −0.510086 1.01979i
\(16\) 0 0
\(17\) −0.859359 −0.208425 −0.104213 0.994555i \(-0.533232\pi\)
−0.104213 + 0.994555i \(0.533232\pi\)
\(18\) 0 0
\(19\) 4.90825 1.12603 0.563015 0.826447i \(-0.309641\pi\)
0.563015 + 0.826447i \(0.309641\pi\)
\(20\) 0 0
\(21\) 1.29626 1.96392i 0.282867 0.428563i
\(22\) 0 0
\(23\) −3.52823 6.11107i −0.735687 1.27425i −0.954421 0.298463i \(-0.903526\pi\)
0.218734 0.975784i \(-0.429807\pi\)
\(24\) 0 0
\(25\) −0.750386 + 1.29971i −0.150077 + 0.259941i
\(26\) 0 0
\(27\) 5.11276 + 0.927201i 0.983951 + 0.178440i
\(28\) 0 0
\(29\) −1.88380 + 3.26284i −0.349814 + 0.605895i −0.986216 0.165462i \(-0.947088\pi\)
0.636403 + 0.771357i \(0.280422\pi\)
\(30\) 0 0
\(31\) 3.13720 + 5.43380i 0.563458 + 0.975938i 0.997191 + 0.0748970i \(0.0238628\pi\)
−0.433733 + 0.901041i \(0.642804\pi\)
\(32\) 0 0
\(33\) 0.954124 1.44556i 0.166092 0.251640i
\(34\) 0 0
\(35\) −3.46394 −0.585512
\(36\) 0 0
\(37\) −1.95111 −0.320761 −0.160380 0.987055i \(-0.551272\pi\)
−0.160380 + 0.987055i \(0.551272\pi\)
\(38\) 0 0
\(39\) −0.534867 1.06933i −0.0856473 0.171230i
\(40\) 0 0
\(41\) 4.15786 + 7.20163i 0.649349 + 1.12471i 0.983279 + 0.182108i \(0.0582919\pi\)
−0.333930 + 0.942598i \(0.608375\pi\)
\(42\) 0 0
\(43\) −5.93648 + 10.2823i −0.905305 + 1.56803i −0.0847966 + 0.996398i \(0.527024\pi\)
−0.820508 + 0.571635i \(0.806309\pi\)
\(44\) 0 0
\(45\) −3.00680 7.03321i −0.448227 1.04845i
\(46\) 0 0
\(47\) −0.619982 + 1.07384i −0.0904336 + 0.156636i −0.907694 0.419633i \(-0.862159\pi\)
0.817260 + 0.576269i \(0.195492\pi\)
\(48\) 0 0
\(49\) 2.57712 + 4.46370i 0.368160 + 0.637672i
\(50\) 0 0
\(51\) −1.48579 0.0889568i −0.208053 0.0124564i
\(52\) 0 0
\(53\) 3.26684 0.448734 0.224367 0.974505i \(-0.427968\pi\)
0.224367 + 0.974505i \(0.427968\pi\)
\(54\) 0 0
\(55\) −2.54966 −0.343796
\(56\) 0 0
\(57\) 8.48614 + 0.508079i 1.12402 + 0.0672967i
\(58\) 0 0
\(59\) −5.88759 10.1976i −0.766499 1.32761i −0.939451 0.342685i \(-0.888664\pi\)
0.172952 0.984930i \(-0.444670\pi\)
\(60\) 0 0
\(61\) 0.228955 0.396561i 0.0293147 0.0507745i −0.850996 0.525172i \(-0.824001\pi\)
0.880311 + 0.474398i \(0.157334\pi\)
\(62\) 0 0
\(63\) 2.44447 3.26135i 0.307975 0.410891i
\(64\) 0 0
\(65\) −0.880018 + 1.52424i −0.109153 + 0.189058i
\(66\) 0 0
\(67\) −3.74961 6.49452i −0.458088 0.793432i 0.540772 0.841169i \(-0.318132\pi\)
−0.998860 + 0.0477372i \(0.984799\pi\)
\(68\) 0 0
\(69\) −5.46756 10.9310i −0.658217 1.31594i
\(70\) 0 0
\(71\) −4.48478 −0.532246 −0.266123 0.963939i \(-0.585743\pi\)
−0.266123 + 0.963939i \(0.585743\pi\)
\(72\) 0 0
\(73\) 9.26838 1.08478 0.542391 0.840126i \(-0.317519\pi\)
0.542391 + 0.840126i \(0.317519\pi\)
\(74\) 0 0
\(75\) −1.43192 + 2.16946i −0.165344 + 0.250507i
\(76\) 0 0
\(77\) −0.679294 1.17657i −0.0774127 0.134083i
\(78\) 0 0
\(79\) −8.00379 + 13.8630i −0.900496 + 1.55971i −0.0736449 + 0.997285i \(0.523463\pi\)
−0.826851 + 0.562421i \(0.809870\pi\)
\(80\) 0 0
\(81\) 8.74375 + 2.13234i 0.971528 + 0.236926i
\(82\) 0 0
\(83\) −4.38303 + 7.59163i −0.481100 + 0.833290i −0.999765 0.0216877i \(-0.993096\pi\)
0.518664 + 0.854978i \(0.326429\pi\)
\(84\) 0 0
\(85\) 1.09554 + 1.89753i 0.118828 + 0.205816i
\(86\) 0 0
\(87\) −3.59477 + 5.44631i −0.385399 + 0.583905i
\(88\) 0 0
\(89\) −3.59252 −0.380807 −0.190403 0.981706i \(-0.560980\pi\)
−0.190403 + 0.981706i \(0.560980\pi\)
\(90\) 0 0
\(91\) −0.937836 −0.0983119
\(92\) 0 0
\(93\) 4.86160 + 9.71954i 0.504125 + 1.00787i
\(94\) 0 0
\(95\) −6.25718 10.8378i −0.641974 1.11193i
\(96\) 0 0
\(97\) −3.25340 + 5.63505i −0.330333 + 0.572153i −0.982577 0.185856i \(-0.940494\pi\)
0.652244 + 0.758009i \(0.273828\pi\)
\(98\) 0 0
\(99\) 1.79928 2.40054i 0.180834 0.241264i
\(100\) 0 0
\(101\) −0.0526751 + 0.0912359i −0.00524136 + 0.00907831i −0.868634 0.495454i \(-0.835002\pi\)
0.863393 + 0.504532i \(0.168335\pi\)
\(102\) 0 0
\(103\) −1.40446 2.43260i −0.138386 0.239691i 0.788500 0.615035i \(-0.210858\pi\)
−0.926886 + 0.375344i \(0.877525\pi\)
\(104\) 0 0
\(105\) −5.98899 0.358571i −0.584466 0.0349929i
\(106\) 0 0
\(107\) −12.6759 −1.22542 −0.612711 0.790307i \(-0.709921\pi\)
−0.612711 + 0.790307i \(0.709921\pi\)
\(108\) 0 0
\(109\) 12.0565 1.15480 0.577400 0.816462i \(-0.304067\pi\)
0.577400 + 0.816462i \(0.304067\pi\)
\(110\) 0 0
\(111\) −3.37338 0.201970i −0.320187 0.0191701i
\(112\) 0 0
\(113\) 6.31727 + 10.9418i 0.594279 + 1.02932i 0.993648 + 0.112531i \(0.0358957\pi\)
−0.399370 + 0.916790i \(0.630771\pi\)
\(114\) 0 0
\(115\) −8.99579 + 15.5812i −0.838862 + 1.45295i
\(116\) 0 0
\(117\) −0.814069 1.90419i −0.0752607 0.176043i
\(118\) 0 0
\(119\) −0.583757 + 1.01110i −0.0535129 + 0.0926871i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 0 0
\(123\) 6.44328 + 12.8817i 0.580971 + 1.16150i
\(124\) 0 0
\(125\) −8.92185 −0.797994
\(126\) 0 0
\(127\) 3.63987 0.322986 0.161493 0.986874i \(-0.448369\pi\)
0.161493 + 0.986874i \(0.448369\pi\)
\(128\) 0 0
\(129\) −11.3283 + 17.1631i −0.997399 + 1.51113i
\(130\) 0 0
\(131\) 7.05646 + 12.2221i 0.616526 + 1.06785i 0.990115 + 0.140260i \(0.0447937\pi\)
−0.373589 + 0.927594i \(0.621873\pi\)
\(132\) 0 0
\(133\) 3.33414 5.77490i 0.289107 0.500748i
\(134\) 0 0
\(135\) −4.47057 12.4714i −0.384766 1.07336i
\(136\) 0 0
\(137\) 5.31348 9.20322i 0.453961 0.786284i −0.544666 0.838653i \(-0.683344\pi\)
0.998628 + 0.0523685i \(0.0166770\pi\)
\(138\) 0 0
\(139\) −10.3195 17.8739i −0.875290 1.51605i −0.856454 0.516223i \(-0.827337\pi\)
−0.0188355 0.999823i \(-0.505996\pi\)
\(140\) 0 0
\(141\) −1.18308 + 1.79244i −0.0996332 + 0.150951i
\(142\) 0 0
\(143\) −0.690302 −0.0577260
\(144\) 0 0
\(145\) 9.60612 0.797745
\(146\) 0 0
\(147\) 3.99366 + 7.98431i 0.329392 + 0.658535i
\(148\) 0 0
\(149\) 6.62678 + 11.4779i 0.542887 + 0.940308i 0.998737 + 0.0502511i \(0.0160022\pi\)
−0.455850 + 0.890057i \(0.650665\pi\)
\(150\) 0 0
\(151\) 6.39439 11.0754i 0.520368 0.901304i −0.479352 0.877623i \(-0.659128\pi\)
0.999720 0.0236808i \(-0.00753853\pi\)
\(152\) 0 0
\(153\) −2.55966 0.307605i −0.206936 0.0248684i
\(154\) 0 0
\(155\) 7.99880 13.8543i 0.642479 1.11281i
\(156\) 0 0
\(157\) −7.01781 12.1552i −0.560082 0.970091i −0.997489 0.0708267i \(-0.977436\pi\)
0.437407 0.899264i \(-0.355897\pi\)
\(158\) 0 0
\(159\) 5.64821 + 0.338168i 0.447932 + 0.0268184i
\(160\) 0 0
\(161\) −9.58682 −0.755547
\(162\) 0 0
\(163\) 1.41590 0.110902 0.0554508 0.998461i \(-0.482340\pi\)
0.0554508 + 0.998461i \(0.482340\pi\)
\(164\) 0 0
\(165\) −4.40825 0.263929i −0.343182 0.0205468i
\(166\) 0 0
\(167\) −6.84094 11.8489i −0.529368 0.916892i −0.999413 0.0342500i \(-0.989096\pi\)
0.470045 0.882642i \(-0.344238\pi\)
\(168\) 0 0
\(169\) 6.26174 10.8457i 0.481672 0.834281i
\(170\) 0 0
\(171\) 14.6196 + 1.75689i 1.11799 + 0.134353i
\(172\) 0 0
\(173\) −2.53865 + 4.39708i −0.193010 + 0.334303i −0.946246 0.323447i \(-0.895158\pi\)
0.753236 + 0.657750i \(0.228492\pi\)
\(174\) 0 0
\(175\) 1.01946 + 1.76576i 0.0770643 + 0.133479i
\(176\) 0 0
\(177\) −9.12377 18.2407i −0.685784 1.37105i
\(178\) 0 0
\(179\) 19.5295 1.45970 0.729852 0.683605i \(-0.239589\pi\)
0.729852 + 0.683605i \(0.239589\pi\)
\(180\) 0 0
\(181\) −3.21038 −0.238625 −0.119313 0.992857i \(-0.538069\pi\)
−0.119313 + 0.992857i \(0.538069\pi\)
\(182\) 0 0
\(183\) 0.436903 0.661936i 0.0322968 0.0489317i
\(184\) 0 0
\(185\) 2.48733 + 4.30819i 0.182872 + 0.316744i
\(186\) 0 0
\(187\) −0.429679 + 0.744226i −0.0314213 + 0.0544232i
\(188\) 0 0
\(189\) 4.56398 5.38568i 0.331981 0.391751i
\(190\) 0 0
\(191\) 4.21475 7.30016i 0.304968 0.528221i −0.672286 0.740292i \(-0.734687\pi\)
0.977254 + 0.212071i \(0.0680208\pi\)
\(192\) 0 0
\(193\) 9.14821 + 15.8452i 0.658503 + 1.14056i 0.981003 + 0.193991i \(0.0621432\pi\)
−0.322501 + 0.946569i \(0.604523\pi\)
\(194\) 0 0
\(195\) −1.67929 + 2.54424i −0.120257 + 0.182197i
\(196\) 0 0
\(197\) 21.9150 1.56138 0.780689 0.624920i \(-0.214869\pi\)
0.780689 + 0.624920i \(0.214869\pi\)
\(198\) 0 0
\(199\) −3.88895 −0.275680 −0.137840 0.990455i \(-0.544016\pi\)
−0.137840 + 0.990455i \(0.544016\pi\)
\(200\) 0 0
\(201\) −5.81063 11.6169i −0.409850 0.819391i
\(202\) 0 0
\(203\) 2.55931 + 4.43286i 0.179628 + 0.311126i
\(204\) 0 0
\(205\) 10.6011 18.3617i 0.740416 1.28244i
\(206\) 0 0
\(207\) −8.32164 19.4652i −0.578394 1.35292i
\(208\) 0 0
\(209\) 2.45412 4.25067i 0.169755 0.294025i
\(210\) 0 0
\(211\) −11.4128 19.7676i −0.785690 1.36085i −0.928586 0.371117i \(-0.878975\pi\)
0.142896 0.989738i \(-0.454359\pi\)
\(212\) 0 0
\(213\) −7.75399 0.464244i −0.531294 0.0318094i
\(214\) 0 0
\(215\) 30.2720 2.06453
\(216\) 0 0
\(217\) 8.52433 0.578669
\(218\) 0 0
\(219\) 16.0246 + 0.959419i 1.08284 + 0.0648315i
\(220\) 0 0
\(221\) 0.296609 + 0.513741i 0.0199521 + 0.0345580i
\(222\) 0 0
\(223\) −8.21509 + 14.2290i −0.550123 + 0.952842i 0.448142 + 0.893963i \(0.352086\pi\)
−0.998265 + 0.0588792i \(0.981247\pi\)
\(224\) 0 0
\(225\) −2.70030 + 3.60267i −0.180020 + 0.240178i
\(226\) 0 0
\(227\) 4.20830 7.28898i 0.279314 0.483787i −0.691900 0.721993i \(-0.743226\pi\)
0.971215 + 0.238207i \(0.0765595\pi\)
\(228\) 0 0
\(229\) −13.3952 23.2011i −0.885177 1.53317i −0.845511 0.533959i \(-0.820704\pi\)
−0.0396665 0.999213i \(-0.512630\pi\)
\(230\) 0 0
\(231\) −1.05268 2.10456i −0.0692609 0.138470i
\(232\) 0 0
\(233\) 4.83697 0.316881 0.158440 0.987369i \(-0.449353\pi\)
0.158440 + 0.987369i \(0.449353\pi\)
\(234\) 0 0
\(235\) 3.16149 0.206233
\(236\) 0 0
\(237\) −15.2732 + 23.1399i −0.992102 + 1.50310i
\(238\) 0 0
\(239\) 7.17852 + 12.4336i 0.464340 + 0.804261i 0.999171 0.0406982i \(-0.0129582\pi\)
−0.534831 + 0.844959i \(0.679625\pi\)
\(240\) 0 0
\(241\) −8.86314 + 15.3514i −0.570925 + 0.988872i 0.425546 + 0.904937i \(0.360082\pi\)
−0.996471 + 0.0839348i \(0.973251\pi\)
\(242\) 0 0
\(243\) 14.8968 + 4.59183i 0.955631 + 0.294566i
\(244\) 0 0
\(245\) 6.57078 11.3809i 0.419792 0.727101i
\(246\) 0 0
\(247\) −1.69409 2.93425i −0.107792 0.186702i
\(248\) 0 0
\(249\) −8.36392 + 12.6719i −0.530042 + 0.803048i
\(250\) 0 0
\(251\) −5.12704 −0.323616 −0.161808 0.986822i \(-0.551733\pi\)
−0.161808 + 0.986822i \(0.551733\pi\)
\(252\) 0 0
\(253\) −7.05646 −0.443636
\(254\) 0 0
\(255\) 1.69771 + 3.39414i 0.106315 + 0.212549i
\(256\) 0 0
\(257\) 4.79205 + 8.30008i 0.298920 + 0.517745i 0.975889 0.218267i \(-0.0700403\pi\)
−0.676969 + 0.736011i \(0.736707\pi\)
\(258\) 0 0
\(259\) −1.32538 + 2.29562i −0.0823549 + 0.142643i
\(260\) 0 0
\(261\) −6.77896 + 9.04430i −0.419607 + 0.559828i
\(262\) 0 0
\(263\) −0.399021 + 0.691125i −0.0246047 + 0.0426166i −0.878066 0.478540i \(-0.841166\pi\)
0.853461 + 0.521157i \(0.174499\pi\)
\(264\) 0 0
\(265\) −4.16466 7.21341i −0.255833 0.443116i
\(266\) 0 0
\(267\) −6.21131 0.371881i −0.380126 0.0227588i
\(268\) 0 0
\(269\) −0.399907 −0.0243827 −0.0121914 0.999926i \(-0.503881\pi\)
−0.0121914 + 0.999926i \(0.503881\pi\)
\(270\) 0 0
\(271\) 24.6717 1.49870 0.749349 0.662175i \(-0.230366\pi\)
0.749349 + 0.662175i \(0.230366\pi\)
\(272\) 0 0
\(273\) −1.62148 0.0970804i −0.0981362 0.00587557i
\(274\) 0 0
\(275\) 0.750386 + 1.29971i 0.0452500 + 0.0783752i
\(276\) 0 0
\(277\) 13.6123 23.5773i 0.817886 1.41662i −0.0893511 0.996000i \(-0.528479\pi\)
0.907237 0.420620i \(-0.138187\pi\)
\(278\) 0 0
\(279\) 7.39937 + 17.3079i 0.442989 + 1.03620i
\(280\) 0 0
\(281\) −14.6537 + 25.3809i −0.874164 + 1.51410i −0.0165127 + 0.999864i \(0.505256\pi\)
−0.857651 + 0.514232i \(0.828077\pi\)
\(282\) 0 0
\(283\) −3.66242 6.34350i −0.217708 0.377082i 0.736399 0.676548i \(-0.236525\pi\)
−0.954107 + 0.299466i \(0.903191\pi\)
\(284\) 0 0
\(285\) −9.69652 19.3857i −0.574372 1.14831i
\(286\) 0 0
\(287\) 11.2976 0.666879
\(288\) 0 0
\(289\) −16.2615 −0.956559
\(290\) 0 0
\(291\) −6.20830 + 9.40598i −0.363937 + 0.551388i
\(292\) 0 0
\(293\) −6.18609 10.7146i −0.361395 0.625955i 0.626795 0.779184i \(-0.284366\pi\)
−0.988191 + 0.153229i \(0.951033\pi\)
\(294\) 0 0
\(295\) −15.0114 + 26.0004i −0.873995 + 1.51380i
\(296\) 0 0
\(297\) 3.35936 3.96418i 0.194930 0.230025i
\(298\) 0 0
\(299\) −2.43555 + 4.21849i −0.140851 + 0.243961i
\(300\) 0 0
\(301\) 8.06523 + 13.9694i 0.464872 + 0.805182i
\(302\) 0 0
\(303\) −0.100517 + 0.152290i −0.00577456 + 0.00874883i
\(304\) 0 0
\(305\) −1.16751 −0.0668517
\(306\) 0 0
\(307\) −34.8873 −1.99112 −0.995560 0.0941261i \(-0.969994\pi\)
−0.995560 + 0.0941261i \(0.969994\pi\)
\(308\) 0 0
\(309\) −2.17644 4.35124i −0.123813 0.247533i
\(310\) 0 0
\(311\) 1.23575 + 2.14039i 0.0700732 + 0.121370i 0.898933 0.438086i \(-0.144343\pi\)
−0.828860 + 0.559456i \(0.811010\pi\)
\(312\) 0 0
\(313\) 8.91659 15.4440i 0.503995 0.872946i −0.495994 0.868326i \(-0.665196\pi\)
0.999989 0.00461974i \(-0.00147052\pi\)
\(314\) 0 0
\(315\) −10.3176 1.23990i −0.581330 0.0698607i
\(316\) 0 0
\(317\) 10.3372 17.9045i 0.580593 1.00562i −0.414817 0.909905i \(-0.636154\pi\)
0.995409 0.0957108i \(-0.0305124\pi\)
\(318\) 0 0
\(319\) 1.88380 + 3.26284i 0.105473 + 0.182684i
\(320\) 0 0
\(321\) −21.9160 1.31215i −1.22323 0.0732368i
\(322\) 0 0
\(323\) −4.21795 −0.234693
\(324\) 0 0
\(325\) 1.03599 0.0574661
\(326\) 0 0
\(327\) 20.8451 + 1.24803i 1.15274 + 0.0690161i
\(328\) 0 0
\(329\) 0.842299 + 1.45891i 0.0464375 + 0.0804320i
\(330\) 0 0
\(331\) 8.05947 13.9594i 0.442989 0.767279i −0.554921 0.831903i \(-0.687251\pi\)
0.997910 + 0.0646240i \(0.0205848\pi\)
\(332\) 0 0
\(333\) −5.81152 0.698393i −0.318469 0.0382717i
\(334\) 0 0
\(335\) −9.56025 + 16.5588i −0.522332 + 0.904706i
\(336\) 0 0
\(337\) −15.3982 26.6704i −0.838792 1.45283i −0.890905 0.454189i \(-0.849929\pi\)
0.0521133 0.998641i \(-0.483404\pi\)
\(338\) 0 0
\(339\) 9.78962 + 19.5719i 0.531699 + 1.06300i
\(340\) 0 0
\(341\) 6.27441 0.339778
\(342\) 0 0
\(343\) 16.5126 0.891597
\(344\) 0 0
\(345\) −17.1662 + 26.0079i −0.924197 + 1.40022i
\(346\) 0 0
\(347\) −4.88605 8.46288i −0.262297 0.454311i 0.704555 0.709649i \(-0.251147\pi\)
−0.966852 + 0.255338i \(0.917813\pi\)
\(348\) 0 0
\(349\) −2.09778 + 3.63346i −0.112292 + 0.194495i −0.916694 0.399590i \(-0.869152\pi\)
0.804402 + 0.594085i \(0.202486\pi\)
\(350\) 0 0
\(351\) −1.21038 3.37653i −0.0646051 0.180226i
\(352\) 0 0
\(353\) −10.3802 + 17.9790i −0.552481 + 0.956926i 0.445613 + 0.895225i \(0.352986\pi\)
−0.998095 + 0.0617002i \(0.980348\pi\)
\(354\) 0 0
\(355\) 5.71734 + 9.90272i 0.303445 + 0.525582i
\(356\) 0 0
\(357\) −1.11395 + 1.68771i −0.0589567 + 0.0893232i
\(358\) 0 0
\(359\) −30.3509 −1.60186 −0.800929 0.598760i \(-0.795660\pi\)
−0.800929 + 0.598760i \(0.795660\pi\)
\(360\) 0 0
\(361\) 5.09090 0.267942
\(362\) 0 0
\(363\) −0.774830 1.54908i −0.0406681 0.0813054i
\(364\) 0 0
\(365\) −11.8156 20.4652i −0.618457 1.07120i
\(366\) 0 0
\(367\) 12.1440 21.0340i 0.633912 1.09797i −0.352833 0.935686i \(-0.614782\pi\)
0.986745 0.162281i \(-0.0518851\pi\)
\(368\) 0 0
\(369\) 9.80668 + 22.9388i 0.510516 + 1.19415i
\(370\) 0 0
\(371\) 2.21914 3.84367i 0.115212 0.199553i
\(372\) 0 0
\(373\) 1.78448 + 3.09081i 0.0923970 + 0.160036i 0.908519 0.417843i \(-0.137214\pi\)
−0.816122 + 0.577879i \(0.803880\pi\)
\(374\) 0 0
\(375\) −15.4255 0.923548i −0.796568 0.0476918i
\(376\) 0 0
\(377\) 2.60079 0.133947
\(378\) 0 0
\(379\) 17.1467 0.880765 0.440383 0.897810i \(-0.354843\pi\)
0.440383 + 0.897810i \(0.354843\pi\)
\(380\) 0 0
\(381\) 6.29317 + 0.376782i 0.322409 + 0.0193031i
\(382\) 0 0
\(383\) 14.5284 + 25.1639i 0.742366 + 1.28582i 0.951415 + 0.307911i \(0.0996298\pi\)
−0.209049 + 0.977905i \(0.567037\pi\)
\(384\) 0 0
\(385\) −1.73197 + 2.99986i −0.0882693 + 0.152887i
\(386\) 0 0
\(387\) −21.3627 + 28.5015i −1.08593 + 1.44882i
\(388\) 0 0
\(389\) −14.5949 + 25.2792i −0.739992 + 1.28170i 0.212506 + 0.977160i \(0.431838\pi\)
−0.952498 + 0.304544i \(0.901496\pi\)
\(390\) 0 0
\(391\) 3.03202 + 5.25160i 0.153336 + 0.265585i
\(392\) 0 0
\(393\) 10.9351 + 21.8620i 0.551604 + 1.10279i
\(394\) 0 0
\(395\) 40.8139 2.05357
\(396\) 0 0
\(397\) −25.4582 −1.27771 −0.638856 0.769326i \(-0.720592\pi\)
−0.638856 + 0.769326i \(0.720592\pi\)
\(398\) 0 0
\(399\) 6.36237 9.63941i 0.318517 0.482574i
\(400\) 0 0
\(401\) 11.1474 + 19.3079i 0.556677 + 0.964192i 0.997771 + 0.0667315i \(0.0212571\pi\)
−0.441094 + 0.897461i \(0.645410\pi\)
\(402\) 0 0
\(403\) 2.16562 3.75096i 0.107877 0.186849i
\(404\) 0 0
\(405\) −6.43845 22.0252i −0.319929 1.09444i
\(406\) 0 0
\(407\) −0.975555 + 1.68971i −0.0483565 + 0.0837559i
\(408\) 0 0
\(409\) 1.22274 + 2.11785i 0.0604607 + 0.104721i 0.894671 0.446725i \(-0.147410\pi\)
−0.834211 + 0.551446i \(0.814076\pi\)
\(410\) 0 0
\(411\) 10.1394 15.3619i 0.500142 0.757748i
\(412\) 0 0
\(413\) −15.9976 −0.787191
\(414\) 0 0
\(415\) 22.3505 1.09714
\(416\) 0 0
\(417\) −15.9917 31.9714i −0.783119 1.56565i
\(418\) 0 0
\(419\) −12.3864 21.4539i −0.605115 1.04809i −0.992033 0.125976i \(-0.959794\pi\)
0.386918 0.922114i \(-0.373540\pi\)
\(420\) 0 0
\(421\) −13.1932 + 22.8514i −0.642999 + 1.11371i 0.341761 + 0.939787i \(0.388977\pi\)
−0.984760 + 0.173920i \(0.944357\pi\)
\(422\) 0 0
\(423\) −2.23104 + 2.97659i −0.108477 + 0.144727i
\(424\) 0 0
\(425\) 0.644850 1.11691i 0.0312798 0.0541783i
\(426\) 0 0
\(427\) −0.311055 0.538763i −0.0150530 0.0260726i
\(428\) 0 0
\(429\) −1.19350 0.0714568i −0.0576228 0.00344997i
\(430\) 0 0
\(431\) −22.6717 −1.09206 −0.546029 0.837767i \(-0.683861\pi\)
−0.546029 + 0.837767i \(0.683861\pi\)
\(432\) 0 0
\(433\) −15.9496 −0.766487 −0.383244 0.923647i \(-0.625193\pi\)
−0.383244 + 0.923647i \(0.625193\pi\)
\(434\) 0 0
\(435\) 16.6085 + 0.994381i 0.796319 + 0.0476769i
\(436\) 0 0
\(437\) −17.3174 29.9947i −0.828405 1.43484i
\(438\) 0 0
\(439\) −12.1827 + 21.1010i −0.581446 + 1.00709i 0.413862 + 0.910340i \(0.364180\pi\)
−0.995308 + 0.0967550i \(0.969154\pi\)
\(440\) 0 0
\(441\) 6.07836 + 14.2179i 0.289446 + 0.677044i
\(442\) 0 0
\(443\) 13.7850 23.8763i 0.654945 1.13440i −0.326963 0.945037i \(-0.606025\pi\)
0.981908 0.189360i \(-0.0606414\pi\)
\(444\) 0 0
\(445\) 4.57986 + 7.93255i 0.217106 + 0.376039i
\(446\) 0 0
\(447\) 10.2693 + 20.5308i 0.485720 + 0.971073i
\(448\) 0 0
\(449\) 26.7668 1.26320 0.631601 0.775294i \(-0.282398\pi\)
0.631601 + 0.775294i \(0.282398\pi\)
\(450\) 0 0
\(451\) 8.31573 0.391572
\(452\) 0 0
\(453\) 12.2021 18.4870i 0.573304 0.868593i
\(454\) 0 0
\(455\) 1.19558 + 2.07081i 0.0560497 + 0.0970810i
\(456\) 0 0
\(457\) −1.13342 + 1.96314i −0.0530191 + 0.0918317i −0.891317 0.453381i \(-0.850218\pi\)
0.838298 + 0.545213i \(0.183551\pi\)
\(458\) 0 0
\(459\) −4.39369 0.796798i −0.205080 0.0371914i
\(460\) 0 0
\(461\) −13.7824 + 23.8718i −0.641910 + 1.11182i 0.343095 + 0.939301i \(0.388525\pi\)
−0.985006 + 0.172521i \(0.944809\pi\)
\(462\) 0 0
\(463\) 4.40103 + 7.62280i 0.204533 + 0.354262i 0.949984 0.312299i \(-0.101099\pi\)
−0.745451 + 0.666561i \(0.767766\pi\)
\(464\) 0 0
\(465\) 15.2637 23.1255i 0.707837 1.07242i
\(466\) 0 0
\(467\) −5.49474 −0.254266 −0.127133 0.991886i \(-0.540578\pi\)
−0.127133 + 0.991886i \(0.540578\pi\)
\(468\) 0 0
\(469\) −10.1884 −0.470455
\(470\) 0 0
\(471\) −10.8752 21.7422i −0.501104 1.00183i
\(472\) 0 0
\(473\) 5.93648 + 10.2823i 0.272960 + 0.472780i
\(474\) 0 0
\(475\) −3.68308 + 6.37928i −0.168991 + 0.292701i
\(476\) 0 0
\(477\) 9.73050 + 1.16935i 0.445529 + 0.0535410i
\(478\) 0 0
\(479\) 12.1971 21.1260i 0.557300 0.965272i −0.440421 0.897791i \(-0.645171\pi\)
0.997721 0.0674801i \(-0.0214959\pi\)
\(480\) 0 0
\(481\) 0.673428 + 1.16641i 0.0307057 + 0.0531838i
\(482\) 0 0
\(483\) −16.5752 0.992382i −0.754197 0.0451550i
\(484\) 0 0
\(485\) 16.5901 0.753319
\(486\) 0 0
\(487\) −18.0936 −0.819900 −0.409950 0.912108i \(-0.634454\pi\)
−0.409950 + 0.912108i \(0.634454\pi\)
\(488\) 0 0
\(489\) 2.44802 + 0.146567i 0.110703 + 0.00662798i
\(490\) 0 0
\(491\) −16.1990 28.0575i −0.731050 1.26622i −0.956435 0.291946i \(-0.905697\pi\)
0.225384 0.974270i \(-0.427636\pi\)
\(492\) 0 0
\(493\) 1.61886 2.80395i 0.0729099 0.126284i
\(494\) 0 0
\(495\) −7.59434 0.912642i −0.341340 0.0410202i
\(496\) 0 0
\(497\) −3.04648 + 5.27667i −0.136654 + 0.236691i
\(498\) 0 0
\(499\) 6.42667 + 11.1313i 0.287697 + 0.498306i 0.973260 0.229708i \(-0.0737770\pi\)
−0.685563 + 0.728014i \(0.740444\pi\)
\(500\) 0 0
\(501\) −10.6011 21.1943i −0.473624 0.946891i
\(502\) 0 0
\(503\) −33.4453 −1.49125 −0.745627 0.666364i \(-0.767850\pi\)
−0.745627 + 0.666364i \(0.767850\pi\)
\(504\) 0 0
\(505\) 0.268607 0.0119529
\(506\) 0 0
\(507\) 11.9490 18.1035i 0.530672 0.804003i
\(508\) 0 0
\(509\) 18.9789 + 32.8724i 0.841226 + 1.45705i 0.888859 + 0.458181i \(0.151499\pi\)
−0.0476334 + 0.998865i \(0.515168\pi\)
\(510\) 0 0
\(511\) 6.29595 10.9049i 0.278517 0.482405i
\(512\) 0 0
\(513\) 25.0947 + 4.55093i 1.10796 + 0.200929i
\(514\) 0 0
\(515\) −3.58091 + 6.20231i −0.157794 + 0.273306i
\(516\) 0 0
\(517\) 0.619982 + 1.07384i 0.0272668 + 0.0472274i
\(518\) 0 0
\(519\) −4.84438 + 7.33955i −0.212645 + 0.322171i
\(520\) 0 0
\(521\) −23.6337 −1.03541 −0.517705 0.855559i \(-0.673214\pi\)
−0.517705 + 0.855559i \(0.673214\pi\)
\(522\) 0 0
\(523\) −43.8130 −1.91581 −0.957905 0.287085i \(-0.907314\pi\)
−0.957905 + 0.287085i \(0.907314\pi\)
\(524\) 0 0
\(525\) 1.57982 + 3.15846i 0.0689492 + 0.137846i
\(526\) 0 0
\(527\) −2.69598 4.66958i −0.117439 0.203410i
\(528\) 0 0
\(529\) −13.3968 + 23.2040i −0.582470 + 1.00887i
\(530\) 0 0
\(531\) −13.8864 32.4817i −0.602618 1.40959i
\(532\) 0 0
\(533\) 2.87018 4.97130i 0.124321 0.215331i
\(534\) 0 0
\(535\) 16.1596 + 27.9892i 0.698639 + 1.21008i
\(536\) 0 0
\(537\) 33.7656 + 2.02160i 1.45709 + 0.0872386i
\(538\) 0 0
\(539\) 5.15424 0.222009
\(540\) 0 0
\(541\) 32.9434 1.41635 0.708173 0.706039i \(-0.249519\pi\)
0.708173 + 0.706039i \(0.249519\pi\)
\(542\) 0 0
\(543\) −5.55059 0.332323i −0.238199 0.0142613i
\(544\) 0 0
\(545\) −15.3699 26.6215i −0.658376 1.14034i
\(546\) 0 0
\(547\) −5.44312 + 9.42775i −0.232731 + 0.403102i −0.958611 0.284720i \(-0.908099\pi\)
0.725880 + 0.687821i \(0.241433\pi\)
\(548\) 0 0
\(549\) 0.823905 1.09923i 0.0351634 0.0469141i
\(550\) 0 0
\(551\) −9.24618 + 16.0148i −0.393900 + 0.682255i
\(552\) 0 0
\(553\) 10.8738 + 18.8340i 0.462403 + 0.800905i
\(554\) 0 0
\(555\) 3.85453 + 7.70614i 0.163616 + 0.327108i
\(556\) 0 0
\(557\) −13.3964 −0.567625 −0.283813 0.958880i \(-0.591599\pi\)
−0.283813 + 0.958880i \(0.591599\pi\)
\(558\) 0 0
\(559\) 8.19593 0.346651
\(560\) 0 0
\(561\) −0.819935 + 1.24226i −0.0346177 + 0.0524481i
\(562\) 0 0
\(563\) 4.48579 + 7.76962i 0.189054 + 0.327450i 0.944935 0.327258i \(-0.106125\pi\)
−0.755881 + 0.654709i \(0.772791\pi\)
\(564\) 0 0
\(565\) 16.1069 27.8980i 0.677622 1.17368i
\(566\) 0 0
\(567\) 8.44842 8.83916i 0.354800 0.371210i
\(568\) 0 0
\(569\) 17.8669 30.9464i 0.749021 1.29734i −0.199272 0.979944i \(-0.563858\pi\)
0.948293 0.317398i \(-0.102809\pi\)
\(570\) 0 0
\(571\) −7.33052 12.6968i −0.306773 0.531346i 0.670882 0.741564i \(-0.265916\pi\)
−0.977654 + 0.210218i \(0.932582\pi\)
\(572\) 0 0
\(573\) 8.04279 12.1853i 0.335992 0.509050i
\(574\) 0 0
\(575\) 10.5901 0.441639
\(576\) 0 0
\(577\) 2.04772 0.0852476 0.0426238 0.999091i \(-0.486428\pi\)
0.0426238 + 0.999091i \(0.486428\pi\)
\(578\) 0 0
\(579\) 14.1766 + 28.3426i 0.589161 + 1.17788i
\(580\) 0 0
\(581\) 5.95473 + 10.3139i 0.247044 + 0.427893i
\(582\) 0 0
\(583\) 1.63342 2.82916i 0.0676493 0.117172i
\(584\) 0 0
\(585\) −3.16679 + 4.22504i −0.130931 + 0.174684i
\(586\) 0 0
\(587\) 17.0254 29.4888i 0.702713 1.21713i −0.264798 0.964304i \(-0.585305\pi\)
0.967511 0.252830i \(-0.0813613\pi\)
\(588\) 0 0
\(589\) 15.3982 + 26.6704i 0.634471 + 1.09894i
\(590\) 0 0
\(591\) 37.8900 + 2.26853i 1.55859 + 0.0933151i
\(592\) 0 0
\(593\) 0.780511 0.0320518 0.0160259 0.999872i \(-0.494899\pi\)
0.0160259 + 0.999872i \(0.494899\pi\)
\(594\) 0 0
\(595\) 2.97677 0.122035
\(596\) 0 0
\(597\) −6.72381 0.402565i −0.275187 0.0164759i
\(598\) 0 0
\(599\) 7.08712 + 12.2752i 0.289572 + 0.501553i 0.973708 0.227802i \(-0.0731538\pi\)
−0.684136 + 0.729355i \(0.739820\pi\)
\(600\) 0 0
\(601\) 6.43346 11.1431i 0.262426 0.454536i −0.704460 0.709744i \(-0.748811\pi\)
0.966886 + 0.255208i \(0.0821439\pi\)
\(602\) 0 0
\(603\) −8.84379 20.6865i −0.360147 0.842421i
\(604\) 0 0
\(605\) −1.27483 + 2.20807i −0.0518292 + 0.0897709i
\(606\) 0 0
\(607\) −5.32295 9.21962i −0.216052 0.374213i 0.737546 0.675297i \(-0.235985\pi\)
−0.953597 + 0.301085i \(0.902651\pi\)
\(608\) 0 0
\(609\) 3.96607 + 7.92914i 0.160713 + 0.321305i
\(610\) 0 0
\(611\) 0.855949 0.0346280
\(612\) 0 0
\(613\) −15.9360 −0.643648 −0.321824 0.946800i \(-0.604296\pi\)
−0.321824 + 0.946800i \(0.604296\pi\)
\(614\) 0 0
\(615\) 20.2296 30.6492i 0.815737 1.23589i
\(616\) 0 0
\(617\) 5.43629 + 9.41594i 0.218857 + 0.379071i 0.954459 0.298343i \(-0.0964339\pi\)
−0.735602 + 0.677414i \(0.763101\pi\)
\(618\) 0 0
\(619\) −11.7006 + 20.2661i −0.470289 + 0.814564i −0.999423 0.0339743i \(-0.989184\pi\)
0.529134 + 0.848538i \(0.322517\pi\)
\(620\) 0 0
\(621\) −12.3728 34.5158i −0.496503 1.38507i
\(622\) 0 0
\(623\) −2.44038 + 4.22686i −0.0977717 + 0.169346i
\(624\) 0 0
\(625\) 15.1258 + 26.1986i 0.605031 + 1.04794i
\(626\) 0 0
\(627\) 4.68308 7.09517i 0.187024 0.283354i
\(628\) 0 0
\(629\) 1.67670 0.0668546
\(630\) 0 0
\(631\) 41.6204 1.65688 0.828441 0.560076i \(-0.189228\pi\)
0.828441 + 0.560076i \(0.189228\pi\)
\(632\) 0 0
\(633\) −17.6860 35.3586i −0.702955 1.40538i
\(634\) 0 0
\(635\) −4.64022 8.03709i −0.184141 0.318942i
\(636\) 0 0
\(637\) 1.77899 3.08130i 0.0704862 0.122086i
\(638\) 0 0
\(639\) −13.3582 1.60531i −0.528444 0.0635052i
\(640\) 0 0
\(641\) 4.85600 8.41083i 0.191800 0.332208i −0.754047 0.656821i \(-0.771901\pi\)
0.945847 + 0.324613i \(0.105234\pi\)
\(642\) 0 0
\(643\) −9.03279 15.6452i −0.356218 0.616988i 0.631107 0.775695i \(-0.282601\pi\)
−0.987326 + 0.158707i \(0.949267\pi\)
\(644\) 0 0
\(645\) 52.3389 + 3.13362i 2.06084 + 0.123386i
\(646\) 0 0
\(647\) −43.2031 −1.69849 −0.849245 0.527999i \(-0.822943\pi\)
−0.849245 + 0.527999i \(0.822943\pi\)
\(648\) 0 0
\(649\) −11.7752 −0.462216
\(650\) 0 0
\(651\) 14.7382 + 0.882399i 0.577635 + 0.0345839i
\(652\) 0 0
\(653\) −24.5125 42.4569i −0.959247 1.66146i −0.724335 0.689448i \(-0.757853\pi\)
−0.234912 0.972017i \(-0.575480\pi\)
\(654\) 0 0
\(655\) 17.9916 31.1623i 0.702989 1.21761i
\(656\) 0 0
\(657\) 27.6065 + 3.31758i 1.07703 + 0.129431i
\(658\) 0 0
\(659\) 2.25239 3.90125i 0.0877406 0.151971i −0.818815 0.574057i \(-0.805369\pi\)
0.906556 + 0.422086i \(0.138702\pi\)
\(660\) 0 0
\(661\) 16.5238 + 28.6201i 0.642703 + 1.11319i 0.984827 + 0.173539i \(0.0555203\pi\)
−0.342124 + 0.939655i \(0.611146\pi\)
\(662\) 0 0
\(663\) 0.459643 + 0.918939i 0.0178510 + 0.0356886i
\(664\) 0 0
\(665\) −17.0019 −0.659304
\(666\) 0 0
\(667\) 26.5860 1.02941
\(668\) 0 0
\(669\) −15.6764 + 23.7508i −0.606086 + 0.918261i
\(670\) 0 0
\(671\) −0.228955 0.396561i −0.00883870 0.0153091i
\(672\) 0 0
\(673\) 15.7869 27.3437i 0.608540 1.05402i −0.382942 0.923773i \(-0.625089\pi\)
0.991481 0.130249i \(-0.0415777\pi\)
\(674\) 0 0
\(675\) −5.04163 + 5.94932i −0.194052 + 0.228990i
\(676\) 0 0
\(677\) 10.2710 17.7898i 0.394745 0.683719i −0.598323 0.801255i \(-0.704166\pi\)
0.993069 + 0.117536i \(0.0374995\pi\)
\(678\) 0 0
\(679\) 4.42003 + 7.65571i 0.169625 + 0.293799i
\(680\) 0 0
\(681\) 8.03047 12.1667i 0.307728 0.466229i
\(682\) 0 0
\(683\) 13.0151 0.498011 0.249005 0.968502i \(-0.419896\pi\)
0.249005 + 0.968502i \(0.419896\pi\)
\(684\) 0 0
\(685\) −27.0952 −1.03525
\(686\) 0 0
\(687\) −20.7580 41.5003i −0.791965 1.58333i
\(688\) 0 0
\(689\) −1.12755 1.95298i −0.0429563 0.0744025i
\(690\) 0 0
\(691\) −4.96892 + 8.60642i −0.189027 + 0.327404i −0.944926 0.327284i \(-0.893867\pi\)
0.755899 + 0.654688i \(0.227200\pi\)
\(692\) 0 0
\(693\) −1.60217 3.74765i −0.0608616 0.142361i
\(694\) 0 0
\(695\) −26.3113 + 45.5724i −0.998043 + 1.72866i
\(696\) 0 0
\(697\) −3.57310 6.18878i −0.135341 0.234417i
\(698\) 0 0
\(699\) 8.36291 + 0.500701i 0.316314 + 0.0189382i
\(700\) 0 0
\(701\) −44.4418 −1.67854 −0.839271 0.543713i \(-0.817018\pi\)
−0.839271 + 0.543713i \(0.817018\pi\)
\(702\) 0 0
\(703\) −9.57653 −0.361186
\(704\) 0 0
\(705\) 5.46607 + 0.327262i 0.205864 + 0.0123254i
\(706\) 0 0
\(707\) 0.0715637 + 0.123952i 0.00269143 + 0.00466169i
\(708\) 0 0
\(709\) 14.9579 25.9079i 0.561756 0.972990i −0.435587 0.900146i \(-0.643459\pi\)
0.997343 0.0728436i \(-0.0232074\pi\)
\(710\) 0 0
\(711\) −28.8020 + 38.4269i −1.08016 + 1.44112i
\(712\) 0 0
\(713\) 22.1376 38.3434i 0.829058 1.43597i
\(714\) 0 0
\(715\) 0.880018 + 1.52424i 0.0329108 + 0.0570032i
\(716\) 0 0
\(717\) 11.1243 + 22.2402i 0.415444 + 0.830574i
\(718\) 0 0
\(719\) −20.4897 −0.764138 −0.382069 0.924134i \(-0.624788\pi\)
−0.382069 + 0.924134i \(0.624788\pi\)
\(720\) 0 0
\(721\) −3.81617 −0.142122
\(722\) 0 0
\(723\) −16.9131 + 25.6244i −0.629004 + 0.952983i
\(724\) 0 0
\(725\) −2.82716 4.89678i −0.104998 0.181862i
\(726\) 0 0
\(727\) −3.18367 + 5.51427i −0.118076 + 0.204513i −0.919005 0.394246i \(-0.871006\pi\)
0.800929 + 0.598759i \(0.204339\pi\)
\(728\) 0 0
\(729\) 25.2806 + 9.48111i 0.936318 + 0.351152i
\(730\) 0 0
\(731\) 5.10156 8.83617i 0.188688 0.326818i
\(732\) 0 0
\(733\) 11.1541 + 19.3194i 0.411985 + 0.713579i 0.995107 0.0988056i \(-0.0315022\pi\)
−0.583122 + 0.812385i \(0.698169\pi\)
\(734\) 0 0
\(735\) 12.5387 18.9969i 0.462496 0.700712i
\(736\) 0 0
\(737\) −7.49923 −0.276238
\(738\) 0 0
\(739\) 6.27749 0.230921 0.115461 0.993312i \(-0.463166\pi\)
0.115461 + 0.993312i \(0.463166\pi\)
\(740\) 0 0
\(741\) −2.62526 5.24854i −0.0964414 0.192810i
\(742\) 0 0
\(743\) −3.34499 5.79369i −0.122716 0.212550i 0.798122 0.602496i \(-0.205827\pi\)
−0.920838 + 0.389946i \(0.872494\pi\)
\(744\) 0 0
\(745\) 16.8960 29.2648i 0.619023 1.07218i
\(746\) 0 0
\(747\) −15.7726 + 21.0433i −0.577088 + 0.769935i
\(748\) 0 0
\(749\) −8.61063 + 14.9140i −0.314626 + 0.544947i
\(750\) 0 0
\(751\) 11.6552 + 20.1874i 0.425304 + 0.736648i 0.996449 0.0842010i \(-0.0268338\pi\)
−0.571145 + 0.820849i \(0.693500\pi\)
\(752\) 0 0
\(753\) −8.86442 0.530727i −0.323038 0.0193408i
\(754\) 0 0
\(755\) −32.6070 −1.18669
\(756\) 0 0
\(757\) −47.9217 −1.74174 −0.870872 0.491510i \(-0.836445\pi\)
−0.870872 + 0.491510i \(0.836445\pi\)
\(758\) 0 0
\(759\) −12.2003 0.730452i −0.442843 0.0265137i
\(760\) 0 0
\(761\) −3.19587 5.53541i −0.115850 0.200658i 0.802269 0.596963i \(-0.203626\pi\)
−0.918119 + 0.396304i \(0.870293\pi\)
\(762\) 0 0
\(763\) 8.18988 14.1853i 0.296494 0.513542i
\(764\) 0 0
\(765\) 2.58392 + 6.04405i 0.0934218 + 0.218523i
\(766\) 0 0
\(767\) −4.06422 + 7.03943i −0.146750 + 0.254179i
\(768\) 0 0
\(769\) 21.8854 + 37.9066i 0.789207 + 1.36695i 0.926453 + 0.376410i \(0.122842\pi\)
−0.137246 + 0.990537i \(0.543825\pi\)
\(770\) 0 0
\(771\) 7.42606 + 14.8465i 0.267443 + 0.534684i
\(772\) 0 0
\(773\) 47.3107 1.70165 0.850824 0.525451i \(-0.176103\pi\)
0.850824 + 0.525451i \(0.176103\pi\)
\(774\) 0 0
\(775\) −9.41645 −0.338249
\(776\) 0 0
\(777\) −2.52915 + 3.83183i −0.0907327 + 0.137466i
\(778\) 0 0
\(779\) 20.4078 + 35.3474i 0.731186 + 1.26645i
\(780\) 0 0
\(781\) −2.24239 + 3.88394i −0.0802391 + 0.138978i
\(782\) 0 0
\(783\) −12.6567 + 14.9355i −0.452315 + 0.533750i
\(784\) 0 0
\(785\) −17.8930 + 30.9916i −0.638630 + 1.10614i
\(786\) 0 0
\(787\) −18.9833 32.8800i −0.676681 1.17205i −0.975974 0.217885i \(-0.930084\pi\)
0.299293 0.954161i \(-0.403249\pi\)
\(788\) 0 0
\(789\) −0.761432 + 1.15362i −0.0271077 + 0.0410699i
\(790\) 0 0
\(791\) 17.1651 0.610322
\(792\) 0 0
\(793\) −0.316096 −0.0112249
\(794\) 0 0
\(795\) −6.45381 12.9028i −0.228893 0.457614i
\(796\) 0 0
\(797\) −12.0126 20.8064i −0.425508 0.737001i 0.570960 0.820978i \(-0.306571\pi\)
−0.996468 + 0.0839769i \(0.973238\pi\)
\(798\) 0 0
\(799\) 0.532787 0.922814i 0.0188486 0.0326468i
\(800\) 0 0
\(801\) −10.7006 1.28593i −0.378086 0.0454361i
\(802\) 0 0
\(803\) 4.63419 8.02665i 0.163537 0.283254i
\(804\) 0 0
\(805\) 12.2216 + 21.1684i 0.430754 + 0.746087i
\(806\) 0 0
\(807\) −0.691421 0.0413965i −0.0243392 0.00145722i
\(808\) 0 0
\(809\) −10.0802 −0.354403 −0.177201 0.984175i \(-0.556704\pi\)
−0.177201 + 0.984175i \(0.556704\pi\)
\(810\) 0 0
\(811\) −33.8289 −1.18789 −0.593946 0.804505i \(-0.702431\pi\)
−0.593946 + 0.804505i \(0.702431\pi\)
\(812\) 0 0
\(813\) 42.6562 + 2.55390i 1.49602 + 0.0895691i
\(814\) 0 0
\(815\) −1.80503 3.12640i −0.0632273 0.109513i
\(816\) 0 0
\(817\) −29.1377 + 50.4680i −1.01940 + 1.76565i
\(818\) 0 0
\(819\) −2.79341 0.335695i −0.0976096 0.0117301i
\(820\) 0 0
\(821\) −22.5989 + 39.1424i −0.788707 + 1.36608i 0.138052 + 0.990425i \(0.455916\pi\)
−0.926759 + 0.375656i \(0.877418\pi\)
\(822\) 0 0
\(823\) 1.54422 + 2.67467i 0.0538281 + 0.0932330i 0.891684 0.452659i \(-0.149524\pi\)
−0.837856 + 0.545892i \(0.816191\pi\)
\(824\) 0 0
\(825\) 1.16284 + 2.32481i 0.0404850 + 0.0809395i
\(826\) 0 0
\(827\) 40.9992 1.42568 0.712840 0.701327i \(-0.247409\pi\)
0.712840 + 0.701327i \(0.247409\pi\)
\(828\) 0 0
\(829\) −21.7836 −0.756576 −0.378288 0.925688i \(-0.623487\pi\)
−0.378288 + 0.925688i \(0.623487\pi\)
\(830\) 0 0
\(831\) 25.9757 39.3549i 0.901088 1.36521i
\(832\) 0 0
\(833\) −2.21467 3.83592i −0.0767338 0.132907i
\(834\) 0 0
\(835\) −17.4421 + 30.2106i −0.603608 + 1.04548i
\(836\) 0 0
\(837\) 11.0015 + 30.6905i 0.380269 + 1.06082i
\(838\) 0 0
\(839\) −19.5026 + 33.7795i −0.673304 + 1.16620i 0.303657 + 0.952781i \(0.401792\pi\)
−0.976961 + 0.213416i \(0.931541\pi\)
\(840\) 0 0
\(841\) 7.40257 + 12.8216i 0.255261 + 0.442125i
\(842\) 0 0
\(843\) −27.9628 + 42.3655i −0.963090 + 1.45915i
\(844\) 0 0
\(845\) −31.9306 −1.09845
\(846\) 0 0
\(847\) −1.35859 −0.0466816
\(848\) 0 0
\(849\) −5.67551 11.3467i −0.194783 0.389419i
\(850\) 0 0
\(851\) 6.88397 + 11.9234i 0.235979 + 0.408728i
\(852\) 0 0
\(853\) −9.20243 + 15.9391i −0.315085 + 0.545744i −0.979456 0.201660i \(-0.935366\pi\)
0.664370 + 0.747403i \(0.268700\pi\)
\(854\) 0 0
\(855\) −14.7581 34.5208i −0.504717 1.18059i
\(856\) 0 0
\(857\) 15.1658 26.2679i 0.518053 0.897294i −0.481727 0.876321i \(-0.659990\pi\)
0.999780 0.0209730i \(-0.00667641\pi\)
\(858\) 0 0
\(859\) 13.9186 + 24.1078i 0.474898 + 0.822548i 0.999587 0.0287465i \(-0.00915156\pi\)
−0.524689 + 0.851294i \(0.675818\pi\)
\(860\) 0 0
\(861\) 19.5331 + 1.16948i 0.665687 + 0.0398557i
\(862\) 0 0
\(863\) −22.4455 −0.764053 −0.382027 0.924151i \(-0.624774\pi\)
−0.382027 + 0.924151i \(0.624774\pi\)
\(864\) 0 0
\(865\) 12.9454 0.440157
\(866\) 0 0
\(867\) −28.1154 1.68331i −0.954849 0.0571684i
\(868\) 0 0
\(869\) 8.00379 + 13.8630i 0.271510 + 0.470269i
\(870\) 0 0
\(871\) −2.58837 + 4.48318i −0.0877035 + 0.151907i
\(872\) 0 0
\(873\) −11.7075 + 15.6199i −0.396240 + 0.528652i
\(874\) 0 0
\(875\) −6.06056 + 10.4972i −0.204884 + 0.354870i
\(876\) 0 0
\(877\) −1.88172 3.25924i −0.0635413 0.110057i 0.832505 0.554018i \(-0.186906\pi\)
−0.896046 + 0.443961i \(0.853573\pi\)
\(878\) 0 0
\(879\) −9.58635 19.1655i −0.323339 0.646435i
\(880\) 0 0
\(881\) 7.42795 0.250254 0.125127 0.992141i \(-0.460066\pi\)
0.125127 + 0.992141i \(0.460066\pi\)
\(882\) 0 0
\(883\) −28.6823 −0.965235 −0.482617 0.875831i \(-0.660314\pi\)
−0.482617 + 0.875831i \(0.660314\pi\)
\(884\) 0 0
\(885\) −28.6454 + 43.3997i −0.962905 + 1.45886i
\(886\) 0 0
\(887\) 20.4698 + 35.4547i 0.687309 + 1.19045i 0.972705 + 0.232044i \(0.0745414\pi\)
−0.285397 + 0.958410i \(0.592125\pi\)
\(888\) 0 0
\(889\) 2.47254 4.28257i 0.0829264 0.143633i
\(890\) 0 0
\(891\) 6.21853 6.50614i 0.208329 0.217964i
\(892\) 0 0
\(893\) −3.04302 + 5.27067i −0.101831 + 0.176376i
\(894\) 0 0
\(895\) −24.8968 43.1226i −0.832209 1.44143i
\(896\) 0 0
\(897\) −4.64763 + 7.04146i −0.155180 + 0.235107i
\(898\) 0 0
\(899\) −23.6395 −0.788421
\(900\) 0 0
\(901\) −2.80738 −0.0935275
\(902\) 0 0
\(903\) 12.4984 + 24.9873i 0.415920 + 0.831525i
\(904\) 0 0
\(905\) 4.09268 + 7.08874i 0.136045 + 0.235638i
\(906\) 0 0
\(907\) 6.67100 11.5545i 0.221507 0.383661i −0.733759 0.679410i \(-0.762236\pi\)
0.955266 + 0.295749i \(0.0955691\pi\)
\(908\) 0 0
\(909\) −0.189554 + 0.252898i −0.00628711 + 0.00838808i
\(910\) 0 0
\(911\) 7.31839 12.6758i 0.242469 0.419969i −0.718948 0.695064i \(-0.755376\pi\)
0.961417 + 0.275095i \(0.0887093\pi\)
\(912\) 0 0
\(913\) 4.38303 + 7.59163i 0.145057 + 0.251246i
\(914\) 0 0
\(915\) −2.01858 0.120856i −0.0667322 0.00399536i
\(916\) 0 0
\(917\) 19.1736 0.633169
\(918\) 0 0
\(919\) −0.644127 −0.0212478 −0.0106239 0.999944i \(-0.503382\pi\)
−0.0106239 + 0.999944i \(0.503382\pi\)
\(920\) 0 0
\(921\) −60.3185 3.61136i −1.98756 0.118999i
\(922\) 0 0
\(923\) 1.54793 + 2.68109i 0.0509507 + 0.0882491i
\(924\) 0 0
\(925\) 1.46409 2.53587i 0.0481388 0.0833789i
\(926\) 0 0
\(927\) −3.31255 7.74840i −0.108798 0.254491i
\(928\) 0 0
\(929\) 11.3106 19.5906i 0.371090 0.642746i −0.618644 0.785672i \(-0.712318\pi\)
0.989733 + 0.142925i \(0.0456509\pi\)
\(930\) 0 0
\(931\) 12.6491 + 21.9090i 0.414559 + 0.718037i
\(932\) 0 0
\(933\) 1.91500 + 3.82855i 0.0626943 + 0.125341i
\(934\) 0 0
\(935\) 2.19107 0.0716558
\(936\) 0 0
\(937\) −15.5459 −0.507861 −0.253931 0.967222i \(-0.581724\pi\)
−0.253931 + 0.967222i \(0.581724\pi\)
\(938\) 0 0
\(939\) 17.0151 25.7790i 0.555266 0.841264i
\(940\) 0 0
\(941\) −19.7753 34.2519i −0.644658 1.11658i −0.984380 0.176054i \(-0.943667\pi\)
0.339723 0.940526i \(-0.389667\pi\)
\(942\) 0 0
\(943\) 29.3398 50.8180i 0.955435 1.65486i
\(944\) 0 0
\(945\) −17.7103 3.21177i −0.576115 0.104479i
\(946\) 0 0
\(947\) 16.5253 28.6227i 0.537000 0.930112i −0.462063 0.886847i \(-0.652891\pi\)
0.999064 0.0432647i \(-0.0137759\pi\)
\(948\) 0 0
\(949\) −3.19899 5.54082i −0.103844 0.179862i
\(950\) 0 0
\(951\) 19.7259 29.8860i 0.639655 0.969119i
\(952\) 0 0
\(953\) 43.0708 1.39520 0.697599 0.716488i \(-0.254252\pi\)
0.697599 + 0.716488i \(0.254252\pi\)
\(954\) 0 0
\(955\) −21.4924 −0.695476
\(956\) 0 0
\(957\) 2.91926 + 5.83631i 0.0943662 + 0.188661i
\(958\) 0 0
\(959\) −7.21883 12.5034i −0.233108 0.403755i
\(960\) 0 0
\(961\) −4.18409 + 7.24705i −0.134971 + 0.233776i
\(962\) 0 0
\(963\) −37.7559 4.53728i −1.21667 0.146212i
\(964\) 0 0
\(965\) 23.3248 40.3998i 0.750853 1.30052i
\(966\) 0 0
\(967\) −18.7115 32.4093i −0.601721 1.04221i −0.992560 0.121753i \(-0.961149\pi\)
0.390839 0.920459i \(-0.372185\pi\)
\(968\) 0 0
\(969\) −7.29264 0.436622i −0.234273 0.0140263i
\(970\) 0 0
\(971\) 19.0324 0.610780 0.305390 0.952227i \(-0.401213\pi\)
0.305390 + 0.952227i \(0.401213\pi\)
\(972\) 0 0
\(973\) −28.0399 −0.898919
\(974\) 0 0
\(975\) 1.79117 + 0.107240i 0.0573634 + 0.00343444i
\(976\) 0 0
\(977\) 6.45490 + 11.1802i 0.206510 + 0.357687i 0.950613 0.310379i \(-0.100456\pi\)
−0.744103 + 0.668065i \(0.767123\pi\)
\(978\) 0 0
\(979\) −1.79626 + 3.11122i −0.0574088 + 0.0994349i
\(980\) 0 0
\(981\) 35.9110 + 4.31557i 1.14655 + 0.137785i
\(982\) 0 0
\(983\) −13.3637 + 23.1467i −0.426237 + 0.738264i −0.996535 0.0831739i \(-0.973494\pi\)
0.570298 + 0.821438i \(0.306828\pi\)
\(984\) 0 0
\(985\) −27.9379 48.3898i −0.890175 1.54183i
\(986\) 0 0
\(987\) 1.30528 + 2.60957i 0.0415475 + 0.0830636i
\(988\) 0 0
\(989\) 83.7811 2.66408
\(990\) 0 0
\(991\) 42.3863 1.34644 0.673222 0.739441i \(-0.264910\pi\)
0.673222 + 0.739441i \(0.264910\pi\)
\(992\) 0 0
\(993\) 15.3795 23.3009i 0.488053 0.739433i
\(994\) 0 0
\(995\) 4.95775 + 8.58707i 0.157171 + 0.272228i
\(996\) 0 0
\(997\) 0.629333 1.09004i 0.0199312 0.0345218i −0.855888 0.517162i \(-0.826989\pi\)
0.875819 + 0.482640i \(0.160322\pi\)
\(998\) 0 0
\(999\) −9.97556 1.80907i −0.315613 0.0572365i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.2.i.e.133.4 8
3.2 odd 2 1188.2.i.e.397.3 8
9.2 odd 6 3564.2.a.m.1.2 4
9.4 even 3 inner 396.2.i.e.265.4 yes 8
9.5 odd 6 1188.2.i.e.793.3 8
9.7 even 3 3564.2.a.n.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
396.2.i.e.133.4 8 1.1 even 1 trivial
396.2.i.e.265.4 yes 8 9.4 even 3 inner
1188.2.i.e.397.3 8 3.2 odd 2
1188.2.i.e.793.3 8 9.5 odd 6
3564.2.a.m.1.2 4 9.2 odd 6
3564.2.a.n.1.3 4 9.7 even 3