Properties

Label 396.2.j.d.181.2
Level $396$
Weight $2$
Character 396.181
Analytic conductor $3.162$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [396,2,Mod(37,396)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(396, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("396.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 396.j (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.16207592004\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.484000000.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + 16x^{4} - 66x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 181.2
Root \(1.26313 + 1.73855i\) of defining polynomial
Character \(\chi\) \(=\) 396.181
Dual form 396.2.j.d.361.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.780656 - 2.40261i) q^{5} +(-0.809017 + 0.587785i) q^{7} +(2.82444 - 1.73855i) q^{11} +(-0.0729490 - 0.224514i) q^{13} +(2.04378 - 6.29012i) q^{17} +(-3.11803 - 2.26538i) q^{19} -0.964944 q^{23} +(-1.11803 - 0.812299i) q^{25} +(2.52626 - 1.83543i) q^{29} +(2.11803 + 6.51864i) q^{31} +(0.780656 + 2.40261i) q^{35} +(5.42705 - 3.94298i) q^{37} +(-7.39448 - 5.37240i) q^{41} +3.00000 q^{43} +(7.87695 + 5.72294i) q^{47} +(-1.85410 + 5.70634i) q^{49} +(0.482472 + 1.48490i) q^{53} +(-1.97214 - 8.14324i) q^{55} +(-8.65761 + 6.29012i) q^{59} +(0.281153 - 0.865300i) q^{61} -0.596368 q^{65} +4.32624 q^{67} +(-3.30691 + 10.1776i) q^{71} +(-11.7082 + 8.50651i) q^{73} +(-1.26313 + 3.06668i) q^{77} +(-0.218847 - 0.673542i) q^{79} +(-1.85950 + 5.72294i) q^{83} +(-13.5172 - 9.82084i) q^{85} -7.21019 q^{89} +(0.190983 + 0.138757i) q^{91} +(-7.87695 + 5.72294i) q^{95} +(3.57295 + 10.9964i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{7} - 14 q^{13} - 16 q^{19} + 8 q^{31} + 30 q^{37} + 24 q^{43} + 12 q^{49} + 20 q^{55} - 38 q^{61} - 28 q^{67} - 40 q^{73} - 42 q^{79} - 50 q^{85} + 6 q^{91} + 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.780656 2.40261i 0.349120 1.07448i −0.610221 0.792231i \(-0.708919\pi\)
0.959341 0.282249i \(-0.0910806\pi\)
\(6\) 0 0
\(7\) −0.809017 + 0.587785i −0.305780 + 0.222162i −0.730084 0.683358i \(-0.760519\pi\)
0.424304 + 0.905520i \(0.360519\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.82444 1.73855i 0.851600 0.524191i
\(12\) 0 0
\(13\) −0.0729490 0.224514i −0.0202324 0.0622690i 0.940431 0.339986i \(-0.110422\pi\)
−0.960663 + 0.277717i \(0.910422\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.04378 6.29012i 0.495690 1.52558i −0.320188 0.947354i \(-0.603746\pi\)
0.815878 0.578224i \(-0.196254\pi\)
\(18\) 0 0
\(19\) −3.11803 2.26538i −0.715326 0.519715i 0.169561 0.985520i \(-0.445765\pi\)
−0.884887 + 0.465805i \(0.845765\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.964944 −0.201205 −0.100602 0.994927i \(-0.532077\pi\)
−0.100602 + 0.994927i \(0.532077\pi\)
\(24\) 0 0
\(25\) −1.11803 0.812299i −0.223607 0.162460i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.52626 1.83543i 0.469114 0.340831i −0.327982 0.944684i \(-0.606369\pi\)
0.797096 + 0.603853i \(0.206369\pi\)
\(30\) 0 0
\(31\) 2.11803 + 6.51864i 0.380410 + 1.17078i 0.939756 + 0.341847i \(0.111053\pi\)
−0.559345 + 0.828935i \(0.688947\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.780656 + 2.40261i 0.131955 + 0.406115i
\(36\) 0 0
\(37\) 5.42705 3.94298i 0.892202 0.648222i −0.0442495 0.999021i \(-0.514090\pi\)
0.936451 + 0.350798i \(0.114090\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.39448 5.37240i −1.15482 0.839028i −0.165709 0.986175i \(-0.552991\pi\)
−0.989115 + 0.147146i \(0.952991\pi\)
\(42\) 0 0
\(43\) 3.00000 0.457496 0.228748 0.973486i \(-0.426537\pi\)
0.228748 + 0.973486i \(0.426537\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.87695 + 5.72294i 1.14897 + 0.834776i 0.988344 0.152239i \(-0.0486482\pi\)
0.160627 + 0.987015i \(0.448648\pi\)
\(48\) 0 0
\(49\) −1.85410 + 5.70634i −0.264872 + 0.815191i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.482472 + 1.48490i 0.0662726 + 0.203966i 0.978709 0.205252i \(-0.0658015\pi\)
−0.912437 + 0.409218i \(0.865801\pi\)
\(54\) 0 0
\(55\) −1.97214 8.14324i −0.265923 1.09803i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.65761 + 6.29012i −1.12712 + 0.818904i −0.985274 0.170984i \(-0.945305\pi\)
−0.141851 + 0.989888i \(0.545305\pi\)
\(60\) 0 0
\(61\) 0.281153 0.865300i 0.0359979 0.110790i −0.931443 0.363888i \(-0.881449\pi\)
0.967441 + 0.253097i \(0.0814493\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.596368 −0.0739703
\(66\) 0 0
\(67\) 4.32624 0.528534 0.264267 0.964450i \(-0.414870\pi\)
0.264267 + 0.964450i \(0.414870\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.30691 + 10.1776i −0.392458 + 1.20786i 0.538465 + 0.842648i \(0.319004\pi\)
−0.930923 + 0.365214i \(0.880996\pi\)
\(72\) 0 0
\(73\) −11.7082 + 8.50651i −1.37034 + 0.995611i −0.372631 + 0.927979i \(0.621544\pi\)
−0.997710 + 0.0676320i \(0.978456\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.26313 + 3.06668i −0.143947 + 0.349480i
\(78\) 0 0
\(79\) −0.218847 0.673542i −0.0246222 0.0757794i 0.937990 0.346661i \(-0.112685\pi\)
−0.962613 + 0.270882i \(0.912685\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.85950 + 5.72294i −0.204106 + 0.628174i 0.795643 + 0.605766i \(0.207133\pi\)
−0.999749 + 0.0224080i \(0.992867\pi\)
\(84\) 0 0
\(85\) −13.5172 9.82084i −1.46615 1.06522i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7.21019 −0.764279 −0.382139 0.924105i \(-0.624813\pi\)
−0.382139 + 0.924105i \(0.624813\pi\)
\(90\) 0 0
\(91\) 0.190983 + 0.138757i 0.0200205 + 0.0145457i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.87695 + 5.72294i −0.808158 + 0.587161i
\(96\) 0 0
\(97\) 3.57295 + 10.9964i 0.362778 + 1.11652i 0.951361 + 0.308079i \(0.0996861\pi\)
−0.588583 + 0.808437i \(0.700314\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.22807 + 6.85730i 0.221701 + 0.682327i 0.998610 + 0.0527130i \(0.0167868\pi\)
−0.776908 + 0.629614i \(0.783213\pi\)
\(102\) 0 0
\(103\) 10.8541 7.88597i 1.06949 0.777027i 0.0936666 0.995604i \(-0.470141\pi\)
0.975820 + 0.218576i \(0.0701412\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.92073 + 7.20783i 0.959074 + 0.696808i 0.952935 0.303173i \(-0.0980462\pi\)
0.00613812 + 0.999981i \(0.498046\pi\)
\(108\) 0 0
\(109\) 18.1803 1.74136 0.870680 0.491849i \(-0.163679\pi\)
0.870680 + 0.491849i \(0.163679\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.92073 7.20783i −0.933264 0.678056i 0.0135257 0.999909i \(-0.495694\pi\)
−0.946790 + 0.321852i \(0.895694\pi\)
\(114\) 0 0
\(115\) −0.753289 + 2.31838i −0.0702446 + 0.216191i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.04378 + 6.29012i 0.187353 + 0.576614i
\(120\) 0 0
\(121\) 4.95492 9.82084i 0.450447 0.892803i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.39448 5.37240i 0.661382 0.480522i
\(126\) 0 0
\(127\) −5.00000 + 15.3884i −0.443678 + 1.36550i 0.440249 + 0.897876i \(0.354890\pi\)
−0.883927 + 0.467625i \(0.845110\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.54371 −0.746467 −0.373234 0.927737i \(-0.621751\pi\)
−0.373234 + 0.927737i \(0.621751\pi\)
\(132\) 0 0
\(133\) 3.85410 0.334193
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.75433 14.6323i 0.406190 1.25012i −0.513708 0.857965i \(-0.671729\pi\)
0.919898 0.392158i \(-0.128271\pi\)
\(138\) 0 0
\(139\) −10.6353 + 7.72696i −0.902071 + 0.655393i −0.938997 0.343925i \(-0.888243\pi\)
0.0369264 + 0.999318i \(0.488243\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.596368 0.507301i −0.0498708 0.0424226i
\(144\) 0 0
\(145\) −2.43769 7.50245i −0.202439 0.623045i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.19302 + 9.82709i −0.261582 + 0.805067i 0.730879 + 0.682507i \(0.239110\pi\)
−0.992461 + 0.122560i \(0.960890\pi\)
\(150\) 0 0
\(151\) −17.0902 12.4167i −1.39078 1.01046i −0.995779 0.0917780i \(-0.970745\pi\)
−0.394999 0.918682i \(-0.629255\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 17.3152 1.39079
\(156\) 0 0
\(157\) −1.85410 1.34708i −0.147973 0.107509i 0.511335 0.859381i \(-0.329151\pi\)
−0.659309 + 0.751872i \(0.729151\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.780656 0.567180i 0.0615243 0.0447000i
\(162\) 0 0
\(163\) 4.44427 + 13.6781i 0.348102 + 1.07135i 0.959902 + 0.280336i \(0.0904458\pi\)
−0.611800 + 0.791013i \(0.709554\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.79811 20.9224i −0.526054 1.61903i −0.762223 0.647314i \(-0.775892\pi\)
0.236169 0.971712i \(-0.424108\pi\)
\(168\) 0 0
\(169\) 10.4721 7.60845i 0.805549 0.585266i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.69266 + 5.58905i 0.584862 + 0.424927i 0.840474 0.541852i \(-0.182277\pi\)
−0.255611 + 0.966780i \(0.582277\pi\)
\(174\) 0 0
\(175\) 1.38197 0.104467
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.4470 9.04327i −0.930332 0.675925i 0.0157424 0.999876i \(-0.494989\pi\)
−0.946074 + 0.323951i \(0.894989\pi\)
\(180\) 0 0
\(181\) −5.01722 + 15.4414i −0.372927 + 1.14775i 0.571939 + 0.820296i \(0.306191\pi\)
−0.944867 + 0.327456i \(0.893809\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.23680 16.1172i −0.385017 1.18496i
\(186\) 0 0
\(187\) −5.16312 21.3193i −0.377565 1.55902i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.0608 13.8485i 1.37919 1.00204i 0.382237 0.924064i \(-0.375154\pi\)
0.996955 0.0779771i \(-0.0248461\pi\)
\(192\) 0 0
\(193\) 3.44427 10.6004i 0.247924 0.763032i −0.747218 0.664579i \(-0.768611\pi\)
0.995142 0.0984525i \(-0.0313893\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 26.0867 1.85860 0.929301 0.369324i \(-0.120411\pi\)
0.929301 + 0.369324i \(0.120411\pi\)
\(198\) 0 0
\(199\) 4.23607 0.300287 0.150143 0.988664i \(-0.452026\pi\)
0.150143 + 0.988664i \(0.452026\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.964944 + 2.96979i −0.0677258 + 0.208438i
\(204\) 0 0
\(205\) −18.6803 + 13.5721i −1.30469 + 0.947914i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −12.7452 0.977595i −0.881602 0.0676216i
\(210\) 0 0
\(211\) 3.20820 + 9.87384i 0.220862 + 0.679743i 0.998685 + 0.0512601i \(0.0163238\pi\)
−0.777823 + 0.628483i \(0.783676\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.34197 7.20783i 0.159721 0.491570i
\(216\) 0 0
\(217\) −5.54508 4.02874i −0.376425 0.273489i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.56131 −0.105025
\(222\) 0 0
\(223\) 5.19098 + 3.77147i 0.347614 + 0.252556i 0.747867 0.663848i \(-0.231078\pi\)
−0.400253 + 0.916404i \(0.631078\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19.6572 14.2818i 1.30469 0.947915i 0.304703 0.952447i \(-0.401443\pi\)
0.999990 + 0.00453258i \(0.00144277\pi\)
\(228\) 0 0
\(229\) 3.52786 + 10.8576i 0.233128 + 0.717494i 0.997364 + 0.0725574i \(0.0231161\pi\)
−0.764236 + 0.644936i \(0.776884\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.74560 5.37240i −0.114358 0.351958i 0.877455 0.479660i \(-0.159240\pi\)
−0.991813 + 0.127702i \(0.959240\pi\)
\(234\) 0 0
\(235\) 19.8992 14.4576i 1.29808 0.943110i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.78938 2.75315i −0.245115 0.178086i 0.458444 0.888723i \(-0.348407\pi\)
−0.703559 + 0.710637i \(0.748407\pi\)
\(240\) 0 0
\(241\) 22.9443 1.47797 0.738985 0.673722i \(-0.235305\pi\)
0.738985 + 0.673722i \(0.235305\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.2627 + 8.90937i 0.783435 + 0.569199i
\(246\) 0 0
\(247\) −0.281153 + 0.865300i −0.0178893 + 0.0550577i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5.16641 15.9006i −0.326101 1.00363i −0.970941 0.239318i \(-0.923076\pi\)
0.644841 0.764317i \(-0.276924\pi\)
\(252\) 0 0
\(253\) −2.72542 + 1.67760i −0.171346 + 0.105470i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.60510 2.61925i 0.224880 0.163385i −0.469641 0.882858i \(-0.655617\pi\)
0.694520 + 0.719473i \(0.255617\pi\)
\(258\) 0 0
\(259\) −2.07295 + 6.37988i −0.128807 + 0.396427i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.7014 −0.659876 −0.329938 0.944003i \(-0.607028\pi\)
−0.329938 + 0.944003i \(0.607028\pi\)
\(264\) 0 0
\(265\) 3.94427 0.242295
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.49120 + 10.7448i −0.212862 + 0.655122i 0.786436 + 0.617671i \(0.211924\pi\)
−0.999298 + 0.0374510i \(0.988076\pi\)
\(270\) 0 0
\(271\) 1.73607 1.26133i 0.105459 0.0766202i −0.533806 0.845607i \(-0.679239\pi\)
0.639265 + 0.768987i \(0.279239\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.57004 0.350536i −0.275584 0.0211381i
\(276\) 0 0
\(277\) −2.55573 7.86572i −0.153559 0.472605i 0.844453 0.535629i \(-0.179926\pi\)
−0.998012 + 0.0630239i \(0.979926\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5.64888 + 17.3855i −0.336984 + 1.03713i 0.628753 + 0.777605i \(0.283566\pi\)
−0.965737 + 0.259524i \(0.916434\pi\)
\(282\) 0 0
\(283\) −20.5623 14.9394i −1.22230 0.888055i −0.226013 0.974124i \(-0.572569\pi\)
−0.996289 + 0.0860697i \(0.972569\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.14008 0.539522
\(288\) 0 0
\(289\) −21.6353 15.7189i −1.27266 0.924643i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.39448 + 5.37240i −0.431990 + 0.313859i −0.782444 0.622721i \(-0.786027\pi\)
0.350454 + 0.936580i \(0.386027\pi\)
\(294\) 0 0
\(295\) 8.35410 + 25.7113i 0.486395 + 1.49697i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.0703917 + 0.216643i 0.00407086 + 0.0125288i
\(300\) 0 0
\(301\) −2.42705 + 1.76336i −0.139893 + 0.101638i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.85950 1.35100i −0.106474 0.0773582i
\(306\) 0 0
\(307\) −14.0902 −0.804168 −0.402084 0.915603i \(-0.631714\pi\)
−0.402084 + 0.915603i \(0.631714\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.86822 3.53697i −0.276052 0.200563i 0.441142 0.897437i \(-0.354574\pi\)
−0.717193 + 0.696874i \(0.754574\pi\)
\(312\) 0 0
\(313\) −4.07295 + 12.5352i −0.230217 + 0.708534i 0.767503 + 0.641045i \(0.221499\pi\)
−0.997720 + 0.0674891i \(0.978501\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.47332 + 26.0782i 0.475909 + 1.46470i 0.844728 + 0.535196i \(0.179762\pi\)
−0.368819 + 0.929501i \(0.620238\pi\)
\(318\) 0 0
\(319\) 3.94427 9.57608i 0.220837 0.536157i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −20.6221 + 14.9828i −1.14745 + 0.833668i
\(324\) 0 0
\(325\) −0.100813 + 0.310271i −0.00559210 + 0.0172107i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9.73645 −0.536788
\(330\) 0 0
\(331\) 10.4164 0.572538 0.286269 0.958149i \(-0.407585\pi\)
0.286269 + 0.958149i \(0.407585\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.37730 10.3943i 0.184522 0.567900i
\(336\) 0 0
\(337\) −10.7082 + 7.77997i −0.583313 + 0.423802i −0.839917 0.542715i \(-0.817396\pi\)
0.256604 + 0.966517i \(0.417396\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 17.3152 + 14.7292i 0.937671 + 0.797631i
\(342\) 0 0
\(343\) −4.01722 12.3637i −0.216910 0.667579i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.45614 13.7146i 0.239218 0.736238i −0.757316 0.653049i \(-0.773489\pi\)
0.996534 0.0831890i \(-0.0265105\pi\)
\(348\) 0 0
\(349\) −9.51722 6.91467i −0.509445 0.370134i 0.303168 0.952937i \(-0.401956\pi\)
−0.812613 + 0.582804i \(0.801956\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.2802 −0.972954 −0.486477 0.873693i \(-0.661718\pi\)
−0.486477 + 0.873693i \(0.661718\pi\)
\(354\) 0 0
\(355\) 21.8713 + 15.8904i 1.16081 + 0.843377i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −24.5254 + 17.8187i −1.29440 + 0.940438i −0.999884 0.0152088i \(-0.995159\pi\)
−0.294517 + 0.955646i \(0.595159\pi\)
\(360\) 0 0
\(361\) −1.28115 3.94298i −0.0674291 0.207525i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 11.2978 + 34.7709i 0.591352 + 1.81999i
\(366\) 0 0
\(367\) 1.26393 0.918300i 0.0659767 0.0479349i −0.554308 0.832312i \(-0.687017\pi\)
0.620285 + 0.784377i \(0.287017\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.26313 0.917716i −0.0655783 0.0476454i
\(372\) 0 0
\(373\) 13.0000 0.673114 0.336557 0.941663i \(-0.390737\pi\)
0.336557 + 0.941663i \(0.390737\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.596368 0.433287i −0.0307145 0.0223154i
\(378\) 0 0
\(379\) 6.12868 18.8621i 0.314809 0.968882i −0.661024 0.750365i \(-0.729878\pi\)
0.975833 0.218518i \(-0.0701221\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5.71927 + 17.6021i 0.292241 + 0.899426i 0.984134 + 0.177426i \(0.0567769\pi\)
−0.691893 + 0.722000i \(0.743223\pi\)
\(384\) 0 0
\(385\) 6.38197 + 5.42882i 0.325255 + 0.276679i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −20.1397 + 14.6323i −1.02112 + 0.741888i −0.966512 0.256620i \(-0.917391\pi\)
−0.0546085 + 0.998508i \(0.517391\pi\)
\(390\) 0 0
\(391\) −1.97214 + 6.06961i −0.0997352 + 0.306953i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.78910 −0.0900196
\(396\) 0 0
\(397\) 21.0000 1.05396 0.526980 0.849878i \(-0.323324\pi\)
0.526980 + 0.849878i \(0.323324\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −4.57004 + 14.0651i −0.228217 + 0.702379i 0.769732 + 0.638367i \(0.220390\pi\)
−0.997949 + 0.0640124i \(0.979610\pi\)
\(402\) 0 0
\(403\) 1.30902 0.951057i 0.0652068 0.0473755i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.47332 20.5719i 0.420007 1.01971i
\(408\) 0 0
\(409\) 5.56231 + 17.1190i 0.275038 + 0.846481i 0.989209 + 0.146510i \(0.0468039\pi\)
−0.714171 + 0.699971i \(0.753196\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.30691 10.1776i 0.162722 0.500808i
\(414\) 0 0
\(415\) 12.2984 + 8.93529i 0.603703 + 0.438616i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −32.1042 −1.56839 −0.784196 0.620514i \(-0.786924\pi\)
−0.784196 + 0.620514i \(0.786924\pi\)
\(420\) 0 0
\(421\) −11.2082 8.14324i −0.546254 0.396877i 0.280148 0.959957i \(-0.409616\pi\)
−0.826403 + 0.563080i \(0.809616\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.39448 + 5.37240i −0.358685 + 0.260600i
\(426\) 0 0
\(427\) 0.281153 + 0.865300i 0.0136059 + 0.0418748i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.64015 + 8.12555i 0.127172 + 0.391394i 0.994290 0.106707i \(-0.0340308\pi\)
−0.867119 + 0.498101i \(0.834031\pi\)
\(432\) 0 0
\(433\) 8.70820 6.32688i 0.418490 0.304050i −0.358540 0.933514i \(-0.616725\pi\)
0.777030 + 0.629464i \(0.216725\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.00873 + 2.18597i 0.143927 + 0.104569i
\(438\) 0 0
\(439\) −14.7082 −0.701984 −0.350992 0.936378i \(-0.614156\pi\)
−0.350992 + 0.936378i \(0.614156\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 19.8415 + 14.4157i 0.942697 + 0.684909i 0.949068 0.315071i \(-0.102028\pi\)
−0.00637170 + 0.999980i \(0.502028\pi\)
\(444\) 0 0
\(445\) −5.62868 + 17.3233i −0.266825 + 0.821203i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.89483 + 8.90937i 0.136616 + 0.420459i 0.995838 0.0911431i \(-0.0290521\pi\)
−0.859222 + 0.511602i \(0.829052\pi\)
\(450\) 0 0
\(451\) −30.2254 2.31838i −1.42326 0.109168i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.482472 0.350536i 0.0226186 0.0164334i
\(456\) 0 0
\(457\) 7.50000 23.0826i 0.350835 1.07976i −0.607550 0.794281i \(-0.707848\pi\)
0.958385 0.285478i \(-0.0921524\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −27.0517 −1.25992 −0.629961 0.776627i \(-0.716929\pi\)
−0.629961 + 0.776627i \(0.716929\pi\)
\(462\) 0 0
\(463\) −32.5623 −1.51330 −0.756649 0.653821i \(-0.773165\pi\)
−0.756649 + 0.653821i \(0.773165\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.01718 12.3636i 0.185893 0.572119i −0.814070 0.580767i \(-0.802753\pi\)
0.999963 + 0.00864799i \(0.00275277\pi\)
\(468\) 0 0
\(469\) −3.50000 + 2.54290i −0.161615 + 0.117420i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.47332 5.21564i 0.389604 0.239815i
\(474\) 0 0
\(475\) 1.64590 + 5.06555i 0.0755190 + 0.232424i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.482472 + 1.48490i −0.0220447 + 0.0678466i −0.961474 0.274897i \(-0.911356\pi\)
0.939429 + 0.342744i \(0.111356\pi\)
\(480\) 0 0
\(481\) −1.28115 0.930812i −0.0584155 0.0424414i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 29.2093 1.32633
\(486\) 0 0
\(487\) −1.42705 1.03681i −0.0646659 0.0469825i 0.554983 0.831862i \(-0.312725\pi\)
−0.619649 + 0.784879i \(0.712725\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 23.6308 17.1688i 1.06645 0.774818i 0.0911754 0.995835i \(-0.470938\pi\)
0.975270 + 0.221017i \(0.0709376\pi\)
\(492\) 0 0
\(493\) −6.38197 19.6417i −0.287429 0.884616i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.30691 10.1776i −0.148335 0.456529i
\(498\) 0 0
\(499\) −7.73607 + 5.62058i −0.346314 + 0.251612i −0.747321 0.664463i \(-0.768660\pi\)
0.401007 + 0.916075i \(0.368660\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −36.1917 26.2948i −1.61371 1.17243i −0.849799 0.527106i \(-0.823277\pi\)
−0.763910 0.645322i \(-0.776723\pi\)
\(504\) 0 0
\(505\) 18.2148 0.810547
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16.0521 + 11.6625i 0.711496 + 0.516932i 0.883656 0.468137i \(-0.155075\pi\)
−0.172160 + 0.985069i \(0.555075\pi\)
\(510\) 0 0
\(511\) 4.47214 13.7638i 0.197836 0.608876i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −10.4736 32.2344i −0.461522 1.42042i
\(516\) 0 0
\(517\) 32.1976 + 2.46965i 1.41605 + 0.108615i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.14008 + 6.64066i −0.400434 + 0.290932i −0.769718 0.638384i \(-0.779603\pi\)
0.369284 + 0.929317i \(0.379603\pi\)
\(522\) 0 0
\(523\) −8.97214 + 27.6134i −0.392324 + 1.20745i 0.538702 + 0.842496i \(0.318915\pi\)
−0.931026 + 0.364953i \(0.881085\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 45.3318 1.97468
\(528\) 0 0
\(529\) −22.0689 −0.959517
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.666760 + 2.05208i −0.0288806 + 0.0888852i
\(534\) 0 0
\(535\) 25.0623 18.2088i 1.08354 0.787236i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.68393 + 19.3407i 0.201751 + 0.833061i
\(540\) 0 0
\(541\) −3.66312 11.2739i −0.157490 0.484704i 0.840915 0.541167i \(-0.182017\pi\)
−0.998405 + 0.0564637i \(0.982017\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.1926 43.6803i 0.607944 1.87106i
\(546\) 0 0
\(547\) 20.4894 + 14.8864i 0.876062 + 0.636496i 0.932207 0.361927i \(-0.117881\pi\)
−0.0561450 + 0.998423i \(0.517881\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −12.0349 −0.512704
\(552\) 0 0
\(553\) 0.572949 + 0.416272i 0.0243643 + 0.0177017i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.4466 17.0349i 0.993463 0.721793i 0.0327861 0.999462i \(-0.489562\pi\)
0.960677 + 0.277669i \(0.0895620\pi\)
\(558\) 0 0
\(559\) −0.218847 0.673542i −0.00925624 0.0284878i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.0703917 + 0.216643i 0.00296666 + 0.00913043i 0.952529 0.304448i \(-0.0984721\pi\)
−0.949562 + 0.313579i \(0.898472\pi\)
\(564\) 0 0
\(565\) −25.0623 + 18.2088i −1.05438 + 0.766051i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −16.7188 12.1470i −0.700890 0.509227i 0.179332 0.983789i \(-0.442606\pi\)
−0.880222 + 0.474562i \(0.842606\pi\)
\(570\) 0 0
\(571\) −25.9230 −1.08484 −0.542422 0.840106i \(-0.682492\pi\)
−0.542422 + 0.840106i \(0.682492\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.07884 + 0.783823i 0.0449907 + 0.0326877i
\(576\) 0 0
\(577\) −6.85410 + 21.0948i −0.285340 + 0.878186i 0.700957 + 0.713204i \(0.252757\pi\)
−0.986297 + 0.164982i \(0.947243\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.85950 5.72294i −0.0771449 0.237428i
\(582\) 0 0
\(583\) 3.94427 + 3.35520i 0.163355 + 0.138958i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.6047 10.6109i 0.602799 0.437959i −0.244072 0.969757i \(-0.578483\pi\)
0.846871 + 0.531798i \(0.178483\pi\)
\(588\) 0 0
\(589\) 8.16312 25.1235i 0.336355 1.03520i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.78910 0.0734697 0.0367348 0.999325i \(-0.488304\pi\)
0.0367348 + 0.999325i \(0.488304\pi\)
\(594\) 0 0
\(595\) 16.7082 0.684970
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(600\) 0 0
\(601\) 10.0451 7.29818i 0.409748 0.297699i −0.363752 0.931496i \(-0.618504\pi\)
0.773500 + 0.633797i \(0.218504\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −19.7276 19.5714i −0.802040 0.795692i
\(606\) 0 0
\(607\) −1.77051 5.44907i −0.0718628 0.221171i 0.908674 0.417506i \(-0.137096\pi\)
−0.980537 + 0.196335i \(0.937096\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.710264 2.18597i 0.0287342 0.0884348i
\(612\) 0 0
\(613\) 29.7984 + 21.6498i 1.20354 + 0.874427i 0.994629 0.103507i \(-0.0330064\pi\)
0.208916 + 0.977934i \(0.433006\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 33.6655 1.35532 0.677661 0.735375i \(-0.262994\pi\)
0.677661 + 0.735375i \(0.262994\pi\)
\(618\) 0 0
\(619\) 28.9336 + 21.0215i 1.16294 + 0.844926i 0.990147 0.140032i \(-0.0447206\pi\)
0.172794 + 0.984958i \(0.444721\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.83317 4.23804i 0.233701 0.169794i
\(624\) 0 0
\(625\) −9.27051 28.5317i −0.370820 1.14127i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13.7101 42.1954i −0.546658 1.68244i
\(630\) 0 0
\(631\) 10.8713 7.89848i 0.432781 0.314433i −0.349979 0.936757i \(-0.613811\pi\)
0.782760 + 0.622324i \(0.213811\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 33.0691 + 24.0261i 1.31231 + 0.953447i
\(636\) 0 0
\(637\) 1.41641 0.0561201
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −15.2714 11.0953i −0.603185 0.438240i 0.243823 0.969820i \(-0.421598\pi\)
−0.847008 + 0.531580i \(0.821598\pi\)
\(642\) 0 0
\(643\) 14.2082 43.7284i 0.560317 1.72448i −0.121155 0.992634i \(-0.538660\pi\)
0.681472 0.731844i \(-0.261340\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.113896 + 0.350536i 0.00447772 + 0.0137810i 0.953270 0.302118i \(-0.0976938\pi\)
−0.948793 + 0.315899i \(0.897694\pi\)
\(648\) 0 0
\(649\) −13.5172 + 32.8177i −0.530597 + 1.28821i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.0695 16.0345i 0.863648 0.627477i −0.0652271 0.997870i \(-0.520777\pi\)
0.928875 + 0.370394i \(0.120777\pi\)
\(654\) 0 0
\(655\) −6.66970 + 20.5272i −0.260607 + 0.802065i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.0349 −0.468813 −0.234407 0.972139i \(-0.575315\pi\)
−0.234407 + 0.972139i \(0.575315\pi\)
\(660\) 0 0
\(661\) −3.90983 −0.152075 −0.0760374 0.997105i \(-0.524227\pi\)
−0.0760374 + 0.997105i \(0.524227\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.00873 9.25991i 0.116673 0.359084i
\(666\) 0 0
\(667\) −2.43769 + 1.77109i −0.0943879 + 0.0685768i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.710264 2.93278i −0.0274194 0.113219i
\(672\) 0 0
\(673\) 3.12868 + 9.62908i 0.120602 + 0.371174i 0.993074 0.117490i \(-0.0374847\pi\)
−0.872472 + 0.488663i \(0.837485\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3.12262 + 9.61045i −0.120012 + 0.369359i −0.992959 0.118455i \(-0.962206\pi\)
0.872947 + 0.487815i \(0.162206\pi\)
\(678\) 0 0
\(679\) −9.35410 6.79615i −0.358977 0.260812i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −16.5781 −0.634342 −0.317171 0.948368i \(-0.602733\pi\)
−0.317171 + 0.948368i \(0.602733\pi\)
\(684\) 0 0
\(685\) −31.4443 22.8456i −1.20142 0.872886i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.298184 0.216643i 0.0113599 0.00825345i
\(690\) 0 0
\(691\) −10.2918 31.6749i −0.391518 1.20497i −0.931640 0.363383i \(-0.881622\pi\)
0.540122 0.841587i \(-0.318378\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.2624 + 31.5845i 0.389276 + 1.19807i
\(696\) 0 0
\(697\) −48.9058 + 35.5321i −1.85244 + 1.34587i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.3941 + 13.3641i 0.694734 + 0.504754i 0.878213 0.478270i \(-0.158736\pi\)
−0.183479 + 0.983024i \(0.558736\pi\)
\(702\) 0 0
\(703\) −25.8541 −0.975106
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.83317 4.23804i −0.219379 0.159388i
\(708\) 0 0
\(709\) 7.00658 21.5640i 0.263138 0.809854i −0.728979 0.684536i \(-0.760005\pi\)
0.992117 0.125318i \(-0.0399951\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.04378 6.29012i −0.0765403 0.235567i
\(714\) 0 0
\(715\) −1.68441 + 1.03681i −0.0629932 + 0.0387746i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9.92073 7.20783i 0.369981 0.268807i −0.387222 0.921986i \(-0.626565\pi\)
0.757203 + 0.653180i \(0.226565\pi\)
\(720\) 0 0
\(721\) −4.14590 + 12.7598i −0.154401 + 0.475198i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.31536 −0.160268
\(726\) 0 0
\(727\) −13.4377 −0.498376 −0.249188 0.968455i \(-0.580164\pi\)
−0.249188 + 0.968455i \(0.580164\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.13135 18.8704i 0.226776 0.697945i
\(732\) 0 0
\(733\) 9.47214 6.88191i 0.349861 0.254189i −0.398950 0.916973i \(-0.630625\pi\)
0.748811 + 0.662784i \(0.230625\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.2192 7.52136i 0.450100 0.277053i
\(738\) 0 0
\(739\) 4.89261 + 15.0579i 0.179978 + 0.553914i 0.999826 0.0186670i \(-0.00594224\pi\)
−0.819848 + 0.572581i \(0.805942\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −15.8243 + 48.7022i −0.580537 + 1.78671i 0.0359618 + 0.999353i \(0.488551\pi\)
−0.616499 + 0.787356i \(0.711449\pi\)
\(744\) 0 0
\(745\) 21.1180 + 15.3431i 0.773705 + 0.562130i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −12.2627 −0.448069
\(750\) 0 0
\(751\) 28.9164 + 21.0090i 1.05517 + 0.766629i 0.973190 0.230004i \(-0.0738740\pi\)
0.0819851 + 0.996634i \(0.473874\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −43.1741 + 31.3678i −1.57127 + 1.14159i
\(756\) 0 0
\(757\) −10.3435 31.8339i −0.375939 1.15702i −0.942843 0.333238i \(-0.891859\pi\)
0.566903 0.823784i \(-0.308141\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.54343 20.1386i −0.237199 0.730024i −0.996822 0.0796602i \(-0.974616\pi\)
0.759623 0.650364i \(-0.225384\pi\)
\(762\) 0 0
\(763\) −14.7082 + 10.6861i −0.532473 + 0.386864i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.04378 + 1.48490i 0.0737967 + 0.0536165i
\(768\) 0 0
\(769\) 7.85410 0.283226 0.141613 0.989922i \(-0.454771\pi\)
0.141613 + 0.989922i \(0.454771\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −31.3235 22.7579i −1.12663 0.818543i −0.141428 0.989949i \(-0.545169\pi\)
−0.985201 + 0.171405i \(0.945169\pi\)
\(774\) 0 0
\(775\) 2.92705 9.00854i 0.105143 0.323596i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.8857 + 33.5027i 0.390020 + 1.20036i
\(780\) 0 0
\(781\) 8.35410 + 34.4953i 0.298933 + 1.23434i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.68393 + 3.40308i −0.167177 + 0.121461i
\(786\) 0 0
\(787\) 12.5836 38.7283i 0.448557 1.38052i −0.429979 0.902839i \(-0.641479\pi\)
0.878536 0.477677i \(-0.158521\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.2627 0.436011
\(792\) 0 0
\(793\) −0.214782 −0.00762712
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.824160 + 2.53650i −0.0291933 + 0.0898476i −0.964592 0.263748i \(-0.915041\pi\)
0.935398 + 0.353596i \(0.115041\pi\)
\(798\) 0 0
\(799\) 52.0967 37.8505i 1.84305 1.33905i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −18.2802 + 44.3814i −0.645093 + 1.56618i
\(804\) 0 0
\(805\) −0.753289 2.31838i −0.0265499 0.0817123i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −12.6748 + 39.0090i −0.445622 + 1.37148i 0.436179 + 0.899860i \(0.356331\pi\)
−0.881801 + 0.471622i \(0.843669\pi\)
\(810\) 0 0
\(811\) 43.5238 + 31.6219i 1.52833 + 1.11039i 0.957159 + 0.289561i \(0.0935095\pi\)
0.571168 + 0.820833i \(0.306491\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 36.3325 1.27267
\(816\) 0 0
\(817\) −9.35410 6.79615i −0.327259 0.237767i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −29.7622 + 21.6235i −1.03871 + 0.754666i −0.970033 0.242974i \(-0.921877\pi\)
−0.0686751 + 0.997639i \(0.521877\pi\)
\(822\) 0 0
\(823\) 7.30902 + 22.4948i 0.254776 + 0.784121i 0.993874 + 0.110522i \(0.0352523\pi\)
−0.739097 + 0.673599i \(0.764748\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.54371 + 26.2948i 0.297094 + 0.914361i 0.982510 + 0.186209i \(0.0596203\pi\)
−0.685416 + 0.728152i \(0.740380\pi\)
\(828\) 0 0
\(829\) 5.01722 3.64522i 0.174255 0.126604i −0.497239 0.867614i \(-0.665653\pi\)
0.671494 + 0.741010i \(0.265653\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 32.1042 + 23.3250i 1.11234 + 0.808165i
\(834\) 0 0
\(835\) −55.5755 −1.92327
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −36.9724 26.8620i −1.27643 0.927380i −0.276990 0.960873i \(-0.589337\pi\)
−0.999439 + 0.0334932i \(0.989337\pi\)
\(840\) 0 0
\(841\) −5.94834 + 18.3071i −0.205115 + 0.631279i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −10.1050 31.1001i −0.347623 1.06987i
\(846\) 0 0
\(847\) 1.76393 + 10.8576i 0.0606094 + 0.373073i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −5.23680 + 3.80476i −0.179515 + 0.130425i
\(852\) 0 0
\(853\) 10.2533 31.5564i 0.351066 1.08047i −0.607190 0.794557i \(-0.707703\pi\)
0.958256 0.285913i \(-0.0922968\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24.2976 −0.829991 −0.414995 0.909824i \(-0.636217\pi\)
−0.414995 + 0.909824i \(0.636217\pi\)
\(858\) 0 0
\(859\) −19.6525 −0.670534 −0.335267 0.942123i \(-0.608826\pi\)
−0.335267 + 0.942123i \(0.608826\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −12.4905 + 38.4418i −0.425181 + 1.30857i 0.477639 + 0.878556i \(0.341493\pi\)
−0.902821 + 0.430018i \(0.858507\pi\)
\(864\) 0 0
\(865\) 19.4336 14.1194i 0.660763 0.480073i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.78910 1.52190i −0.0606912 0.0516270i
\(870\) 0 0
\(871\) −0.315595 0.971301i −0.0106935 0.0329113i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.82444 + 8.69273i −0.0954835 + 0.293868i
\(876\) 0 0
\(877\) 28.1353 + 20.4415i 0.950060 + 0.690259i 0.950821 0.309741i \(-0.100242\pi\)
−0.000761020 1.00000i \(0.500242\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −15.9817 −0.538437 −0.269218 0.963079i \(-0.586765\pi\)
−0.269218 + 0.963079i \(0.586765\pi\)
\(882\) 0 0
\(883\) −12.0000 8.71851i −0.403832 0.293401i 0.367268 0.930115i \(-0.380293\pi\)
−0.771100 + 0.636714i \(0.780293\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.4820 8.34219i 0.385529 0.280103i −0.378092 0.925768i \(-0.623420\pi\)
0.763621 + 0.645665i \(0.223420\pi\)
\(888\) 0 0
\(889\) −5.00000 15.3884i −0.167695 0.516111i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −11.5959 35.6886i −0.388043 1.19427i
\(894\) 0 0
\(895\) −31.4443 + 22.8456i −1.05107 + 0.763644i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 17.3152 + 12.5802i 0.577495 + 0.419574i
\(900\) 0 0
\(901\) 10.3262 0.344017
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 33.1830 + 24.1089i 1.10304 + 0.801406i
\(906\) 0 0
\(907\) 0.225425 0.693786i 0.00748511 0.0230368i −0.947244 0.320513i \(-0.896145\pi\)
0.954729 + 0.297476i \(0.0961448\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 12.5609 + 38.6584i 0.416161 + 1.28081i 0.911209 + 0.411945i \(0.135150\pi\)
−0.495048 + 0.868866i \(0.664850\pi\)
\(912\) 0 0
\(913\) 4.69756 + 19.3969i 0.155467 + 0.641944i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.91201 5.02187i 0.228255 0.165837i
\(918\) 0 0
\(919\) −16.6353 + 51.1981i −0.548746 + 1.68887i 0.163165 + 0.986599i \(0.447830\pi\)
−0.711912 + 0.702269i \(0.752170\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.52626 0.0831527
\(924\) 0 0
\(925\) −9.27051 −0.304812
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −12.3331 + 37.9574i −0.404636 + 1.24534i 0.516563 + 0.856249i \(0.327211\pi\)
−0.921199 + 0.389092i \(0.872789\pi\)
\(930\) 0 0
\(931\) 18.7082 13.5923i 0.613137 0.445470i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −55.2525 4.23804i −1.80695 0.138599i
\(936\) 0 0
\(937\) −13.6353 41.9650i −0.445444 1.37094i −0.881996 0.471257i \(-0.843800\pi\)
0.436551 0.899679i \(-0.356200\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3.83289 + 11.7964i −0.124949 + 0.384552i −0.993892 0.110360i \(-0.964800\pi\)
0.868943 + 0.494912i \(0.164800\pi\)
\(942\) 0 0
\(943\) 7.13525 + 5.18407i 0.232356 + 0.168816i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −10.7014 −0.347748 −0.173874 0.984768i \(-0.555629\pi\)
−0.173874 + 0.984768i \(0.555629\pi\)
\(948\) 0 0
\(949\) 2.76393 + 2.00811i 0.0897210 + 0.0651861i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 23.9290 17.3855i 0.775137 0.563170i −0.128378 0.991725i \(-0.540977\pi\)
0.903516 + 0.428555i \(0.140977\pi\)
\(954\) 0 0
\(955\) −18.3926 56.6066i −0.595171 1.83175i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.75433 + 14.6323i 0.153525 + 0.472502i
\(960\) 0 0
\(961\) −12.9271 + 9.39205i −0.417002 + 0.302969i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −22.7798 16.5505i −0.733308 0.532779i
\(966\) 0 0
\(967\) −57.5623 −1.85108 −0.925539 0.378651i \(-0.876388\pi\)
−0.925539 + 0.378651i \(0.876388\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 20.4378 + 14.8490i 0.655881 + 0.476526i 0.865270 0.501307i \(-0.167147\pi\)
−0.209388 + 0.977833i \(0.567147\pi\)
\(972\) 0 0
\(973\) 4.06231 12.5025i 0.130232 0.400811i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −7.50837 23.1084i −0.240214 0.739303i −0.996387 0.0849311i \(-0.972933\pi\)
0.756173 0.654372i \(-0.227067\pi\)
\(978\) 0 0
\(979\) −20.3647 + 12.5352i −0.650860 + 0.400628i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −7.57877 + 5.50630i −0.241725 + 0.175624i −0.702051 0.712126i \(-0.747732\pi\)
0.460326 + 0.887750i \(0.347732\pi\)
\(984\) 0 0
\(985\) 20.3647 62.6762i 0.648875 1.99703i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.89483 −0.0920503
\(990\) 0 0
\(991\) −20.3951 −0.647872 −0.323936 0.946079i \(-0.605006\pi\)
−0.323936 + 0.946079i \(0.605006\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.30691 10.1776i 0.104836 0.322652i
\(996\) 0 0
\(997\) −9.73607 + 7.07367i −0.308344 + 0.224025i −0.731186 0.682178i \(-0.761033\pi\)
0.422841 + 0.906204i \(0.361033\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.2.j.d.181.2 yes 8
3.2 odd 2 inner 396.2.j.d.181.1 8
11.3 even 5 4356.2.a.z.1.3 4
11.8 odd 10 4356.2.a.x.1.3 4
11.9 even 5 inner 396.2.j.d.361.2 yes 8
33.8 even 10 4356.2.a.x.1.2 4
33.14 odd 10 4356.2.a.z.1.2 4
33.20 odd 10 inner 396.2.j.d.361.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
396.2.j.d.181.1 8 3.2 odd 2 inner
396.2.j.d.181.2 yes 8 1.1 even 1 trivial
396.2.j.d.361.1 yes 8 33.20 odd 10 inner
396.2.j.d.361.2 yes 8 11.9 even 5 inner
4356.2.a.x.1.2 4 33.8 even 10
4356.2.a.x.1.3 4 11.8 odd 10
4356.2.a.z.1.2 4 33.14 odd 10
4356.2.a.z.1.3 4 11.3 even 5