Properties

Label 4356.2.a.x.1.2
Level $4356$
Weight $2$
Character 4356.1
Self dual yes
Analytic conductor $34.783$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4356,2,Mod(1,4356)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4356, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4356.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4356 = 2^{2} \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4356.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.7828351205\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.22000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 15x^{2} + 55 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 396)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.52626\) of defining polynomial
Character \(\chi\) \(=\) 4356.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.52626 q^{5} -1.00000 q^{7} +0.236068 q^{13} +6.61382 q^{17} -3.85410 q^{19} +0.964944 q^{23} +1.38197 q^{25} -3.12262 q^{29} +6.85410 q^{31} +2.52626 q^{35} -6.70820 q^{37} +9.14008 q^{41} -3.00000 q^{43} +9.73645 q^{47} -6.00000 q^{49} -1.56131 q^{53} -10.7014 q^{59} -0.909830 q^{61} -0.596368 q^{65} +4.32624 q^{67} +10.7014 q^{71} -14.4721 q^{73} +0.708204 q^{79} -6.01745 q^{83} -16.7082 q^{85} +7.21019 q^{89} -0.236068 q^{91} +9.73645 q^{95} +11.5623 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7} - 8 q^{13} - 2 q^{19} + 10 q^{25} + 14 q^{31} - 12 q^{43} - 24 q^{49} - 26 q^{61} - 14 q^{67} - 40 q^{73} - 24 q^{79} - 40 q^{85} + 8 q^{91} + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.52626 −1.12978 −0.564888 0.825168i \(-0.691081\pi\)
−0.564888 + 0.825168i \(0.691081\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 0.236068 0.0654735 0.0327367 0.999464i \(-0.489578\pi\)
0.0327367 + 0.999464i \(0.489578\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.61382 1.60409 0.802044 0.597265i \(-0.203746\pi\)
0.802044 + 0.597265i \(0.203746\pi\)
\(18\) 0 0
\(19\) −3.85410 −0.884192 −0.442096 0.896968i \(-0.645765\pi\)
−0.442096 + 0.896968i \(0.645765\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.964944 0.201205 0.100602 0.994927i \(-0.467923\pi\)
0.100602 + 0.994927i \(0.467923\pi\)
\(24\) 0 0
\(25\) 1.38197 0.276393
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.12262 −0.579857 −0.289928 0.957048i \(-0.593631\pi\)
−0.289928 + 0.957048i \(0.593631\pi\)
\(30\) 0 0
\(31\) 6.85410 1.23103 0.615517 0.788124i \(-0.288947\pi\)
0.615517 + 0.788124i \(0.288947\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.52626 0.427015
\(36\) 0 0
\(37\) −6.70820 −1.10282 −0.551411 0.834234i \(-0.685910\pi\)
−0.551411 + 0.834234i \(0.685910\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.14008 1.42744 0.713720 0.700431i \(-0.247009\pi\)
0.713720 + 0.700431i \(0.247009\pi\)
\(42\) 0 0
\(43\) −3.00000 −0.457496 −0.228748 0.973486i \(-0.573463\pi\)
−0.228748 + 0.973486i \(0.573463\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.73645 1.42021 0.710103 0.704098i \(-0.248648\pi\)
0.710103 + 0.704098i \(0.248648\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.56131 −0.214463 −0.107231 0.994234i \(-0.534199\pi\)
−0.107231 + 0.994234i \(0.534199\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.7014 −1.39320 −0.696601 0.717459i \(-0.745305\pi\)
−0.696601 + 0.717459i \(0.745305\pi\)
\(60\) 0 0
\(61\) −0.909830 −0.116492 −0.0582459 0.998302i \(-0.518551\pi\)
−0.0582459 + 0.998302i \(0.518551\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.596368 −0.0739703
\(66\) 0 0
\(67\) 4.32624 0.528534 0.264267 0.964450i \(-0.414870\pi\)
0.264267 + 0.964450i \(0.414870\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.7014 1.27002 0.635011 0.772503i \(-0.280996\pi\)
0.635011 + 0.772503i \(0.280996\pi\)
\(72\) 0 0
\(73\) −14.4721 −1.69384 −0.846918 0.531724i \(-0.821544\pi\)
−0.846918 + 0.531724i \(0.821544\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.708204 0.0796792 0.0398396 0.999206i \(-0.487315\pi\)
0.0398396 + 0.999206i \(0.487315\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.01745 −0.660501 −0.330251 0.943893i \(-0.607133\pi\)
−0.330251 + 0.943893i \(0.607133\pi\)
\(84\) 0 0
\(85\) −16.7082 −1.81226
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.21019 0.764279 0.382139 0.924105i \(-0.375187\pi\)
0.382139 + 0.924105i \(0.375187\pi\)
\(90\) 0 0
\(91\) −0.236068 −0.0247466
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 9.73645 0.998938
\(96\) 0 0
\(97\) 11.5623 1.17397 0.586987 0.809596i \(-0.300314\pi\)
0.586987 + 0.809596i \(0.300314\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.21019 0.717441 0.358720 0.933445i \(-0.383213\pi\)
0.358720 + 0.933445i \(0.383213\pi\)
\(102\) 0 0
\(103\) −13.4164 −1.32196 −0.660979 0.750404i \(-0.729859\pi\)
−0.660979 + 0.750404i \(0.729859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.2627 −1.18548 −0.592740 0.805394i \(-0.701954\pi\)
−0.592740 + 0.805394i \(0.701954\pi\)
\(108\) 0 0
\(109\) −18.1803 −1.74136 −0.870680 0.491849i \(-0.836321\pi\)
−0.870680 + 0.491849i \(0.836321\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −12.2627 −1.15358 −0.576789 0.816893i \(-0.695694\pi\)
−0.576789 + 0.816893i \(0.695694\pi\)
\(114\) 0 0
\(115\) −2.43769 −0.227316
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.61382 −0.606288
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.14008 0.817513
\(126\) 0 0
\(127\) 16.1803 1.43577 0.717886 0.696160i \(-0.245110\pi\)
0.717886 + 0.696160i \(0.245110\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.54371 −0.746467 −0.373234 0.927737i \(-0.621751\pi\)
−0.373234 + 0.927737i \(0.621751\pi\)
\(132\) 0 0
\(133\) 3.85410 0.334193
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −15.3853 −1.31446 −0.657228 0.753691i \(-0.728271\pi\)
−0.657228 + 0.753691i \(0.728271\pi\)
\(138\) 0 0
\(139\) −13.1459 −1.11502 −0.557510 0.830170i \(-0.688243\pi\)
−0.557510 + 0.830170i \(0.688243\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 7.88854 0.655108
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.3328 −0.846497 −0.423249 0.906014i \(-0.639110\pi\)
−0.423249 + 0.906014i \(0.639110\pi\)
\(150\) 0 0
\(151\) −21.1246 −1.71910 −0.859548 0.511055i \(-0.829255\pi\)
−0.859548 + 0.511055i \(0.829255\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −17.3152 −1.39079
\(156\) 0 0
\(157\) 2.29180 0.182905 0.0914526 0.995809i \(-0.470849\pi\)
0.0914526 + 0.995809i \(0.470849\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.964944 −0.0760482
\(162\) 0 0
\(163\) 14.3820 1.12648 0.563241 0.826292i \(-0.309554\pi\)
0.563241 + 0.826292i \(0.309554\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −21.9991 −1.70235 −0.851173 0.524886i \(-0.824108\pi\)
−0.851173 + 0.524886i \(0.824108\pi\)
\(168\) 0 0
\(169\) −12.9443 −0.995713
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.50865 −0.722930 −0.361465 0.932386i \(-0.617723\pi\)
−0.361465 + 0.932386i \(0.617723\pi\)
\(174\) 0 0
\(175\) −1.38197 −0.104467
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −15.3853 −1.14995 −0.574977 0.818170i \(-0.694989\pi\)
−0.574977 + 0.818170i \(0.694989\pi\)
\(180\) 0 0
\(181\) −16.2361 −1.20682 −0.603409 0.797432i \(-0.706191\pi\)
−0.603409 + 0.797432i \(0.706191\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 16.9466 1.24594
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 23.5605 1.70477 0.852387 0.522911i \(-0.175154\pi\)
0.852387 + 0.522911i \(0.175154\pi\)
\(192\) 0 0
\(193\) −11.1459 −0.802299 −0.401150 0.916013i \(-0.631389\pi\)
−0.401150 + 0.916013i \(0.631389\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 26.0867 1.85860 0.929301 0.369324i \(-0.120411\pi\)
0.929301 + 0.369324i \(0.120411\pi\)
\(198\) 0 0
\(199\) 4.23607 0.300287 0.150143 0.988664i \(-0.452026\pi\)
0.150143 + 0.988664i \(0.452026\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.12262 0.219165
\(204\) 0 0
\(205\) −23.0902 −1.61269
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −10.3820 −0.714724 −0.357362 0.933966i \(-0.616324\pi\)
−0.357362 + 0.933966i \(0.616324\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.57877 0.516868
\(216\) 0 0
\(217\) −6.85410 −0.465287
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.56131 0.105025
\(222\) 0 0
\(223\) −6.41641 −0.429674 −0.214837 0.976650i \(-0.568922\pi\)
−0.214837 + 0.976650i \(0.568922\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −24.2976 −1.61269 −0.806344 0.591446i \(-0.798557\pi\)
−0.806344 + 0.591446i \(0.798557\pi\)
\(228\) 0 0
\(229\) 11.4164 0.754417 0.377209 0.926128i \(-0.376884\pi\)
0.377209 + 0.926128i \(0.376884\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.64888 −0.370070 −0.185035 0.982732i \(-0.559240\pi\)
−0.185035 + 0.982732i \(0.559240\pi\)
\(234\) 0 0
\(235\) −24.5967 −1.60451
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.68393 0.302979 0.151489 0.988459i \(-0.451593\pi\)
0.151489 + 0.988459i \(0.451593\pi\)
\(240\) 0 0
\(241\) −22.9443 −1.47797 −0.738985 0.673722i \(-0.764695\pi\)
−0.738985 + 0.673722i \(0.764695\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 15.1575 0.968379
\(246\) 0 0
\(247\) −0.909830 −0.0578911
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.7188 1.05528 0.527642 0.849467i \(-0.323076\pi\)
0.527642 + 0.849467i \(0.323076\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.45614 0.277967 0.138983 0.990295i \(-0.455617\pi\)
0.138983 + 0.990295i \(0.455617\pi\)
\(258\) 0 0
\(259\) 6.70820 0.416828
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.7014 −0.659876 −0.329938 0.944003i \(-0.607028\pi\)
−0.329938 + 0.944003i \(0.607028\pi\)
\(264\) 0 0
\(265\) 3.94427 0.242295
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 11.2978 0.688836 0.344418 0.938816i \(-0.388076\pi\)
0.344418 + 0.938816i \(0.388076\pi\)
\(270\) 0 0
\(271\) 2.14590 0.130354 0.0651770 0.997874i \(-0.479239\pi\)
0.0651770 + 0.997874i \(0.479239\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 8.27051 0.496927 0.248463 0.968641i \(-0.420074\pi\)
0.248463 + 0.968641i \(0.420074\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.2802 −1.09050 −0.545251 0.838273i \(-0.683566\pi\)
−0.545251 + 0.838273i \(0.683566\pi\)
\(282\) 0 0
\(283\) −25.4164 −1.51085 −0.755424 0.655236i \(-0.772569\pi\)
−0.755424 + 0.655236i \(0.772569\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.14008 −0.539522
\(288\) 0 0
\(289\) 26.7426 1.57310
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.14008 0.533969 0.266985 0.963701i \(-0.413973\pi\)
0.266985 + 0.963701i \(0.413973\pi\)
\(294\) 0 0
\(295\) 27.0344 1.57401
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.227792 0.0131736
\(300\) 0 0
\(301\) 3.00000 0.172917
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.29846 0.131610
\(306\) 0 0
\(307\) 14.0902 0.804168 0.402084 0.915603i \(-0.368286\pi\)
0.402084 + 0.915603i \(0.368286\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.01745 −0.341219 −0.170609 0.985339i \(-0.554574\pi\)
−0.170609 + 0.985339i \(0.554574\pi\)
\(312\) 0 0
\(313\) −13.1803 −0.744997 −0.372498 0.928033i \(-0.621499\pi\)
−0.372498 + 0.928033i \(0.621499\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −27.4202 −1.54007 −0.770037 0.637999i \(-0.779762\pi\)
−0.770037 + 0.637999i \(0.779762\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −25.4903 −1.41832
\(324\) 0 0
\(325\) 0.326238 0.0180964
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9.73645 −0.536788
\(330\) 0 0
\(331\) 10.4164 0.572538 0.286269 0.958149i \(-0.407585\pi\)
0.286269 + 0.958149i \(0.407585\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.9292 −0.597125
\(336\) 0 0
\(337\) −13.2361 −0.721015 −0.360507 0.932756i \(-0.617396\pi\)
−0.360507 + 0.932756i \(0.617396\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.4204 0.774127 0.387063 0.922053i \(-0.373489\pi\)
0.387063 + 0.922053i \(0.373489\pi\)
\(348\) 0 0
\(349\) −11.7639 −0.629709 −0.314854 0.949140i \(-0.601956\pi\)
−0.314854 + 0.949140i \(0.601956\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.2802 0.972954 0.486477 0.873693i \(-0.338282\pi\)
0.486477 + 0.873693i \(0.338282\pi\)
\(354\) 0 0
\(355\) −27.0344 −1.43484
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 30.3151 1.59997 0.799984 0.600021i \(-0.204841\pi\)
0.799984 + 0.600021i \(0.204841\pi\)
\(360\) 0 0
\(361\) −4.14590 −0.218205
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 36.5603 1.91365
\(366\) 0 0
\(367\) −1.56231 −0.0815517 −0.0407759 0.999168i \(-0.512983\pi\)
−0.0407759 + 0.999168i \(0.512983\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.56131 0.0810593
\(372\) 0 0
\(373\) −13.0000 −0.673114 −0.336557 0.941663i \(-0.609263\pi\)
−0.336557 + 0.941663i \(0.609263\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.737151 −0.0379652
\(378\) 0 0
\(379\) 19.8328 1.01874 0.509372 0.860547i \(-0.329878\pi\)
0.509372 + 0.860547i \(0.329878\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.5079 −0.945712 −0.472856 0.881140i \(-0.656777\pi\)
−0.472856 + 0.881140i \(0.656777\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −24.8940 −1.26217 −0.631087 0.775712i \(-0.717391\pi\)
−0.631087 + 0.775712i \(0.717391\pi\)
\(390\) 0 0
\(391\) 6.38197 0.322750
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.78910 −0.0900196
\(396\) 0 0
\(397\) 21.0000 1.05396 0.526980 0.849878i \(-0.323324\pi\)
0.526980 + 0.849878i \(0.323324\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.7890 0.738525 0.369263 0.929325i \(-0.379610\pi\)
0.369263 + 0.929325i \(0.379610\pi\)
\(402\) 0 0
\(403\) 1.61803 0.0806000
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −18.0000 −0.890043 −0.445021 0.895520i \(-0.646804\pi\)
−0.445021 + 0.895520i \(0.646804\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.7014 0.526581
\(414\) 0 0
\(415\) 15.2016 0.746218
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 32.1042 1.56839 0.784196 0.620514i \(-0.213076\pi\)
0.784196 + 0.620514i \(0.213076\pi\)
\(420\) 0 0
\(421\) 13.8541 0.675208 0.337604 0.941288i \(-0.390384\pi\)
0.337604 + 0.941288i \(0.390384\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 9.14008 0.443359
\(426\) 0 0
\(427\) 0.909830 0.0440298
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.54371 0.411536 0.205768 0.978601i \(-0.434031\pi\)
0.205768 + 0.978601i \(0.434031\pi\)
\(432\) 0 0
\(433\) −10.7639 −0.517282 −0.258641 0.965974i \(-0.583275\pi\)
−0.258641 + 0.965974i \(0.583275\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.71899 −0.177903
\(438\) 0 0
\(439\) 14.7082 0.701984 0.350992 0.936378i \(-0.385844\pi\)
0.350992 + 0.936378i \(0.385844\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 24.5254 1.16524 0.582619 0.812746i \(-0.302028\pi\)
0.582619 + 0.812746i \(0.302028\pi\)
\(444\) 0 0
\(445\) −18.2148 −0.863463
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −9.36787 −0.442097 −0.221049 0.975263i \(-0.570948\pi\)
−0.221049 + 0.975263i \(0.570948\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.596368 0.0279582
\(456\) 0 0
\(457\) −24.2705 −1.13533 −0.567663 0.823261i \(-0.692152\pi\)
−0.567663 + 0.823261i \(0.692152\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −27.0517 −1.25992 −0.629961 0.776627i \(-0.716929\pi\)
−0.629961 + 0.776627i \(0.716929\pi\)
\(462\) 0 0
\(463\) −32.5623 −1.51330 −0.756649 0.653821i \(-0.773165\pi\)
−0.756649 + 0.653821i \(0.773165\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12.9999 −0.601561 −0.300781 0.953693i \(-0.597247\pi\)
−0.300781 + 0.953693i \(0.597247\pi\)
\(468\) 0 0
\(469\) −4.32624 −0.199767
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −5.32624 −0.244385
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1.56131 −0.0713382 −0.0356691 0.999364i \(-0.511356\pi\)
−0.0356691 + 0.999364i \(0.511356\pi\)
\(480\) 0 0
\(481\) −1.58359 −0.0722056
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −29.2093 −1.32633
\(486\) 0 0
\(487\) 1.76393 0.0799314 0.0399657 0.999201i \(-0.487275\pi\)
0.0399657 + 0.999201i \(0.487275\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −29.2093 −1.31820 −0.659099 0.752056i \(-0.729062\pi\)
−0.659099 + 0.752056i \(0.729062\pi\)
\(492\) 0 0
\(493\) −20.6525 −0.930141
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10.7014 −0.480023
\(498\) 0 0
\(499\) 9.56231 0.428068 0.214034 0.976826i \(-0.431340\pi\)
0.214034 + 0.976826i \(0.431340\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 44.7354 1.99465 0.997327 0.0730614i \(-0.0232769\pi\)
0.997327 + 0.0730614i \(0.0232769\pi\)
\(504\) 0 0
\(505\) −18.2148 −0.810547
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 19.8415 0.879458 0.439729 0.898131i \(-0.355075\pi\)
0.439729 + 0.898131i \(0.355075\pi\)
\(510\) 0 0
\(511\) 14.4721 0.640210
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 33.8933 1.49352
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −11.2978 −0.494964 −0.247482 0.968893i \(-0.579603\pi\)
−0.247482 + 0.968893i \(0.579603\pi\)
\(522\) 0 0
\(523\) 29.0344 1.26959 0.634794 0.772682i \(-0.281085\pi\)
0.634794 + 0.772682i \(0.281085\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 45.3318 1.97468
\(528\) 0 0
\(529\) −22.0689 −0.959517
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.15768 0.0934595
\(534\) 0 0
\(535\) 30.9787 1.33933
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 11.8541 0.509648 0.254824 0.966987i \(-0.417983\pi\)
0.254824 + 0.966987i \(0.417983\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 45.9282 1.96735
\(546\) 0 0
\(547\) 25.3262 1.08287 0.541436 0.840742i \(-0.317881\pi\)
0.541436 + 0.840742i \(0.317881\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.0349 0.512704
\(552\) 0 0
\(553\) −0.708204 −0.0301159
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −28.9815 −1.22799 −0.613994 0.789311i \(-0.710438\pi\)
−0.613994 + 0.789311i \(0.710438\pi\)
\(558\) 0 0
\(559\) −0.708204 −0.0299538
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.227792 0.00960030 0.00480015 0.999988i \(-0.498472\pi\)
0.00480015 + 0.999988i \(0.498472\pi\)
\(564\) 0 0
\(565\) 30.9787 1.30328
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 20.6656 0.866348 0.433174 0.901310i \(-0.357394\pi\)
0.433174 + 0.901310i \(0.357394\pi\)
\(570\) 0 0
\(571\) 25.9230 1.08484 0.542422 0.840106i \(-0.317508\pi\)
0.542422 + 0.840106i \(0.317508\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.33352 0.0556116
\(576\) 0 0
\(577\) −22.1803 −0.923380 −0.461690 0.887041i \(-0.652757\pi\)
−0.461690 + 0.887041i \(0.652757\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.01745 0.249646
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.0524 0.745101 0.372550 0.928012i \(-0.378483\pi\)
0.372550 + 0.928012i \(0.378483\pi\)
\(588\) 0 0
\(589\) −26.4164 −1.08847
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.78910 0.0734697 0.0367348 0.999325i \(-0.488304\pi\)
0.0367348 + 0.999325i \(0.488304\pi\)
\(594\) 0 0
\(595\) 16.7082 0.684970
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 12.4164 0.506476 0.253238 0.967404i \(-0.418504\pi\)
0.253238 + 0.967404i \(0.418504\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 5.72949 0.232553 0.116276 0.993217i \(-0.462904\pi\)
0.116276 + 0.993217i \(0.462904\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.29846 0.0929859
\(612\) 0 0
\(613\) 36.8328 1.48766 0.743832 0.668367i \(-0.233006\pi\)
0.743832 + 0.668367i \(0.233006\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −33.6655 −1.35532 −0.677661 0.735375i \(-0.737006\pi\)
−0.677661 + 0.735375i \(0.737006\pi\)
\(618\) 0 0
\(619\) −35.7639 −1.43747 −0.718737 0.695282i \(-0.755279\pi\)
−0.718737 + 0.695282i \(0.755279\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −7.21019 −0.288870
\(624\) 0 0
\(625\) −30.0000 −1.20000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −44.3669 −1.76902
\(630\) 0 0
\(631\) −13.4377 −0.534946 −0.267473 0.963565i \(-0.586189\pi\)
−0.267473 + 0.963565i \(0.586189\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −40.8757 −1.62210
\(636\) 0 0
\(637\) −1.41641 −0.0561201
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18.8765 −0.745578 −0.372789 0.927916i \(-0.621598\pi\)
−0.372789 + 0.927916i \(0.621598\pi\)
\(642\) 0 0
\(643\) 45.9787 1.81322 0.906612 0.421966i \(-0.138660\pi\)
0.906612 + 0.421966i \(0.138660\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.368576 −0.0144902 −0.00724510 0.999974i \(-0.502306\pi\)
−0.00724510 + 0.999974i \(0.502306\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 27.2794 1.06753 0.533764 0.845634i \(-0.320777\pi\)
0.533764 + 0.845634i \(0.320777\pi\)
\(654\) 0 0
\(655\) 21.5836 0.843341
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.0349 −0.468813 −0.234407 0.972139i \(-0.575315\pi\)
−0.234407 + 0.972139i \(0.575315\pi\)
\(660\) 0 0
\(661\) −3.90983 −0.152075 −0.0760374 0.997105i \(-0.524227\pi\)
−0.0760374 + 0.997105i \(0.524227\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −9.73645 −0.377563
\(666\) 0 0
\(667\) −3.01316 −0.116670
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −10.1246 −0.390275 −0.195138 0.980776i \(-0.562515\pi\)
−0.195138 + 0.980776i \(0.562515\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10.1050 −0.388368 −0.194184 0.980965i \(-0.562206\pi\)
−0.194184 + 0.980965i \(0.562206\pi\)
\(678\) 0 0
\(679\) −11.5623 −0.443721
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 16.5781 0.634342 0.317171 0.948368i \(-0.397267\pi\)
0.317171 + 0.948368i \(0.397267\pi\)
\(684\) 0 0
\(685\) 38.8673 1.48504
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.368576 −0.0140416
\(690\) 0 0
\(691\) −33.3050 −1.26698 −0.633490 0.773751i \(-0.718378\pi\)
−0.633490 + 0.773751i \(0.718378\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 33.2099 1.25972
\(696\) 0 0
\(697\) 60.4508 2.28974
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −22.7363 −0.858738 −0.429369 0.903129i \(-0.641264\pi\)
−0.429369 + 0.903129i \(0.641264\pi\)
\(702\) 0 0
\(703\) 25.8541 0.975106
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7.21019 −0.271167
\(708\) 0 0
\(709\) 22.6738 0.851531 0.425766 0.904834i \(-0.360005\pi\)
0.425766 + 0.904834i \(0.360005\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.61382 0.247690
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 12.2627 0.457322 0.228661 0.973506i \(-0.426565\pi\)
0.228661 + 0.973506i \(0.426565\pi\)
\(720\) 0 0
\(721\) 13.4164 0.499653
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.31536 −0.160268
\(726\) 0 0
\(727\) −13.4377 −0.498376 −0.249188 0.968455i \(-0.580164\pi\)
−0.249188 + 0.968455i \(0.580164\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −19.8415 −0.733863
\(732\) 0 0
\(733\) 11.7082 0.432452 0.216226 0.976343i \(-0.430625\pi\)
0.216226 + 0.976343i \(0.430625\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −15.8328 −0.582420 −0.291210 0.956659i \(-0.594058\pi\)
−0.291210 + 0.956659i \(0.594058\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −51.2085 −1.87866 −0.939329 0.343019i \(-0.888551\pi\)
−0.939329 + 0.343019i \(0.888551\pi\)
\(744\) 0 0
\(745\) 26.1033 0.956352
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 12.2627 0.448069
\(750\) 0 0
\(751\) −35.7426 −1.30427 −0.652134 0.758104i \(-0.726126\pi\)
−0.652134 + 0.758104i \(0.726126\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 53.3662 1.94219
\(756\) 0 0
\(757\) −33.4721 −1.21657 −0.608283 0.793720i \(-0.708141\pi\)
−0.608283 + 0.793720i \(0.708141\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21.1750 −0.767593 −0.383796 0.923418i \(-0.625384\pi\)
−0.383796 + 0.923418i \(0.625384\pi\)
\(762\) 0 0
\(763\) 18.1803 0.658172
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.52626 −0.0912178
\(768\) 0 0
\(769\) −7.85410 −0.283226 −0.141613 0.989922i \(-0.545229\pi\)
−0.141613 + 0.989922i \(0.545229\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −38.7180 −1.39259 −0.696295 0.717756i \(-0.745169\pi\)
−0.696295 + 0.717756i \(0.745169\pi\)
\(774\) 0 0
\(775\) 9.47214 0.340249
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −35.2268 −1.26213
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −5.78966 −0.206642
\(786\) 0 0
\(787\) −40.7214 −1.45156 −0.725780 0.687927i \(-0.758521\pi\)
−0.725780 + 0.687927i \(0.758521\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.2627 0.436011
\(792\) 0 0
\(793\) −0.214782 −0.00762712
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.66704 0.0944714 0.0472357 0.998884i \(-0.484959\pi\)
0.0472357 + 0.998884i \(0.484959\pi\)
\(798\) 0 0
\(799\) 64.3951 2.27814
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 2.43769 0.0859174
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −41.0165 −1.44206 −0.721031 0.692903i \(-0.756331\pi\)
−0.721031 + 0.692903i \(0.756331\pi\)
\(810\) 0 0
\(811\) 53.7984 1.88912 0.944558 0.328344i \(-0.106491\pi\)
0.944558 + 0.328344i \(0.106491\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −36.3325 −1.27267
\(816\) 0 0
\(817\) 11.5623 0.404514
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 36.7881 1.28391 0.641957 0.766741i \(-0.278123\pi\)
0.641957 + 0.766741i \(0.278123\pi\)
\(822\) 0 0
\(823\) 23.6525 0.824473 0.412237 0.911077i \(-0.364748\pi\)
0.412237 + 0.911077i \(0.364748\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.6480 0.961416 0.480708 0.876881i \(-0.340380\pi\)
0.480708 + 0.876881i \(0.340380\pi\)
\(828\) 0 0
\(829\) −6.20163 −0.215391 −0.107696 0.994184i \(-0.534347\pi\)
−0.107696 + 0.994184i \(0.534347\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −39.6829 −1.37493
\(834\) 0 0
\(835\) 55.5755 1.92327
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −45.7004 −1.57775 −0.788876 0.614552i \(-0.789337\pi\)
−0.788876 + 0.614552i \(0.789337\pi\)
\(840\) 0 0
\(841\) −19.2492 −0.663766
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 32.7005 1.12493
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −6.47304 −0.221893
\(852\) 0 0
\(853\) −33.1803 −1.13607 −0.568037 0.823003i \(-0.692297\pi\)
−0.568037 + 0.823003i \(0.692297\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24.2976 −0.829991 −0.414995 0.909824i \(-0.636217\pi\)
−0.414995 + 0.909824i \(0.636217\pi\)
\(858\) 0 0
\(859\) −19.6525 −0.670534 −0.335267 0.942123i \(-0.608826\pi\)
−0.335267 + 0.942123i \(0.608826\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 40.4201 1.37592 0.687958 0.725751i \(-0.258507\pi\)
0.687958 + 0.725751i \(0.258507\pi\)
\(864\) 0 0
\(865\) 24.0213 0.816748
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 1.02129 0.0346050
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −9.14008 −0.308991
\(876\) 0 0
\(877\) 34.7771 1.17434 0.587169 0.809464i \(-0.300242\pi\)
0.587169 + 0.809464i \(0.300242\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 15.9817 0.538437 0.269218 0.963079i \(-0.413235\pi\)
0.269218 + 0.963079i \(0.413235\pi\)
\(882\) 0 0
\(883\) 14.8328 0.499164 0.249582 0.968354i \(-0.419707\pi\)
0.249582 + 0.968354i \(0.419707\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14.1926 −0.476540 −0.238270 0.971199i \(-0.576580\pi\)
−0.238270 + 0.971199i \(0.576580\pi\)
\(888\) 0 0
\(889\) −16.1803 −0.542671
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −37.5253 −1.25573
\(894\) 0 0
\(895\) 38.8673 1.29919
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −21.4028 −0.713823
\(900\) 0 0
\(901\) −10.3262 −0.344017
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 41.0165 1.36343
\(906\) 0 0
\(907\) 0.729490 0.0242223 0.0121112 0.999927i \(-0.496145\pi\)
0.0121112 + 0.999927i \(0.496145\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −40.6479 −1.34672 −0.673362 0.739313i \(-0.735150\pi\)
−0.673362 + 0.739313i \(0.735150\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.54371 0.282138
\(918\) 0 0
\(919\) 53.8328 1.77578 0.887890 0.460055i \(-0.152170\pi\)
0.887890 + 0.460055i \(0.152170\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.52626 0.0831527
\(924\) 0 0
\(925\) −9.27051 −0.304812
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 39.9107 1.30943 0.654714 0.755876i \(-0.272789\pi\)
0.654714 + 0.755876i \(0.272789\pi\)
\(930\) 0 0
\(931\) 23.1246 0.757879
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 44.1246 1.44149 0.720744 0.693201i \(-0.243800\pi\)
0.720744 + 0.693201i \(0.243800\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −12.4035 −0.404342 −0.202171 0.979350i \(-0.564800\pi\)
−0.202171 + 0.979350i \(0.564800\pi\)
\(942\) 0 0
\(943\) 8.81966 0.287208
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 10.7014 0.347748 0.173874 0.984768i \(-0.444371\pi\)
0.173874 + 0.984768i \(0.444371\pi\)
\(948\) 0 0
\(949\) −3.41641 −0.110901
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −29.5779 −0.958123 −0.479061 0.877781i \(-0.659023\pi\)
−0.479061 + 0.877781i \(0.659023\pi\)
\(954\) 0 0
\(955\) −59.5197 −1.92601
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 15.3853 0.496818
\(960\) 0 0
\(961\) 15.9787 0.515442
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 28.1574 0.906418
\(966\) 0 0
\(967\) 57.5623 1.85108 0.925539 0.378651i \(-0.123612\pi\)
0.925539 + 0.378651i \(0.123612\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 25.2626 0.810714 0.405357 0.914158i \(-0.367147\pi\)
0.405357 + 0.914158i \(0.367147\pi\)
\(972\) 0 0
\(973\) 13.1459 0.421438
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.2976 0.777349 0.388675 0.921375i \(-0.372933\pi\)
0.388675 + 0.921375i \(0.372933\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −9.36787 −0.298789 −0.149394 0.988778i \(-0.547732\pi\)
−0.149394 + 0.988778i \(0.547732\pi\)
\(984\) 0 0
\(985\) −65.9017 −2.09980
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.89483 −0.0920503
\(990\) 0 0
\(991\) −20.3951 −0.647872 −0.323936 0.946079i \(-0.605006\pi\)
−0.323936 + 0.946079i \(0.605006\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −10.7014 −0.339257
\(996\) 0 0
\(997\) −12.0344 −0.381135 −0.190567 0.981674i \(-0.561033\pi\)
−0.190567 + 0.981674i \(0.561033\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4356.2.a.x.1.2 4
3.2 odd 2 inner 4356.2.a.x.1.3 4
11.7 odd 10 396.2.j.d.181.1 8
11.8 odd 10 396.2.j.d.361.1 yes 8
11.10 odd 2 4356.2.a.z.1.2 4
33.8 even 10 396.2.j.d.361.2 yes 8
33.29 even 10 396.2.j.d.181.2 yes 8
33.32 even 2 4356.2.a.z.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
396.2.j.d.181.1 8 11.7 odd 10
396.2.j.d.181.2 yes 8 33.29 even 10
396.2.j.d.361.1 yes 8 11.8 odd 10
396.2.j.d.361.2 yes 8 33.8 even 10
4356.2.a.x.1.2 4 1.1 even 1 trivial
4356.2.a.x.1.3 4 3.2 odd 2 inner
4356.2.a.z.1.2 4 11.10 odd 2
4356.2.a.z.1.3 4 33.32 even 2