Properties

Label 3960.1.b.c.1979.3
Level 39603960
Weight 11
Character 3960.1979
Analytic conductor 1.9761.976
Analytic rank 00
Dimension 88
Projective image D8D_{8}
CM discriminant -55
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,1,Mod(1979,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.1979");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3960=2332511 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3960.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.976297450031.97629745003
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ16)\Q(\zeta_{16})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+1 x^{8} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D8D_{8}
Projective field: Galois closure of 8.2.2483965440000.8

Embedding invariants

Embedding label 1979.3
Root 0.382683+0.923880i0.382683 + 0.923880i of defining polynomial
Character χ\chi == 3960.1979
Dual form 3960.1.b.c.1979.4

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.3826830.923880i)q2+(0.707107+0.707107i)q41.00000q50.765367iq7+(0.923880+0.382683i)q8+(0.382683+0.923880i)q101.00000iq11+1.84776iq13+(0.707107+0.292893i)q141.00000iq160.765367iq17+(0.7071070.707107i)q20+(0.923880+0.382683i)q22+1.00000q25+(1.707110.707107i)q26+(0.541196+0.541196i)q281.41421iq31+(0.923880+0.382683i)q32+(0.707107+0.292893i)q34+0.765367iq35+(0.9238800.382683i)q400.765367q43+(0.707107+0.707107i)q44+0.414214q49+(0.3826830.923880i)q50+(1.306561.30656i)q52+1.00000iq55+(0.2928930.707107i)q561.41421iq59+(1.30656+0.541196i)q62+(0.707107+0.707107i)q641.84776iq65+(0.541196+0.541196i)q68+(0.7071070.292893i)q701.41421q711.84776q730.765367q77+1.00000iq801.84776iq83+0.765367iq85+(0.292893+0.707107i)q86+(0.3826830.923880i)q882.00000iq89+1.41421q91+(0.1585130.382683i)q98+O(q100)q+(-0.382683 - 0.923880i) q^{2} +(-0.707107 + 0.707107i) q^{4} -1.00000 q^{5} -0.765367i q^{7} +(0.923880 + 0.382683i) q^{8} +(0.382683 + 0.923880i) q^{10} -1.00000i q^{11} +1.84776i q^{13} +(-0.707107 + 0.292893i) q^{14} -1.00000i q^{16} -0.765367i q^{17} +(0.707107 - 0.707107i) q^{20} +(-0.923880 + 0.382683i) q^{22} +1.00000 q^{25} +(1.70711 - 0.707107i) q^{26} +(0.541196 + 0.541196i) q^{28} -1.41421i q^{31} +(-0.923880 + 0.382683i) q^{32} +(-0.707107 + 0.292893i) q^{34} +0.765367i q^{35} +(-0.923880 - 0.382683i) q^{40} -0.765367 q^{43} +(0.707107 + 0.707107i) q^{44} +0.414214 q^{49} +(-0.382683 - 0.923880i) q^{50} +(-1.30656 - 1.30656i) q^{52} +1.00000i q^{55} +(0.292893 - 0.707107i) q^{56} -1.41421i q^{59} +(-1.30656 + 0.541196i) q^{62} +(0.707107 + 0.707107i) q^{64} -1.84776i q^{65} +(0.541196 + 0.541196i) q^{68} +(0.707107 - 0.292893i) q^{70} -1.41421 q^{71} -1.84776 q^{73} -0.765367 q^{77} +1.00000i q^{80} -1.84776i q^{83} +0.765367i q^{85} +(0.292893 + 0.707107i) q^{86} +(0.382683 - 0.923880i) q^{88} -2.00000i q^{89} +1.41421 q^{91} +(-0.158513 - 0.382683i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q5+8q25+8q268q49+8q56+8q86+O(q100) 8 q - 8 q^{5} + 8 q^{25} + 8 q^{26} - 8 q^{49} + 8 q^{56} + 8 q^{86}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3960Z)×\left(\mathbb{Z}/3960\mathbb{Z}\right)^\times.

nn 991991 19811981 23772377 25212521 35213521
χ(n)\chi(n) 1-1 1-1 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.382683 0.923880i −0.382683 0.923880i
33 0 0
44 −0.707107 + 0.707107i −0.707107 + 0.707107i
55 −1.00000 −1.00000
66 0 0
77 0.765367i 0.765367i −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 0.382683i 0.125000π-0.125000\pi
88 0.923880 + 0.382683i 0.923880 + 0.382683i
99 0 0
1010 0.382683 + 0.923880i 0.382683 + 0.923880i
1111 1.00000i 1.00000i
1212 0 0
1313 1.84776i 1.84776i 0.382683 + 0.923880i 0.375000π0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
1414 −0.707107 + 0.292893i −0.707107 + 0.292893i
1515 0 0
1616 1.00000i 1.00000i
1717 0.765367i 0.765367i −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 0.382683i 0.125000π-0.125000\pi
1818 0 0
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0.707107 0.707107i 0.707107 0.707107i
2121 0 0
2222 −0.923880 + 0.382683i −0.923880 + 0.382683i
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0 0
2525 1.00000 1.00000
2626 1.70711 0.707107i 1.70711 0.707107i
2727 0 0
2828 0.541196 + 0.541196i 0.541196 + 0.541196i
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
3232 −0.923880 + 0.382683i −0.923880 + 0.382683i
3333 0 0
3434 −0.707107 + 0.292893i −0.707107 + 0.292893i
3535 0.765367i 0.765367i
3636 0 0
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 0 0
3939 0 0
4040 −0.923880 0.382683i −0.923880 0.382683i
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 0 0
4343 −0.765367 −0.765367 −0.382683 0.923880i 0.625000π-0.625000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
4444 0.707107 + 0.707107i 0.707107 + 0.707107i
4545 0 0
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 0.414214 0.414214
5050 −0.382683 0.923880i −0.382683 0.923880i
5151 0 0
5252 −1.30656 1.30656i −1.30656 1.30656i
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 1.00000i 1.00000i
5656 0.292893 0.707107i 0.292893 0.707107i
5757 0 0
5858 0 0
5959 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
6060 0 0
6161 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6262 −1.30656 + 0.541196i −1.30656 + 0.541196i
6363 0 0
6464 0.707107 + 0.707107i 0.707107 + 0.707107i
6565 1.84776i 1.84776i
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0.541196 + 0.541196i 0.541196 + 0.541196i
6969 0 0
7070 0.707107 0.292893i 0.707107 0.292893i
7171 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
7272 0 0
7373 −1.84776 −1.84776 −0.923880 0.382683i 0.875000π-0.875000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
7474 0 0
7575 0 0
7676 0 0
7777 −0.765367 −0.765367
7878 0 0
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 1.00000i 1.00000i
8181 0 0
8282 0 0
8383 1.84776i 1.84776i −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 0.923880i 0.375000π-0.375000\pi
8484 0 0
8585 0.765367i 0.765367i
8686 0.292893 + 0.707107i 0.292893 + 0.707107i
8787 0 0
8888 0.382683 0.923880i 0.382683 0.923880i
8989 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
9090 0 0
9191 1.41421 1.41421
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 −0.158513 0.382683i −0.158513 0.382683i
9999 0 0
100100 −0.707107 + 0.707107i −0.707107 + 0.707107i
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 −0.707107 + 1.70711i −0.707107 + 1.70711i
105105 0 0
106106 0 0
107107 1.84776i 1.84776i 0.382683 + 0.923880i 0.375000π0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
108108 0 0
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0.923880 0.382683i 0.923880 0.382683i
111111 0 0
112112 −0.765367 −0.765367
113113 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 −1.30656 + 0.541196i −1.30656 + 0.541196i
119119 −0.585786 −0.585786
120120 0 0
121121 −1.00000 −1.00000
122122 0 0
123123 0 0
124124 1.00000 + 1.00000i 1.00000 + 1.00000i
125125 −1.00000 −1.00000
126126 0 0
127127 1.84776i 1.84776i −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 0.923880i 0.375000π-0.375000\pi
128128 0.382683 0.923880i 0.382683 0.923880i
129129 0 0
130130 −1.70711 + 0.707107i −1.70711 + 0.707107i
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0.292893 0.707107i 0.292893 0.707107i
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 −0.541196 0.541196i −0.541196 0.541196i
141141 0 0
142142 0.541196 + 1.30656i 0.541196 + 1.30656i
143143 1.84776 1.84776
144144 0 0
145145 0 0
146146 0.707107 + 1.70711i 0.707107 + 1.70711i
147147 0 0
148148 0 0
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 0 0
154154 0.292893 + 0.707107i 0.292893 + 0.707107i
155155 1.41421i 1.41421i
156156 0 0
157157 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
158158 0 0
159159 0 0
160160 0.923880 0.382683i 0.923880 0.382683i
161161 0 0
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 −1.70711 + 0.707107i −1.70711 + 0.707107i
167167 −0.765367 −0.765367 −0.382683 0.923880i 0.625000π-0.625000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
168168 0 0
169169 −2.41421 −2.41421
170170 0.707107 0.292893i 0.707107 0.292893i
171171 0 0
172172 0.541196 0.541196i 0.541196 0.541196i
173173 −1.84776 −1.84776 −0.923880 0.382683i 0.875000π-0.875000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
174174 0 0
175175 0.765367i 0.765367i
176176 −1.00000 −1.00000
177177 0 0
178178 −1.84776 + 0.765367i −1.84776 + 0.765367i
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
182182 −0.541196 1.30656i −0.541196 1.30656i
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 −0.765367 −0.765367
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 0.765367 0.765367 0.382683 0.923880i 0.375000π-0.375000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
194194 0 0
195195 0 0
196196 −0.292893 + 0.292893i −0.292893 + 0.292893i
197197 −1.84776 −1.84776 −0.923880 0.382683i 0.875000π-0.875000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
198198 0 0
199199 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
200200 0.923880 + 0.382683i 0.923880 + 0.382683i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 1.84776 1.84776
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 1.70711 0.707107i 1.70711 0.707107i
215215 0.765367 0.765367
216216 0 0
217217 −1.08239 −1.08239
218218 0 0
219219 0 0
220220 −0.707107 0.707107i −0.707107 0.707107i
221221 1.41421 1.41421
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 0.292893 + 0.707107i 0.292893 + 0.707107i
225225 0 0
226226 0 0
227227 0.765367i 0.765367i 0.923880 + 0.382683i 0.125000π0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
228228 0 0
229229 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
230230 0 0
231231 0 0
232232 0 0
233233 1.84776i 1.84776i 0.382683 + 0.923880i 0.375000π0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
234234 0 0
235235 0 0
236236 1.00000 + 1.00000i 1.00000 + 1.00000i
237237 0 0
238238 0.224171 + 0.541196i 0.224171 + 0.541196i
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 0.382683 + 0.923880i 0.382683 + 0.923880i
243243 0 0
244244 0 0
245245 −0.414214 −0.414214
246246 0 0
247247 0 0
248248 0.541196 1.30656i 0.541196 1.30656i
249249 0 0
250250 0.382683 + 0.923880i 0.382683 + 0.923880i
251251 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
252252 0 0
253253 0 0
254254 −1.70711 + 0.707107i −1.70711 + 0.707107i
255255 0 0
256256 −1.00000 −1.00000
257257 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 0 0
260260 1.30656 + 1.30656i 1.30656 + 1.30656i
261261 0 0
262262 0 0
263263 1.84776 1.84776 0.923880 0.382683i 0.125000π-0.125000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
270270 0 0
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 −0.765367 −0.765367
273273 0 0
274274 0 0
275275 1.00000i 1.00000i
276276 0 0
277277 0.765367i 0.765367i 0.923880 + 0.382683i 0.125000π0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
278278 0 0
279279 0 0
280280 −0.292893 + 0.707107i −0.292893 + 0.707107i
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 1.84776 1.84776 0.923880 0.382683i 0.125000π-0.125000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
284284 1.00000 1.00000i 1.00000 1.00000i
285285 0 0
286286 −0.707107 1.70711i −0.707107 1.70711i
287287 0 0
288288 0 0
289289 0.414214 0.414214
290290 0 0
291291 0 0
292292 1.30656 1.30656i 1.30656 1.30656i
293293 0.765367 0.765367 0.382683 0.923880i 0.375000π-0.375000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
294294 0 0
295295 1.41421i 1.41421i
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0.585786i 0.585786i
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 1.84776 1.84776 0.923880 0.382683i 0.125000π-0.125000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
308308 0.541196 0.541196i 0.541196 0.541196i
309309 0 0
310310 1.30656 0.541196i 1.30656 0.541196i
311311 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0 0
320320 −0.707107 0.707107i −0.707107 0.707107i
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 1.84776i 1.84776i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
332332 1.30656 + 1.30656i 1.30656 + 1.30656i
333333 0 0
334334 0.292893 + 0.707107i 0.292893 + 0.707107i
335335 0 0
336336 0 0
337337 −0.765367 −0.765367 −0.382683 0.923880i 0.625000π-0.625000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
338338 0.923880 + 2.23044i 0.923880 + 2.23044i
339339 0 0
340340 −0.541196 0.541196i −0.541196 0.541196i
341341 −1.41421 −1.41421
342342 0 0
343343 1.08239i 1.08239i
344344 −0.707107 0.292893i −0.707107 0.292893i
345345 0 0
346346 0.707107 + 1.70711i 0.707107 + 1.70711i
347347 0.765367i 0.765367i −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 0.382683i 0.125000π-0.125000\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 −0.707107 + 0.292893i −0.707107 + 0.292893i
351351 0 0
352352 0.382683 + 0.923880i 0.382683 + 0.923880i
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 1.41421 1.41421
356356 1.41421 + 1.41421i 1.41421 + 1.41421i
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 1.00000 1.00000
362362 −1.30656 + 0.541196i −1.30656 + 0.541196i
363363 0 0
364364 −1.00000 + 1.00000i −1.00000 + 1.00000i
365365 1.84776 1.84776
366366 0 0
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0.765367i 0.765367i −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 0.382683i 0.125000π-0.125000\pi
374374 0.292893 + 0.707107i 0.292893 + 0.707107i
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 0.765367 0.765367
386386 −0.292893 0.707107i −0.292893 0.707107i
387387 0 0
388388 0 0
389389 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
390390 0 0
391391 0 0
392392 0.382683 + 0.158513i 0.382683 + 0.158513i
393393 0 0
394394 0.707107 + 1.70711i 0.707107 + 1.70711i
395395 0 0
396396 0 0
397397 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
398398 −1.84776 + 0.765367i −1.84776 + 0.765367i
399399 0 0
400400 1.00000i 1.00000i
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 2.61313 2.61313
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 −1.08239 −1.08239
414414 0 0
415415 1.84776i 1.84776i
416416 −0.707107 1.70711i −0.707107 1.70711i
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
422422 0 0
423423 0 0
424424 0 0
425425 0.765367i 0.765367i
426426 0 0
427427 0 0
428428 −1.30656 1.30656i −1.30656 1.30656i
429429 0 0
430430 −0.292893 0.707107i −0.292893 0.707107i
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0.414214 + 1.00000i 0.414214 + 1.00000i
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 −0.382683 + 0.923880i −0.382683 + 0.923880i
441441 0 0
442442 −0.541196 1.30656i −0.541196 1.30656i
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 2.00000i 2.00000i
446446 0 0
447447 0 0
448448 0.541196 0.541196i 0.541196 0.541196i
449449 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0.707107 0.292893i 0.707107 0.292893i
455455 −1.41421 −1.41421
456456 0 0
457457 1.84776 1.84776 0.923880 0.382683i 0.125000π-0.125000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
458458 −1.84776 + 0.765367i −1.84776 + 0.765367i
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 0 0
466466 1.70711 0.707107i 1.70711 0.707107i
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0.541196 1.30656i 0.541196 1.30656i
473473 0.765367i 0.765367i
474474 0 0
475475 0 0
476476 0.414214 0.414214i 0.414214 0.414214i
477477 0 0
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0.707107 0.707107i 0.707107 0.707107i
485485 0 0
486486 0 0
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 0 0
489489 0 0
490490 0.158513 + 0.382683i 0.158513 + 0.382683i
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 −1.41421 −1.41421
497497 1.08239i 1.08239i
498498 0 0
499499 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
500500 0.707107 0.707107i 0.707107 0.707107i
501501 0 0
502502 1.30656 0.541196i 1.30656 0.541196i
503503 1.84776 1.84776 0.923880 0.382683i 0.125000π-0.125000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 1.30656 + 1.30656i 1.30656 + 1.30656i
509509 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
510510 0 0
511511 1.41421i 1.41421i
512512 0.382683 + 0.923880i 0.382683 + 0.923880i
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0.707107 1.70711i 0.707107 1.70711i
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 1.84776 1.84776 0.923880 0.382683i 0.125000π-0.125000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
524524 0 0
525525 0 0
526526 −0.707107 1.70711i −0.707107 1.70711i
527527 −1.08239 −1.08239
528528 0 0
529529 1.00000 1.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 1.84776i 1.84776i
536536 0 0
537537 0 0
538538 −0.541196 1.30656i −0.541196 1.30656i
539539 0.414214i 0.414214i
540540 0 0
541541 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
542542 0 0
543543 0 0
544544 0.292893 + 0.707107i 0.292893 + 0.707107i
545545 0 0
546546 0 0
547547 −1.84776 −1.84776 −0.923880 0.382683i 0.875000π-0.875000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
548548 0 0
549549 0 0
550550 −0.923880 + 0.382683i −0.923880 + 0.382683i
551551 0 0
552552 0 0
553553 0 0
554554 0.707107 0.292893i 0.707107 0.292893i
555555 0 0
556556 0 0
557557 0.765367 0.765367 0.382683 0.923880i 0.375000π-0.375000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
558558 0 0
559559 1.41421i 1.41421i
560560 0.765367 0.765367
561561 0 0
562562 0 0
563563 1.84776i 1.84776i −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 0.923880i 0.375000π-0.375000\pi
564564 0 0
565565 0 0
566566 −0.707107 1.70711i −0.707107 1.70711i
567567 0 0
568568 −1.30656 0.541196i −1.30656 0.541196i
569569 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 −1.30656 + 1.30656i −1.30656 + 1.30656i
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 −0.158513 0.382683i −0.158513 0.382683i
579579 0 0
580580 0 0
581581 −1.41421 −1.41421
582582 0 0
583583 0 0
584584 −1.70711 0.707107i −1.70711 0.707107i
585585 0 0
586586 −0.292893 0.707107i −0.292893 0.707107i
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 1.30656 0.541196i 1.30656 0.541196i
591591 0 0
592592 0 0
593593 1.84776i 1.84776i 0.382683 + 0.923880i 0.375000π0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
594594 0 0
595595 0.585786 0.585786
596596 0 0
597597 0 0
598598 0 0
599599 2.00000 2.00000 1.00000 00
1.00000 00
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0.541196 0.224171i 0.541196 0.224171i
603603 0 0
604604 0 0
605605 1.00000 1.00000
606606 0 0
607607 1.84776i 1.84776i −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 0.923880i 0.375000π-0.375000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 1.84776i 1.84776i −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 0.923880i 0.375000π-0.375000\pi
614614 −0.707107 1.70711i −0.707107 1.70711i
615615 0 0
616616 −0.707107 0.292893i −0.707107 0.292893i
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
620620 −1.00000 1.00000i −1.00000 1.00000i
621621 0 0
622622 −0.541196 1.30656i −0.541196 1.30656i
623623 −1.53073 −1.53073
624624 0 0
625625 1.00000 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
632632 0 0
633633 0 0
634634 0 0
635635 1.84776i 1.84776i
636636 0 0
637637 0.765367i 0.765367i
638638 0 0
639639 0 0
640640 −0.382683 + 0.923880i −0.382683 + 0.923880i
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 −1.41421 −1.41421
650650 1.70711 0.707107i 1.70711 0.707107i
651651 0 0
652652 0 0
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
662662 0.541196 + 1.30656i 0.541196 + 1.30656i
663663 0 0
664664 0.707107 1.70711i 0.707107 1.70711i
665665 0 0
666666 0 0
667667 0 0
668668 0.541196 0.541196i 0.541196 0.541196i
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −1.84776 −1.84776 −0.923880 0.382683i 0.875000π-0.875000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
674674 0.292893 + 0.707107i 0.292893 + 0.707107i
675675 0 0
676676 1.70711 1.70711i 1.70711 1.70711i
677677 −0.765367 −0.765367 −0.382683 0.923880i 0.625000π-0.625000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
678678 0 0
679679 0 0
680680 −0.292893 + 0.707107i −0.292893 + 0.707107i
681681 0 0
682682 0.541196 + 1.30656i 0.541196 + 1.30656i
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 −1.00000 + 0.414214i −1.00000 + 0.414214i
687687 0 0
688688 0.765367i 0.765367i
689689 0 0
690690 0 0
691691 2.00000 2.00000 1.00000 00
1.00000 00
692692 1.30656 1.30656i 1.30656 1.30656i
693693 0 0
694694 −0.707107 + 0.292893i −0.707107 + 0.292893i
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0.541196 + 0.541196i 0.541196 + 0.541196i
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0.707107 0.707107i 0.707107 0.707107i
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
710710 −0.541196 1.30656i −0.541196 1.30656i
711711 0 0
712712 0.765367 1.84776i 0.765367 1.84776i
713713 0 0
714714 0 0
715715 −1.84776 −1.84776
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 −0.382683 0.923880i −0.382683 0.923880i
723723 0 0
724724 1.00000 + 1.00000i 1.00000 + 1.00000i
725725 0 0
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 1.30656 + 0.541196i 1.30656 + 0.541196i
729729 0 0
730730 −0.707107 1.70711i −0.707107 1.70711i
731731 0.585786i 0.585786i
732732 0 0
733733 0.765367i 0.765367i 0.923880 + 0.382683i 0.125000π0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 −1.84776 −1.84776 −0.923880 0.382683i 0.875000π-0.875000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
744744 0 0
745745 0 0
746746 −0.707107 + 0.292893i −0.707107 + 0.292893i
747747 0 0
748748 0.541196 0.541196i 0.541196 0.541196i
749749 1.41421 1.41421
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 2.61313 2.61313
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 −0.292893 0.707107i −0.292893 0.707107i
771771 0 0
772772 −0.541196 + 0.541196i −0.541196 + 0.541196i
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 1.41421i 1.41421i
776776 0 0
777777 0 0
778778 0.541196 + 1.30656i 0.541196 + 1.30656i
779779 0 0
780780 0 0
781781 1.41421i 1.41421i
782782 0 0
783783 0 0
784784 0.414214i 0.414214i
785785 0 0
786786 0 0
787787 −0.765367 −0.765367 −0.382683 0.923880i 0.625000π-0.625000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
788788 1.30656 1.30656i 1.30656 1.30656i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 1.41421 + 1.41421i 1.41421 + 1.41421i
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 −0.923880 + 0.382683i −0.923880 + 0.382683i
801801 0 0
802802 0 0
803803 1.84776i 1.84776i
804804 0 0
805805 0 0
806806 −1.00000 2.41421i −1.00000 2.41421i
807807 0 0
808808 0 0
809809 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
824824 0 0
825825 0 0
826826 0.414214 + 1.00000i 0.414214 + 1.00000i
827827 0.765367i 0.765367i 0.923880 + 0.382683i 0.125000π0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
828828 0 0
829829 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
830830 1.70711 0.707107i 1.70711 0.707107i
831831 0 0
832832 −1.30656 + 1.30656i −1.30656 + 1.30656i
833833 0.317025i 0.317025i
834834 0 0
835835 0.765367 0.765367
836836 0 0
837837 0 0
838838 0 0
839839 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
840840 0 0
841841 1.00000 1.00000
842842 1.30656 0.541196i 1.30656 0.541196i
843843 0 0
844844 0 0
845845 2.41421 2.41421
846846 0 0
847847 0.765367i 0.765367i
848848 0 0
849849 0 0
850850 −0.707107 + 0.292893i −0.707107 + 0.292893i
851851 0 0
852852 0 0
853853 0.765367i 0.765367i −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 0.382683i 0.125000π-0.125000\pi
854854 0 0
855855 0 0
856856 −0.707107 + 1.70711i −0.707107 + 1.70711i
857857 1.84776i 1.84776i −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 0.923880i 0.375000π-0.375000\pi
858858 0 0
859859 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
860860 −0.541196 + 0.541196i −0.541196 + 0.541196i
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 1.84776 1.84776
866866 0 0
867867 0 0
868868 0.765367 0.765367i 0.765367 0.765367i
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0.765367i 0.765367i
876876 0 0
877877 1.84776i 1.84776i −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 0.923880i 0.375000π-0.375000\pi
878878 0 0
879879 0 0
880880 1.00000 1.00000
881881 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 −1.00000 + 1.00000i −1.00000 + 1.00000i
885885 0 0
886886 0 0
887887 −1.84776 −1.84776 −0.923880 0.382683i 0.875000π-0.875000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
888888 0 0
889889 −1.41421 −1.41421
890890 1.84776 0.765367i 1.84776 0.765367i
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 −0.707107 0.292893i −0.707107 0.292893i
897897 0 0
898898 1.84776 0.765367i 1.84776 0.765367i
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 1.41421i 1.41421i
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 −0.541196 0.541196i −0.541196 0.541196i
909909 0 0
910910 0.541196 + 1.30656i 0.541196 + 1.30656i
911911 2.00000 2.00000 1.00000 00
1.00000 00
912912 0 0
913913 −1.84776 −1.84776
914914 −0.707107 1.70711i −0.707107 1.70711i
915915 0 0
916916 1.41421 + 1.41421i 1.41421 + 1.41421i
917917 0 0
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 0 0
922922 0 0
923923 2.61313i 2.61313i
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
930930 0 0
931931 0 0
932932 −1.30656 1.30656i −1.30656 1.30656i
933933 0 0
934934 0 0
935935 0.765367 0.765367
936936 0 0
937937 −0.765367 −0.765367 −0.382683 0.923880i 0.625000π-0.625000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 −1.41421 −1.41421
945945 0 0
946946 0.707107 0.292893i 0.707107 0.292893i
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 3.41421i 3.41421i
950950 0 0
951951 0 0
952952 −0.541196 0.224171i −0.541196 0.224171i
953953 0.765367i 0.765367i −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 0.382683i 0.125000π-0.125000\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −1.00000 −1.00000
962962 0 0
963963 0 0
964964 0 0
965965 −0.765367 −0.765367
966966 0 0
967967 1.84776i 1.84776i 0.382683 + 0.923880i 0.375000π0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
968968 −0.923880 0.382683i −0.923880 0.382683i
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 −2.00000 −2.00000
980980 0.292893 0.292893i 0.292893 0.292893i
981981 0 0
982982 0 0
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 1.84776 1.84776
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
992992 0.541196 + 1.30656i 0.541196 + 1.30656i
993993 0 0
994994 1.00000 0.414214i 1.00000 0.414214i
995995 2.00000i 2.00000i
996996 0 0
997997 1.84776i 1.84776i 0.382683 + 0.923880i 0.375000π0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
998998 0.765367 + 1.84776i 0.765367 + 1.84776i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3960.1.b.c.1979.3 8
3.2 odd 2 3960.1.b.d.1979.6 yes 8
5.4 even 2 inner 3960.1.b.c.1979.6 yes 8
8.3 odd 2 3960.1.b.d.1979.5 yes 8
11.10 odd 2 inner 3960.1.b.c.1979.6 yes 8
15.14 odd 2 3960.1.b.d.1979.3 yes 8
24.11 even 2 inner 3960.1.b.c.1979.4 yes 8
33.32 even 2 3960.1.b.d.1979.3 yes 8
40.19 odd 2 3960.1.b.d.1979.4 yes 8
55.54 odd 2 CM 3960.1.b.c.1979.3 8
88.43 even 2 3960.1.b.d.1979.4 yes 8
120.59 even 2 inner 3960.1.b.c.1979.5 yes 8
165.164 even 2 3960.1.b.d.1979.6 yes 8
264.131 odd 2 inner 3960.1.b.c.1979.5 yes 8
440.219 even 2 3960.1.b.d.1979.5 yes 8
1320.659 odd 2 inner 3960.1.b.c.1979.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3960.1.b.c.1979.3 8 1.1 even 1 trivial
3960.1.b.c.1979.3 8 55.54 odd 2 CM
3960.1.b.c.1979.4 yes 8 24.11 even 2 inner
3960.1.b.c.1979.4 yes 8 1320.659 odd 2 inner
3960.1.b.c.1979.5 yes 8 120.59 even 2 inner
3960.1.b.c.1979.5 yes 8 264.131 odd 2 inner
3960.1.b.c.1979.6 yes 8 5.4 even 2 inner
3960.1.b.c.1979.6 yes 8 11.10 odd 2 inner
3960.1.b.d.1979.3 yes 8 15.14 odd 2
3960.1.b.d.1979.3 yes 8 33.32 even 2
3960.1.b.d.1979.4 yes 8 40.19 odd 2
3960.1.b.d.1979.4 yes 8 88.43 even 2
3960.1.b.d.1979.5 yes 8 8.3 odd 2
3960.1.b.d.1979.5 yes 8 440.219 even 2
3960.1.b.d.1979.6 yes 8 3.2 odd 2
3960.1.b.d.1979.6 yes 8 165.164 even 2