Properties

Label 3960.1.b.c.1979.3
Level $3960$
Weight $1$
Character 3960.1979
Analytic conductor $1.976$
Analytic rank $0$
Dimension $8$
Projective image $D_{8}$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,1,Mod(1979,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.1979");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3960.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.97629745003\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.2.2483965440000.8

Embedding invariants

Embedding label 1979.3
Root \(0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 3960.1979
Dual form 3960.1.b.c.1979.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.382683 - 0.923880i) q^{2} +(-0.707107 + 0.707107i) q^{4} -1.00000 q^{5} -0.765367i q^{7} +(0.923880 + 0.382683i) q^{8} +(0.382683 + 0.923880i) q^{10} -1.00000i q^{11} +1.84776i q^{13} +(-0.707107 + 0.292893i) q^{14} -1.00000i q^{16} -0.765367i q^{17} +(0.707107 - 0.707107i) q^{20} +(-0.923880 + 0.382683i) q^{22} +1.00000 q^{25} +(1.70711 - 0.707107i) q^{26} +(0.541196 + 0.541196i) q^{28} -1.41421i q^{31} +(-0.923880 + 0.382683i) q^{32} +(-0.707107 + 0.292893i) q^{34} +0.765367i q^{35} +(-0.923880 - 0.382683i) q^{40} -0.765367 q^{43} +(0.707107 + 0.707107i) q^{44} +0.414214 q^{49} +(-0.382683 - 0.923880i) q^{50} +(-1.30656 - 1.30656i) q^{52} +1.00000i q^{55} +(0.292893 - 0.707107i) q^{56} -1.41421i q^{59} +(-1.30656 + 0.541196i) q^{62} +(0.707107 + 0.707107i) q^{64} -1.84776i q^{65} +(0.541196 + 0.541196i) q^{68} +(0.707107 - 0.292893i) q^{70} -1.41421 q^{71} -1.84776 q^{73} -0.765367 q^{77} +1.00000i q^{80} -1.84776i q^{83} +0.765367i q^{85} +(0.292893 + 0.707107i) q^{86} +(0.382683 - 0.923880i) q^{88} -2.00000i q^{89} +1.41421 q^{91} +(-0.158513 - 0.382683i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} + 8 q^{25} + 8 q^{26} - 8 q^{49} + 8 q^{56} + 8 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3960\mathbb{Z}\right)^\times\).

\(n\) \(991\) \(1981\) \(2377\) \(2521\) \(3521\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.382683 0.923880i −0.382683 0.923880i
\(3\) 0 0
\(4\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(5\) −1.00000 −1.00000
\(6\) 0 0
\(7\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(8\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(9\) 0 0
\(10\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(11\) 1.00000i 1.00000i
\(12\) 0 0
\(13\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(14\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(15\) 0 0
\(16\) 1.00000i 1.00000i
\(17\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0.707107 0.707107i 0.707107 0.707107i
\(21\) 0 0
\(22\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 1.00000 1.00000
\(26\) 1.70711 0.707107i 1.70711 0.707107i
\(27\) 0 0
\(28\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(32\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(33\) 0 0
\(34\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(35\) 0.765367i 0.765367i
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.923880 0.382683i −0.923880 0.382683i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(44\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 0.414214 0.414214
\(50\) −0.382683 0.923880i −0.382683 0.923880i
\(51\) 0 0
\(52\) −1.30656 1.30656i −1.30656 1.30656i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 1.00000i 1.00000i
\(56\) 0.292893 0.707107i 0.292893 0.707107i
\(57\) 0 0
\(58\) 0 0
\(59\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(63\) 0 0
\(64\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(65\) 1.84776i 1.84776i
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(69\) 0 0
\(70\) 0.707107 0.292893i 0.707107 0.292893i
\(71\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(72\) 0 0
\(73\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.765367 −0.765367
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 1.00000i 1.00000i
\(81\) 0 0
\(82\) 0 0
\(83\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(84\) 0 0
\(85\) 0.765367i 0.765367i
\(86\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(87\) 0 0
\(88\) 0.382683 0.923880i 0.382683 0.923880i
\(89\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(90\) 0 0
\(91\) 1.41421 1.41421
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −0.158513 0.382683i −0.158513 0.382683i
\(99\) 0 0
\(100\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −0.707107 + 1.70711i −0.707107 + 1.70711i
\(105\) 0 0
\(106\) 0 0
\(107\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0.923880 0.382683i 0.923880 0.382683i
\(111\) 0 0
\(112\) −0.765367 −0.765367
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(119\) −0.585786 −0.585786
\(120\) 0 0
\(121\) −1.00000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(125\) −1.00000 −1.00000
\(126\) 0 0
\(127\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(128\) 0.382683 0.923880i 0.382683 0.923880i
\(129\) 0 0
\(130\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.292893 0.707107i 0.292893 0.707107i
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −0.541196 0.541196i −0.541196 0.541196i
\(141\) 0 0
\(142\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(143\) 1.84776 1.84776
\(144\) 0 0
\(145\) 0 0
\(146\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(155\) 1.41421i 1.41421i
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.923880 0.382683i 0.923880 0.382683i
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(167\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(168\) 0 0
\(169\) −2.41421 −2.41421
\(170\) 0.707107 0.292893i 0.707107 0.292893i
\(171\) 0 0
\(172\) 0.541196 0.541196i 0.541196 0.541196i
\(173\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(174\) 0 0
\(175\) 0.765367i 0.765367i
\(176\) −1.00000 −1.00000
\(177\) 0 0
\(178\) −1.84776 + 0.765367i −1.84776 + 0.765367i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(182\) −0.541196 1.30656i −0.541196 1.30656i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.765367 −0.765367
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.292893 + 0.292893i −0.292893 + 0.292893i
\(197\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(198\) 0 0
\(199\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(200\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 1.84776 1.84776
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.70711 0.707107i 1.70711 0.707107i
\(215\) 0.765367 0.765367
\(216\) 0 0
\(217\) −1.08239 −1.08239
\(218\) 0 0
\(219\) 0 0
\(220\) −0.707107 0.707107i −0.707107 0.707107i
\(221\) 1.41421 1.41421
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(225\) 0 0
\(226\) 0 0
\(227\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(228\) 0 0
\(229\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(237\) 0 0
\(238\) 0.224171 + 0.541196i 0.224171 + 0.541196i
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(243\) 0 0
\(244\) 0 0
\(245\) −0.414214 −0.414214
\(246\) 0 0
\(247\) 0 0
\(248\) 0.541196 1.30656i 0.541196 1.30656i
\(249\) 0 0
\(250\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(251\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(255\) 0 0
\(256\) −1.00000 −1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(261\) 0 0
\(262\) 0 0
\(263\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) −0.765367 −0.765367
\(273\) 0 0
\(274\) 0 0
\(275\) 1.00000i 1.00000i
\(276\) 0 0
\(277\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(284\) 1.00000 1.00000i 1.00000 1.00000i
\(285\) 0 0
\(286\) −0.707107 1.70711i −0.707107 1.70711i
\(287\) 0 0
\(288\) 0 0
\(289\) 0.414214 0.414214
\(290\) 0 0
\(291\) 0 0
\(292\) 1.30656 1.30656i 1.30656 1.30656i
\(293\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(294\) 0 0
\(295\) 1.41421i 1.41421i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0.585786i 0.585786i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(308\) 0.541196 0.541196i 0.541196 0.541196i
\(309\) 0 0
\(310\) 1.30656 0.541196i 1.30656 0.541196i
\(311\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.707107 0.707107i −0.707107 0.707107i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 1.84776i 1.84776i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(332\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(333\) 0 0
\(334\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(335\) 0 0
\(336\) 0 0
\(337\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(338\) 0.923880 + 2.23044i 0.923880 + 2.23044i
\(339\) 0 0
\(340\) −0.541196 0.541196i −0.541196 0.541196i
\(341\) −1.41421 −1.41421
\(342\) 0 0
\(343\) 1.08239i 1.08239i
\(344\) −0.707107 0.292893i −0.707107 0.292893i
\(345\) 0 0
\(346\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(347\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(351\) 0 0
\(352\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 1.41421 1.41421
\(356\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(363\) 0 0
\(364\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(365\) 1.84776 1.84776
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(374\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0.765367 0.765367
\(386\) −0.292893 0.707107i −0.292893 0.707107i
\(387\) 0 0
\(388\) 0 0
\(389\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.382683 + 0.158513i 0.382683 + 0.158513i
\(393\) 0 0
\(394\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) −1.84776 + 0.765367i −1.84776 + 0.765367i
\(399\) 0 0
\(400\) 1.00000i 1.00000i
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 2.61313 2.61313
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.08239 −1.08239
\(414\) 0 0
\(415\) 1.84776i 1.84776i
\(416\) −0.707107 1.70711i −0.707107 1.70711i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.765367i 0.765367i
\(426\) 0 0
\(427\) 0 0
\(428\) −1.30656 1.30656i −1.30656 1.30656i
\(429\) 0 0
\(430\) −0.292893 0.707107i −0.292893 0.707107i
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0.414214 + 1.00000i 0.414214 + 1.00000i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(441\) 0 0
\(442\) −0.541196 1.30656i −0.541196 1.30656i
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 2.00000i 2.00000i
\(446\) 0 0
\(447\) 0 0
\(448\) 0.541196 0.541196i 0.541196 0.541196i
\(449\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.707107 0.292893i 0.707107 0.292893i
\(455\) −1.41421 −1.41421
\(456\) 0 0
\(457\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(458\) −1.84776 + 0.765367i −1.84776 + 0.765367i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 1.70711 0.707107i 1.70711 0.707107i
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0.541196 1.30656i 0.541196 1.30656i
\(473\) 0.765367i 0.765367i
\(474\) 0 0
\(475\) 0 0
\(476\) 0.414214 0.414214i 0.414214 0.414214i
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0.707107 0.707107i 0.707107 0.707107i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0.158513 + 0.382683i 0.158513 + 0.382683i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.41421 −1.41421
\(497\) 1.08239i 1.08239i
\(498\) 0 0
\(499\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(500\) 0.707107 0.707107i 0.707107 0.707107i
\(501\) 0 0
\(502\) 1.30656 0.541196i 1.30656 0.541196i
\(503\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(509\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(510\) 0 0
\(511\) 1.41421i 1.41421i
\(512\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0.707107 1.70711i 0.707107 1.70711i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −0.707107 1.70711i −0.707107 1.70711i
\(527\) −1.08239 −1.08239
\(528\) 0 0
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.84776i 1.84776i
\(536\) 0 0
\(537\) 0 0
\(538\) −0.541196 1.30656i −0.541196 1.30656i
\(539\) 0.414214i 0.414214i
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(545\) 0 0
\(546\) 0 0
\(547\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0.707107 0.292893i 0.707107 0.292893i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(558\) 0 0
\(559\) 1.41421i 1.41421i
\(560\) 0.765367 0.765367
\(561\) 0 0
\(562\) 0 0
\(563\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.707107 1.70711i −0.707107 1.70711i
\(567\) 0 0
\(568\) −1.30656 0.541196i −1.30656 0.541196i
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) −1.30656 + 1.30656i −1.30656 + 1.30656i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −0.158513 0.382683i −0.158513 0.382683i
\(579\) 0 0
\(580\) 0 0
\(581\) −1.41421 −1.41421
\(582\) 0 0
\(583\) 0 0
\(584\) −1.70711 0.707107i −1.70711 0.707107i
\(585\) 0 0
\(586\) −0.292893 0.707107i −0.292893 0.707107i
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 1.30656 0.541196i 1.30656 0.541196i
\(591\) 0 0
\(592\) 0 0
\(593\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(594\) 0 0
\(595\) 0.585786 0.585786
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0.541196 0.224171i 0.541196 0.224171i
\(603\) 0 0
\(604\) 0 0
\(605\) 1.00000 1.00000
\(606\) 0 0
\(607\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(614\) −0.707107 1.70711i −0.707107 1.70711i
\(615\) 0 0
\(616\) −0.707107 0.292893i −0.707107 0.292893i
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(620\) −1.00000 1.00000i −1.00000 1.00000i
\(621\) 0 0
\(622\) −0.541196 1.30656i −0.541196 1.30656i
\(623\) −1.53073 −1.53073
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.84776i 1.84776i
\(636\) 0 0
\(637\) 0.765367i 0.765367i
\(638\) 0 0
\(639\) 0 0
\(640\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) −1.41421 −1.41421
\(650\) 1.70711 0.707107i 1.70711 0.707107i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(662\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(663\) 0 0
\(664\) 0.707107 1.70711i 0.707107 1.70711i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0.541196 0.541196i 0.541196 0.541196i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(674\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(675\) 0 0
\(676\) 1.70711 1.70711i 1.70711 1.70711i
\(677\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(681\) 0 0
\(682\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.00000 + 0.414214i −1.00000 + 0.414214i
\(687\) 0 0
\(688\) 0.765367i 0.765367i
\(689\) 0 0
\(690\) 0 0
\(691\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(692\) 1.30656 1.30656i 1.30656 1.30656i
\(693\) 0 0
\(694\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.707107 0.707107i 0.707107 0.707107i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(710\) −0.541196 1.30656i −0.541196 1.30656i
\(711\) 0 0
\(712\) 0.765367 1.84776i 0.765367 1.84776i
\(713\) 0 0
\(714\) 0 0
\(715\) −1.84776 −1.84776
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.382683 0.923880i −0.382683 0.923880i
\(723\) 0 0
\(724\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 1.30656 + 0.541196i 1.30656 + 0.541196i
\(729\) 0 0
\(730\) −0.707107 1.70711i −0.707107 1.70711i
\(731\) 0.585786i 0.585786i
\(732\) 0 0
\(733\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(747\) 0 0
\(748\) 0.541196 0.541196i 0.541196 0.541196i
\(749\) 1.41421 1.41421
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.61313 2.61313
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) −0.292893 0.707107i −0.292893 0.707107i
\(771\) 0 0
\(772\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 1.41421i 1.41421i
\(776\) 0 0
\(777\) 0 0
\(778\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(779\) 0 0
\(780\) 0 0
\(781\) 1.41421i 1.41421i
\(782\) 0 0
\(783\) 0 0
\(784\) 0.414214i 0.414214i
\(785\) 0 0
\(786\) 0 0
\(787\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(788\) 1.30656 1.30656i 1.30656 1.30656i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(801\) 0 0
\(802\) 0 0
\(803\) 1.84776i 1.84776i
\(804\) 0 0
\(805\) 0 0
\(806\) −1.00000 2.41421i −1.00000 2.41421i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0.414214 + 1.00000i 0.414214 + 1.00000i
\(827\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(828\) 0 0
\(829\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(830\) 1.70711 0.707107i 1.70711 0.707107i
\(831\) 0 0
\(832\) −1.30656 + 1.30656i −1.30656 + 1.30656i
\(833\) 0.317025i 0.317025i
\(834\) 0 0
\(835\) 0.765367 0.765367
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 1.30656 0.541196i 1.30656 0.541196i
\(843\) 0 0
\(844\) 0 0
\(845\) 2.41421 2.41421
\(846\) 0 0
\(847\) 0.765367i 0.765367i
\(848\) 0 0
\(849\) 0 0
\(850\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(851\) 0 0
\(852\) 0 0
\(853\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.707107 + 1.70711i −0.707107 + 1.70711i
\(857\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(858\) 0 0
\(859\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(860\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 1.84776 1.84776
\(866\) 0 0
\(867\) 0 0
\(868\) 0.765367 0.765367i 0.765367 0.765367i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.765367i 0.765367i
\(876\) 0 0
\(877\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 1.00000 1.00000
\(881\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(885\) 0 0
\(886\) 0 0
\(887\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(888\) 0 0
\(889\) −1.41421 −1.41421
\(890\) 1.84776 0.765367i 1.84776 0.765367i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −0.707107 0.292893i −0.707107 0.292893i
\(897\) 0 0
\(898\) 1.84776 0.765367i 1.84776 0.765367i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.41421i 1.41421i
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) −0.541196 0.541196i −0.541196 0.541196i
\(909\) 0 0
\(910\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(911\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(912\) 0 0
\(913\) −1.84776 −1.84776
\(914\) −0.707107 1.70711i −0.707107 1.70711i
\(915\) 0 0
\(916\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.61313i 2.61313i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.30656 1.30656i −1.30656 1.30656i
\(933\) 0 0
\(934\) 0 0
\(935\) 0.765367 0.765367
\(936\) 0 0
\(937\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −1.41421 −1.41421
\(945\) 0 0
\(946\) 0.707107 0.292893i 0.707107 0.292893i
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 3.41421i 3.41421i
\(950\) 0 0
\(951\) 0 0
\(952\) −0.541196 0.224171i −0.541196 0.224171i
\(953\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.00000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.765367 −0.765367
\(966\) 0 0
\(967\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(968\) −0.923880 0.382683i −0.923880 0.382683i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) −2.00000 −2.00000
\(980\) 0.292893 0.292893i 0.292893 0.292893i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 1.84776 1.84776
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(992\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(993\) 0 0
\(994\) 1.00000 0.414214i 1.00000 0.414214i
\(995\) 2.00000i 2.00000i
\(996\) 0 0
\(997\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(998\) 0.765367 + 1.84776i 0.765367 + 1.84776i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3960.1.b.c.1979.3 8
3.2 odd 2 3960.1.b.d.1979.6 yes 8
5.4 even 2 inner 3960.1.b.c.1979.6 yes 8
8.3 odd 2 3960.1.b.d.1979.5 yes 8
11.10 odd 2 inner 3960.1.b.c.1979.6 yes 8
15.14 odd 2 3960.1.b.d.1979.3 yes 8
24.11 even 2 inner 3960.1.b.c.1979.4 yes 8
33.32 even 2 3960.1.b.d.1979.3 yes 8
40.19 odd 2 3960.1.b.d.1979.4 yes 8
55.54 odd 2 CM 3960.1.b.c.1979.3 8
88.43 even 2 3960.1.b.d.1979.4 yes 8
120.59 even 2 inner 3960.1.b.c.1979.5 yes 8
165.164 even 2 3960.1.b.d.1979.6 yes 8
264.131 odd 2 inner 3960.1.b.c.1979.5 yes 8
440.219 even 2 3960.1.b.d.1979.5 yes 8
1320.659 odd 2 inner 3960.1.b.c.1979.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3960.1.b.c.1979.3 8 1.1 even 1 trivial
3960.1.b.c.1979.3 8 55.54 odd 2 CM
3960.1.b.c.1979.4 yes 8 24.11 even 2 inner
3960.1.b.c.1979.4 yes 8 1320.659 odd 2 inner
3960.1.b.c.1979.5 yes 8 120.59 even 2 inner
3960.1.b.c.1979.5 yes 8 264.131 odd 2 inner
3960.1.b.c.1979.6 yes 8 5.4 even 2 inner
3960.1.b.c.1979.6 yes 8 11.10 odd 2 inner
3960.1.b.d.1979.3 yes 8 15.14 odd 2
3960.1.b.d.1979.3 yes 8 33.32 even 2
3960.1.b.d.1979.4 yes 8 40.19 odd 2
3960.1.b.d.1979.4 yes 8 88.43 even 2
3960.1.b.d.1979.5 yes 8 8.3 odd 2
3960.1.b.d.1979.5 yes 8 440.219 even 2
3960.1.b.d.1979.6 yes 8 3.2 odd 2
3960.1.b.d.1979.6 yes 8 165.164 even 2