Properties

Label 3960.1.eg.a.1619.4
Level 39603960
Weight 11
Character 3960.1619
Analytic conductor 1.9761.976
Analytic rank 00
Dimension 1616
Projective image D20D_{20}
CM discriminant -40
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,1,Mod(899,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 5, 5, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.899");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3960=2332511 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3960.eg (of order 1010, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.976297450031.97629745003
Analytic rank: 00
Dimension: 1616
Relative dimension: 44 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: Q(ζ40)\Q(\zeta_{40})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16x12+x8x4+1 x^{16} - x^{12} + x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D20D_{20}
Projective field: Galois closure of Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)

Embedding invariants

Embedding label 1619.4
Root 0.891007+0.453990i-0.891007 + 0.453990i of defining polynomial
Character χ\chi == 3960.1619
Dual form 3960.1.eg.a.3779.4

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.3090170.951057i)q2+(0.8090170.587785i)q4+(0.9510570.309017i)q5+(1.161101.59811i)q7+(0.809017+0.587785i)q81.00000iq10+(0.156434+0.987688i)q11+(0.8635410.280582i)q13+(1.161101.59811i)q14+(0.309017+0.951057i)q16+(0.363271+0.500000i)q19+(0.9510570.309017i)q20+(0.987688+0.156434i)q221.61803iq23+(0.8090170.587785i)q25+(0.533698+0.734572i)q26+(1.87869+0.610425i)q28+1.00000q32+(0.6104251.87869i)q35+(1.441681.04744i)q37+(0.5877850.190983i)q38+(0.587785+0.809017i)q40+(0.253116+0.183900i)q41+(0.4539900.891007i)q44+(1.538840.500000i)q46+(1.11803+1.53884i)q47+(0.8968022.76007i)q49+(0.3090170.951057i)q50+(0.533698+0.734572i)q52+(1.11803+0.363271i)q53+(0.453990+0.891007i)q55+1.97538iq56+(1.04744+1.44168i)q59+(0.3090170.951057i)q640.907981q65+(1.598111.16110i)q70+(1.44168+1.04744i)q740.618034iq76+(1.76007+0.896802i)q77+(0.587785+0.809017i)q80+(0.0966818+0.297556i)q82+(0.7071070.707107i)q880.312869iq89+(1.45106+1.05425i)q91+(0.951057+1.30902i)q92+(1.809020.587785i)q94+(0.500000+0.363271i)q952.90211q98+O(q100)q+(0.309017 - 0.951057i) q^{2} +(-0.809017 - 0.587785i) q^{4} +(0.951057 - 0.309017i) q^{5} +(1.16110 - 1.59811i) q^{7} +(-0.809017 + 0.587785i) q^{8} -1.00000i q^{10} +(0.156434 + 0.987688i) q^{11} +(-0.863541 - 0.280582i) q^{13} +(-1.16110 - 1.59811i) q^{14} +(0.309017 + 0.951057i) q^{16} +(0.363271 + 0.500000i) q^{19} +(-0.951057 - 0.309017i) q^{20} +(0.987688 + 0.156434i) q^{22} -1.61803i q^{23} +(0.809017 - 0.587785i) q^{25} +(-0.533698 + 0.734572i) q^{26} +(-1.87869 + 0.610425i) q^{28} +1.00000 q^{32} +(0.610425 - 1.87869i) q^{35} +(-1.44168 - 1.04744i) q^{37} +(0.587785 - 0.190983i) q^{38} +(-0.587785 + 0.809017i) q^{40} +(-0.253116 + 0.183900i) q^{41} +(0.453990 - 0.891007i) q^{44} +(-1.53884 - 0.500000i) q^{46} +(1.11803 + 1.53884i) q^{47} +(-0.896802 - 2.76007i) q^{49} +(-0.309017 - 0.951057i) q^{50} +(0.533698 + 0.734572i) q^{52} +(1.11803 + 0.363271i) q^{53} +(0.453990 + 0.891007i) q^{55} +1.97538i q^{56} +(-1.04744 + 1.44168i) q^{59} +(0.309017 - 0.951057i) q^{64} -0.907981 q^{65} +(-1.59811 - 1.16110i) q^{70} +(-1.44168 + 1.04744i) q^{74} -0.618034i q^{76} +(1.76007 + 0.896802i) q^{77} +(0.587785 + 0.809017i) q^{80} +(0.0966818 + 0.297556i) q^{82} +(-0.707107 - 0.707107i) q^{88} -0.312869i q^{89} +(-1.45106 + 1.05425i) q^{91} +(-0.951057 + 1.30902i) q^{92} +(1.80902 - 0.587785i) q^{94} +(0.500000 + 0.363271i) q^{95} -2.90211 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q4q24q44q84q16+4q25+16q32+4q49+4q504q64+4q778q91+20q94+8q9516q98+O(q100) 16 q - 4 q^{2} - 4 q^{4} - 4 q^{8} - 4 q^{16} + 4 q^{25} + 16 q^{32} + 4 q^{49} + 4 q^{50} - 4 q^{64} + 4 q^{77} - 8 q^{91} + 20 q^{94} + 8 q^{95} - 16 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3960Z)×\left(\mathbb{Z}/3960\mathbb{Z}\right)^\times.

nn 991991 19811981 23772377 25212521 35213521
χ(n)\chi(n) 1-1 1-1 1-1 e(110)e\left(\frac{1}{10}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.309017 0.951057i 0.309017 0.951057i
33 0 0
44 −0.809017 0.587785i −0.809017 0.587785i
55 0.951057 0.309017i 0.951057 0.309017i
66 0 0
77 1.16110 1.59811i 1.16110 1.59811i 0.453990 0.891007i 0.350000π-0.350000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
88 −0.809017 + 0.587785i −0.809017 + 0.587785i
99 0 0
1010 1.00000i 1.00000i
1111 0.156434 + 0.987688i 0.156434 + 0.987688i
1212 0 0
1313 −0.863541 0.280582i −0.863541 0.280582i −0.156434 0.987688i 0.550000π-0.550000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
1414 −1.16110 1.59811i −1.16110 1.59811i
1515 0 0
1616 0.309017 + 0.951057i 0.309017 + 0.951057i
1717 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
1818 0 0
1919 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
2020 −0.951057 0.309017i −0.951057 0.309017i
2121 0 0
2222 0.987688 + 0.156434i 0.987688 + 0.156434i
2323 1.61803i 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
2424 0 0
2525 0.809017 0.587785i 0.809017 0.587785i
2626 −0.533698 + 0.734572i −0.533698 + 0.734572i
2727 0 0
2828 −1.87869 + 0.610425i −1.87869 + 0.610425i
2929 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
3030 0 0
3131 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
3232 1.00000 1.00000
3333 0 0
3434 0 0
3535 0.610425 1.87869i 0.610425 1.87869i
3636 0 0
3737 −1.44168 1.04744i −1.44168 1.04744i −0.987688 0.156434i 0.950000π-0.950000\pi
−0.453990 0.891007i 0.650000π-0.650000\pi
3838 0.587785 0.190983i 0.587785 0.190983i
3939 0 0
4040 −0.587785 + 0.809017i −0.587785 + 0.809017i
4141 −0.253116 + 0.183900i −0.253116 + 0.183900i −0.707107 0.707107i 0.750000π-0.750000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0.453990 0.891007i 0.453990 0.891007i
4545 0 0
4646 −1.53884 0.500000i −1.53884 0.500000i
4747 1.11803 + 1.53884i 1.11803 + 1.53884i 0.809017 + 0.587785i 0.200000π0.200000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
4848 0 0
4949 −0.896802 2.76007i −0.896802 2.76007i
5050 −0.309017 0.951057i −0.309017 0.951057i
5151 0 0
5252 0.533698 + 0.734572i 0.533698 + 0.734572i
5353 1.11803 + 0.363271i 1.11803 + 0.363271i 0.809017 0.587785i 0.200000π-0.200000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
5454 0 0
5555 0.453990 + 0.891007i 0.453990 + 0.891007i
5656 1.97538i 1.97538i
5757 0 0
5858 0 0
5959 −1.04744 + 1.44168i −1.04744 + 1.44168i −0.156434 + 0.987688i 0.550000π0.550000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
6060 0 0
6161 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
6262 0 0
6363 0 0
6464 0.309017 0.951057i 0.309017 0.951057i
6565 −0.907981 −0.907981
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 0 0
7070 −1.59811 1.16110i −1.59811 1.16110i
7171 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
7272 0 0
7373 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
7474 −1.44168 + 1.04744i −1.44168 + 1.04744i
7575 0 0
7676 0.618034i 0.618034i
7777 1.76007 + 0.896802i 1.76007 + 0.896802i
7878 0 0
7979 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
8080 0.587785 + 0.809017i 0.587785 + 0.809017i
8181 0 0
8282 0.0966818 + 0.297556i 0.0966818 + 0.297556i
8383 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 −0.707107 0.707107i −0.707107 0.707107i
8989 0.312869i 0.312869i −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 0.156434i 0.0500000π-0.0500000\pi
9090 0 0
9191 −1.45106 + 1.05425i −1.45106 + 1.05425i
9292 −0.951057 + 1.30902i −0.951057 + 1.30902i
9393 0 0
9494 1.80902 0.587785i 1.80902 0.587785i
9595 0.500000 + 0.363271i 0.500000 + 0.363271i
9696 0 0
9797 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
9898 −2.90211 −2.90211
9999 0 0
100100 −1.00000 −1.00000
101101 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
102102 0 0
103103 0.734572 + 0.533698i 0.734572 + 0.533698i 0.891007 0.453990i 0.150000π-0.150000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
104104 0.863541 0.280582i 0.863541 0.280582i
105105 0 0
106106 0.690983 0.951057i 0.690983 0.951057i
107107 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
108108 0 0
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0.987688 0.156434i 0.987688 0.156434i
111111 0 0
112112 1.87869 + 0.610425i 1.87869 + 0.610425i
113113 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
114114 0 0
115115 −0.500000 1.53884i −0.500000 1.53884i
116116 0 0
117117 0 0
118118 1.04744 + 1.44168i 1.04744 + 1.44168i
119119 0 0
120120 0 0
121121 −0.951057 + 0.309017i −0.951057 + 0.309017i
122122 0 0
123123 0 0
124124 0 0
125125 0.587785 0.809017i 0.587785 0.809017i
126126 0 0
127127 −1.69480 + 0.550672i −1.69480 + 0.550672i −0.987688 0.156434i 0.950000π-0.950000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
128128 −0.809017 0.587785i −0.809017 0.587785i
129129 0 0
130130 −0.280582 + 0.863541i −0.280582 + 0.863541i
131131 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
132132 0 0
133133 1.22085 1.22085
134134 0 0
135135 0 0
136136 0 0
137137 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
138138 0 0
139139 −0.690983 + 0.951057i −0.690983 + 0.951057i 0.309017 + 0.951057i 0.400000π0.400000\pi
−1.00000 1.00000π1.00000\pi
140140 −1.59811 + 1.16110i −1.59811 + 1.16110i
141141 0 0
142142 0 0
143143 0.142040 0.896802i 0.142040 0.896802i
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0.550672 + 1.69480i 0.550672 + 1.69480i
149149 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
150150 0 0
151151 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
152152 −0.587785 0.190983i −0.587785 0.190983i
153153 0 0
154154 1.39680 1.39680i 1.39680 1.39680i
155155 0 0
156156 0 0
157157 1.59811 1.16110i 1.59811 1.16110i 0.707107 0.707107i 0.250000π-0.250000\pi
0.891007 0.453990i 0.150000π-0.150000\pi
158158 0 0
159159 0 0
160160 0.951057 0.309017i 0.951057 0.309017i
161161 −2.58580 1.87869i −2.58580 1.87869i
162162 0 0
163163 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
164164 0.312869 0.312869
165165 0 0
166166 0 0
167167 −0.587785 + 1.80902i −0.587785 + 1.80902i 1.00000i 0.5π0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
168168 0 0
169169 −0.142040 0.103198i −0.142040 0.103198i
170170 0 0
171171 0 0
172172 0 0
173173 −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i 0.600000π0.600000\pi
−1.00000 π\pi
174174 0 0
175175 1.97538i 1.97538i
176176 −0.891007 + 0.453990i −0.891007 + 0.453990i
177177 0 0
178178 −0.297556 0.0966818i −0.297556 0.0966818i
179179 0.183900 + 0.253116i 0.183900 + 0.253116i 0.891007 0.453990i 0.150000π-0.150000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
180180 0 0
181181 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
182182 0.554254 + 1.70582i 0.554254 + 1.70582i
183183 0 0
184184 0.951057 + 1.30902i 0.951057 + 1.30902i
185185 −1.69480 0.550672i −1.69480 0.550672i
186186 0 0
187187 0 0
188188 1.90211i 1.90211i
189189 0 0
190190 0.500000 0.363271i 0.500000 0.363271i
191191 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
192192 0 0
193193 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
194194 0 0
195195 0 0
196196 −0.896802 + 2.76007i −0.896802 + 2.76007i
197197 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 −0.309017 + 0.951057i −0.309017 + 0.951057i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 −0.183900 + 0.253116i −0.183900 + 0.253116i
206206 0.734572 0.533698i 0.734572 0.533698i
207207 0 0
208208 0.907981i 0.907981i
209209 −0.437016 + 0.437016i −0.437016 + 0.437016i
210210 0 0
211211 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
212212 −0.690983 0.951057i −0.690983 0.951057i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0.156434 0.987688i 0.156434 0.987688i
221221 0 0
222222 0 0
223223 0.253116 0.183900i 0.253116 0.183900i −0.453990 0.891007i 0.650000π-0.650000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
224224 1.16110 1.59811i 1.16110 1.59811i
225225 0 0
226226 0 0
227227 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
228228 0 0
229229 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
230230 −1.61803 −1.61803
231231 0 0
232232 0 0
233233 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
234234 0 0
235235 1.53884 + 1.11803i 1.53884 + 1.11803i
236236 1.69480 0.550672i 1.69480 0.550672i
237237 0 0
238238 0 0
239239 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
240240 0 0
241241 1.61803i 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
242242 1.00000i 1.00000i
243243 0 0
244244 0 0
245245 −1.70582 2.34786i −1.70582 2.34786i
246246 0 0
247247 −0.173409 0.533698i −0.173409 0.533698i
248248 0 0
249249 0 0
250250 −0.587785 0.809017i −0.587785 0.809017i
251251 0.297556 + 0.0966818i 0.297556 + 0.0966818i 0.453990 0.891007i 0.350000π-0.350000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
252252 0 0
253253 1.59811 0.253116i 1.59811 0.253116i
254254 1.78201i 1.78201i
255255 0 0
256256 −0.809017 + 0.587785i −0.809017 + 0.587785i
257257 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
258258 0 0
259259 −3.34786 + 1.08779i −3.34786 + 1.08779i
260260 0.734572 + 0.533698i 0.734572 + 0.533698i
261261 0 0
262262 0.437016 1.34500i 0.437016 1.34500i
263263 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
264264 0 0
265265 1.17557 1.17557
266266 0.377263 1.16110i 0.377263 1.16110i
267267 0 0
268268 0 0
269269 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
270270 0 0
271271 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
272272 0 0
273273 0 0
274274 0 0
275275 0.707107 + 0.707107i 0.707107 + 0.707107i
276276 0 0
277277 0.297556 + 0.0966818i 0.297556 + 0.0966818i 0.453990 0.891007i 0.350000π-0.350000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
278278 0.690983 + 0.951057i 0.690983 + 0.951057i
279279 0 0
280280 0.610425 + 1.87869i 0.610425 + 1.87869i
281281 0.437016 + 1.34500i 0.437016 + 1.34500i 0.891007 + 0.453990i 0.150000π0.150000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
282282 0 0
283283 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
284284 0 0
285285 0 0
286286 −0.809017 0.412215i −0.809017 0.412215i
287287 0.618034i 0.618034i
288288 0 0
289289 −0.809017 + 0.587785i −0.809017 + 0.587785i
290290 0 0
291291 0 0
292292 0 0
293293 −0.951057 0.690983i −0.951057 0.690983i 1.00000i 0.5π-0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
294294 0 0
295295 −0.550672 + 1.69480i −0.550672 + 1.69480i
296296 1.78201 1.78201
297297 0 0
298298 0 0
299299 −0.453990 + 1.39724i −0.453990 + 1.39724i
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 −0.363271 + 0.500000i −0.363271 + 0.500000i
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 −0.896802 1.76007i −0.896802 1.76007i
309309 0 0
310310 0 0
311311 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
312312 0 0
313313 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
314314 −0.610425 1.87869i −0.610425 1.87869i
315315 0 0
316316 0 0
317317 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i 0.300000π-0.300000\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 1.00000i 1.00000i
321321 0 0
322322 −2.58580 + 1.87869i −2.58580 + 1.87869i
323323 0 0
324324 0 0
325325 −0.863541 + 0.280582i −0.863541 + 0.280582i
326326 0 0
327327 0 0
328328 0.0966818 0.297556i 0.0966818 0.297556i
329329 3.75739 3.75739
330330 0 0
331331 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
332332 0 0
333333 0 0
334334 1.53884 + 1.11803i 1.53884 + 1.11803i
335335 0 0
336336 0 0
337337 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
338338 −0.142040 + 0.103198i −0.142040 + 0.103198i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 −3.57349 1.16110i −3.57349 1.16110i
344344 0 0
345345 0 0
346346 0.500000 + 1.53884i 0.500000 + 1.53884i
347347 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
348348 0 0
349349 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
350350 −1.87869 0.610425i −1.87869 0.610425i
351351 0 0
352352 0.156434 + 0.987688i 0.156434 + 0.987688i
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 −0.183900 + 0.253116i −0.183900 + 0.253116i
357357 0 0
358358 0.297556 0.0966818i 0.297556 0.0966818i
359359 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
360360 0 0
361361 0.190983 0.587785i 0.190983 0.587785i
362362 0 0
363363 0 0
364364 1.79360 1.79360
365365 0 0
366366 0 0
367367 1.14412 + 0.831254i 1.14412 + 0.831254i 0.987688 0.156434i 0.0500000π-0.0500000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
368368 1.53884 0.500000i 1.53884 0.500000i
369369 0 0
370370 −1.04744 + 1.44168i −1.04744 + 1.44168i
371371 1.87869 1.36495i 1.87869 1.36495i
372372 0 0
373373 1.78201i 1.78201i 0.453990 + 0.891007i 0.350000π0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
374374 0 0
375375 0 0
376376 −1.80902 0.587785i −1.80902 0.587785i
377377 0 0
378378 0 0
379379 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
380380 −0.190983 0.587785i −0.190983 0.587785i
381381 0 0
382382 0 0
383383 −1.11803 0.363271i −1.11803 0.363271i −0.309017 0.951057i 0.600000π-0.600000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
384384 0 0
385385 1.95106 + 0.309017i 1.95106 + 0.309017i
386386 0 0
387387 0 0
388388 0 0
389389 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
390390 0 0
391391 0 0
392392 2.34786 + 1.70582i 2.34786 + 1.70582i
393393 0 0
394394 −0.363271 + 1.11803i −0.363271 + 1.11803i
395395 0 0
396396 0 0
397397 1.97538 1.97538 0.987688 0.156434i 0.0500000π-0.0500000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
398398 0 0
399399 0 0
400400 0.809017 + 0.587785i 0.809017 + 0.587785i
401401 1.69480 0.550672i 1.69480 0.550672i 0.707107 0.707107i 0.250000π-0.250000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0.809017 1.58779i 0.809017 1.58779i
408408 0 0
409409 1.80902 + 0.587785i 1.80902 + 0.587785i 1.00000 00
0.809017 + 0.587785i 0.200000π0.200000\pi
410410 0.183900 + 0.253116i 0.183900 + 0.253116i
411411 0 0
412412 −0.280582 0.863541i −0.280582 0.863541i
413413 1.08779 + 3.34786i 1.08779 + 3.34786i
414414 0 0
415415 0 0
416416 −0.863541 0.280582i −0.863541 0.280582i
417417 0 0
418418 0.280582 + 0.550672i 0.280582 + 0.550672i
419419 0.907981i 0.907981i 0.891007 + 0.453990i 0.150000π0.150000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
420420 0 0
421421 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
422422 0 0
423423 0 0
424424 −1.11803 + 0.363271i −1.11803 + 0.363271i
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
432432 0 0
433433 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
434434 0 0
435435 0 0
436436 0 0
437437 0.809017 0.587785i 0.809017 0.587785i
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 −0.891007 0.453990i −0.891007 0.453990i
441441 0 0
442442 0 0
443443 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
444444 0 0
445445 −0.0966818 0.297556i −0.0966818 0.297556i
446446 −0.0966818 0.297556i −0.0966818 0.297556i
447447 0 0
448448 −1.16110 1.59811i −1.16110 1.59811i
449449 −0.863541 0.280582i −0.863541 0.280582i −0.156434 0.987688i 0.550000π-0.550000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
450450 0 0
451451 −0.221232 0.221232i −0.221232 0.221232i
452452 0 0
453453 0 0
454454 0 0
455455 −1.05425 + 1.45106i −1.05425 + 1.45106i
456456 0 0
457457 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
458458 0 0
459459 0 0
460460 −0.500000 + 1.53884i −0.500000 + 1.53884i
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 −1.78201 −1.78201 −0.891007 0.453990i 0.850000π-0.850000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
468468 0 0
469469 0 0
470470 1.53884 1.11803i 1.53884 1.11803i
471471 0 0
472472 1.78201i 1.78201i
473473 0 0
474474 0 0
475475 0.587785 + 0.190983i 0.587785 + 0.190983i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
480480 0 0
481481 0.951057 + 1.30902i 0.951057 + 1.30902i
482482 −1.53884 0.500000i −1.53884 0.500000i
483483 0 0
484484 0.951057 + 0.309017i 0.951057 + 0.309017i
485485 0 0
486486 0 0
487487 1.14412 0.831254i 1.14412 0.831254i 0.156434 0.987688i 0.450000π-0.450000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
488488 0 0
489489 0 0
490490 −2.76007 + 0.896802i −2.76007 + 0.896802i
491491 −0.734572 0.533698i −0.734572 0.533698i 0.156434 0.987688i 0.450000π-0.450000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
492492 0 0
493493 0 0
494494 −0.561163 −0.561163
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0.951057 + 0.690983i 0.951057 + 0.690983i 0.951057 0.309017i 0.100000π-0.100000\pi
1.00000i 0.5π0.5\pi
500500 −0.951057 + 0.309017i −0.951057 + 0.309017i
501501 0 0
502502 0.183900 0.253116i 0.183900 0.253116i
503503 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
504504 0 0
505505 0 0
506506 0.253116 1.59811i 0.253116 1.59811i
507507 0 0
508508 1.69480 + 0.550672i 1.69480 + 0.550672i
509509 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
510510 0 0
511511 0 0
512512 0.309017 + 0.951057i 0.309017 + 0.951057i
513513 0 0
514514 0 0
515515 0.863541 + 0.280582i 0.863541 + 0.280582i
516516 0 0
517517 −1.34500 + 1.34500i −1.34500 + 1.34500i
518518 3.52015i 3.52015i
519519 0 0
520520 0.734572 0.533698i 0.734572 0.533698i
521521 −0.183900 + 0.253116i −0.183900 + 0.253116i −0.891007 0.453990i 0.850000π-0.850000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
522522 0 0
523523 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
524524 −1.14412 0.831254i −1.14412 0.831254i
525525 0 0
526526 0.587785 1.80902i 0.587785 1.80902i
527527 0 0
528528 0 0
529529 −1.61803 −1.61803
530530 0.363271 1.11803i 0.363271 1.11803i
531531 0 0
532532 −0.987688 0.717598i −0.987688 0.717598i
533533 0.270175 0.0877853i 0.270175 0.0877853i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 2.58580 1.31753i 2.58580 1.31753i
540540 0 0
541541 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
548548 0 0
549549 0 0
550550 0.891007 0.453990i 0.891007 0.453990i
551551 0 0
552552 0 0
553553 0 0
554554 0.183900 0.253116i 0.183900 0.253116i
555555 0 0
556556 1.11803 0.363271i 1.11803 0.363271i
557557 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
558558 0 0
559559 0 0
560560 1.97538 1.97538
561561 0 0
562562 1.41421 1.41421
563563 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 −1.59811 + 1.16110i −1.59811 + 1.16110i −0.707107 + 0.707107i 0.750000π0.750000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
570570 0 0
571571 1.61803i 1.61803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
572572 −0.642040 + 0.642040i −0.642040 + 0.642040i
573573 0 0
574574 0.587785 + 0.190983i 0.587785 + 0.190983i
575575 −0.951057 1.30902i −0.951057 1.30902i
576576 0 0
577577 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
578578 0.309017 + 0.951057i 0.309017 + 0.951057i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 −0.183900 + 1.16110i −0.183900 + 1.16110i
584584 0 0
585585 0 0
586586 −0.951057 + 0.690983i −0.951057 + 0.690983i
587587 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
588588 0 0
589589 0 0
590590 1.44168 + 1.04744i 1.44168 + 1.04744i
591591 0 0
592592 0.550672 1.69480i 0.550672 1.69480i
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 1.18856 + 0.863541i 1.18856 + 0.863541i
599599 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
600600 0 0
601601 −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
602602 0 0
603603 0 0
604604 0 0
605605 −0.809017 + 0.587785i −0.809017 + 0.587785i
606606 0 0
607607 1.34500 + 0.437016i 1.34500 + 0.437016i 0.891007 0.453990i 0.150000π-0.150000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
608608 0.363271 + 0.500000i 0.363271 + 0.500000i
609609 0 0
610610 0 0
611611 −0.533698 1.64255i −0.533698 1.64255i
612612 0 0
613613 −0.831254 1.14412i −0.831254 1.14412i −0.987688 0.156434i 0.950000π-0.950000\pi
0.156434 0.987688i 0.450000π-0.450000\pi
614614 0 0
615615 0 0
616616 −1.95106 + 0.309017i −1.95106 + 0.309017i
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
620620 0 0
621621 0 0
622622 0 0
623623 −0.500000 0.363271i −0.500000 0.363271i
624624 0 0
625625 0.309017 0.951057i 0.309017 0.951057i
626626 0 0
627627 0 0
628628 −1.97538 −1.97538
629629 0 0
630630 0 0
631631 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
632632 0 0
633633 0 0
634634 0.363271 0.500000i 0.363271 0.500000i
635635 −1.44168 + 1.04744i −1.44168 + 1.04744i
636636 0 0
637637 2.63506i 2.63506i
638638 0 0
639639 0 0
640640 −0.951057 0.309017i −0.951057 0.309017i
641641 0.533698 + 0.734572i 0.533698 + 0.734572i 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
642642 0 0
643643 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
644644 0.987688 + 3.03979i 0.987688 + 3.03979i
645645 0 0
646646 0 0
647647 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
648648 0 0
649649 −1.58779 0.809017i −1.58779 0.809017i
650650 0.907981i 0.907981i
651651 0 0
652652 0 0
653653 −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
654654 0 0
655655 1.34500 0.437016i 1.34500 0.437016i
656656 −0.253116 0.183900i −0.253116 0.183900i
657657 0 0
658658 1.16110 3.57349i 1.16110 3.57349i
659659 −0.312869 −0.312869 −0.156434 0.987688i 0.550000π-0.550000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0.587785 1.80902i 0.587785 1.80902i
663663 0 0
664664 0 0
665665 1.16110 0.377263i 1.16110 0.377263i
666666 0 0
667667 0 0
668668 1.53884 1.11803i 1.53884 1.11803i
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
674674 0 0
675675 0 0
676676 0.0542543 + 0.166977i 0.0542543 + 0.166977i
677677 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 −2.20854 + 3.03979i −2.20854 + 3.03979i
687687 0 0
688688 0 0
689689 −0.863541 0.627399i −0.863541 0.627399i
690690 0 0
691691 −0.363271 + 1.11803i −0.363271 + 1.11803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
692692 1.61803 1.61803
693693 0 0
694694 0 0
695695 −0.363271 + 1.11803i −0.363271 + 1.11803i
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 −1.16110 + 1.59811i −1.16110 + 1.59811i
701701 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
702702 0 0
703703 1.10134i 1.10134i
704704 0.987688 + 0.156434i 0.987688 + 0.156434i
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
710710 0 0
711711 0 0
712712 0.183900 + 0.253116i 0.183900 + 0.253116i
713713 0 0
714714 0 0
715715 −0.142040 0.896802i −0.142040 0.896802i
716716 0.312869i 0.312869i
717717 0 0
718718 0 0
719719 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
720720 0 0
721721 1.70582 0.554254i 1.70582 0.554254i
722722 −0.500000 0.363271i −0.500000 0.363271i
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 1.97538 1.97538 0.987688 0.156434i 0.0500000π-0.0500000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
728728 0.554254 1.70582i 0.554254 1.70582i
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0.831254 1.14412i 0.831254 1.14412i −0.156434 0.987688i 0.550000π-0.550000\pi
0.987688 0.156434i 0.0500000π-0.0500000\pi
734734 1.14412 0.831254i 1.14412 0.831254i
735735 0 0
736736 1.61803i 1.61803i
737737 0 0
738738 0 0
739739 −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
740740 1.04744 + 1.44168i 1.04744 + 1.44168i
741741 0 0
742742 −0.717598 2.20854i −0.717598 2.20854i
743743 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
744744 0 0
745745 0 0
746746 1.69480 + 0.550672i 1.69480 + 0.550672i
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
752752 −1.11803 + 1.53884i −1.11803 + 1.53884i
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0.280582 0.863541i 0.280582 0.863541i −0.707107 0.707107i 0.750000π-0.750000\pi
0.987688 0.156434i 0.0500000π-0.0500000\pi
758758 1.61803 1.61803
759759 0 0
760760 −0.618034 −0.618034
761761 0.437016 1.34500i 0.437016 1.34500i −0.453990 0.891007i 0.650000π-0.650000\pi
0.891007 0.453990i 0.150000π-0.150000\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 −0.690983 + 0.951057i −0.690983 + 0.951057i
767767 1.30902 0.951057i 1.30902 0.951057i
768768 0 0
769769 0.618034i 0.618034i −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
770770 0.896802 1.76007i 0.896802 1.76007i
771771 0 0
772772 0 0
773773 −0.951057 1.30902i −0.951057 1.30902i −0.951057 0.309017i 0.900000π-0.900000\pi
1.00000i 0.5π-0.5\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 −0.183900 0.0597526i −0.183900 0.0597526i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 2.34786 1.70582i 2.34786 1.70582i
785785 1.16110 1.59811i 1.16110 1.59811i
786786 0 0
787787 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
788788 0.951057 + 0.690983i 0.951057 + 0.690983i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0.610425 1.87869i 0.610425 1.87869i
795795 0 0
796796 0 0
797797 −1.80902 + 0.587785i −1.80902 + 0.587785i −0.809017 + 0.587785i 0.800000π0.800000\pi
−1.00000 π\pi
798798 0 0
799799 0 0
800800 0.809017 0.587785i 0.809017 0.587785i
801801 0 0
802802 1.78201i 1.78201i
803803 0 0
804804 0 0
805805 −3.03979 0.987688i −3.03979 0.987688i
806806 0 0
807807 0 0
808808 0 0
809809 −0.280582 0.863541i −0.280582 0.863541i −0.987688 0.156434i 0.950000π-0.950000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
810810 0 0
811811 −0.690983 0.951057i −0.690983 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
−1.00000 π\pi
812812 0 0
813813 0 0
814814 −1.26007 1.26007i −1.26007 1.26007i
815815 0 0
816816 0 0
817817 0 0
818818 1.11803 1.53884i 1.11803 1.53884i
819819 0 0
820820 0.297556 0.0966818i 0.297556 0.0966818i
821821 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
822822 0 0
823823 0.280582 0.863541i 0.280582 0.863541i −0.707107 0.707107i 0.750000π-0.750000\pi
0.987688 0.156434i 0.0500000π-0.0500000\pi
824824 −0.907981 −0.907981
825825 0 0
826826 3.52015 3.52015
827827 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
828828 0 0
829829 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
830830 0 0
831831 0 0
832832 −0.533698 + 0.734572i −0.533698 + 0.734572i
833833 0 0
834834 0 0
835835 1.90211i 1.90211i
836836 0.610425 0.0966818i 0.610425 0.0966818i
837837 0 0
838838 0.863541 + 0.280582i 0.863541 + 0.280582i
839839 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
840840 0 0
841841 0.309017 + 0.951057i 0.309017 + 0.951057i
842842 0 0
843843 0 0
844844 0 0
845845 −0.166977 0.0542543i −0.166977 0.0542543i
846846 0 0
847847 −0.610425 + 1.87869i −0.610425 + 1.87869i
848848 1.17557i 1.17557i
849849 0 0
850850 0 0
851851 −1.69480 + 2.33269i −1.69480 + 2.33269i
852852 0 0
853853 −0.297556 + 0.0966818i −0.297556 + 0.0966818i −0.453990 0.891007i 0.650000π-0.650000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
860860 0 0
861861 0 0
862862 0 0
863863 −0.587785 + 0.190983i −0.587785 + 0.190983i −0.587785 0.809017i 0.700000π-0.700000\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 −0.951057 + 1.30902i −0.951057 + 1.30902i
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 −0.309017 0.951057i −0.309017 0.951057i
875875 −0.610425 1.87869i −0.610425 1.87869i
876876 0 0
877877 −1.04744 1.44168i −1.04744 1.44168i −0.891007 0.453990i 0.850000π-0.850000\pi
−0.156434 0.987688i 0.550000π-0.550000\pi
878878 0 0
879879 0 0
880880 −0.707107 + 0.707107i −0.707107 + 0.707107i
881881 1.97538i 1.97538i 0.156434 + 0.987688i 0.450000π0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
882882 0 0
883883 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
884884 0 0
885885 0 0
886886 0 0
887887 −0.951057 0.690983i −0.951057 0.690983i 1.00000i 0.5π-0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
888888 0 0
889889 −1.08779 + 3.34786i −1.08779 + 3.34786i
890890 −0.312869 −0.312869
891891 0 0
892892 −0.312869 −0.312869
893893 −0.363271 + 1.11803i −0.363271 + 1.11803i
894894 0 0
895895 0.253116 + 0.183900i 0.253116 + 0.183900i
896896 −1.87869 + 0.610425i −1.87869 + 0.610425i
897897 0 0
898898 −0.533698 + 0.734572i −0.533698 + 0.734572i
899899 0 0
900900 0 0
901901 0 0
902902 −0.278768 + 0.142040i −0.278768 + 0.142040i
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
908908 0 0
909909 0 0
910910 1.05425 + 1.45106i 1.05425 + 1.45106i
911911 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 1.64204 2.26007i 1.64204 2.26007i
918918 0 0
919919 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
920920 1.30902 + 0.951057i 1.30902 + 0.951057i
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 −1.78201 −1.78201
926926 −0.550672 + 1.69480i −0.550672 + 1.69480i
927927 0 0
928928 0 0
929929 −1.87869 + 0.610425i −1.87869 + 0.610425i −0.891007 + 0.453990i 0.850000π0.850000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
930930 0 0
931931 1.05425 1.45106i 1.05425 1.45106i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
938938 0 0
939939 0 0
940940 −0.587785 1.80902i −0.587785 1.80902i
941941 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
942942 0 0
943943 0.297556 + 0.409551i 0.297556 + 0.409551i
944944 −1.69480 0.550672i −1.69480 0.550672i
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 0 0
950950 0.363271 0.500000i 0.363271 0.500000i
951951 0 0
952952 0 0
953953 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −0.809017 0.587785i −0.809017 0.587785i
962962 1.53884 0.500000i 1.53884 0.500000i
963963 0 0
964964 −0.951057 + 1.30902i −0.951057 + 1.30902i
965965 0 0
966966 0 0
967967 0.907981i 0.907981i 0.891007 + 0.453990i 0.150000π0.150000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
968968 0.587785 0.809017i 0.587785 0.809017i
969969 0 0
970970 0 0
971971 −1.16110 1.59811i −1.16110 1.59811i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.453990 0.891007i 0.650000π-0.650000\pi
972972 0 0
973973 0.717598 + 2.20854i 0.717598 + 2.20854i
974974 −0.437016 1.34500i −0.437016 1.34500i
975975 0 0
976976 0 0
977977 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
978978 0 0
979979 0.309017 0.0489435i 0.309017 0.0489435i
980980 2.90211i 2.90211i
981981 0 0
982982 −0.734572 + 0.533698i −0.734572 + 0.533698i
983983 0.690983 0.951057i 0.690983 0.951057i −0.309017 0.951057i 0.600000π-0.600000\pi
1.00000 00
984984 0 0
985985 −1.11803 + 0.363271i −1.11803 + 0.363271i
986986 0 0
987987 0 0
988988 −0.173409 + 0.533698i −0.173409 + 0.533698i
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −0.831254 + 1.14412i −0.831254 + 1.14412i 0.156434 + 0.987688i 0.450000π0.450000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
998998 0.951057 0.690983i 0.951057 0.690983i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3960.1.eg.a.1619.4 yes 16
3.2 odd 2 3960.1.eg.b.1619.2 yes 16
5.4 even 2 3960.1.eg.b.1619.1 yes 16
8.3 odd 2 3960.1.eg.b.1619.1 yes 16
11.6 odd 10 3960.1.eg.b.3779.2 yes 16
15.14 odd 2 inner 3960.1.eg.a.1619.3 16
24.11 even 2 inner 3960.1.eg.a.1619.3 16
33.17 even 10 inner 3960.1.eg.a.3779.4 yes 16
40.19 odd 2 CM 3960.1.eg.a.1619.4 yes 16
55.39 odd 10 inner 3960.1.eg.a.3779.3 yes 16
88.83 even 10 inner 3960.1.eg.a.3779.3 yes 16
120.59 even 2 3960.1.eg.b.1619.2 yes 16
165.149 even 10 3960.1.eg.b.3779.1 yes 16
264.83 odd 10 3960.1.eg.b.3779.1 yes 16
440.259 even 10 3960.1.eg.b.3779.2 yes 16
1320.1139 odd 10 inner 3960.1.eg.a.3779.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3960.1.eg.a.1619.3 16 15.14 odd 2 inner
3960.1.eg.a.1619.3 16 24.11 even 2 inner
3960.1.eg.a.1619.4 yes 16 1.1 even 1 trivial
3960.1.eg.a.1619.4 yes 16 40.19 odd 2 CM
3960.1.eg.a.3779.3 yes 16 55.39 odd 10 inner
3960.1.eg.a.3779.3 yes 16 88.83 even 10 inner
3960.1.eg.a.3779.4 yes 16 33.17 even 10 inner
3960.1.eg.a.3779.4 yes 16 1320.1139 odd 10 inner
3960.1.eg.b.1619.1 yes 16 5.4 even 2
3960.1.eg.b.1619.1 yes 16 8.3 odd 2
3960.1.eg.b.1619.2 yes 16 3.2 odd 2
3960.1.eg.b.1619.2 yes 16 120.59 even 2
3960.1.eg.b.3779.1 yes 16 165.149 even 10
3960.1.eg.b.3779.1 yes 16 264.83 odd 10
3960.1.eg.b.3779.2 yes 16 11.6 odd 10
3960.1.eg.b.3779.2 yes 16 440.259 even 10