Properties

Label 3960.2.d.d.3169.4
Level $3960$
Weight $2$
Character 3960.3169
Analytic conductor $31.621$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,2,Mod(3169,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.3169");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3960.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.6207592004\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 1320)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3169.4
Root \(1.45161 - 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 3960.3169
Dual form 3960.2.d.d.3169.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.311108 + 2.21432i) q^{5} -1.52543i q^{7} -1.00000 q^{11} +0.903212i q^{13} -2.90321i q^{17} +2.00000 q^{19} +8.85728i q^{23} +(-4.80642 + 1.37778i) q^{25} -6.62222 q^{29} -10.2351 q^{31} +(3.37778 - 0.474572i) q^{35} -8.56199i q^{37} -2.23506 q^{41} -12.5763i q^{43} +8.56199i q^{47} +4.67307 q^{49} +3.18421i q^{53} +(-0.311108 - 2.21432i) q^{55} +12.0415 q^{59} -13.6128 q^{61} +(-2.00000 + 0.280996i) q^{65} +14.3684i q^{67} -6.91750 q^{71} -9.76049i q^{73} +1.52543i q^{77} +8.75557 q^{79} +7.09679i q^{83} +(6.42864 - 0.903212i) q^{85} -14.9906 q^{89} +1.37778 q^{91} +(0.622216 + 4.42864i) q^{95} +7.61285i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{5} - 6 q^{11} + 12 q^{19} - 2 q^{25} - 40 q^{29} - 8 q^{31} + 20 q^{35} + 40 q^{41} + 2 q^{49} - 2 q^{55} - 8 q^{59} - 28 q^{61} - 12 q^{65} - 16 q^{71} + 52 q^{79} + 12 q^{85} - 36 q^{89} + 8 q^{91}+ \cdots + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3960\mathbb{Z}\right)^\times\).

\(n\) \(991\) \(1981\) \(2377\) \(2521\) \(3521\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.311108 + 2.21432i 0.139132 + 0.990274i
\(6\) 0 0
\(7\) 1.52543i 0.576557i −0.957547 0.288279i \(-0.906917\pi\)
0.957547 0.288279i \(-0.0930830\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 0.903212i 0.250506i 0.992125 + 0.125253i \(0.0399742\pi\)
−0.992125 + 0.125253i \(0.960026\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.90321i 0.704132i −0.935975 0.352066i \(-0.885479\pi\)
0.935975 0.352066i \(-0.114521\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.85728i 1.84687i 0.383754 + 0.923435i \(0.374631\pi\)
−0.383754 + 0.923435i \(0.625369\pi\)
\(24\) 0 0
\(25\) −4.80642 + 1.37778i −0.961285 + 0.275557i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.62222 −1.22971 −0.614857 0.788638i \(-0.710786\pi\)
−0.614857 + 0.788638i \(0.710786\pi\)
\(30\) 0 0
\(31\) −10.2351 −1.83827 −0.919136 0.393941i \(-0.871112\pi\)
−0.919136 + 0.393941i \(0.871112\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.37778 0.474572i 0.570950 0.0802174i
\(36\) 0 0
\(37\) 8.56199i 1.40758i −0.710407 0.703791i \(-0.751489\pi\)
0.710407 0.703791i \(-0.248511\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.23506 −0.349058 −0.174529 0.984652i \(-0.555840\pi\)
−0.174529 + 0.984652i \(0.555840\pi\)
\(42\) 0 0
\(43\) 12.5763i 1.91787i −0.283634 0.958933i \(-0.591540\pi\)
0.283634 0.958933i \(-0.408460\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.56199i 1.24889i 0.781067 + 0.624447i \(0.214676\pi\)
−0.781067 + 0.624447i \(0.785324\pi\)
\(48\) 0 0
\(49\) 4.67307 0.667582
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.18421i 0.437385i 0.975794 + 0.218692i \(0.0701791\pi\)
−0.975794 + 0.218692i \(0.929821\pi\)
\(54\) 0 0
\(55\) −0.311108 2.21432i −0.0419498 0.298579i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.0415 1.56767 0.783834 0.620970i \(-0.213261\pi\)
0.783834 + 0.620970i \(0.213261\pi\)
\(60\) 0 0
\(61\) −13.6128 −1.74295 −0.871473 0.490443i \(-0.836835\pi\)
−0.871473 + 0.490443i \(0.836835\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.00000 + 0.280996i −0.248069 + 0.0348533i
\(66\) 0 0
\(67\) 14.3684i 1.75538i 0.479227 + 0.877691i \(0.340917\pi\)
−0.479227 + 0.877691i \(0.659083\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.91750 −0.820956 −0.410478 0.911870i \(-0.634638\pi\)
−0.410478 + 0.911870i \(0.634638\pi\)
\(72\) 0 0
\(73\) 9.76049i 1.14238i −0.820818 0.571190i \(-0.806482\pi\)
0.820818 0.571190i \(-0.193518\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.52543i 0.173839i
\(78\) 0 0
\(79\) 8.75557 0.985078 0.492539 0.870290i \(-0.336069\pi\)
0.492539 + 0.870290i \(0.336069\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.09679i 0.778974i 0.921032 + 0.389487i \(0.127348\pi\)
−0.921032 + 0.389487i \(0.872652\pi\)
\(84\) 0 0
\(85\) 6.42864 0.903212i 0.697284 0.0979671i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.9906 −1.58900 −0.794502 0.607262i \(-0.792268\pi\)
−0.794502 + 0.607262i \(0.792268\pi\)
\(90\) 0 0
\(91\) 1.37778 0.144431
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.622216 + 4.42864i 0.0638380 + 0.454369i
\(96\) 0 0
\(97\) 7.61285i 0.772968i 0.922296 + 0.386484i \(0.126310\pi\)
−0.922296 + 0.386484i \(0.873690\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.2351 −1.01843 −0.509213 0.860640i \(-0.670064\pi\)
−0.509213 + 0.860640i \(0.670064\pi\)
\(102\) 0 0
\(103\) 5.80642i 0.572124i 0.958211 + 0.286062i \(0.0923463\pi\)
−0.958211 + 0.286062i \(0.907654\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.00492i 0.677191i 0.940932 + 0.338596i \(0.109952\pi\)
−0.940932 + 0.338596i \(0.890048\pi\)
\(108\) 0 0
\(109\) −9.61285 −0.920744 −0.460372 0.887726i \(-0.652284\pi\)
−0.460372 + 0.887726i \(0.652284\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.4795i 1.07990i −0.841697 0.539950i \(-0.818443\pi\)
0.841697 0.539950i \(-0.181557\pi\)
\(114\) 0 0
\(115\) −19.6128 + 2.75557i −1.82891 + 0.256958i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.42864 −0.405973
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4.54617 10.2143i −0.406622 0.913597i
\(126\) 0 0
\(127\) 17.4336i 1.54698i −0.633809 0.773489i \(-0.718510\pi\)
0.633809 0.773489i \(-0.281490\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.24443 −0.108726 −0.0543632 0.998521i \(-0.517313\pi\)
−0.0543632 + 0.998521i \(0.517313\pi\)
\(132\) 0 0
\(133\) 3.05086i 0.264543i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.69535i 0.401150i 0.979678 + 0.200575i \(0.0642811\pi\)
−0.979678 + 0.200575i \(0.935719\pi\)
\(138\) 0 0
\(139\) −14.4701 −1.22734 −0.613670 0.789563i \(-0.710307\pi\)
−0.613670 + 0.789563i \(0.710307\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.903212i 0.0755304i
\(144\) 0 0
\(145\) −2.06022 14.6637i −0.171092 1.21775i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11.4795 −0.940437 −0.470218 0.882550i \(-0.655825\pi\)
−0.470218 + 0.882550i \(0.655825\pi\)
\(150\) 0 0
\(151\) −3.24443 −0.264028 −0.132014 0.991248i \(-0.542144\pi\)
−0.132014 + 0.991248i \(0.542144\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.18421 22.6637i −0.255762 1.82039i
\(156\) 0 0
\(157\) 7.90813i 0.631138i −0.948903 0.315569i \(-0.897805\pi\)
0.948903 0.315569i \(-0.102195\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 13.5111 1.06483
\(162\) 0 0
\(163\) 9.41927i 0.737774i 0.929474 + 0.368887i \(0.120261\pi\)
−0.929474 + 0.368887i \(0.879739\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.3733i 1.34439i −0.740374 0.672195i \(-0.765352\pi\)
0.740374 0.672195i \(-0.234648\pi\)
\(168\) 0 0
\(169\) 12.1842 0.937247
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.5669i 1.03147i −0.856747 0.515737i \(-0.827518\pi\)
0.856747 0.515737i \(-0.172482\pi\)
\(174\) 0 0
\(175\) 2.10171 + 7.33185i 0.158874 + 0.554236i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 4.32693 0.321618 0.160809 0.986986i \(-0.448590\pi\)
0.160809 + 0.986986i \(0.448590\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 18.9590 2.66370i 1.39389 0.195839i
\(186\) 0 0
\(187\) 2.90321i 0.212304i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 15.5669i 1.12053i 0.828313 + 0.560266i \(0.189301\pi\)
−0.828313 + 0.560266i \(0.810699\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.3412i 1.02177i 0.859649 + 0.510885i \(0.170682\pi\)
−0.859649 + 0.510885i \(0.829318\pi\)
\(198\) 0 0
\(199\) −1.24443 −0.0882154 −0.0441077 0.999027i \(-0.514044\pi\)
−0.0441077 + 0.999027i \(0.514044\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.1017i 0.709001i
\(204\) 0 0
\(205\) −0.695346 4.94914i −0.0485650 0.345663i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) −24.9590 −1.71825 −0.859124 0.511768i \(-0.828991\pi\)
−0.859124 + 0.511768i \(0.828991\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 27.8479 3.91258i 1.89921 0.266836i
\(216\) 0 0
\(217\) 15.6128i 1.05987i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.62222 0.176389
\(222\) 0 0
\(223\) 1.53972i 0.103107i 0.998670 + 0.0515536i \(0.0164173\pi\)
−0.998670 + 0.0515536i \(0.983583\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.3002i 1.01551i 0.861501 + 0.507755i \(0.169525\pi\)
−0.861501 + 0.507755i \(0.830475\pi\)
\(228\) 0 0
\(229\) −15.7146 −1.03845 −0.519224 0.854638i \(-0.673779\pi\)
−0.519224 + 0.854638i \(0.673779\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 29.0049i 1.90018i −0.311983 0.950088i \(-0.600993\pi\)
0.311983 0.950088i \(-0.399007\pi\)
\(234\) 0 0
\(235\) −18.9590 + 2.66370i −1.23675 + 0.173761i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −15.6128 −1.00991 −0.504956 0.863145i \(-0.668491\pi\)
−0.504956 + 0.863145i \(0.668491\pi\)
\(240\) 0 0
\(241\) 5.61285 0.361555 0.180778 0.983524i \(-0.442139\pi\)
0.180778 + 0.983524i \(0.442139\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.45383 + 10.3477i 0.0928817 + 0.661089i
\(246\) 0 0
\(247\) 1.80642i 0.114940i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.91750 0.184151 0.0920755 0.995752i \(-0.470650\pi\)
0.0920755 + 0.995752i \(0.470650\pi\)
\(252\) 0 0
\(253\) 8.85728i 0.556852i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.0923i 0.691921i −0.938249 0.345961i \(-0.887553\pi\)
0.938249 0.345961i \(-0.112447\pi\)
\(258\) 0 0
\(259\) −13.0607 −0.811552
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.46520i 0.336999i 0.985702 + 0.168499i \(0.0538921\pi\)
−0.985702 + 0.168499i \(0.946108\pi\)
\(264\) 0 0
\(265\) −7.05086 + 0.990632i −0.433131 + 0.0608540i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.8573 −0.661980 −0.330990 0.943634i \(-0.607383\pi\)
−0.330990 + 0.943634i \(0.607383\pi\)
\(270\) 0 0
\(271\) −0.101710 −0.00617846 −0.00308923 0.999995i \(-0.500983\pi\)
−0.00308923 + 0.999995i \(0.500983\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.80642 1.37778i 0.289838 0.0830835i
\(276\) 0 0
\(277\) 9.19850i 0.552684i 0.961059 + 0.276342i \(0.0891223\pi\)
−0.961059 + 0.276342i \(0.910878\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.11108 0.0662814 0.0331407 0.999451i \(-0.489449\pi\)
0.0331407 + 0.999451i \(0.489449\pi\)
\(282\) 0 0
\(283\) 15.7190i 0.934398i −0.884152 0.467199i \(-0.845263\pi\)
0.884152 0.467199i \(-0.154737\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.40943i 0.201252i
\(288\) 0 0
\(289\) 8.57136 0.504198
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.43309i 0.375825i −0.982186 0.187912i \(-0.939828\pi\)
0.982186 0.187912i \(-0.0601721\pi\)
\(294\) 0 0
\(295\) 3.74620 + 26.6637i 0.218112 + 1.55242i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8.00000 −0.462652
\(300\) 0 0
\(301\) −19.1842 −1.10576
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.23506 30.1432i −0.242499 1.72599i
\(306\) 0 0
\(307\) 15.7190i 0.897131i 0.893750 + 0.448565i \(0.148065\pi\)
−0.893750 + 0.448565i \(0.851935\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.8988 −1.41188 −0.705940 0.708272i \(-0.749475\pi\)
−0.705940 + 0.708272i \(0.749475\pi\)
\(312\) 0 0
\(313\) 17.1526i 0.969520i −0.874647 0.484760i \(-0.838907\pi\)
0.874647 0.484760i \(-0.161093\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.3368i 0.692902i −0.938068 0.346451i \(-0.887387\pi\)
0.938068 0.346451i \(-0.112613\pi\)
\(318\) 0 0
\(319\) 6.62222 0.370773
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.80642i 0.323078i
\(324\) 0 0
\(325\) −1.24443 4.34122i −0.0690286 0.240808i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 13.0607 0.720060
\(330\) 0 0
\(331\) −9.37778 −0.515450 −0.257725 0.966218i \(-0.582973\pi\)
−0.257725 + 0.966218i \(0.582973\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −31.8163 + 4.47013i −1.73831 + 0.244229i
\(336\) 0 0
\(337\) 18.0558i 0.983561i −0.870719 0.491780i \(-0.836346\pi\)
0.870719 0.491780i \(-0.163654\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10.2351 0.554260
\(342\) 0 0
\(343\) 17.8064i 0.961457i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.5161i 0.886629i 0.896366 + 0.443314i \(0.146197\pi\)
−0.896366 + 0.443314i \(0.853803\pi\)
\(348\) 0 0
\(349\) 8.36842 0.447951 0.223976 0.974595i \(-0.428096\pi\)
0.223976 + 0.974595i \(0.428096\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.7748i 0.626708i −0.949636 0.313354i \(-0.898547\pi\)
0.949636 0.313354i \(-0.101453\pi\)
\(354\) 0 0
\(355\) −2.15209 15.3176i −0.114221 0.812972i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.2034 −0.644072 −0.322036 0.946727i \(-0.604367\pi\)
−0.322036 + 0.946727i \(0.604367\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 21.6128 3.03657i 1.13127 0.158941i
\(366\) 0 0
\(367\) 18.6637i 0.974237i 0.873336 + 0.487119i \(0.161952\pi\)
−0.873336 + 0.487119i \(0.838048\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.85728 0.252177
\(372\) 0 0
\(373\) 34.3225i 1.77715i 0.458731 + 0.888575i \(0.348304\pi\)
−0.458731 + 0.888575i \(0.651696\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.98126i 0.308051i
\(378\) 0 0
\(379\) 11.7333 0.602699 0.301349 0.953514i \(-0.402563\pi\)
0.301349 + 0.953514i \(0.402563\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 18.6637i 0.953671i −0.878993 0.476835i \(-0.841784\pi\)
0.878993 0.476835i \(-0.158216\pi\)
\(384\) 0 0
\(385\) −3.37778 + 0.474572i −0.172148 + 0.0241865i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −15.1240 −0.766816 −0.383408 0.923579i \(-0.625250\pi\)
−0.383408 + 0.923579i \(0.625250\pi\)
\(390\) 0 0
\(391\) 25.7146 1.30044
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.72393 + 19.3876i 0.137056 + 0.975497i
\(396\) 0 0
\(397\) 34.1847i 1.71568i 0.513917 + 0.857840i \(0.328194\pi\)
−0.513917 + 0.857840i \(0.671806\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −17.0923 −0.853551 −0.426775 0.904358i \(-0.640351\pi\)
−0.426775 + 0.904358i \(0.640351\pi\)
\(402\) 0 0
\(403\) 9.24443i 0.460498i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.56199i 0.424402i
\(408\) 0 0
\(409\) 27.1240 1.34119 0.670597 0.741822i \(-0.266038\pi\)
0.670597 + 0.741822i \(0.266038\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 18.3684i 0.903851i
\(414\) 0 0
\(415\) −15.7146 + 2.20787i −0.771397 + 0.108380i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14.4889 0.707827 0.353914 0.935278i \(-0.384851\pi\)
0.353914 + 0.935278i \(0.384851\pi\)
\(420\) 0 0
\(421\) −7.67307 −0.373963 −0.186981 0.982363i \(-0.559870\pi\)
−0.186981 + 0.982363i \(0.559870\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.00000 + 13.9541i 0.194029 + 0.676872i
\(426\) 0 0
\(427\) 20.7654i 1.00491i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.38715 0.403995 0.201997 0.979386i \(-0.435257\pi\)
0.201997 + 0.979386i \(0.435257\pi\)
\(432\) 0 0
\(433\) 31.3461i 1.50640i 0.657792 + 0.753200i \(0.271491\pi\)
−0.657792 + 0.753200i \(0.728509\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.7146i 0.847402i
\(438\) 0 0
\(439\) 37.5496 1.79214 0.896071 0.443910i \(-0.146409\pi\)
0.896071 + 0.443910i \(0.146409\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.9304i 0.519319i 0.965700 + 0.259660i \(0.0836104\pi\)
−0.965700 + 0.259660i \(0.916390\pi\)
\(444\) 0 0
\(445\) −4.66370 33.1941i −0.221081 1.57355i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −11.2573 −0.531267 −0.265633 0.964074i \(-0.585581\pi\)
−0.265633 + 0.964074i \(0.585581\pi\)
\(450\) 0 0
\(451\) 2.23506 0.105245
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.428639 + 3.05086i 0.0200949 + 0.143026i
\(456\) 0 0
\(457\) 29.3733i 1.37403i −0.726645 0.687013i \(-0.758921\pi\)
0.726645 0.687013i \(-0.241079\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 31.9496 1.48804 0.744021 0.668156i \(-0.232916\pi\)
0.744021 + 0.668156i \(0.232916\pi\)
\(462\) 0 0
\(463\) 34.4800i 1.60242i 0.598383 + 0.801210i \(0.295810\pi\)
−0.598383 + 0.801210i \(0.704190\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.6128i 0.537379i 0.963227 + 0.268689i \(0.0865905\pi\)
−0.963227 + 0.268689i \(0.913410\pi\)
\(468\) 0 0
\(469\) 21.9180 1.01208
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.5763i 0.578258i
\(474\) 0 0
\(475\) −9.61285 + 2.75557i −0.441068 + 0.126434i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −41.0607 −1.87611 −0.938056 0.346485i \(-0.887375\pi\)
−0.938056 + 0.346485i \(0.887375\pi\)
\(480\) 0 0
\(481\) 7.73329 0.352608
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −16.8573 + 2.36842i −0.765450 + 0.107544i
\(486\) 0 0
\(487\) 4.47013i 0.202561i −0.994858 0.101280i \(-0.967706\pi\)
0.994858 0.101280i \(-0.0322939\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 21.5941 0.974529 0.487264 0.873255i \(-0.337995\pi\)
0.487264 + 0.873255i \(0.337995\pi\)
\(492\) 0 0
\(493\) 19.2257i 0.865882i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.5521i 0.473329i
\(498\) 0 0
\(499\) 26.8385 1.20146 0.600729 0.799453i \(-0.294877\pi\)
0.600729 + 0.799453i \(0.294877\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17.7605i 0.791901i 0.918272 + 0.395951i \(0.129585\pi\)
−0.918272 + 0.395951i \(0.870415\pi\)
\(504\) 0 0
\(505\) −3.18421 22.6637i −0.141695 1.00852i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 18.0830 0.801514 0.400757 0.916184i \(-0.368747\pi\)
0.400757 + 0.916184i \(0.368747\pi\)
\(510\) 0 0
\(511\) −14.8889 −0.658647
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.8573 + 1.80642i −0.566559 + 0.0796005i
\(516\) 0 0
\(517\) 8.56199i 0.376556i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.40006 −0.105149 −0.0525743 0.998617i \(-0.516743\pi\)
−0.0525743 + 0.998617i \(0.516743\pi\)
\(522\) 0 0
\(523\) 19.7101i 0.861863i −0.902385 0.430932i \(-0.858185\pi\)
0.902385 0.430932i \(-0.141815\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 29.7146i 1.29439i
\(528\) 0 0
\(529\) −55.4514 −2.41093
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.01874i 0.0874412i
\(534\) 0 0
\(535\) −15.5111 + 2.17929i −0.670605 + 0.0942188i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.67307 −0.201283
\(540\) 0 0
\(541\) −2.59057 −0.111377 −0.0556887 0.998448i \(-0.517735\pi\)
−0.0556887 + 0.998448i \(0.517735\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.99063 21.2859i −0.128105 0.911789i
\(546\) 0 0
\(547\) 24.2810i 1.03818i 0.854719 + 0.519090i \(0.173729\pi\)
−0.854719 + 0.519090i \(0.826271\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −13.2444 −0.564232
\(552\) 0 0
\(553\) 13.3560i 0.567954i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 45.1798i 1.91433i 0.289546 + 0.957164i \(0.406496\pi\)
−0.289546 + 0.957164i \(0.593504\pi\)
\(558\) 0 0
\(559\) 11.3590 0.480437
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.97634i 0.125438i −0.998031 0.0627189i \(-0.980023\pi\)
0.998031 0.0627189i \(-0.0199772\pi\)
\(564\) 0 0
\(565\) 25.4193 3.57136i 1.06940 0.150248i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 39.1753 1.64231 0.821157 0.570702i \(-0.193329\pi\)
0.821157 + 0.570702i \(0.193329\pi\)
\(570\) 0 0
\(571\) −11.1240 −0.465524 −0.232762 0.972534i \(-0.574776\pi\)
−0.232762 + 0.972534i \(0.574776\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −12.2034 42.5718i −0.508918 1.77537i
\(576\) 0 0
\(577\) 6.19358i 0.257842i 0.991655 + 0.128921i \(0.0411514\pi\)
−0.991655 + 0.128921i \(0.958849\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10.8256 0.449123
\(582\) 0 0
\(583\) 3.18421i 0.131876i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.22570i 0.298236i −0.988819 0.149118i \(-0.952357\pi\)
0.988819 0.149118i \(-0.0476435\pi\)
\(588\) 0 0
\(589\) −20.4701 −0.843457
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 21.5955i 0.886821i 0.896319 + 0.443410i \(0.146232\pi\)
−0.896319 + 0.443410i \(0.853768\pi\)
\(594\) 0 0
\(595\) −1.37778 9.80642i −0.0564837 0.402024i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 38.4514 1.57108 0.785541 0.618810i \(-0.212385\pi\)
0.785541 + 0.618810i \(0.212385\pi\)
\(600\) 0 0
\(601\) 22.5906 0.921489 0.460744 0.887533i \(-0.347583\pi\)
0.460744 + 0.887533i \(0.347583\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.311108 + 2.21432i 0.0126483 + 0.0900249i
\(606\) 0 0
\(607\) 22.9733i 0.932457i 0.884664 + 0.466228i \(0.154387\pi\)
−0.884664 + 0.466228i \(0.845613\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.73329 −0.312856
\(612\) 0 0
\(613\) 23.5383i 0.950704i −0.879796 0.475352i \(-0.842321\pi\)
0.879796 0.475352i \(-0.157679\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22.8256i 0.918926i 0.888197 + 0.459463i \(0.151958\pi\)
−0.888197 + 0.459463i \(0.848042\pi\)
\(618\) 0 0
\(619\) 25.3778 1.02002 0.510010 0.860169i \(-0.329642\pi\)
0.510010 + 0.860169i \(0.329642\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 22.8671i 0.916152i
\(624\) 0 0
\(625\) 21.2034 13.2444i 0.848137 0.529777i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −24.8573 −0.991125
\(630\) 0 0
\(631\) 28.6735 1.14148 0.570738 0.821132i \(-0.306657\pi\)
0.570738 + 0.821132i \(0.306657\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 38.6035 5.42372i 1.53193 0.215234i
\(636\) 0 0
\(637\) 4.22077i 0.167233i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 18.6035 0.734793 0.367397 0.930064i \(-0.380249\pi\)
0.367397 + 0.930064i \(0.380249\pi\)
\(642\) 0 0
\(643\) 27.9081i 1.10059i −0.834971 0.550295i \(-0.814515\pi\)
0.834971 0.550295i \(-0.185485\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20.5620i 0.808375i 0.914676 + 0.404188i \(0.132446\pi\)
−0.914676 + 0.404188i \(0.867554\pi\)
\(648\) 0 0
\(649\) −12.0415 −0.472670
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 10.7685i 0.421403i −0.977550 0.210702i \(-0.932425\pi\)
0.977550 0.210702i \(-0.0675748\pi\)
\(654\) 0 0
\(655\) −0.387152 2.75557i −0.0151273 0.107669i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8.20342 −0.319560 −0.159780 0.987153i \(-0.551078\pi\)
−0.159780 + 0.987153i \(0.551078\pi\)
\(660\) 0 0
\(661\) 16.1017 0.626284 0.313142 0.949706i \(-0.398618\pi\)
0.313142 + 0.949706i \(0.398618\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.75557 0.949145i 0.261970 0.0368063i
\(666\) 0 0
\(667\) 58.6548i 2.27112i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 13.6128 0.525518
\(672\) 0 0
\(673\) 10.8845i 0.419566i −0.977748 0.209783i \(-0.932724\pi\)
0.977748 0.209783i \(-0.0672757\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.60793i 0.100231i −0.998743 0.0501154i \(-0.984041\pi\)
0.998743 0.0501154i \(-0.0159589\pi\)
\(678\) 0 0
\(679\) 11.6128 0.445660
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.60300i 0.367449i 0.982978 + 0.183724i \(0.0588154\pi\)
−0.982978 + 0.183724i \(0.941185\pi\)
\(684\) 0 0
\(685\) −10.3970 + 1.46076i −0.397249 + 0.0558127i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.87601 −0.109567
\(690\) 0 0
\(691\) 26.6351 1.01325 0.506624 0.862167i \(-0.330893\pi\)
0.506624 + 0.862167i \(0.330893\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.50177 32.0415i −0.170762 1.21540i
\(696\) 0 0
\(697\) 6.48886i 0.245783i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.62222 0.0990397 0.0495199 0.998773i \(-0.484231\pi\)
0.0495199 + 0.998773i \(0.484231\pi\)
\(702\) 0 0
\(703\) 17.1240i 0.645843i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15.6128i 0.587182i
\(708\) 0 0
\(709\) −29.1842 −1.09604 −0.548018 0.836467i \(-0.684617\pi\)
−0.548018 + 0.836467i \(0.684617\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 90.6548i 3.39505i
\(714\) 0 0
\(715\) 2.00000 0.280996i 0.0747958 0.0105087i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 40.9403 1.52681 0.763407 0.645918i \(-0.223525\pi\)
0.763407 + 0.645918i \(0.223525\pi\)
\(720\) 0 0
\(721\) 8.85728 0.329862
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 31.8292 9.12399i 1.18211 0.338856i
\(726\) 0 0
\(727\) 11.2257i 0.416338i −0.978093 0.208169i \(-0.933250\pi\)
0.978093 0.208169i \(-0.0667504\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −36.5116 −1.35043
\(732\) 0 0
\(733\) 7.74176i 0.285948i −0.989726 0.142974i \(-0.954333\pi\)
0.989726 0.142974i \(-0.0456666\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.3684i 0.529267i
\(738\) 0 0
\(739\) 24.1017 0.886596 0.443298 0.896374i \(-0.353808\pi\)
0.443298 + 0.896374i \(0.353808\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.22077i 0.301591i 0.988565 + 0.150795i \(0.0481835\pi\)
−0.988565 + 0.150795i \(0.951817\pi\)
\(744\) 0 0
\(745\) −3.57136 25.4193i −0.130845 0.931290i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.6855 0.390440
\(750\) 0 0
\(751\) 11.8163 0.431182 0.215591 0.976484i \(-0.430832\pi\)
0.215591 + 0.976484i \(0.430832\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.00937 7.18421i −0.0367347 0.261460i
\(756\) 0 0
\(757\) 10.6637i 0.387579i −0.981043 0.193789i \(-0.937922\pi\)
0.981043 0.193789i \(-0.0620779\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 42.7052 1.54806 0.774031 0.633148i \(-0.218237\pi\)
0.774031 + 0.633148i \(0.218237\pi\)
\(762\) 0 0
\(763\) 14.6637i 0.530862i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.8760i 0.392710i
\(768\) 0 0
\(769\) −7.63158 −0.275202 −0.137601 0.990488i \(-0.543939\pi\)
−0.137601 + 0.990488i \(0.543939\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.52051i 0.306461i −0.988190 0.153231i \(-0.951032\pi\)
0.988190 0.153231i \(-0.0489677\pi\)
\(774\) 0 0
\(775\) 49.1941 14.1017i 1.76710 0.506548i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.47013 −0.160159
\(780\) 0 0
\(781\) 6.91750 0.247528
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17.5111 2.46028i 0.624999 0.0878112i
\(786\) 0 0
\(787\) 41.3131i 1.47265i 0.676626 + 0.736327i \(0.263441\pi\)
−0.676626 + 0.736327i \(0.736559\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −17.5111 −0.622624
\(792\) 0 0
\(793\) 12.2953i 0.436618i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 48.7239i 1.72589i 0.505298 + 0.862945i \(0.331383\pi\)
−0.505298 + 0.862945i \(0.668617\pi\)
\(798\) 0 0
\(799\) 24.8573 0.879387
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.76049i 0.344440i
\(804\) 0 0
\(805\) 4.20342 + 29.9180i 0.148151 + 1.05447i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −52.4197 −1.84298 −0.921490 0.388402i \(-0.873027\pi\)
−0.921490 + 0.388402i \(0.873027\pi\)
\(810\) 0 0
\(811\) −22.8573 −0.802628 −0.401314 0.915941i \(-0.631446\pi\)
−0.401314 + 0.915941i \(0.631446\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −20.8573 + 2.93041i −0.730599 + 0.102648i
\(816\) 0 0
\(817\) 25.1526i 0.879977i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −52.5402 −1.83367 −0.916833 0.399272i \(-0.869263\pi\)
−0.916833 + 0.399272i \(0.869263\pi\)
\(822\) 0 0
\(823\) 24.8859i 0.867467i 0.901041 + 0.433733i \(0.142804\pi\)
−0.901041 + 0.433733i \(0.857196\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.60793i 0.299327i −0.988737 0.149663i \(-0.952181\pi\)
0.988737 0.149663i \(-0.0478190\pi\)
\(828\) 0 0
\(829\) −6.16193 −0.214013 −0.107006 0.994258i \(-0.534127\pi\)
−0.107006 + 0.994258i \(0.534127\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 13.5669i 0.470066i
\(834\) 0 0
\(835\) 38.4701 5.40498i 1.33131 0.187047i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −46.4929 −1.60511 −0.802556 0.596577i \(-0.796527\pi\)
−0.802556 + 0.596577i \(0.796527\pi\)
\(840\) 0 0
\(841\) 14.8537 0.512198
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.79060 + 26.9797i 0.130401 + 0.928131i
\(846\) 0 0
\(847\) 1.52543i 0.0524143i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 75.8360 2.59962
\(852\) 0 0
\(853\) 0.699791i 0.0239604i −0.999928 0.0119802i \(-0.996186\pi\)
0.999928 0.0119802i \(-0.00381351\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 16.0558i 0.548455i 0.961665 + 0.274227i \(0.0884221\pi\)
−0.961665 + 0.274227i \(0.911578\pi\)
\(858\) 0 0
\(859\) −1.11108 −0.0379095 −0.0189547 0.999820i \(-0.506034\pi\)
−0.0189547 + 0.999820i \(0.506034\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 43.0134i 1.46419i 0.681201 + 0.732096i \(0.261458\pi\)
−0.681201 + 0.732096i \(0.738542\pi\)
\(864\) 0 0
\(865\) 30.0415 4.22077i 1.02144 0.143511i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −8.75557 −0.297012
\(870\) 0 0
\(871\) −12.9777 −0.439733
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −15.5812 + 6.93485i −0.526741 + 0.234441i
\(876\) 0 0
\(877\) 8.03704i 0.271392i −0.990751 0.135696i \(-0.956673\pi\)
0.990751 0.135696i \(-0.0433270\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 17.9367 0.604303 0.302152 0.953260i \(-0.402295\pi\)
0.302152 + 0.953260i \(0.402295\pi\)
\(882\) 0 0
\(883\) 3.22570i 0.108553i 0.998526 + 0.0542766i \(0.0172853\pi\)
−0.998526 + 0.0542766i \(0.982715\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.43662i 0.0482371i −0.999709 0.0241186i \(-0.992322\pi\)
0.999709 0.0241186i \(-0.00767792\pi\)
\(888\) 0 0
\(889\) −26.5936 −0.891922
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 17.1240i 0.573032i
\(894\) 0 0
\(895\) −3.73329 26.5718i −0.124790 0.888199i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 67.7788 2.26055
\(900\) 0 0
\(901\) 9.24443 0.307977
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.34614 + 9.58120i 0.0447473 + 0.318490i
\(906\) 0 0
\(907\) 19.4380i 0.645428i 0.946496 + 0.322714i \(0.104595\pi\)
−0.946496 + 0.322714i \(0.895405\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −16.6735 −0.552419 −0.276210 0.961097i \(-0.589078\pi\)
−0.276210 + 0.961097i \(0.589078\pi\)
\(912\) 0 0
\(913\) 7.09679i 0.234869i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.89829i 0.0626871i
\(918\) 0 0
\(919\) 31.4479 1.03737 0.518684 0.854966i \(-0.326422\pi\)
0.518684 + 0.854966i \(0.326422\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 6.24797i 0.205654i
\(924\) 0 0
\(925\) 11.7966 + 41.1526i 0.387869 + 1.35309i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −44.3881 −1.45633 −0.728163 0.685404i \(-0.759626\pi\)
−0.728163 + 0.685404i \(0.759626\pi\)
\(930\) 0 0
\(931\) 9.34614 0.306307
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −6.42864 + 0.903212i −0.210239 + 0.0295382i
\(936\) 0 0
\(937\) 21.6686i 0.707883i 0.935268 + 0.353942i \(0.115159\pi\)
−0.935268 + 0.353942i \(0.884841\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −15.4795 −0.504617 −0.252309 0.967647i \(-0.581190\pi\)
−0.252309 + 0.967647i \(0.581190\pi\)
\(942\) 0 0
\(943\) 19.7966i 0.644665i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 50.0098i 1.62510i −0.582890 0.812551i \(-0.698078\pi\)
0.582890 0.812551i \(-0.301922\pi\)
\(948\) 0 0
\(949\) 8.81579 0.286173
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10.9032i 0.353190i −0.984284 0.176595i \(-0.943492\pi\)
0.984284 0.176595i \(-0.0565082\pi\)
\(954\) 0 0
\(955\) 2.48886 + 17.7146i 0.0805377 + 0.573230i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 7.16241 0.231286
\(960\) 0 0
\(961\) 73.7565 2.37924
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −34.4701 + 4.84299i −1.10963 + 0.155901i
\(966\) 0 0
\(967\) 43.6815i 1.40470i −0.711830 0.702352i \(-0.752133\pi\)
0.711830 0.702352i \(-0.247867\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 2.55215 0.0819023 0.0409512 0.999161i \(-0.486961\pi\)
0.0409512 + 0.999161i \(0.486961\pi\)
\(972\) 0 0
\(973\) 22.0731i 0.707632i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.40990i 0.205071i −0.994729 0.102535i \(-0.967304\pi\)
0.994729 0.102535i \(-0.0326955\pi\)
\(978\) 0 0
\(979\) 14.9906 0.479103
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 40.1748i 1.28138i −0.767800 0.640689i \(-0.778649\pi\)
0.767800 0.640689i \(-0.221351\pi\)
\(984\) 0 0
\(985\) −31.7560 + 4.46167i −1.01183 + 0.142160i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 111.392 3.54205
\(990\) 0 0
\(991\) 18.2351 0.579256 0.289628 0.957139i \(-0.406468\pi\)
0.289628 + 0.957139i \(0.406468\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.387152 2.75557i −0.0122736 0.0873574i
\(996\) 0 0
\(997\) 4.16638i 0.131951i 0.997821 + 0.0659753i \(0.0210158\pi\)
−0.997821 + 0.0659753i \(0.978984\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3960.2.d.d.3169.4 6
3.2 odd 2 1320.2.d.b.529.5 yes 6
5.4 even 2 inner 3960.2.d.d.3169.3 6
12.11 even 2 2640.2.d.f.529.2 6
15.2 even 4 6600.2.a.bu.1.3 3
15.8 even 4 6600.2.a.bq.1.1 3
15.14 odd 2 1320.2.d.b.529.2 6
60.59 even 2 2640.2.d.f.529.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1320.2.d.b.529.2 6 15.14 odd 2
1320.2.d.b.529.5 yes 6 3.2 odd 2
2640.2.d.f.529.2 6 12.11 even 2
2640.2.d.f.529.5 6 60.59 even 2
3960.2.d.d.3169.3 6 5.4 even 2 inner
3960.2.d.d.3169.4 6 1.1 even 1 trivial
6600.2.a.bq.1.1 3 15.8 even 4
6600.2.a.bu.1.3 3 15.2 even 4