Properties

Label 6600.2.a.bq.1.1
Level $6600$
Weight $2$
Character 6600.1
Self dual yes
Analytic conductor $52.701$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6600,2,Mod(1,6600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6600.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6600 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.7012653340\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1320)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 6600.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.52543 q^{7} +1.00000 q^{9} +1.00000 q^{11} -0.903212 q^{13} +2.90321 q^{17} -2.00000 q^{19} +1.52543 q^{21} +8.85728 q^{23} -1.00000 q^{27} -6.62222 q^{29} -10.2351 q^{31} -1.00000 q^{33} -8.56199 q^{37} +0.903212 q^{39} +2.23506 q^{41} +12.5763 q^{43} -8.56199 q^{47} -4.67307 q^{49} -2.90321 q^{51} +3.18421 q^{53} +2.00000 q^{57} +12.0415 q^{59} -13.6128 q^{61} -1.52543 q^{63} +14.3684 q^{67} -8.85728 q^{69} +6.91750 q^{71} +9.76049 q^{73} -1.52543 q^{77} -8.75557 q^{79} +1.00000 q^{81} +7.09679 q^{83} +6.62222 q^{87} -14.9906 q^{89} +1.37778 q^{91} +10.2351 q^{93} +7.61285 q^{97} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 2 q^{7} + 3 q^{9} + 3 q^{11} + 4 q^{13} + 2 q^{17} - 6 q^{19} - 2 q^{21} - 3 q^{27} - 20 q^{29} - 4 q^{31} - 3 q^{33} - 12 q^{37} - 4 q^{39} - 20 q^{41} + 18 q^{43} - 12 q^{47} - q^{49}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.52543 −0.576557 −0.288279 0.957547i \(-0.593083\pi\)
−0.288279 + 0.957547i \(0.593083\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −0.903212 −0.250506 −0.125253 0.992125i \(-0.539974\pi\)
−0.125253 + 0.992125i \(0.539974\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.90321 0.704132 0.352066 0.935975i \(-0.385479\pi\)
0.352066 + 0.935975i \(0.385479\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 1.52543 0.332876
\(22\) 0 0
\(23\) 8.85728 1.84687 0.923435 0.383754i \(-0.125369\pi\)
0.923435 + 0.383754i \(0.125369\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −6.62222 −1.22971 −0.614857 0.788638i \(-0.710786\pi\)
−0.614857 + 0.788638i \(0.710786\pi\)
\(30\) 0 0
\(31\) −10.2351 −1.83827 −0.919136 0.393941i \(-0.871112\pi\)
−0.919136 + 0.393941i \(0.871112\pi\)
\(32\) 0 0
\(33\) −1.00000 −0.174078
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.56199 −1.40758 −0.703791 0.710407i \(-0.748511\pi\)
−0.703791 + 0.710407i \(0.748511\pi\)
\(38\) 0 0
\(39\) 0.903212 0.144630
\(40\) 0 0
\(41\) 2.23506 0.349058 0.174529 0.984652i \(-0.444160\pi\)
0.174529 + 0.984652i \(0.444160\pi\)
\(42\) 0 0
\(43\) 12.5763 1.91787 0.958933 0.283634i \(-0.0915401\pi\)
0.958933 + 0.283634i \(0.0915401\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.56199 −1.24889 −0.624447 0.781067i \(-0.714676\pi\)
−0.624447 + 0.781067i \(0.714676\pi\)
\(48\) 0 0
\(49\) −4.67307 −0.667582
\(50\) 0 0
\(51\) −2.90321 −0.406531
\(52\) 0 0
\(53\) 3.18421 0.437385 0.218692 0.975794i \(-0.429821\pi\)
0.218692 + 0.975794i \(0.429821\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) 12.0415 1.56767 0.783834 0.620970i \(-0.213261\pi\)
0.783834 + 0.620970i \(0.213261\pi\)
\(60\) 0 0
\(61\) −13.6128 −1.74295 −0.871473 0.490443i \(-0.836835\pi\)
−0.871473 + 0.490443i \(0.836835\pi\)
\(62\) 0 0
\(63\) −1.52543 −0.192186
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 14.3684 1.75538 0.877691 0.479227i \(-0.159083\pi\)
0.877691 + 0.479227i \(0.159083\pi\)
\(68\) 0 0
\(69\) −8.85728 −1.06629
\(70\) 0 0
\(71\) 6.91750 0.820956 0.410478 0.911870i \(-0.365362\pi\)
0.410478 + 0.911870i \(0.365362\pi\)
\(72\) 0 0
\(73\) 9.76049 1.14238 0.571190 0.820818i \(-0.306482\pi\)
0.571190 + 0.820818i \(0.306482\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.52543 −0.173839
\(78\) 0 0
\(79\) −8.75557 −0.985078 −0.492539 0.870290i \(-0.663931\pi\)
−0.492539 + 0.870290i \(0.663931\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 7.09679 0.778974 0.389487 0.921032i \(-0.372652\pi\)
0.389487 + 0.921032i \(0.372652\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 6.62222 0.709976
\(88\) 0 0
\(89\) −14.9906 −1.58900 −0.794502 0.607262i \(-0.792268\pi\)
−0.794502 + 0.607262i \(0.792268\pi\)
\(90\) 0 0
\(91\) 1.37778 0.144431
\(92\) 0 0
\(93\) 10.2351 1.06133
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.61285 0.772968 0.386484 0.922296i \(-0.373690\pi\)
0.386484 + 0.922296i \(0.373690\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) 0 0
\(101\) 10.2351 1.01843 0.509213 0.860640i \(-0.329936\pi\)
0.509213 + 0.860640i \(0.329936\pi\)
\(102\) 0 0
\(103\) −5.80642 −0.572124 −0.286062 0.958211i \(-0.592346\pi\)
−0.286062 + 0.958211i \(0.592346\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.00492 −0.677191 −0.338596 0.940932i \(-0.609952\pi\)
−0.338596 + 0.940932i \(0.609952\pi\)
\(108\) 0 0
\(109\) 9.61285 0.920744 0.460372 0.887726i \(-0.347716\pi\)
0.460372 + 0.887726i \(0.347716\pi\)
\(110\) 0 0
\(111\) 8.56199 0.812668
\(112\) 0 0
\(113\) −11.4795 −1.07990 −0.539950 0.841697i \(-0.681557\pi\)
−0.539950 + 0.841697i \(0.681557\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.903212 −0.0835020
\(118\) 0 0
\(119\) −4.42864 −0.405973
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −2.23506 −0.201529
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −17.4336 −1.54698 −0.773489 0.633809i \(-0.781490\pi\)
−0.773489 + 0.633809i \(0.781490\pi\)
\(128\) 0 0
\(129\) −12.5763 −1.10728
\(130\) 0 0
\(131\) 1.24443 0.108726 0.0543632 0.998521i \(-0.482687\pi\)
0.0543632 + 0.998521i \(0.482687\pi\)
\(132\) 0 0
\(133\) 3.05086 0.264543
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.69535 −0.401150 −0.200575 0.979678i \(-0.564281\pi\)
−0.200575 + 0.979678i \(0.564281\pi\)
\(138\) 0 0
\(139\) 14.4701 1.22734 0.613670 0.789563i \(-0.289693\pi\)
0.613670 + 0.789563i \(0.289693\pi\)
\(140\) 0 0
\(141\) 8.56199 0.721050
\(142\) 0 0
\(143\) −0.903212 −0.0755304
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 4.67307 0.385428
\(148\) 0 0
\(149\) −11.4795 −0.940437 −0.470218 0.882550i \(-0.655825\pi\)
−0.470218 + 0.882550i \(0.655825\pi\)
\(150\) 0 0
\(151\) −3.24443 −0.264028 −0.132014 0.991248i \(-0.542144\pi\)
−0.132014 + 0.991248i \(0.542144\pi\)
\(152\) 0 0
\(153\) 2.90321 0.234711
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −7.90813 −0.631138 −0.315569 0.948903i \(-0.602195\pi\)
−0.315569 + 0.948903i \(0.602195\pi\)
\(158\) 0 0
\(159\) −3.18421 −0.252524
\(160\) 0 0
\(161\) −13.5111 −1.06483
\(162\) 0 0
\(163\) −9.41927 −0.737774 −0.368887 0.929474i \(-0.620261\pi\)
−0.368887 + 0.929474i \(0.620261\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.3733 1.34439 0.672195 0.740374i \(-0.265352\pi\)
0.672195 + 0.740374i \(0.265352\pi\)
\(168\) 0 0
\(169\) −12.1842 −0.937247
\(170\) 0 0
\(171\) −2.00000 −0.152944
\(172\) 0 0
\(173\) −13.5669 −1.03147 −0.515737 0.856747i \(-0.672482\pi\)
−0.515737 + 0.856747i \(0.672482\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.0415 −0.905094
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 4.32693 0.321618 0.160809 0.986986i \(-0.448590\pi\)
0.160809 + 0.986986i \(0.448590\pi\)
\(182\) 0 0
\(183\) 13.6128 1.00629
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.90321 0.212304
\(188\) 0 0
\(189\) 1.52543 0.110959
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) −15.5669 −1.12053 −0.560266 0.828313i \(-0.689301\pi\)
−0.560266 + 0.828313i \(0.689301\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.3412 −1.02177 −0.510885 0.859649i \(-0.670682\pi\)
−0.510885 + 0.859649i \(0.670682\pi\)
\(198\) 0 0
\(199\) 1.24443 0.0882154 0.0441077 0.999027i \(-0.485956\pi\)
0.0441077 + 0.999027i \(0.485956\pi\)
\(200\) 0 0
\(201\) −14.3684 −1.01347
\(202\) 0 0
\(203\) 10.1017 0.709001
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8.85728 0.615623
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) −24.9590 −1.71825 −0.859124 0.511768i \(-0.828991\pi\)
−0.859124 + 0.511768i \(0.828991\pi\)
\(212\) 0 0
\(213\) −6.91750 −0.473979
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 15.6128 1.05987
\(218\) 0 0
\(219\) −9.76049 −0.659553
\(220\) 0 0
\(221\) −2.62222 −0.176389
\(222\) 0 0
\(223\) −1.53972 −0.103107 −0.0515536 0.998670i \(-0.516417\pi\)
−0.0515536 + 0.998670i \(0.516417\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −15.3002 −1.01551 −0.507755 0.861501i \(-0.669525\pi\)
−0.507755 + 0.861501i \(0.669525\pi\)
\(228\) 0 0
\(229\) 15.7146 1.03845 0.519224 0.854638i \(-0.326221\pi\)
0.519224 + 0.854638i \(0.326221\pi\)
\(230\) 0 0
\(231\) 1.52543 0.100366
\(232\) 0 0
\(233\) −29.0049 −1.90018 −0.950088 0.311983i \(-0.899007\pi\)
−0.950088 + 0.311983i \(0.899007\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 8.75557 0.568735
\(238\) 0 0
\(239\) −15.6128 −1.00991 −0.504956 0.863145i \(-0.668491\pi\)
−0.504956 + 0.863145i \(0.668491\pi\)
\(240\) 0 0
\(241\) 5.61285 0.361555 0.180778 0.983524i \(-0.442139\pi\)
0.180778 + 0.983524i \(0.442139\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.80642 0.114940
\(248\) 0 0
\(249\) −7.09679 −0.449741
\(250\) 0 0
\(251\) −2.91750 −0.184151 −0.0920755 0.995752i \(-0.529350\pi\)
−0.0920755 + 0.995752i \(0.529350\pi\)
\(252\) 0 0
\(253\) 8.85728 0.556852
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.0923 0.691921 0.345961 0.938249i \(-0.387553\pi\)
0.345961 + 0.938249i \(0.387553\pi\)
\(258\) 0 0
\(259\) 13.0607 0.811552
\(260\) 0 0
\(261\) −6.62222 −0.409905
\(262\) 0 0
\(263\) 5.46520 0.336999 0.168499 0.985702i \(-0.446108\pi\)
0.168499 + 0.985702i \(0.446108\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 14.9906 0.917412
\(268\) 0 0
\(269\) −10.8573 −0.661980 −0.330990 0.943634i \(-0.607383\pi\)
−0.330990 + 0.943634i \(0.607383\pi\)
\(270\) 0 0
\(271\) −0.101710 −0.00617846 −0.00308923 0.999995i \(-0.500983\pi\)
−0.00308923 + 0.999995i \(0.500983\pi\)
\(272\) 0 0
\(273\) −1.37778 −0.0833873
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 9.19850 0.552684 0.276342 0.961059i \(-0.410878\pi\)
0.276342 + 0.961059i \(0.410878\pi\)
\(278\) 0 0
\(279\) −10.2351 −0.612757
\(280\) 0 0
\(281\) −1.11108 −0.0662814 −0.0331407 0.999451i \(-0.510551\pi\)
−0.0331407 + 0.999451i \(0.510551\pi\)
\(282\) 0 0
\(283\) 15.7190 0.934398 0.467199 0.884152i \(-0.345263\pi\)
0.467199 + 0.884152i \(0.345263\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.40943 −0.201252
\(288\) 0 0
\(289\) −8.57136 −0.504198
\(290\) 0 0
\(291\) −7.61285 −0.446273
\(292\) 0 0
\(293\) −6.43309 −0.375825 −0.187912 0.982186i \(-0.560172\pi\)
−0.187912 + 0.982186i \(0.560172\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.00000 −0.0580259
\(298\) 0 0
\(299\) −8.00000 −0.462652
\(300\) 0 0
\(301\) −19.1842 −1.10576
\(302\) 0 0
\(303\) −10.2351 −0.587989
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 15.7190 0.897131 0.448565 0.893750i \(-0.351935\pi\)
0.448565 + 0.893750i \(0.351935\pi\)
\(308\) 0 0
\(309\) 5.80642 0.330316
\(310\) 0 0
\(311\) 24.8988 1.41188 0.705940 0.708272i \(-0.250525\pi\)
0.705940 + 0.708272i \(0.250525\pi\)
\(312\) 0 0
\(313\) 17.1526 0.969520 0.484760 0.874647i \(-0.338907\pi\)
0.484760 + 0.874647i \(0.338907\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.3368 0.692902 0.346451 0.938068i \(-0.387387\pi\)
0.346451 + 0.938068i \(0.387387\pi\)
\(318\) 0 0
\(319\) −6.62222 −0.370773
\(320\) 0 0
\(321\) 7.00492 0.390977
\(322\) 0 0
\(323\) −5.80642 −0.323078
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −9.61285 −0.531592
\(328\) 0 0
\(329\) 13.0607 0.720060
\(330\) 0 0
\(331\) −9.37778 −0.515450 −0.257725 0.966218i \(-0.582973\pi\)
−0.257725 + 0.966218i \(0.582973\pi\)
\(332\) 0 0
\(333\) −8.56199 −0.469194
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −18.0558 −0.983561 −0.491780 0.870719i \(-0.663654\pi\)
−0.491780 + 0.870719i \(0.663654\pi\)
\(338\) 0 0
\(339\) 11.4795 0.623481
\(340\) 0 0
\(341\) −10.2351 −0.554260
\(342\) 0 0
\(343\) 17.8064 0.961457
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.5161 −0.886629 −0.443314 0.896366i \(-0.646197\pi\)
−0.443314 + 0.896366i \(0.646197\pi\)
\(348\) 0 0
\(349\) −8.36842 −0.447951 −0.223976 0.974595i \(-0.571904\pi\)
−0.223976 + 0.974595i \(0.571904\pi\)
\(350\) 0 0
\(351\) 0.903212 0.0482099
\(352\) 0 0
\(353\) −11.7748 −0.626708 −0.313354 0.949636i \(-0.601453\pi\)
−0.313354 + 0.949636i \(0.601453\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.42864 0.234388
\(358\) 0 0
\(359\) −12.2034 −0.644072 −0.322036 0.946727i \(-0.604367\pi\)
−0.322036 + 0.946727i \(0.604367\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 18.6637 0.974237 0.487119 0.873336i \(-0.338048\pi\)
0.487119 + 0.873336i \(0.338048\pi\)
\(368\) 0 0
\(369\) 2.23506 0.116353
\(370\) 0 0
\(371\) −4.85728 −0.252177
\(372\) 0 0
\(373\) −34.3225 −1.77715 −0.888575 0.458731i \(-0.848304\pi\)
−0.888575 + 0.458731i \(0.848304\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.98126 0.308051
\(378\) 0 0
\(379\) −11.7333 −0.602699 −0.301349 0.953514i \(-0.597437\pi\)
−0.301349 + 0.953514i \(0.597437\pi\)
\(380\) 0 0
\(381\) 17.4336 0.893148
\(382\) 0 0
\(383\) −18.6637 −0.953671 −0.476835 0.878993i \(-0.658216\pi\)
−0.476835 + 0.878993i \(0.658216\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 12.5763 0.639288
\(388\) 0 0
\(389\) −15.1240 −0.766816 −0.383408 0.923579i \(-0.625250\pi\)
−0.383408 + 0.923579i \(0.625250\pi\)
\(390\) 0 0
\(391\) 25.7146 1.30044
\(392\) 0 0
\(393\) −1.24443 −0.0627733
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 34.1847 1.71568 0.857840 0.513917i \(-0.171806\pi\)
0.857840 + 0.513917i \(0.171806\pi\)
\(398\) 0 0
\(399\) −3.05086 −0.152734
\(400\) 0 0
\(401\) 17.0923 0.853551 0.426775 0.904358i \(-0.359649\pi\)
0.426775 + 0.904358i \(0.359649\pi\)
\(402\) 0 0
\(403\) 9.24443 0.460498
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −8.56199 −0.424402
\(408\) 0 0
\(409\) −27.1240 −1.34119 −0.670597 0.741822i \(-0.733962\pi\)
−0.670597 + 0.741822i \(0.733962\pi\)
\(410\) 0 0
\(411\) 4.69535 0.231604
\(412\) 0 0
\(413\) −18.3684 −0.903851
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −14.4701 −0.708605
\(418\) 0 0
\(419\) 14.4889 0.707827 0.353914 0.935278i \(-0.384851\pi\)
0.353914 + 0.935278i \(0.384851\pi\)
\(420\) 0 0
\(421\) −7.67307 −0.373963 −0.186981 0.982363i \(-0.559870\pi\)
−0.186981 + 0.982363i \(0.559870\pi\)
\(422\) 0 0
\(423\) −8.56199 −0.416298
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 20.7654 1.00491
\(428\) 0 0
\(429\) 0.903212 0.0436075
\(430\) 0 0
\(431\) −8.38715 −0.403995 −0.201997 0.979386i \(-0.564743\pi\)
−0.201997 + 0.979386i \(0.564743\pi\)
\(432\) 0 0
\(433\) −31.3461 −1.50640 −0.753200 0.657792i \(-0.771491\pi\)
−0.753200 + 0.657792i \(0.771491\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −17.7146 −0.847402
\(438\) 0 0
\(439\) −37.5496 −1.79214 −0.896071 0.443910i \(-0.853591\pi\)
−0.896071 + 0.443910i \(0.853591\pi\)
\(440\) 0 0
\(441\) −4.67307 −0.222527
\(442\) 0 0
\(443\) 10.9304 0.519319 0.259660 0.965700i \(-0.416390\pi\)
0.259660 + 0.965700i \(0.416390\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 11.4795 0.542961
\(448\) 0 0
\(449\) −11.2573 −0.531267 −0.265633 0.964074i \(-0.585581\pi\)
−0.265633 + 0.964074i \(0.585581\pi\)
\(450\) 0 0
\(451\) 2.23506 0.105245
\(452\) 0 0
\(453\) 3.24443 0.152437
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −29.3733 −1.37403 −0.687013 0.726645i \(-0.741079\pi\)
−0.687013 + 0.726645i \(0.741079\pi\)
\(458\) 0 0
\(459\) −2.90321 −0.135510
\(460\) 0 0
\(461\) −31.9496 −1.48804 −0.744021 0.668156i \(-0.767084\pi\)
−0.744021 + 0.668156i \(0.767084\pi\)
\(462\) 0 0
\(463\) −34.4800 −1.60242 −0.801210 0.598383i \(-0.795810\pi\)
−0.801210 + 0.598383i \(0.795810\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.6128 −0.537379 −0.268689 0.963227i \(-0.586590\pi\)
−0.268689 + 0.963227i \(0.586590\pi\)
\(468\) 0 0
\(469\) −21.9180 −1.01208
\(470\) 0 0
\(471\) 7.90813 0.364388
\(472\) 0 0
\(473\) 12.5763 0.578258
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 3.18421 0.145795
\(478\) 0 0
\(479\) −41.0607 −1.87611 −0.938056 0.346485i \(-0.887375\pi\)
−0.938056 + 0.346485i \(0.887375\pi\)
\(480\) 0 0
\(481\) 7.73329 0.352608
\(482\) 0 0
\(483\) 13.5111 0.614778
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −4.47013 −0.202561 −0.101280 0.994858i \(-0.532294\pi\)
−0.101280 + 0.994858i \(0.532294\pi\)
\(488\) 0 0
\(489\) 9.41927 0.425954
\(490\) 0 0
\(491\) −21.5941 −0.974529 −0.487264 0.873255i \(-0.662005\pi\)
−0.487264 + 0.873255i \(0.662005\pi\)
\(492\) 0 0
\(493\) −19.2257 −0.865882
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10.5521 −0.473329
\(498\) 0 0
\(499\) −26.8385 −1.20146 −0.600729 0.799453i \(-0.705123\pi\)
−0.600729 + 0.799453i \(0.705123\pi\)
\(500\) 0 0
\(501\) −17.3733 −0.776184
\(502\) 0 0
\(503\) 17.7605 0.791901 0.395951 0.918272i \(-0.370415\pi\)
0.395951 + 0.918272i \(0.370415\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.1842 0.541120
\(508\) 0 0
\(509\) 18.0830 0.801514 0.400757 0.916184i \(-0.368747\pi\)
0.400757 + 0.916184i \(0.368747\pi\)
\(510\) 0 0
\(511\) −14.8889 −0.658647
\(512\) 0 0
\(513\) 2.00000 0.0883022
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −8.56199 −0.376556
\(518\) 0 0
\(519\) 13.5669 0.595521
\(520\) 0 0
\(521\) 2.40006 0.105149 0.0525743 0.998617i \(-0.483257\pi\)
0.0525743 + 0.998617i \(0.483257\pi\)
\(522\) 0 0
\(523\) 19.7101 0.861863 0.430932 0.902385i \(-0.358185\pi\)
0.430932 + 0.902385i \(0.358185\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −29.7146 −1.29439
\(528\) 0 0
\(529\) 55.4514 2.41093
\(530\) 0 0
\(531\) 12.0415 0.522556
\(532\) 0 0
\(533\) −2.01874 −0.0874412
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 12.0000 0.517838
\(538\) 0 0
\(539\) −4.67307 −0.201283
\(540\) 0 0
\(541\) −2.59057 −0.111377 −0.0556887 0.998448i \(-0.517735\pi\)
−0.0556887 + 0.998448i \(0.517735\pi\)
\(542\) 0 0
\(543\) −4.32693 −0.185686
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 24.2810 1.03818 0.519090 0.854719i \(-0.326271\pi\)
0.519090 + 0.854719i \(0.326271\pi\)
\(548\) 0 0
\(549\) −13.6128 −0.580982
\(550\) 0 0
\(551\) 13.2444 0.564232
\(552\) 0 0
\(553\) 13.3560 0.567954
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −45.1798 −1.91433 −0.957164 0.289546i \(-0.906496\pi\)
−0.957164 + 0.289546i \(0.906496\pi\)
\(558\) 0 0
\(559\) −11.3590 −0.480437
\(560\) 0 0
\(561\) −2.90321 −0.122574
\(562\) 0 0
\(563\) −2.97634 −0.125438 −0.0627189 0.998031i \(-0.519977\pi\)
−0.0627189 + 0.998031i \(0.519977\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1.52543 −0.0640619
\(568\) 0 0
\(569\) 39.1753 1.64231 0.821157 0.570702i \(-0.193329\pi\)
0.821157 + 0.570702i \(0.193329\pi\)
\(570\) 0 0
\(571\) −11.1240 −0.465524 −0.232762 0.972534i \(-0.574776\pi\)
−0.232762 + 0.972534i \(0.574776\pi\)
\(572\) 0 0
\(573\) 8.00000 0.334205
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 6.19358 0.257842 0.128921 0.991655i \(-0.458849\pi\)
0.128921 + 0.991655i \(0.458849\pi\)
\(578\) 0 0
\(579\) 15.5669 0.646939
\(580\) 0 0
\(581\) −10.8256 −0.449123
\(582\) 0 0
\(583\) 3.18421 0.131876
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.22570 0.298236 0.149118 0.988819i \(-0.452357\pi\)
0.149118 + 0.988819i \(0.452357\pi\)
\(588\) 0 0
\(589\) 20.4701 0.843457
\(590\) 0 0
\(591\) 14.3412 0.589919
\(592\) 0 0
\(593\) 21.5955 0.886821 0.443410 0.896319i \(-0.353768\pi\)
0.443410 + 0.896319i \(0.353768\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.24443 −0.0509312
\(598\) 0 0
\(599\) 38.4514 1.57108 0.785541 0.618810i \(-0.212385\pi\)
0.785541 + 0.618810i \(0.212385\pi\)
\(600\) 0 0
\(601\) 22.5906 0.921489 0.460744 0.887533i \(-0.347583\pi\)
0.460744 + 0.887533i \(0.347583\pi\)
\(602\) 0 0
\(603\) 14.3684 0.585127
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 22.9733 0.932457 0.466228 0.884664i \(-0.345613\pi\)
0.466228 + 0.884664i \(0.345613\pi\)
\(608\) 0 0
\(609\) −10.1017 −0.409342
\(610\) 0 0
\(611\) 7.73329 0.312856
\(612\) 0 0
\(613\) 23.5383 0.950704 0.475352 0.879796i \(-0.342321\pi\)
0.475352 + 0.879796i \(0.342321\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −22.8256 −0.918926 −0.459463 0.888197i \(-0.651958\pi\)
−0.459463 + 0.888197i \(0.651958\pi\)
\(618\) 0 0
\(619\) −25.3778 −1.02002 −0.510010 0.860169i \(-0.670358\pi\)
−0.510010 + 0.860169i \(0.670358\pi\)
\(620\) 0 0
\(621\) −8.85728 −0.355430
\(622\) 0 0
\(623\) 22.8671 0.916152
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2.00000 0.0798723
\(628\) 0 0
\(629\) −24.8573 −0.991125
\(630\) 0 0
\(631\) 28.6735 1.14148 0.570738 0.821132i \(-0.306657\pi\)
0.570738 + 0.821132i \(0.306657\pi\)
\(632\) 0 0
\(633\) 24.9590 0.992031
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 4.22077 0.167233
\(638\) 0 0
\(639\) 6.91750 0.273652
\(640\) 0 0
\(641\) −18.6035 −0.734793 −0.367397 0.930064i \(-0.619751\pi\)
−0.367397 + 0.930064i \(0.619751\pi\)
\(642\) 0 0
\(643\) 27.9081 1.10059 0.550295 0.834971i \(-0.314515\pi\)
0.550295 + 0.834971i \(0.314515\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −20.5620 −0.808375 −0.404188 0.914676i \(-0.632446\pi\)
−0.404188 + 0.914676i \(0.632446\pi\)
\(648\) 0 0
\(649\) 12.0415 0.472670
\(650\) 0 0
\(651\) −15.6128 −0.611916
\(652\) 0 0
\(653\) −10.7685 −0.421403 −0.210702 0.977550i \(-0.567575\pi\)
−0.210702 + 0.977550i \(0.567575\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 9.76049 0.380793
\(658\) 0 0
\(659\) −8.20342 −0.319560 −0.159780 0.987153i \(-0.551078\pi\)
−0.159780 + 0.987153i \(0.551078\pi\)
\(660\) 0 0
\(661\) 16.1017 0.626284 0.313142 0.949706i \(-0.398618\pi\)
0.313142 + 0.949706i \(0.398618\pi\)
\(662\) 0 0
\(663\) 2.62222 0.101838
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −58.6548 −2.27112
\(668\) 0 0
\(669\) 1.53972 0.0595289
\(670\) 0 0
\(671\) −13.6128 −0.525518
\(672\) 0 0
\(673\) 10.8845 0.419566 0.209783 0.977748i \(-0.432724\pi\)
0.209783 + 0.977748i \(0.432724\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.60793 0.100231 0.0501154 0.998743i \(-0.484041\pi\)
0.0501154 + 0.998743i \(0.484041\pi\)
\(678\) 0 0
\(679\) −11.6128 −0.445660
\(680\) 0 0
\(681\) 15.3002 0.586305
\(682\) 0 0
\(683\) 9.60300 0.367449 0.183724 0.982978i \(-0.441185\pi\)
0.183724 + 0.982978i \(0.441185\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −15.7146 −0.599548
\(688\) 0 0
\(689\) −2.87601 −0.109567
\(690\) 0 0
\(691\) 26.6351 1.01325 0.506624 0.862167i \(-0.330893\pi\)
0.506624 + 0.862167i \(0.330893\pi\)
\(692\) 0 0
\(693\) −1.52543 −0.0579462
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 6.48886 0.245783
\(698\) 0 0
\(699\) 29.0049 1.09707
\(700\) 0 0
\(701\) −2.62222 −0.0990397 −0.0495199 0.998773i \(-0.515769\pi\)
−0.0495199 + 0.998773i \(0.515769\pi\)
\(702\) 0 0
\(703\) 17.1240 0.645843
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15.6128 −0.587182
\(708\) 0 0
\(709\) 29.1842 1.09604 0.548018 0.836467i \(-0.315383\pi\)
0.548018 + 0.836467i \(0.315383\pi\)
\(710\) 0 0
\(711\) −8.75557 −0.328359
\(712\) 0 0
\(713\) −90.6548 −3.39505
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 15.6128 0.583072
\(718\) 0 0
\(719\) 40.9403 1.52681 0.763407 0.645918i \(-0.223525\pi\)
0.763407 + 0.645918i \(0.223525\pi\)
\(720\) 0 0
\(721\) 8.85728 0.329862
\(722\) 0 0
\(723\) −5.61285 −0.208744
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −11.2257 −0.416338 −0.208169 0.978093i \(-0.566750\pi\)
−0.208169 + 0.978093i \(0.566750\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 36.5116 1.35043
\(732\) 0 0
\(733\) 7.74176 0.285948 0.142974 0.989726i \(-0.454333\pi\)
0.142974 + 0.989726i \(0.454333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.3684 0.529267
\(738\) 0 0
\(739\) −24.1017 −0.886596 −0.443298 0.896374i \(-0.646192\pi\)
−0.443298 + 0.896374i \(0.646192\pi\)
\(740\) 0 0
\(741\) −1.80642 −0.0663606
\(742\) 0 0
\(743\) 8.22077 0.301591 0.150795 0.988565i \(-0.451817\pi\)
0.150795 + 0.988565i \(0.451817\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 7.09679 0.259658
\(748\) 0 0
\(749\) 10.6855 0.390440
\(750\) 0 0
\(751\) 11.8163 0.431182 0.215591 0.976484i \(-0.430832\pi\)
0.215591 + 0.976484i \(0.430832\pi\)
\(752\) 0 0
\(753\) 2.91750 0.106320
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −10.6637 −0.387579 −0.193789 0.981043i \(-0.562078\pi\)
−0.193789 + 0.981043i \(0.562078\pi\)
\(758\) 0 0
\(759\) −8.85728 −0.321499
\(760\) 0 0
\(761\) −42.7052 −1.54806 −0.774031 0.633148i \(-0.781763\pi\)
−0.774031 + 0.633148i \(0.781763\pi\)
\(762\) 0 0
\(763\) −14.6637 −0.530862
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10.8760 −0.392710
\(768\) 0 0
\(769\) 7.63158 0.275202 0.137601 0.990488i \(-0.456061\pi\)
0.137601 + 0.990488i \(0.456061\pi\)
\(770\) 0 0
\(771\) −11.0923 −0.399481
\(772\) 0 0
\(773\) −8.52051 −0.306461 −0.153231 0.988190i \(-0.548968\pi\)
−0.153231 + 0.988190i \(0.548968\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −13.0607 −0.468550
\(778\) 0 0
\(779\) −4.47013 −0.160159
\(780\) 0 0
\(781\) 6.91750 0.247528
\(782\) 0 0
\(783\) 6.62222 0.236659
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 41.3131 1.47265 0.736327 0.676626i \(-0.236559\pi\)
0.736327 + 0.676626i \(0.236559\pi\)
\(788\) 0 0
\(789\) −5.46520 −0.194566
\(790\) 0 0
\(791\) 17.5111 0.622624
\(792\) 0 0
\(793\) 12.2953 0.436618
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −48.7239 −1.72589 −0.862945 0.505298i \(-0.831383\pi\)
−0.862945 + 0.505298i \(0.831383\pi\)
\(798\) 0 0
\(799\) −24.8573 −0.879387
\(800\) 0 0
\(801\) −14.9906 −0.529668
\(802\) 0 0
\(803\) 9.76049 0.344440
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 10.8573 0.382194
\(808\) 0 0
\(809\) −52.4197 −1.84298 −0.921490 0.388402i \(-0.873027\pi\)
−0.921490 + 0.388402i \(0.873027\pi\)
\(810\) 0 0
\(811\) −22.8573 −0.802628 −0.401314 0.915941i \(-0.631446\pi\)
−0.401314 + 0.915941i \(0.631446\pi\)
\(812\) 0 0
\(813\) 0.101710 0.00356713
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −25.1526 −0.879977
\(818\) 0 0
\(819\) 1.37778 0.0481437
\(820\) 0 0
\(821\) 52.5402 1.83367 0.916833 0.399272i \(-0.130737\pi\)
0.916833 + 0.399272i \(0.130737\pi\)
\(822\) 0 0
\(823\) −24.8859 −0.867467 −0.433733 0.901041i \(-0.642804\pi\)
−0.433733 + 0.901041i \(0.642804\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.60793 0.299327 0.149663 0.988737i \(-0.452181\pi\)
0.149663 + 0.988737i \(0.452181\pi\)
\(828\) 0 0
\(829\) 6.16193 0.214013 0.107006 0.994258i \(-0.465873\pi\)
0.107006 + 0.994258i \(0.465873\pi\)
\(830\) 0 0
\(831\) −9.19850 −0.319092
\(832\) 0 0
\(833\) −13.5669 −0.470066
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 10.2351 0.353776
\(838\) 0 0
\(839\) −46.4929 −1.60511 −0.802556 0.596577i \(-0.796527\pi\)
−0.802556 + 0.596577i \(0.796527\pi\)
\(840\) 0 0
\(841\) 14.8537 0.512198
\(842\) 0 0
\(843\) 1.11108 0.0382676
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −1.52543 −0.0524143
\(848\) 0 0
\(849\) −15.7190 −0.539475
\(850\) 0 0
\(851\) −75.8360 −2.59962
\(852\) 0 0
\(853\) 0.699791 0.0239604 0.0119802 0.999928i \(-0.496186\pi\)
0.0119802 + 0.999928i \(0.496186\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −16.0558 −0.548455 −0.274227 0.961665i \(-0.588422\pi\)
−0.274227 + 0.961665i \(0.588422\pi\)
\(858\) 0 0
\(859\) 1.11108 0.0379095 0.0189547 0.999820i \(-0.493966\pi\)
0.0189547 + 0.999820i \(0.493966\pi\)
\(860\) 0 0
\(861\) 3.40943 0.116193
\(862\) 0 0
\(863\) 43.0134 1.46419 0.732096 0.681201i \(-0.238542\pi\)
0.732096 + 0.681201i \(0.238542\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 8.57136 0.291099
\(868\) 0 0
\(869\) −8.75557 −0.297012
\(870\) 0 0
\(871\) −12.9777 −0.439733
\(872\) 0 0
\(873\) 7.61285 0.257656
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −8.03704 −0.271392 −0.135696 0.990751i \(-0.543327\pi\)
−0.135696 + 0.990751i \(0.543327\pi\)
\(878\) 0 0
\(879\) 6.43309 0.216983
\(880\) 0 0
\(881\) −17.9367 −0.604303 −0.302152 0.953260i \(-0.597705\pi\)
−0.302152 + 0.953260i \(0.597705\pi\)
\(882\) 0 0
\(883\) −3.22570 −0.108553 −0.0542766 0.998526i \(-0.517285\pi\)
−0.0542766 + 0.998526i \(0.517285\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.43662 0.0482371 0.0241186 0.999709i \(-0.492322\pi\)
0.0241186 + 0.999709i \(0.492322\pi\)
\(888\) 0 0
\(889\) 26.5936 0.891922
\(890\) 0 0
\(891\) 1.00000 0.0335013
\(892\) 0 0
\(893\) 17.1240 0.573032
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 8.00000 0.267112
\(898\) 0 0
\(899\) 67.7788 2.26055
\(900\) 0 0
\(901\) 9.24443 0.307977
\(902\) 0 0
\(903\) 19.1842 0.638410
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 19.4380 0.645428 0.322714 0.946496i \(-0.395405\pi\)
0.322714 + 0.946496i \(0.395405\pi\)
\(908\) 0 0
\(909\) 10.2351 0.339476
\(910\) 0 0
\(911\) 16.6735 0.552419 0.276210 0.961097i \(-0.410922\pi\)
0.276210 + 0.961097i \(0.410922\pi\)
\(912\) 0 0
\(913\) 7.09679 0.234869
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.89829 −0.0626871
\(918\) 0 0
\(919\) −31.4479 −1.03737 −0.518684 0.854966i \(-0.673578\pi\)
−0.518684 + 0.854966i \(0.673578\pi\)
\(920\) 0 0
\(921\) −15.7190 −0.517959
\(922\) 0 0
\(923\) −6.24797 −0.205654
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −5.80642 −0.190708
\(928\) 0 0
\(929\) −44.3881 −1.45633 −0.728163 0.685404i \(-0.759626\pi\)
−0.728163 + 0.685404i \(0.759626\pi\)
\(930\) 0 0
\(931\) 9.34614 0.306307
\(932\) 0 0
\(933\) −24.8988 −0.815149
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 21.6686 0.707883 0.353942 0.935268i \(-0.384841\pi\)
0.353942 + 0.935268i \(0.384841\pi\)
\(938\) 0 0
\(939\) −17.1526 −0.559753
\(940\) 0 0
\(941\) 15.4795 0.504617 0.252309 0.967647i \(-0.418810\pi\)
0.252309 + 0.967647i \(0.418810\pi\)
\(942\) 0 0
\(943\) 19.7966 0.644665
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 50.0098 1.62510 0.812551 0.582890i \(-0.198078\pi\)
0.812551 + 0.582890i \(0.198078\pi\)
\(948\) 0 0
\(949\) −8.81579 −0.286173
\(950\) 0 0
\(951\) −12.3368 −0.400047
\(952\) 0 0
\(953\) −10.9032 −0.353190 −0.176595 0.984284i \(-0.556508\pi\)
−0.176595 + 0.984284i \(0.556508\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 6.62222 0.214066
\(958\) 0 0
\(959\) 7.16241 0.231286
\(960\) 0 0
\(961\) 73.7565 2.37924
\(962\) 0 0
\(963\) −7.00492 −0.225730
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −43.6815 −1.40470 −0.702352 0.711830i \(-0.747867\pi\)
−0.702352 + 0.711830i \(0.747867\pi\)
\(968\) 0 0
\(969\) 5.80642 0.186529
\(970\) 0 0
\(971\) −2.55215 −0.0819023 −0.0409512 0.999161i \(-0.513039\pi\)
−0.0409512 + 0.999161i \(0.513039\pi\)
\(972\) 0 0
\(973\) −22.0731 −0.707632
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.40990 0.205071 0.102535 0.994729i \(-0.467304\pi\)
0.102535 + 0.994729i \(0.467304\pi\)
\(978\) 0 0
\(979\) −14.9906 −0.479103
\(980\) 0 0
\(981\) 9.61285 0.306915
\(982\) 0 0
\(983\) −40.1748 −1.28138 −0.640689 0.767800i \(-0.721351\pi\)
−0.640689 + 0.767800i \(0.721351\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −13.0607 −0.415727
\(988\) 0 0
\(989\) 111.392 3.54205
\(990\) 0 0
\(991\) 18.2351 0.579256 0.289628 0.957139i \(-0.406468\pi\)
0.289628 + 0.957139i \(0.406468\pi\)
\(992\) 0 0
\(993\) 9.37778 0.297595
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 4.16638 0.131951 0.0659753 0.997821i \(-0.478984\pi\)
0.0659753 + 0.997821i \(0.478984\pi\)
\(998\) 0 0
\(999\) 8.56199 0.270889
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6600.2.a.bq.1.1 3
5.2 odd 4 1320.2.d.b.529.5 yes 6
5.3 odd 4 1320.2.d.b.529.2 6
5.4 even 2 6600.2.a.bu.1.3 3
15.2 even 4 3960.2.d.d.3169.4 6
15.8 even 4 3960.2.d.d.3169.3 6
20.3 even 4 2640.2.d.f.529.5 6
20.7 even 4 2640.2.d.f.529.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1320.2.d.b.529.2 6 5.3 odd 4
1320.2.d.b.529.5 yes 6 5.2 odd 4
2640.2.d.f.529.2 6 20.7 even 4
2640.2.d.f.529.5 6 20.3 even 4
3960.2.d.d.3169.3 6 15.8 even 4
3960.2.d.d.3169.4 6 15.2 even 4
6600.2.a.bq.1.1 3 1.1 even 1 trivial
6600.2.a.bu.1.3 3 5.4 even 2