Properties

Label 3969.2.a.bc.1.3
Level $3969$
Weight $2$
Character 3969.1
Self dual yes
Analytic conductor $31.693$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3969,2,Mod(1,3969)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3969, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3969.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3969 = 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3969.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.6926245622\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.574857.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 9x^{2} + 3x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 63)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.495868\) of defining polynomial
Character \(\chi\) \(=\) 3969.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.495868 q^{2} -1.75411 q^{4} +3.69258 q^{5} -1.86155 q^{8} +O(q^{10})\) \(q+0.495868 q^{2} -1.75411 q^{4} +3.69258 q^{5} -1.86155 q^{8} +1.83103 q^{10} +0.892568 q^{11} -1.19671 q^{13} +2.58515 q^{16} -0.249983 q^{17} -2.80827 q^{19} -6.47721 q^{20} +0.442596 q^{22} -2.47772 q^{23} +8.63514 q^{25} -0.593411 q^{26} +4.14255 q^{29} +3.58515 q^{31} +5.00499 q^{32} -0.123959 q^{34} +4.73136 q^{37} -1.39253 q^{38} -6.87391 q^{40} -4.78186 q^{41} +9.97857 q^{43} -1.56567 q^{44} -1.22862 q^{46} +10.1731 q^{47} +4.28189 q^{50} +2.09917 q^{52} -9.88929 q^{53} +3.29588 q^{55} +2.05416 q^{58} -1.81237 q^{59} +10.8041 q^{61} +1.77776 q^{62} -2.68848 q^{64} -4.41895 q^{65} +1.02937 q^{67} +0.438499 q^{68} +4.94533 q^{71} +1.83052 q^{73} +2.34613 q^{74} +4.92604 q^{76} -1.79912 q^{79} +9.54586 q^{80} -2.37117 q^{82} +12.3231 q^{83} -0.923082 q^{85} +4.94806 q^{86} -1.66156 q^{88} -2.40741 q^{89} +4.34620 q^{92} +5.04450 q^{94} -10.3698 q^{95} -11.0442 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} + 4 q^{4} + 4 q^{5} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + 2 q^{2} + 4 q^{4} + 4 q^{5} + 3 q^{8} + 7 q^{10} + 4 q^{11} + 8 q^{13} - 2 q^{16} + 12 q^{17} - q^{19} + 5 q^{20} + q^{22} + 3 q^{23} + q^{25} + 11 q^{26} + 7 q^{29} + 3 q^{31} - 2 q^{32} - 3 q^{34} + 20 q^{38} + 3 q^{40} + 5 q^{41} + 7 q^{43} - 10 q^{44} - 3 q^{46} + 27 q^{47} + 19 q^{50} + 10 q^{52} - 21 q^{53} + 2 q^{55} + 10 q^{58} + 30 q^{59} + 14 q^{61} + 6 q^{62} - 25 q^{64} - 11 q^{65} + 2 q^{67} + 27 q^{68} + 3 q^{71} - 15 q^{73} - 36 q^{74} - 5 q^{76} + 4 q^{79} + 20 q^{80} + 5 q^{82} + 9 q^{83} + 6 q^{85} - 8 q^{86} + 18 q^{88} + 28 q^{89} + 27 q^{92} + 3 q^{94} - 14 q^{95} + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.495868 0.350632 0.175316 0.984512i \(-0.443905\pi\)
0.175316 + 0.984512i \(0.443905\pi\)
\(3\) 0 0
\(4\) −1.75411 −0.877057
\(5\) 3.69258 1.65137 0.825686 0.564130i \(-0.190788\pi\)
0.825686 + 0.564130i \(0.190788\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.86155 −0.658156
\(9\) 0 0
\(10\) 1.83103 0.579023
\(11\) 0.892568 0.269119 0.134560 0.990905i \(-0.457038\pi\)
0.134560 + 0.990905i \(0.457038\pi\)
\(12\) 0 0
\(13\) −1.19671 −0.331908 −0.165954 0.986134i \(-0.553070\pi\)
−0.165954 + 0.986134i \(0.553070\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 2.58515 0.646287
\(17\) −0.249983 −0.0606298 −0.0303149 0.999540i \(-0.509651\pi\)
−0.0303149 + 0.999540i \(0.509651\pi\)
\(18\) 0 0
\(19\) −2.80827 −0.644262 −0.322131 0.946695i \(-0.604399\pi\)
−0.322131 + 0.946695i \(0.604399\pi\)
\(20\) −6.47721 −1.44835
\(21\) 0 0
\(22\) 0.442596 0.0943618
\(23\) −2.47772 −0.516639 −0.258320 0.966059i \(-0.583169\pi\)
−0.258320 + 0.966059i \(0.583169\pi\)
\(24\) 0 0
\(25\) 8.63514 1.72703
\(26\) −0.593411 −0.116377
\(27\) 0 0
\(28\) 0 0
\(29\) 4.14255 0.769252 0.384626 0.923072i \(-0.374330\pi\)
0.384626 + 0.923072i \(0.374330\pi\)
\(30\) 0 0
\(31\) 3.58515 0.643912 0.321956 0.946755i \(-0.395660\pi\)
0.321956 + 0.946755i \(0.395660\pi\)
\(32\) 5.00499 0.884765
\(33\) 0 0
\(34\) −0.123959 −0.0212587
\(35\) 0 0
\(36\) 0 0
\(37\) 4.73136 0.777830 0.388915 0.921274i \(-0.372850\pi\)
0.388915 + 0.921274i \(0.372850\pi\)
\(38\) −1.39253 −0.225899
\(39\) 0 0
\(40\) −6.87391 −1.08686
\(41\) −4.78186 −0.746801 −0.373400 0.927670i \(-0.621808\pi\)
−0.373400 + 0.927670i \(0.621808\pi\)
\(42\) 0 0
\(43\) 9.97857 1.52172 0.760859 0.648917i \(-0.224778\pi\)
0.760859 + 0.648917i \(0.224778\pi\)
\(44\) −1.56567 −0.236033
\(45\) 0 0
\(46\) −1.22862 −0.181150
\(47\) 10.1731 1.48389 0.741947 0.670459i \(-0.233903\pi\)
0.741947 + 0.670459i \(0.233903\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 4.28189 0.605551
\(51\) 0 0
\(52\) 2.09917 0.291102
\(53\) −9.88929 −1.35840 −0.679199 0.733954i \(-0.737673\pi\)
−0.679199 + 0.733954i \(0.737673\pi\)
\(54\) 0 0
\(55\) 3.29588 0.444416
\(56\) 0 0
\(57\) 0 0
\(58\) 2.05416 0.269724
\(59\) −1.81237 −0.235951 −0.117975 0.993017i \(-0.537640\pi\)
−0.117975 + 0.993017i \(0.537640\pi\)
\(60\) 0 0
\(61\) 10.8041 1.38332 0.691662 0.722221i \(-0.256879\pi\)
0.691662 + 0.722221i \(0.256879\pi\)
\(62\) 1.77776 0.225776
\(63\) 0 0
\(64\) −2.68848 −0.336060
\(65\) −4.41895 −0.548103
\(66\) 0 0
\(67\) 1.02937 0.125757 0.0628787 0.998021i \(-0.479972\pi\)
0.0628787 + 0.998021i \(0.479972\pi\)
\(68\) 0.438499 0.0531758
\(69\) 0 0
\(70\) 0 0
\(71\) 4.94533 0.586903 0.293451 0.955974i \(-0.405196\pi\)
0.293451 + 0.955974i \(0.405196\pi\)
\(72\) 0 0
\(73\) 1.83052 0.214247 0.107123 0.994246i \(-0.465836\pi\)
0.107123 + 0.994246i \(0.465836\pi\)
\(74\) 2.34613 0.272732
\(75\) 0 0
\(76\) 4.92604 0.565055
\(77\) 0 0
\(78\) 0 0
\(79\) −1.79912 −0.202417 −0.101209 0.994865i \(-0.532271\pi\)
−0.101209 + 0.994865i \(0.532271\pi\)
\(80\) 9.54586 1.06726
\(81\) 0 0
\(82\) −2.37117 −0.261852
\(83\) 12.3231 1.35264 0.676319 0.736609i \(-0.263574\pi\)
0.676319 + 0.736609i \(0.263574\pi\)
\(84\) 0 0
\(85\) −0.923082 −0.100122
\(86\) 4.94806 0.533563
\(87\) 0 0
\(88\) −1.66156 −0.177123
\(89\) −2.40741 −0.255185 −0.127592 0.991827i \(-0.540725\pi\)
−0.127592 + 0.991827i \(0.540725\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.34620 0.453122
\(93\) 0 0
\(94\) 5.04450 0.520300
\(95\) −10.3698 −1.06392
\(96\) 0 0
\(97\) −11.0442 −1.12137 −0.560684 0.828030i \(-0.689462\pi\)
−0.560684 + 0.828030i \(0.689462\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −15.1470 −1.51470
\(101\) 2.59964 0.258674 0.129337 0.991601i \(-0.458715\pi\)
0.129337 + 0.991601i \(0.458715\pi\)
\(102\) 0 0
\(103\) 9.71155 0.956908 0.478454 0.878113i \(-0.341197\pi\)
0.478454 + 0.878113i \(0.341197\pi\)
\(104\) 2.22773 0.218447
\(105\) 0 0
\(106\) −4.90379 −0.476298
\(107\) −10.9005 −1.05379 −0.526896 0.849930i \(-0.676644\pi\)
−0.526896 + 0.849930i \(0.676644\pi\)
\(108\) 0 0
\(109\) 2.12193 0.203244 0.101622 0.994823i \(-0.467597\pi\)
0.101622 + 0.994823i \(0.467597\pi\)
\(110\) 1.63432 0.155826
\(111\) 0 0
\(112\) 0 0
\(113\) 15.8264 1.48882 0.744409 0.667724i \(-0.232731\pi\)
0.744409 + 0.667724i \(0.232731\pi\)
\(114\) 0 0
\(115\) −9.14916 −0.853164
\(116\) −7.26651 −0.674679
\(117\) 0 0
\(118\) −0.898698 −0.0827318
\(119\) 0 0
\(120\) 0 0
\(121\) −10.2033 −0.927575
\(122\) 5.35741 0.485038
\(123\) 0 0
\(124\) −6.28876 −0.564747
\(125\) 13.4230 1.20059
\(126\) 0 0
\(127\) −1.26946 −0.112647 −0.0563233 0.998413i \(-0.517938\pi\)
−0.0563233 + 0.998413i \(0.517938\pi\)
\(128\) −11.3431 −1.00260
\(129\) 0 0
\(130\) −2.19122 −0.192182
\(131\) 15.0289 1.31308 0.656540 0.754291i \(-0.272019\pi\)
0.656540 + 0.754291i \(0.272019\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0.510432 0.0440946
\(135\) 0 0
\(136\) 0.465355 0.0399038
\(137\) 0.488493 0.0417347 0.0208674 0.999782i \(-0.493357\pi\)
0.0208674 + 0.999782i \(0.493357\pi\)
\(138\) 0 0
\(139\) 9.86974 0.837141 0.418570 0.908184i \(-0.362531\pi\)
0.418570 + 0.908184i \(0.362531\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.45223 0.205787
\(143\) −1.06815 −0.0893229
\(144\) 0 0
\(145\) 15.2967 1.27032
\(146\) 0.907699 0.0751217
\(147\) 0 0
\(148\) −8.29934 −0.682202
\(149\) −21.0240 −1.72235 −0.861175 0.508309i \(-0.830271\pi\)
−0.861175 + 0.508309i \(0.830271\pi\)
\(150\) 0 0
\(151\) 1.49838 0.121937 0.0609683 0.998140i \(-0.480581\pi\)
0.0609683 + 0.998140i \(0.480581\pi\)
\(152\) 5.22773 0.424025
\(153\) 0 0
\(154\) 0 0
\(155\) 13.2384 1.06334
\(156\) 0 0
\(157\) −16.6796 −1.33118 −0.665590 0.746317i \(-0.731820\pi\)
−0.665590 + 0.746317i \(0.731820\pi\)
\(158\) −0.892128 −0.0709739
\(159\) 0 0
\(160\) 18.4813 1.46108
\(161\) 0 0
\(162\) 0 0
\(163\) 6.68269 0.523429 0.261714 0.965145i \(-0.415712\pi\)
0.261714 + 0.965145i \(0.415712\pi\)
\(164\) 8.38793 0.654987
\(165\) 0 0
\(166\) 6.11064 0.474278
\(167\) 17.6310 1.36433 0.682163 0.731200i \(-0.261039\pi\)
0.682163 + 0.731200i \(0.261039\pi\)
\(168\) 0 0
\(169\) −11.5679 −0.889837
\(170\) −0.457727 −0.0351061
\(171\) 0 0
\(172\) −17.5036 −1.33463
\(173\) 3.88685 0.295511 0.147756 0.989024i \(-0.452795\pi\)
0.147756 + 0.989024i \(0.452795\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.30742 0.173928
\(177\) 0 0
\(178\) −1.19376 −0.0894759
\(179\) 7.33516 0.548256 0.274128 0.961693i \(-0.411611\pi\)
0.274128 + 0.961693i \(0.411611\pi\)
\(180\) 0 0
\(181\) 11.2566 0.836693 0.418346 0.908288i \(-0.362610\pi\)
0.418346 + 0.908288i \(0.362610\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.61238 0.340029
\(185\) 17.4709 1.28449
\(186\) 0 0
\(187\) −0.223127 −0.0163167
\(188\) −17.8447 −1.30146
\(189\) 0 0
\(190\) −5.14204 −0.373043
\(191\) 23.8459 1.72543 0.862715 0.505690i \(-0.168762\pi\)
0.862715 + 0.505690i \(0.168762\pi\)
\(192\) 0 0
\(193\) 5.93456 0.427179 0.213589 0.976924i \(-0.431485\pi\)
0.213589 + 0.976924i \(0.431485\pi\)
\(194\) −5.47647 −0.393188
\(195\) 0 0
\(196\) 0 0
\(197\) 15.4682 1.10206 0.551032 0.834484i \(-0.314234\pi\)
0.551032 + 0.834484i \(0.314234\pi\)
\(198\) 0 0
\(199\) −15.4964 −1.09851 −0.549254 0.835655i \(-0.685088\pi\)
−0.549254 + 0.835655i \(0.685088\pi\)
\(200\) −16.0747 −1.13665
\(201\) 0 0
\(202\) 1.28908 0.0906994
\(203\) 0 0
\(204\) 0 0
\(205\) −17.6574 −1.23325
\(206\) 4.81565 0.335522
\(207\) 0 0
\(208\) −3.09367 −0.214508
\(209\) −2.50658 −0.173384
\(210\) 0 0
\(211\) −1.54380 −0.106279 −0.0531397 0.998587i \(-0.516923\pi\)
−0.0531397 + 0.998587i \(0.516923\pi\)
\(212\) 17.3469 1.19139
\(213\) 0 0
\(214\) −5.40522 −0.369493
\(215\) 36.8467 2.51292
\(216\) 0 0
\(217\) 0 0
\(218\) 1.05220 0.0712637
\(219\) 0 0
\(220\) −5.78135 −0.389779
\(221\) 0.299157 0.0201235
\(222\) 0 0
\(223\) 5.44342 0.364518 0.182259 0.983251i \(-0.441659\pi\)
0.182259 + 0.983251i \(0.441659\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 7.84779 0.522027
\(227\) 16.0764 1.06703 0.533513 0.845792i \(-0.320872\pi\)
0.533513 + 0.845792i \(0.320872\pi\)
\(228\) 0 0
\(229\) −9.96840 −0.658730 −0.329365 0.944203i \(-0.606835\pi\)
−0.329365 + 0.944203i \(0.606835\pi\)
\(230\) −4.53678 −0.299146
\(231\) 0 0
\(232\) −7.71155 −0.506288
\(233\) 16.5409 1.08363 0.541815 0.840498i \(-0.317737\pi\)
0.541815 + 0.840498i \(0.317737\pi\)
\(234\) 0 0
\(235\) 37.5648 2.45046
\(236\) 3.17911 0.206942
\(237\) 0 0
\(238\) 0 0
\(239\) −22.0239 −1.42461 −0.712303 0.701872i \(-0.752348\pi\)
−0.712303 + 0.701872i \(0.752348\pi\)
\(240\) 0 0
\(241\) 16.7201 1.07703 0.538517 0.842615i \(-0.318985\pi\)
0.538517 + 0.842615i \(0.318985\pi\)
\(242\) −5.05950 −0.325237
\(243\) 0 0
\(244\) −18.9516 −1.21325
\(245\) 0 0
\(246\) 0 0
\(247\) 3.36069 0.213836
\(248\) −6.67392 −0.423794
\(249\) 0 0
\(250\) 6.65606 0.420966
\(251\) 8.53099 0.538471 0.269236 0.963074i \(-0.413229\pi\)
0.269236 + 0.963074i \(0.413229\pi\)
\(252\) 0 0
\(253\) −2.21153 −0.139038
\(254\) −0.629487 −0.0394975
\(255\) 0 0
\(256\) −0.247722 −0.0154826
\(257\) 17.1197 1.06790 0.533950 0.845516i \(-0.320707\pi\)
0.533950 + 0.845516i \(0.320707\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 7.75135 0.480718
\(261\) 0 0
\(262\) 7.45235 0.460408
\(263\) −20.5527 −1.26733 −0.633666 0.773607i \(-0.718451\pi\)
−0.633666 + 0.773607i \(0.718451\pi\)
\(264\) 0 0
\(265\) −36.5170 −2.24322
\(266\) 0 0
\(267\) 0 0
\(268\) −1.80563 −0.110297
\(269\) 19.8453 1.20999 0.604996 0.796229i \(-0.293175\pi\)
0.604996 + 0.796229i \(0.293175\pi\)
\(270\) 0 0
\(271\) −10.6411 −0.646402 −0.323201 0.946330i \(-0.604759\pi\)
−0.323201 + 0.946330i \(0.604759\pi\)
\(272\) −0.646243 −0.0391842
\(273\) 0 0
\(274\) 0.242228 0.0146335
\(275\) 7.70745 0.464777
\(276\) 0 0
\(277\) −24.8813 −1.49497 −0.747487 0.664276i \(-0.768740\pi\)
−0.747487 + 0.664276i \(0.768740\pi\)
\(278\) 4.89409 0.293528
\(279\) 0 0
\(280\) 0 0
\(281\) −13.6747 −0.815762 −0.407881 0.913035i \(-0.633732\pi\)
−0.407881 + 0.913035i \(0.633732\pi\)
\(282\) 0 0
\(283\) 6.32179 0.375791 0.187896 0.982189i \(-0.439833\pi\)
0.187896 + 0.982189i \(0.439833\pi\)
\(284\) −8.67468 −0.514747
\(285\) 0 0
\(286\) −0.529660 −0.0313194
\(287\) 0 0
\(288\) 0 0
\(289\) −16.9375 −0.996324
\(290\) 7.58515 0.445415
\(291\) 0 0
\(292\) −3.21095 −0.187907
\(293\) −2.63016 −0.153655 −0.0768277 0.997044i \(-0.524479\pi\)
−0.0768277 + 0.997044i \(0.524479\pi\)
\(294\) 0 0
\(295\) −6.69233 −0.389642
\(296\) −8.80764 −0.511934
\(297\) 0 0
\(298\) −10.4251 −0.603911
\(299\) 2.96511 0.171477
\(300\) 0 0
\(301\) 0 0
\(302\) 0.743000 0.0427548
\(303\) 0 0
\(304\) −7.25980 −0.416378
\(305\) 39.8950 2.28438
\(306\) 0 0
\(307\) −2.79496 −0.159517 −0.0797583 0.996814i \(-0.525415\pi\)
−0.0797583 + 0.996814i \(0.525415\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 6.56452 0.372840
\(311\) 15.1003 0.856258 0.428129 0.903718i \(-0.359173\pi\)
0.428129 + 0.903718i \(0.359173\pi\)
\(312\) 0 0
\(313\) −25.4785 −1.44013 −0.720064 0.693908i \(-0.755888\pi\)
−0.720064 + 0.693908i \(0.755888\pi\)
\(314\) −8.27090 −0.466754
\(315\) 0 0
\(316\) 3.15587 0.177531
\(317\) −32.5209 −1.82656 −0.913278 0.407337i \(-0.866457\pi\)
−0.913278 + 0.407337i \(0.866457\pi\)
\(318\) 0 0
\(319\) 3.69751 0.207021
\(320\) −9.92743 −0.554960
\(321\) 0 0
\(322\) 0 0
\(323\) 0.702021 0.0390615
\(324\) 0 0
\(325\) −10.3338 −0.573214
\(326\) 3.31373 0.183531
\(327\) 0 0
\(328\) 8.90165 0.491511
\(329\) 0 0
\(330\) 0 0
\(331\) 18.0948 0.994582 0.497291 0.867584i \(-0.334328\pi\)
0.497291 + 0.867584i \(0.334328\pi\)
\(332\) −21.6162 −1.18634
\(333\) 0 0
\(334\) 8.74264 0.478376
\(335\) 3.80103 0.207672
\(336\) 0 0
\(337\) 25.0173 1.36278 0.681389 0.731921i \(-0.261376\pi\)
0.681389 + 0.731921i \(0.261376\pi\)
\(338\) −5.73615 −0.312005
\(339\) 0 0
\(340\) 1.61919 0.0878130
\(341\) 3.19999 0.173289
\(342\) 0 0
\(343\) 0 0
\(344\) −18.5756 −1.00153
\(345\) 0 0
\(346\) 1.92736 0.103616
\(347\) −10.7489 −0.577030 −0.288515 0.957475i \(-0.593162\pi\)
−0.288515 + 0.957475i \(0.593162\pi\)
\(348\) 0 0
\(349\) 3.28602 0.175896 0.0879482 0.996125i \(-0.471969\pi\)
0.0879482 + 0.996125i \(0.471969\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.46729 0.238107
\(353\) −16.8192 −0.895195 −0.447598 0.894235i \(-0.647720\pi\)
−0.447598 + 0.894235i \(0.647720\pi\)
\(354\) 0 0
\(355\) 18.2610 0.969195
\(356\) 4.22287 0.223812
\(357\) 0 0
\(358\) 3.63728 0.192236
\(359\) 23.7842 1.25528 0.627642 0.778502i \(-0.284020\pi\)
0.627642 + 0.778502i \(0.284020\pi\)
\(360\) 0 0
\(361\) −11.1136 −0.584926
\(362\) 5.58177 0.293371
\(363\) 0 0
\(364\) 0 0
\(365\) 6.75936 0.353801
\(366\) 0 0
\(367\) −0.689984 −0.0360169 −0.0180084 0.999838i \(-0.505733\pi\)
−0.0180084 + 0.999838i \(0.505733\pi\)
\(368\) −6.40526 −0.333897
\(369\) 0 0
\(370\) 8.66327 0.450382
\(371\) 0 0
\(372\) 0 0
\(373\) −3.76012 −0.194691 −0.0973457 0.995251i \(-0.531035\pi\)
−0.0973457 + 0.995251i \(0.531035\pi\)
\(374\) −0.110642 −0.00572114
\(375\) 0 0
\(376\) −18.9376 −0.976634
\(377\) −4.95744 −0.255321
\(378\) 0 0
\(379\) 32.8735 1.68860 0.844300 0.535872i \(-0.180017\pi\)
0.844300 + 0.535872i \(0.180017\pi\)
\(380\) 18.1898 0.933116
\(381\) 0 0
\(382\) 11.8244 0.604991
\(383\) 1.07267 0.0548109 0.0274055 0.999624i \(-0.491275\pi\)
0.0274055 + 0.999624i \(0.491275\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.94276 0.149782
\(387\) 0 0
\(388\) 19.3728 0.983505
\(389\) 23.7436 1.20385 0.601925 0.798553i \(-0.294401\pi\)
0.601925 + 0.798553i \(0.294401\pi\)
\(390\) 0 0
\(391\) 0.619387 0.0313237
\(392\) 0 0
\(393\) 0 0
\(394\) 7.67019 0.386419
\(395\) −6.64340 −0.334266
\(396\) 0 0
\(397\) 0.0320978 0.00161094 0.000805471 1.00000i \(-0.499744\pi\)
0.000805471 1.00000i \(0.499744\pi\)
\(398\) −7.68415 −0.385172
\(399\) 0 0
\(400\) 22.3231 1.11616
\(401\) −24.5256 −1.22475 −0.612374 0.790568i \(-0.709785\pi\)
−0.612374 + 0.790568i \(0.709785\pi\)
\(402\) 0 0
\(403\) −4.29039 −0.213719
\(404\) −4.56007 −0.226872
\(405\) 0 0
\(406\) 0 0
\(407\) 4.22306 0.209329
\(408\) 0 0
\(409\) 26.7897 1.32467 0.662333 0.749210i \(-0.269567\pi\)
0.662333 + 0.749210i \(0.269567\pi\)
\(410\) −8.75574 −0.432415
\(411\) 0 0
\(412\) −17.0352 −0.839263
\(413\) 0 0
\(414\) 0 0
\(415\) 45.5041 2.23371
\(416\) −5.98952 −0.293660
\(417\) 0 0
\(418\) −1.24293 −0.0607938
\(419\) −21.0525 −1.02848 −0.514240 0.857646i \(-0.671926\pi\)
−0.514240 + 0.857646i \(0.671926\pi\)
\(420\) 0 0
\(421\) 14.8907 0.725727 0.362863 0.931842i \(-0.381799\pi\)
0.362863 + 0.931842i \(0.381799\pi\)
\(422\) −0.765520 −0.0372649
\(423\) 0 0
\(424\) 18.4094 0.894038
\(425\) −2.15864 −0.104709
\(426\) 0 0
\(427\) 0 0
\(428\) 19.1207 0.924236
\(429\) 0 0
\(430\) 18.2711 0.881110
\(431\) −15.9038 −0.766061 −0.383031 0.923736i \(-0.625120\pi\)
−0.383031 + 0.923736i \(0.625120\pi\)
\(432\) 0 0
\(433\) −16.3658 −0.786490 −0.393245 0.919434i \(-0.628648\pi\)
−0.393245 + 0.919434i \(0.628648\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3.72210 −0.178256
\(437\) 6.95811 0.332851
\(438\) 0 0
\(439\) −15.5447 −0.741909 −0.370954 0.928651i \(-0.620969\pi\)
−0.370954 + 0.928651i \(0.620969\pi\)
\(440\) −6.13543 −0.292495
\(441\) 0 0
\(442\) 0.148343 0.00705594
\(443\) −1.79005 −0.0850480 −0.0425240 0.999095i \(-0.513540\pi\)
−0.0425240 + 0.999095i \(0.513540\pi\)
\(444\) 0 0
\(445\) −8.88955 −0.421405
\(446\) 2.69922 0.127812
\(447\) 0 0
\(448\) 0 0
\(449\) −13.5666 −0.640250 −0.320125 0.947375i \(-0.603725\pi\)
−0.320125 + 0.947375i \(0.603725\pi\)
\(450\) 0 0
\(451\) −4.26814 −0.200979
\(452\) −27.7612 −1.30578
\(453\) 0 0
\(454\) 7.97176 0.374133
\(455\) 0 0
\(456\) 0 0
\(457\) 2.56917 0.120181 0.0600905 0.998193i \(-0.480861\pi\)
0.0600905 + 0.998193i \(0.480861\pi\)
\(458\) −4.94301 −0.230972
\(459\) 0 0
\(460\) 16.0487 0.748274
\(461\) 36.1869 1.68539 0.842695 0.538391i \(-0.180967\pi\)
0.842695 + 0.538391i \(0.180967\pi\)
\(462\) 0 0
\(463\) −16.3845 −0.761451 −0.380726 0.924688i \(-0.624326\pi\)
−0.380726 + 0.924688i \(0.624326\pi\)
\(464\) 10.7091 0.497158
\(465\) 0 0
\(466\) 8.20210 0.379955
\(467\) −8.70044 −0.402608 −0.201304 0.979529i \(-0.564518\pi\)
−0.201304 + 0.979529i \(0.564518\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 18.6272 0.859209
\(471\) 0 0
\(472\) 3.37381 0.155292
\(473\) 8.90655 0.409524
\(474\) 0 0
\(475\) −24.2498 −1.11266
\(476\) 0 0
\(477\) 0 0
\(478\) −10.9209 −0.499513
\(479\) 17.7674 0.811813 0.405907 0.913915i \(-0.366956\pi\)
0.405907 + 0.913915i \(0.366956\pi\)
\(480\) 0 0
\(481\) −5.66207 −0.258168
\(482\) 8.29095 0.377643
\(483\) 0 0
\(484\) 17.8978 0.813536
\(485\) −40.7816 −1.85180
\(486\) 0 0
\(487\) −16.6553 −0.754722 −0.377361 0.926066i \(-0.623168\pi\)
−0.377361 + 0.926066i \(0.623168\pi\)
\(488\) −20.1123 −0.910443
\(489\) 0 0
\(490\) 0 0
\(491\) −6.42042 −0.289749 −0.144875 0.989450i \(-0.546278\pi\)
−0.144875 + 0.989450i \(0.546278\pi\)
\(492\) 0 0
\(493\) −1.03557 −0.0466396
\(494\) 1.66646 0.0749776
\(495\) 0 0
\(496\) 9.26814 0.416152
\(497\) 0 0
\(498\) 0 0
\(499\) 11.1459 0.498960 0.249480 0.968380i \(-0.419740\pi\)
0.249480 + 0.968380i \(0.419740\pi\)
\(500\) −23.5456 −1.05299
\(501\) 0 0
\(502\) 4.23025 0.188805
\(503\) 17.7223 0.790200 0.395100 0.918638i \(-0.370710\pi\)
0.395100 + 0.918638i \(0.370710\pi\)
\(504\) 0 0
\(505\) 9.59939 0.427167
\(506\) −1.09663 −0.0487511
\(507\) 0 0
\(508\) 2.22678 0.0987976
\(509\) −31.0823 −1.37770 −0.688848 0.724906i \(-0.741883\pi\)
−0.688848 + 0.724906i \(0.741883\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.5634 0.997169
\(513\) 0 0
\(514\) 8.48913 0.374439
\(515\) 35.8607 1.58021
\(516\) 0 0
\(517\) 9.08016 0.399345
\(518\) 0 0
\(519\) 0 0
\(520\) 8.22608 0.360737
\(521\) −4.75971 −0.208527 −0.104263 0.994550i \(-0.533249\pi\)
−0.104263 + 0.994550i \(0.533249\pi\)
\(522\) 0 0
\(523\) −40.2515 −1.76008 −0.880038 0.474904i \(-0.842483\pi\)
−0.880038 + 0.474904i \(0.842483\pi\)
\(524\) −26.3624 −1.15165
\(525\) 0 0
\(526\) −10.1914 −0.444367
\(527\) −0.896226 −0.0390402
\(528\) 0 0
\(529\) −16.8609 −0.733084
\(530\) −18.1076 −0.786545
\(531\) 0 0
\(532\) 0 0
\(533\) 5.72250 0.247869
\(534\) 0 0
\(535\) −40.2510 −1.74020
\(536\) −1.91622 −0.0827680
\(537\) 0 0
\(538\) 9.84067 0.424261
\(539\) 0 0
\(540\) 0 0
\(541\) −24.1094 −1.03655 −0.518273 0.855215i \(-0.673425\pi\)
−0.518273 + 0.855215i \(0.673425\pi\)
\(542\) −5.27659 −0.226649
\(543\) 0 0
\(544\) −1.25116 −0.0536431
\(545\) 7.83538 0.335631
\(546\) 0 0
\(547\) 12.3550 0.528263 0.264131 0.964487i \(-0.414915\pi\)
0.264131 + 0.964487i \(0.414915\pi\)
\(548\) −0.856872 −0.0366038
\(549\) 0 0
\(550\) 3.82188 0.162966
\(551\) −11.6334 −0.495600
\(552\) 0 0
\(553\) 0 0
\(554\) −12.3379 −0.524186
\(555\) 0 0
\(556\) −17.3127 −0.734220
\(557\) 8.07689 0.342229 0.171114 0.985251i \(-0.445263\pi\)
0.171114 + 0.985251i \(0.445263\pi\)
\(558\) 0 0
\(559\) −11.9415 −0.505070
\(560\) 0 0
\(561\) 0 0
\(562\) −6.78083 −0.286032
\(563\) −45.2127 −1.90549 −0.952744 0.303774i \(-0.901753\pi\)
−0.952744 + 0.303774i \(0.901753\pi\)
\(564\) 0 0
\(565\) 58.4401 2.45859
\(566\) 3.13477 0.131764
\(567\) 0 0
\(568\) −9.20596 −0.386274
\(569\) −22.4299 −0.940309 −0.470155 0.882584i \(-0.655802\pi\)
−0.470155 + 0.882584i \(0.655802\pi\)
\(570\) 0 0
\(571\) −21.8269 −0.913426 −0.456713 0.889614i \(-0.650973\pi\)
−0.456713 + 0.889614i \(0.650973\pi\)
\(572\) 1.87365 0.0783413
\(573\) 0 0
\(574\) 0 0
\(575\) −21.3954 −0.892251
\(576\) 0 0
\(577\) 32.2044 1.34068 0.670342 0.742052i \(-0.266147\pi\)
0.670342 + 0.742052i \(0.266147\pi\)
\(578\) −8.39877 −0.349343
\(579\) 0 0
\(580\) −26.8322 −1.11414
\(581\) 0 0
\(582\) 0 0
\(583\) −8.82687 −0.365571
\(584\) −3.40761 −0.141008
\(585\) 0 0
\(586\) −1.30421 −0.0538765
\(587\) −19.4461 −0.802625 −0.401313 0.915941i \(-0.631446\pi\)
−0.401313 + 0.915941i \(0.631446\pi\)
\(588\) 0 0
\(589\) −10.0681 −0.414848
\(590\) −3.31851 −0.136621
\(591\) 0 0
\(592\) 12.2313 0.502701
\(593\) −28.8405 −1.18434 −0.592168 0.805815i \(-0.701728\pi\)
−0.592168 + 0.805815i \(0.701728\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 36.8784 1.51060
\(597\) 0 0
\(598\) 1.47030 0.0601252
\(599\) 46.9989 1.92032 0.960161 0.279447i \(-0.0901511\pi\)
0.960161 + 0.279447i \(0.0901511\pi\)
\(600\) 0 0
\(601\) 15.6169 0.637025 0.318512 0.947919i \(-0.396817\pi\)
0.318512 + 0.947919i \(0.396817\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −2.62833 −0.106945
\(605\) −37.6766 −1.53177
\(606\) 0 0
\(607\) −28.6532 −1.16300 −0.581500 0.813547i \(-0.697534\pi\)
−0.581500 + 0.813547i \(0.697534\pi\)
\(608\) −14.0554 −0.570021
\(609\) 0 0
\(610\) 19.7827 0.800977
\(611\) −12.1742 −0.492516
\(612\) 0 0
\(613\) −29.3468 −1.18531 −0.592653 0.805458i \(-0.701920\pi\)
−0.592653 + 0.805458i \(0.701920\pi\)
\(614\) −1.38593 −0.0559316
\(615\) 0 0
\(616\) 0 0
\(617\) 4.12801 0.166188 0.0830938 0.996542i \(-0.473520\pi\)
0.0830938 + 0.996542i \(0.473520\pi\)
\(618\) 0 0
\(619\) 22.7130 0.912912 0.456456 0.889746i \(-0.349119\pi\)
0.456456 + 0.889746i \(0.349119\pi\)
\(620\) −23.2217 −0.932608
\(621\) 0 0
\(622\) 7.48774 0.300231
\(623\) 0 0
\(624\) 0 0
\(625\) 6.38996 0.255598
\(626\) −12.6340 −0.504955
\(627\) 0 0
\(628\) 29.2580 1.16752
\(629\) −1.18276 −0.0471597
\(630\) 0 0
\(631\) −38.6411 −1.53828 −0.769138 0.639082i \(-0.779314\pi\)
−0.769138 + 0.639082i \(0.779314\pi\)
\(632\) 3.34915 0.133222
\(633\) 0 0
\(634\) −16.1261 −0.640449
\(635\) −4.68759 −0.186021
\(636\) 0 0
\(637\) 0 0
\(638\) 1.83348 0.0725881
\(639\) 0 0
\(640\) −41.8853 −1.65566
\(641\) 28.4726 1.12460 0.562301 0.826933i \(-0.309916\pi\)
0.562301 + 0.826933i \(0.309916\pi\)
\(642\) 0 0
\(643\) 17.0425 0.672091 0.336045 0.941846i \(-0.390910\pi\)
0.336045 + 0.941846i \(0.390910\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.348110 0.0136962
\(647\) 3.37618 0.132731 0.0663657 0.997795i \(-0.478860\pi\)
0.0663657 + 0.997795i \(0.478860\pi\)
\(648\) 0 0
\(649\) −1.61767 −0.0634989
\(650\) −5.12419 −0.200987
\(651\) 0 0
\(652\) −11.7222 −0.459077
\(653\) 18.3451 0.717899 0.358950 0.933357i \(-0.383135\pi\)
0.358950 + 0.933357i \(0.383135\pi\)
\(654\) 0 0
\(655\) 55.4954 2.16838
\(656\) −12.3618 −0.482648
\(657\) 0 0
\(658\) 0 0
\(659\) −27.8495 −1.08486 −0.542432 0.840100i \(-0.682496\pi\)
−0.542432 + 0.840100i \(0.682496\pi\)
\(660\) 0 0
\(661\) 39.0141 1.51747 0.758737 0.651397i \(-0.225817\pi\)
0.758737 + 0.651397i \(0.225817\pi\)
\(662\) 8.97265 0.348732
\(663\) 0 0
\(664\) −22.9400 −0.890247
\(665\) 0 0
\(666\) 0 0
\(667\) −10.2641 −0.397426
\(668\) −30.9268 −1.19659
\(669\) 0 0
\(670\) 1.88481 0.0728165
\(671\) 9.64340 0.372280
\(672\) 0 0
\(673\) −49.2309 −1.89771 −0.948856 0.315711i \(-0.897757\pi\)
−0.948856 + 0.315711i \(0.897757\pi\)
\(674\) 12.4053 0.477833
\(675\) 0 0
\(676\) 20.2914 0.780438
\(677\) 23.3915 0.899010 0.449505 0.893278i \(-0.351600\pi\)
0.449505 + 0.893278i \(0.351600\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.71836 0.0658961
\(681\) 0 0
\(682\) 1.58677 0.0607607
\(683\) −30.3264 −1.16041 −0.580204 0.814471i \(-0.697027\pi\)
−0.580204 + 0.814471i \(0.697027\pi\)
\(684\) 0 0
\(685\) 1.80380 0.0689196
\(686\) 0 0
\(687\) 0 0
\(688\) 25.7961 0.983466
\(689\) 11.8346 0.450863
\(690\) 0 0
\(691\) −4.11330 −0.156477 −0.0782387 0.996935i \(-0.524930\pi\)
−0.0782387 + 0.996935i \(0.524930\pi\)
\(692\) −6.81797 −0.259180
\(693\) 0 0
\(694\) −5.33003 −0.202325
\(695\) 36.4448 1.38243
\(696\) 0 0
\(697\) 1.19538 0.0452784
\(698\) 1.62943 0.0616749
\(699\) 0 0
\(700\) 0 0
\(701\) −29.1835 −1.10225 −0.551123 0.834424i \(-0.685800\pi\)
−0.551123 + 0.834424i \(0.685800\pi\)
\(702\) 0 0
\(703\) −13.2869 −0.501127
\(704\) −2.39965 −0.0904403
\(705\) 0 0
\(706\) −8.34010 −0.313884
\(707\) 0 0
\(708\) 0 0
\(709\) −42.4617 −1.59468 −0.797342 0.603528i \(-0.793761\pi\)
−0.797342 + 0.603528i \(0.793761\pi\)
\(710\) 9.05507 0.339831
\(711\) 0 0
\(712\) 4.48150 0.167951
\(713\) −8.88298 −0.332670
\(714\) 0 0
\(715\) −3.94421 −0.147505
\(716\) −12.8667 −0.480852
\(717\) 0 0
\(718\) 11.7938 0.440142
\(719\) −11.1425 −0.415546 −0.207773 0.978177i \(-0.566621\pi\)
−0.207773 + 0.978177i \(0.566621\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −5.51088 −0.205094
\(723\) 0 0
\(724\) −19.7453 −0.733828
\(725\) 35.7715 1.32852
\(726\) 0 0
\(727\) 28.6820 1.06376 0.531878 0.846821i \(-0.321487\pi\)
0.531878 + 0.846821i \(0.321487\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 3.35175 0.124054
\(731\) −2.49447 −0.0922614
\(732\) 0 0
\(733\) −25.0528 −0.925348 −0.462674 0.886529i \(-0.653110\pi\)
−0.462674 + 0.886529i \(0.653110\pi\)
\(734\) −0.342141 −0.0126287
\(735\) 0 0
\(736\) −12.4009 −0.457104
\(737\) 0.918782 0.0338438
\(738\) 0 0
\(739\) −27.5216 −1.01240 −0.506198 0.862417i \(-0.668950\pi\)
−0.506198 + 0.862417i \(0.668950\pi\)
\(740\) −30.6460 −1.12657
\(741\) 0 0
\(742\) 0 0
\(743\) −14.0122 −0.514057 −0.257028 0.966404i \(-0.582743\pi\)
−0.257028 + 0.966404i \(0.582743\pi\)
\(744\) 0 0
\(745\) −77.6326 −2.84424
\(746\) −1.86452 −0.0682650
\(747\) 0 0
\(748\) 0.391390 0.0143106
\(749\) 0 0
\(750\) 0 0
\(751\) −52.2594 −1.90697 −0.953486 0.301436i \(-0.902534\pi\)
−0.953486 + 0.301436i \(0.902534\pi\)
\(752\) 26.2989 0.959021
\(753\) 0 0
\(754\) −2.45824 −0.0895237
\(755\) 5.53289 0.201363
\(756\) 0 0
\(757\) −43.3447 −1.57539 −0.787694 0.616066i \(-0.788725\pi\)
−0.787694 + 0.616066i \(0.788725\pi\)
\(758\) 16.3009 0.592077
\(759\) 0 0
\(760\) 19.3038 0.700223
\(761\) 17.2510 0.625348 0.312674 0.949860i \(-0.398775\pi\)
0.312674 + 0.949860i \(0.398775\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −41.8285 −1.51330
\(765\) 0 0
\(766\) 0.531903 0.0192184
\(767\) 2.16889 0.0783139
\(768\) 0 0
\(769\) 21.3454 0.769734 0.384867 0.922972i \(-0.374247\pi\)
0.384867 + 0.922972i \(0.374247\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −10.4099 −0.374660
\(773\) −13.1471 −0.472870 −0.236435 0.971647i \(-0.575979\pi\)
−0.236435 + 0.971647i \(0.575979\pi\)
\(774\) 0 0
\(775\) 30.9583 1.11205
\(776\) 20.5593 0.738036
\(777\) 0 0
\(778\) 11.7737 0.422108
\(779\) 13.4288 0.481136
\(780\) 0 0
\(781\) 4.41405 0.157947
\(782\) 0.307134 0.0109831
\(783\) 0 0
\(784\) 0 0
\(785\) −61.5909 −2.19827
\(786\) 0 0
\(787\) −28.1301 −1.00273 −0.501364 0.865236i \(-0.667168\pi\)
−0.501364 + 0.865236i \(0.667168\pi\)
\(788\) −27.1330 −0.966573
\(789\) 0 0
\(790\) −3.29425 −0.117204
\(791\) 0 0
\(792\) 0 0
\(793\) −12.9294 −0.459136
\(794\) 0.0159163 0.000564847 0
\(795\) 0 0
\(796\) 27.1824 0.963455
\(797\) 25.7365 0.911635 0.455817 0.890073i \(-0.349347\pi\)
0.455817 + 0.890073i \(0.349347\pi\)
\(798\) 0 0
\(799\) −2.54309 −0.0899681
\(800\) 43.2188 1.52801
\(801\) 0 0
\(802\) −12.1615 −0.429436
\(803\) 1.63387 0.0576580
\(804\) 0 0
\(805\) 0 0
\(806\) −2.12747 −0.0749368
\(807\) 0 0
\(808\) −4.83936 −0.170248
\(809\) 31.8705 1.12051 0.560254 0.828321i \(-0.310704\pi\)
0.560254 + 0.828321i \(0.310704\pi\)
\(810\) 0 0
\(811\) 43.3860 1.52349 0.761744 0.647878i \(-0.224343\pi\)
0.761744 + 0.647878i \(0.224343\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 2.09408 0.0733975
\(815\) 24.6764 0.864375
\(816\) 0 0
\(817\) −28.0226 −0.980385
\(818\) 13.2842 0.464470
\(819\) 0 0
\(820\) 30.9731 1.08163
\(821\) 16.3935 0.572139 0.286069 0.958209i \(-0.407651\pi\)
0.286069 + 0.958209i \(0.407651\pi\)
\(822\) 0 0
\(823\) −26.3780 −0.919478 −0.459739 0.888054i \(-0.652057\pi\)
−0.459739 + 0.888054i \(0.652057\pi\)
\(824\) −18.0785 −0.629794
\(825\) 0 0
\(826\) 0 0
\(827\) −36.7225 −1.27697 −0.638484 0.769635i \(-0.720438\pi\)
−0.638484 + 0.769635i \(0.720438\pi\)
\(828\) 0 0
\(829\) −24.3158 −0.844522 −0.422261 0.906474i \(-0.638763\pi\)
−0.422261 + 0.906474i \(0.638763\pi\)
\(830\) 22.5640 0.783209
\(831\) 0 0
\(832\) 3.21734 0.111541
\(833\) 0 0
\(834\) 0 0
\(835\) 65.1038 2.25301
\(836\) 4.39682 0.152067
\(837\) 0 0
\(838\) −10.4392 −0.360618
\(839\) −25.6810 −0.886606 −0.443303 0.896372i \(-0.646193\pi\)
−0.443303 + 0.896372i \(0.646193\pi\)
\(840\) 0 0
\(841\) −11.8393 −0.408251
\(842\) 7.38381 0.254463
\(843\) 0 0
\(844\) 2.70800 0.0932131
\(845\) −42.7153 −1.46945
\(846\) 0 0
\(847\) 0 0
\(848\) −25.5653 −0.877915
\(849\) 0 0
\(850\) −1.07040 −0.0367144
\(851\) −11.7230 −0.401858
\(852\) 0 0
\(853\) −28.9743 −0.992061 −0.496031 0.868305i \(-0.665210\pi\)
−0.496031 + 0.868305i \(0.665210\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 20.2918 0.693559
\(857\) 25.3868 0.867197 0.433598 0.901106i \(-0.357244\pi\)
0.433598 + 0.901106i \(0.357244\pi\)
\(858\) 0 0
\(859\) −5.95783 −0.203279 −0.101639 0.994821i \(-0.532409\pi\)
−0.101639 + 0.994821i \(0.532409\pi\)
\(860\) −64.6333 −2.20398
\(861\) 0 0
\(862\) −7.88621 −0.268605
\(863\) 16.3909 0.557953 0.278977 0.960298i \(-0.410005\pi\)
0.278977 + 0.960298i \(0.410005\pi\)
\(864\) 0 0
\(865\) 14.3525 0.487999
\(866\) −8.11528 −0.275768
\(867\) 0 0
\(868\) 0 0
\(869\) −1.60584 −0.0544744
\(870\) 0 0
\(871\) −1.23186 −0.0417399
\(872\) −3.95006 −0.133766
\(873\) 0 0
\(874\) 3.45030 0.116708
\(875\) 0 0
\(876\) 0 0
\(877\) 35.2539 1.19044 0.595220 0.803563i \(-0.297065\pi\)
0.595220 + 0.803563i \(0.297065\pi\)
\(878\) −7.70813 −0.260137
\(879\) 0 0
\(880\) 8.52033 0.287220
\(881\) −26.2582 −0.884661 −0.442331 0.896852i \(-0.645848\pi\)
−0.442331 + 0.896852i \(0.645848\pi\)
\(882\) 0 0
\(883\) 10.0087 0.336821 0.168410 0.985717i \(-0.446137\pi\)
0.168410 + 0.985717i \(0.446137\pi\)
\(884\) −0.524756 −0.0176495
\(885\) 0 0
\(886\) −0.887631 −0.0298205
\(887\) 15.9056 0.534059 0.267030 0.963688i \(-0.413958\pi\)
0.267030 + 0.963688i \(0.413958\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −4.40804 −0.147758
\(891\) 0 0
\(892\) −9.54838 −0.319703
\(893\) −28.5688 −0.956017
\(894\) 0 0
\(895\) 27.0857 0.905374
\(896\) 0 0
\(897\) 0 0
\(898\) −6.72727 −0.224492
\(899\) 14.8517 0.495331
\(900\) 0 0
\(901\) 2.47215 0.0823594
\(902\) −2.11643 −0.0704695
\(903\) 0 0
\(904\) −29.4615 −0.979875
\(905\) 41.5657 1.38169
\(906\) 0 0
\(907\) −17.0925 −0.567547 −0.283773 0.958891i \(-0.591586\pi\)
−0.283773 + 0.958891i \(0.591586\pi\)
\(908\) −28.1998 −0.935843
\(909\) 0 0
\(910\) 0 0
\(911\) 29.8869 0.990199 0.495099 0.868836i \(-0.335132\pi\)
0.495099 + 0.868836i \(0.335132\pi\)
\(912\) 0 0
\(913\) 10.9992 0.364021
\(914\) 1.27397 0.0421393
\(915\) 0 0
\(916\) 17.4857 0.577744
\(917\) 0 0
\(918\) 0 0
\(919\) −23.6567 −0.780362 −0.390181 0.920738i \(-0.627588\pi\)
−0.390181 + 0.920738i \(0.627588\pi\)
\(920\) 17.0316 0.561515
\(921\) 0 0
\(922\) 17.9439 0.590952
\(923\) −5.91813 −0.194798
\(924\) 0 0
\(925\) 40.8559 1.34333
\(926\) −8.12454 −0.266989
\(927\) 0 0
\(928\) 20.7334 0.680607
\(929\) −12.6176 −0.413970 −0.206985 0.978344i \(-0.566365\pi\)
−0.206985 + 0.978344i \(0.566365\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −29.0146 −0.950405
\(933\) 0 0
\(934\) −4.31427 −0.141167
\(935\) −0.823914 −0.0269449
\(936\) 0 0
\(937\) −26.3440 −0.860622 −0.430311 0.902681i \(-0.641596\pi\)
−0.430311 + 0.902681i \(0.641596\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −65.8930 −2.14919
\(941\) −50.9397 −1.66059 −0.830294 0.557326i \(-0.811827\pi\)
−0.830294 + 0.557326i \(0.811827\pi\)
\(942\) 0 0
\(943\) 11.8481 0.385827
\(944\) −4.68525 −0.152492
\(945\) 0 0
\(946\) 4.41648 0.143592
\(947\) −27.6798 −0.899474 −0.449737 0.893161i \(-0.648482\pi\)
−0.449737 + 0.893161i \(0.648482\pi\)
\(948\) 0 0
\(949\) −2.19061 −0.0711102
\(950\) −12.0247 −0.390134
\(951\) 0 0
\(952\) 0 0
\(953\) 27.4017 0.887628 0.443814 0.896119i \(-0.353625\pi\)
0.443814 + 0.896119i \(0.353625\pi\)
\(954\) 0 0
\(955\) 88.0530 2.84933
\(956\) 38.6324 1.24946
\(957\) 0 0
\(958\) 8.81029 0.284648
\(959\) 0 0
\(960\) 0 0
\(961\) −18.1467 −0.585378
\(962\) −2.80764 −0.0905219
\(963\) 0 0
\(964\) −29.3289 −0.944621
\(965\) 21.9138 0.705431
\(966\) 0 0
\(967\) −18.1814 −0.584674 −0.292337 0.956315i \(-0.594433\pi\)
−0.292337 + 0.956315i \(0.594433\pi\)
\(968\) 18.9940 0.610489
\(969\) 0 0
\(970\) −20.2223 −0.649299
\(971\) 39.4832 1.26708 0.633538 0.773712i \(-0.281602\pi\)
0.633538 + 0.773712i \(0.281602\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −8.25881 −0.264629
\(975\) 0 0
\(976\) 27.9302 0.894024
\(977\) −11.9156 −0.381215 −0.190608 0.981666i \(-0.561046\pi\)
−0.190608 + 0.981666i \(0.561046\pi\)
\(978\) 0 0
\(979\) −2.14878 −0.0686752
\(980\) 0 0
\(981\) 0 0
\(982\) −3.18368 −0.101595
\(983\) 18.4779 0.589354 0.294677 0.955597i \(-0.404788\pi\)
0.294677 + 0.955597i \(0.404788\pi\)
\(984\) 0 0
\(985\) 57.1176 1.81992
\(986\) −0.513505 −0.0163533
\(987\) 0 0
\(988\) −5.89504 −0.187546
\(989\) −24.7241 −0.786179
\(990\) 0 0
\(991\) 12.6970 0.403334 0.201667 0.979454i \(-0.435364\pi\)
0.201667 + 0.979454i \(0.435364\pi\)
\(992\) 17.9436 0.569710
\(993\) 0 0
\(994\) 0 0
\(995\) −57.2215 −1.81405
\(996\) 0 0
\(997\) 41.9533 1.32868 0.664338 0.747432i \(-0.268714\pi\)
0.664338 + 0.747432i \(0.268714\pi\)
\(998\) 5.52690 0.174951
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3969.2.a.bc.1.3 5
3.2 odd 2 3969.2.a.z.1.3 5
7.2 even 3 567.2.e.e.487.3 10
7.4 even 3 567.2.e.e.163.3 10
7.6 odd 2 3969.2.a.bb.1.3 5
9.2 odd 6 441.2.f.e.148.3 10
9.4 even 3 1323.2.f.e.883.3 10
9.5 odd 6 441.2.f.e.295.3 10
9.7 even 3 1323.2.f.e.442.3 10
21.2 odd 6 567.2.e.f.487.3 10
21.11 odd 6 567.2.e.f.163.3 10
21.20 even 2 3969.2.a.ba.1.3 5
63.2 odd 6 63.2.g.b.4.3 10
63.4 even 3 189.2.g.b.100.3 10
63.5 even 6 441.2.h.f.214.3 10
63.11 odd 6 63.2.h.b.58.3 yes 10
63.13 odd 6 1323.2.f.f.883.3 10
63.16 even 3 189.2.g.b.172.3 10
63.20 even 6 441.2.f.f.148.3 10
63.23 odd 6 63.2.h.b.25.3 yes 10
63.25 even 3 189.2.h.b.37.3 10
63.31 odd 6 1323.2.g.f.667.3 10
63.32 odd 6 63.2.g.b.16.3 yes 10
63.34 odd 6 1323.2.f.f.442.3 10
63.38 even 6 441.2.h.f.373.3 10
63.40 odd 6 1323.2.h.f.802.3 10
63.41 even 6 441.2.f.f.295.3 10
63.47 even 6 441.2.g.f.67.3 10
63.52 odd 6 1323.2.h.f.226.3 10
63.58 even 3 189.2.h.b.46.3 10
63.59 even 6 441.2.g.f.79.3 10
63.61 odd 6 1323.2.g.f.361.3 10
252.11 even 6 1008.2.q.i.625.3 10
252.23 even 6 1008.2.q.i.529.3 10
252.67 odd 6 3024.2.t.i.289.5 10
252.79 odd 6 3024.2.t.i.1873.5 10
252.95 even 6 1008.2.t.i.961.1 10
252.151 odd 6 3024.2.q.i.2305.1 10
252.191 even 6 1008.2.t.i.193.1 10
252.247 odd 6 3024.2.q.i.2881.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.g.b.4.3 10 63.2 odd 6
63.2.g.b.16.3 yes 10 63.32 odd 6
63.2.h.b.25.3 yes 10 63.23 odd 6
63.2.h.b.58.3 yes 10 63.11 odd 6
189.2.g.b.100.3 10 63.4 even 3
189.2.g.b.172.3 10 63.16 even 3
189.2.h.b.37.3 10 63.25 even 3
189.2.h.b.46.3 10 63.58 even 3
441.2.f.e.148.3 10 9.2 odd 6
441.2.f.e.295.3 10 9.5 odd 6
441.2.f.f.148.3 10 63.20 even 6
441.2.f.f.295.3 10 63.41 even 6
441.2.g.f.67.3 10 63.47 even 6
441.2.g.f.79.3 10 63.59 even 6
441.2.h.f.214.3 10 63.5 even 6
441.2.h.f.373.3 10 63.38 even 6
567.2.e.e.163.3 10 7.4 even 3
567.2.e.e.487.3 10 7.2 even 3
567.2.e.f.163.3 10 21.11 odd 6
567.2.e.f.487.3 10 21.2 odd 6
1008.2.q.i.529.3 10 252.23 even 6
1008.2.q.i.625.3 10 252.11 even 6
1008.2.t.i.193.1 10 252.191 even 6
1008.2.t.i.961.1 10 252.95 even 6
1323.2.f.e.442.3 10 9.7 even 3
1323.2.f.e.883.3 10 9.4 even 3
1323.2.f.f.442.3 10 63.34 odd 6
1323.2.f.f.883.3 10 63.13 odd 6
1323.2.g.f.361.3 10 63.61 odd 6
1323.2.g.f.667.3 10 63.31 odd 6
1323.2.h.f.226.3 10 63.52 odd 6
1323.2.h.f.802.3 10 63.40 odd 6
3024.2.q.i.2305.1 10 252.151 odd 6
3024.2.q.i.2881.1 10 252.247 odd 6
3024.2.t.i.289.5 10 252.67 odd 6
3024.2.t.i.1873.5 10 252.79 odd 6
3969.2.a.z.1.3 5 3.2 odd 2
3969.2.a.ba.1.3 5 21.20 even 2
3969.2.a.bb.1.3 5 7.6 odd 2
3969.2.a.bc.1.3 5 1.1 even 1 trivial