Properties

Label 567.2.e.f.163.3
Level $567$
Weight $2$
Character 567.163
Analytic conductor $4.528$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(163,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.991381711347.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 9x^{8} - 8x^{7} + 40x^{6} - 36x^{5} + 90x^{4} - 3x^{3} + 36x^{2} - 9x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.3
Root \(0.247934 - 0.429435i\) of defining polynomial
Character \(\chi\) \(=\) 567.163
Dual form 567.2.e.f.487.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.247934 - 0.429435i) q^{2} +(0.877057 + 1.51911i) q^{4} +(1.84629 - 3.19787i) q^{5} +(1.68284 + 2.04158i) q^{7} +1.86155 q^{8} +(-0.915516 - 1.58572i) q^{10} +(0.446284 + 0.772987i) q^{11} -1.19671 q^{13} +(1.29396 - 0.216492i) q^{14} +(-1.29257 + 2.23880i) q^{16} +(-0.124991 - 0.216492i) q^{17} +(1.40414 - 2.43204i) q^{19} +6.47721 q^{20} +0.442596 q^{22} +(-1.23886 + 2.14576i) q^{23} +(-4.31757 - 7.47825i) q^{25} +(-0.296705 + 0.513909i) q^{26} +(-1.62544 + 4.34700i) q^{28} -4.14255 q^{29} +(-1.79257 - 3.10483i) q^{31} +(2.50249 + 4.33444i) q^{32} -0.123959 q^{34} +(9.63571 - 1.61215i) q^{35} +(-2.36568 + 4.09747i) q^{37} +(-0.696267 - 1.20597i) q^{38} +(3.43695 - 5.95298i) q^{40} +4.78186 q^{41} +9.97857 q^{43} +(-0.782834 + 1.35591i) q^{44} +(0.614310 + 1.06402i) q^{46} +(5.08653 - 8.81013i) q^{47} +(-1.33611 + 6.87130i) q^{49} -4.28189 q^{50} +(-1.04958 - 1.81793i) q^{52} +(-4.94465 - 8.56438i) q^{53} +3.29588 q^{55} +(3.13268 + 3.80050i) q^{56} +(-1.02708 + 1.77895i) q^{58} +(-0.906186 - 1.56956i) q^{59} +(-5.40205 + 9.35663i) q^{61} -1.77776 q^{62} -2.68848 q^{64} +(-2.20948 + 3.82692i) q^{65} +(-0.514685 - 0.891460i) q^{67} +(0.219249 - 0.379751i) q^{68} +(1.69671 - 4.53761i) q^{70} -4.94533 q^{71} +(-0.915262 - 1.58528i) q^{73} +(1.17306 + 2.03181i) q^{74} +4.92604 q^{76} +(-0.827091 + 2.21194i) q^{77} +(0.899562 - 1.55809i) q^{79} +(4.77293 + 8.26696i) q^{80} +(1.18559 - 2.05350i) q^{82} -12.3231 q^{83} -0.923082 q^{85} +(2.47403 - 4.28514i) q^{86} +(0.830779 + 1.43895i) q^{88} +(-1.20370 + 2.08488i) q^{89} +(-2.01387 - 2.44318i) q^{91} -4.34620 q^{92} +(-2.52225 - 4.36867i) q^{94} +(-5.18489 - 8.98049i) q^{95} -11.0442 q^{97} +(2.61951 + 2.27740i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 2 q^{2} - 4 q^{4} + 4 q^{5} + 5 q^{7} - 6 q^{8} - 7 q^{10} + 4 q^{11} + 16 q^{13} + 4 q^{14} + 2 q^{16} + 12 q^{17} + q^{19} - 10 q^{20} + 2 q^{22} + 3 q^{23} - q^{25} + 11 q^{26} - 2 q^{28} - 14 q^{29}+ \cdots + 59 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.247934 0.429435i 0.175316 0.303656i −0.764955 0.644084i \(-0.777239\pi\)
0.940271 + 0.340428i \(0.110572\pi\)
\(3\) 0 0
\(4\) 0.877057 + 1.51911i 0.438529 + 0.759554i
\(5\) 1.84629 3.19787i 0.825686 1.43013i −0.0757082 0.997130i \(-0.524122\pi\)
0.901394 0.433000i \(-0.142545\pi\)
\(6\) 0 0
\(7\) 1.68284 + 2.04158i 0.636053 + 0.771645i
\(8\) 1.86155 0.658156
\(9\) 0 0
\(10\) −0.915516 1.58572i −0.289512 0.501449i
\(11\) 0.446284 + 0.772987i 0.134560 + 0.233064i 0.925429 0.378921i \(-0.123705\pi\)
−0.790869 + 0.611985i \(0.790371\pi\)
\(12\) 0 0
\(13\) −1.19671 −0.331908 −0.165954 0.986134i \(-0.553070\pi\)
−0.165954 + 0.986134i \(0.553070\pi\)
\(14\) 1.29396 0.216492i 0.345825 0.0578598i
\(15\) 0 0
\(16\) −1.29257 + 2.23880i −0.323143 + 0.559701i
\(17\) −0.124991 0.216492i −0.0303149 0.0525069i 0.850470 0.526024i \(-0.176318\pi\)
−0.880785 + 0.473517i \(0.842984\pi\)
\(18\) 0 0
\(19\) 1.40414 2.43204i 0.322131 0.557948i −0.658796 0.752321i \(-0.728934\pi\)
0.980928 + 0.194374i \(0.0622675\pi\)
\(20\) 6.47721 1.44835
\(21\) 0 0
\(22\) 0.442596 0.0943618
\(23\) −1.23886 + 2.14576i −0.258320 + 0.447423i −0.965792 0.259318i \(-0.916502\pi\)
0.707472 + 0.706741i \(0.249835\pi\)
\(24\) 0 0
\(25\) −4.31757 7.47825i −0.863514 1.49565i
\(26\) −0.296705 + 0.513909i −0.0581887 + 0.100786i
\(27\) 0 0
\(28\) −1.62544 + 4.34700i −0.307178 + 0.821505i
\(29\) −4.14255 −0.769252 −0.384626 0.923072i \(-0.625670\pi\)
−0.384626 + 0.923072i \(0.625670\pi\)
\(30\) 0 0
\(31\) −1.79257 3.10483i −0.321956 0.557644i 0.658936 0.752199i \(-0.271007\pi\)
−0.980892 + 0.194555i \(0.937674\pi\)
\(32\) 2.50249 + 4.33444i 0.442382 + 0.766229i
\(33\) 0 0
\(34\) −0.123959 −0.0212587
\(35\) 9.63571 1.61215i 1.62873 0.272502i
\(36\) 0 0
\(37\) −2.36568 + 4.09747i −0.388915 + 0.673621i −0.992304 0.123826i \(-0.960483\pi\)
0.603389 + 0.797447i \(0.293817\pi\)
\(38\) −0.696267 1.20597i −0.112949 0.195634i
\(39\) 0 0
\(40\) 3.43695 5.95298i 0.543430 0.941249i
\(41\) 4.78186 0.746801 0.373400 0.927670i \(-0.378192\pi\)
0.373400 + 0.927670i \(0.378192\pi\)
\(42\) 0 0
\(43\) 9.97857 1.52172 0.760859 0.648917i \(-0.224778\pi\)
0.760859 + 0.648917i \(0.224778\pi\)
\(44\) −0.782834 + 1.35591i −0.118017 + 0.204411i
\(45\) 0 0
\(46\) 0.614310 + 1.06402i 0.0905751 + 0.156881i
\(47\) 5.08653 8.81013i 0.741947 1.28509i −0.209661 0.977774i \(-0.567236\pi\)
0.951608 0.307316i \(-0.0994308\pi\)
\(48\) 0 0
\(49\) −1.33611 + 6.87130i −0.190872 + 0.981615i
\(50\) −4.28189 −0.605551
\(51\) 0 0
\(52\) −1.04958 1.81793i −0.145551 0.252102i
\(53\) −4.94465 8.56438i −0.679199 1.17641i −0.975222 0.221227i \(-0.928994\pi\)
0.296023 0.955181i \(-0.404339\pi\)
\(54\) 0 0
\(55\) 3.29588 0.444416
\(56\) 3.13268 + 3.80050i 0.418622 + 0.507863i
\(57\) 0 0
\(58\) −1.02708 + 1.77895i −0.134862 + 0.233588i
\(59\) −0.906186 1.56956i −0.117975 0.204339i 0.800990 0.598678i \(-0.204307\pi\)
−0.918965 + 0.394339i \(0.870974\pi\)
\(60\) 0 0
\(61\) −5.40205 + 9.35663i −0.691662 + 1.19799i 0.279631 + 0.960108i \(0.409788\pi\)
−0.971293 + 0.237886i \(0.923545\pi\)
\(62\) −1.77776 −0.225776
\(63\) 0 0
\(64\) −2.68848 −0.336060
\(65\) −2.20948 + 3.82692i −0.274052 + 0.474671i
\(66\) 0 0
\(67\) −0.514685 0.891460i −0.0628787 0.108909i 0.832872 0.553465i \(-0.186695\pi\)
−0.895751 + 0.444556i \(0.853361\pi\)
\(68\) 0.219249 0.379751i 0.0265879 0.0460516i
\(69\) 0 0
\(70\) 1.69671 4.53761i 0.202796 0.542349i
\(71\) −4.94533 −0.586903 −0.293451 0.955974i \(-0.594804\pi\)
−0.293451 + 0.955974i \(0.594804\pi\)
\(72\) 0 0
\(73\) −0.915262 1.58528i −0.107123 0.185543i 0.807480 0.589894i \(-0.200831\pi\)
−0.914604 + 0.404351i \(0.867497\pi\)
\(74\) 1.17306 + 2.03181i 0.136366 + 0.236193i
\(75\) 0 0
\(76\) 4.92604 0.565055
\(77\) −0.827091 + 2.21194i −0.0942557 + 0.252074i
\(78\) 0 0
\(79\) 0.899562 1.55809i 0.101209 0.175298i −0.810974 0.585082i \(-0.801062\pi\)
0.912183 + 0.409783i \(0.134396\pi\)
\(80\) 4.77293 + 8.26696i 0.533630 + 0.924274i
\(81\) 0 0
\(82\) 1.18559 2.05350i 0.130926 0.226771i
\(83\) −12.3231 −1.35264 −0.676319 0.736609i \(-0.736426\pi\)
−0.676319 + 0.736609i \(0.736426\pi\)
\(84\) 0 0
\(85\) −0.923082 −0.100122
\(86\) 2.47403 4.28514i 0.266781 0.462079i
\(87\) 0 0
\(88\) 0.830779 + 1.43895i 0.0885613 + 0.153393i
\(89\) −1.20370 + 2.08488i −0.127592 + 0.220997i −0.922743 0.385415i \(-0.874058\pi\)
0.795151 + 0.606412i \(0.207392\pi\)
\(90\) 0 0
\(91\) −2.01387 2.44318i −0.211111 0.256115i
\(92\) −4.34620 −0.453122
\(93\) 0 0
\(94\) −2.52225 4.36867i −0.260150 0.450593i
\(95\) −5.18489 8.98049i −0.531958 0.921379i
\(96\) 0 0
\(97\) −11.0442 −1.12137 −0.560684 0.828030i \(-0.689462\pi\)
−0.560684 + 0.828030i \(0.689462\pi\)
\(98\) 2.61951 + 2.27740i 0.264610 + 0.230052i
\(99\) 0 0
\(100\) 7.57351 13.1177i 0.757351 1.31177i
\(101\) 1.29982 + 2.25136i 0.129337 + 0.224018i 0.923420 0.383791i \(-0.125382\pi\)
−0.794083 + 0.607810i \(0.792048\pi\)
\(102\) 0 0
\(103\) −4.85578 + 8.41045i −0.478454 + 0.828706i −0.999695 0.0247032i \(-0.992136\pi\)
0.521241 + 0.853409i \(0.325469\pi\)
\(104\) −2.22773 −0.218447
\(105\) 0 0
\(106\) −4.90379 −0.476298
\(107\) −5.45025 + 9.44012i −0.526896 + 0.912610i 0.472613 + 0.881270i \(0.343311\pi\)
−0.999509 + 0.0313403i \(0.990022\pi\)
\(108\) 0 0
\(109\) −1.06096 1.83764i −0.101622 0.176014i 0.810731 0.585419i \(-0.199070\pi\)
−0.912353 + 0.409404i \(0.865737\pi\)
\(110\) 0.817161 1.41536i 0.0779132 0.134950i
\(111\) 0 0
\(112\) −6.74589 + 1.12865i −0.637427 + 0.106648i
\(113\) −15.8264 −1.48882 −0.744409 0.667724i \(-0.767269\pi\)
−0.744409 + 0.667724i \(0.767269\pi\)
\(114\) 0 0
\(115\) 4.57458 + 7.92341i 0.426582 + 0.738861i
\(116\) −3.63325 6.29298i −0.337339 0.584289i
\(117\) 0 0
\(118\) −0.898698 −0.0827318
\(119\) 0.231645 0.619501i 0.0212348 0.0567895i
\(120\) 0 0
\(121\) 5.10166 8.83634i 0.463787 0.803303i
\(122\) 2.67871 + 4.63966i 0.242519 + 0.420055i
\(123\) 0 0
\(124\) 3.14438 5.44623i 0.282374 0.489086i
\(125\) −13.4230 −1.20059
\(126\) 0 0
\(127\) −1.26946 −0.112647 −0.0563233 0.998413i \(-0.517938\pi\)
−0.0563233 + 0.998413i \(0.517938\pi\)
\(128\) −5.67155 + 9.82342i −0.501299 + 0.868275i
\(129\) 0 0
\(130\) 1.09561 + 1.89765i 0.0960912 + 0.166435i
\(131\) 7.51444 13.0154i 0.656540 1.13716i −0.324965 0.945726i \(-0.605353\pi\)
0.981505 0.191435i \(-0.0613140\pi\)
\(132\) 0 0
\(133\) 7.32814 1.22607i 0.635430 0.106313i
\(134\) −0.510432 −0.0440946
\(135\) 0 0
\(136\) −0.232677 0.403009i −0.0199519 0.0345577i
\(137\) 0.244246 + 0.423047i 0.0208674 + 0.0361433i 0.876271 0.481819i \(-0.160024\pi\)
−0.855403 + 0.517963i \(0.826691\pi\)
\(138\) 0 0
\(139\) 9.86974 0.837141 0.418570 0.908184i \(-0.362531\pi\)
0.418570 + 0.908184i \(0.362531\pi\)
\(140\) 10.9001 + 13.2237i 0.921226 + 1.11761i
\(141\) 0 0
\(142\) −1.22612 + 2.12370i −0.102893 + 0.178217i
\(143\) −0.534073 0.925042i −0.0446614 0.0773559i
\(144\) 0 0
\(145\) −7.64835 + 13.2473i −0.635161 + 1.10013i
\(146\) −0.907699 −0.0751217
\(147\) 0 0
\(148\) −8.29934 −0.682202
\(149\) −10.5120 + 18.2073i −0.861175 + 1.49160i 0.00962096 + 0.999954i \(0.496938\pi\)
−0.870796 + 0.491645i \(0.836396\pi\)
\(150\) 0 0
\(151\) −0.749191 1.29764i −0.0609683 0.105600i 0.833930 0.551870i \(-0.186086\pi\)
−0.894898 + 0.446270i \(0.852752\pi\)
\(152\) 2.61387 4.52735i 0.212013 0.367217i
\(153\) 0 0
\(154\) 0.744818 + 0.903596i 0.0600192 + 0.0728139i
\(155\) −13.2384 −1.06334
\(156\) 0 0
\(157\) 8.33982 + 14.4450i 0.665590 + 1.15284i 0.979125 + 0.203259i \(0.0651534\pi\)
−0.313535 + 0.949577i \(0.601513\pi\)
\(158\) −0.446064 0.772606i −0.0354870 0.0614652i
\(159\) 0 0
\(160\) 18.4813 1.46108
\(161\) −6.46555 + 1.08175i −0.509557 + 0.0852537i
\(162\) 0 0
\(163\) −3.34135 + 5.78738i −0.261714 + 0.453303i −0.966698 0.255921i \(-0.917621\pi\)
0.704983 + 0.709224i \(0.250954\pi\)
\(164\) 4.19396 + 7.26416i 0.327494 + 0.567236i
\(165\) 0 0
\(166\) −3.05532 + 5.29197i −0.237139 + 0.410737i
\(167\) −17.6310 −1.36433 −0.682163 0.731200i \(-0.738961\pi\)
−0.682163 + 0.731200i \(0.738961\pi\)
\(168\) 0 0
\(169\) −11.5679 −0.889837
\(170\) −0.228863 + 0.396403i −0.0175530 + 0.0304027i
\(171\) 0 0
\(172\) 8.75178 + 15.1585i 0.667317 + 1.15583i
\(173\) 1.94342 3.36611i 0.147756 0.255920i −0.782642 0.622472i \(-0.786128\pi\)
0.930398 + 0.366552i \(0.119462\pi\)
\(174\) 0 0
\(175\) 8.00168 21.3994i 0.604870 1.61764i
\(176\) −2.30742 −0.173928
\(177\) 0 0
\(178\) 0.596879 + 1.03382i 0.0447380 + 0.0774884i
\(179\) 3.66758 + 6.35244i 0.274128 + 0.474804i 0.969915 0.243445i \(-0.0782775\pi\)
−0.695787 + 0.718248i \(0.744944\pi\)
\(180\) 0 0
\(181\) 11.2566 0.836693 0.418346 0.908288i \(-0.362610\pi\)
0.418346 + 0.908288i \(0.362610\pi\)
\(182\) −1.54849 + 0.259078i −0.114782 + 0.0192041i
\(183\) 0 0
\(184\) −2.30619 + 3.99444i −0.170015 + 0.294474i
\(185\) 8.73545 + 15.1302i 0.642243 + 1.11240i
\(186\) 0 0
\(187\) 0.111563 0.193234i 0.00815833 0.0141306i
\(188\) 17.8447 1.30146
\(189\) 0 0
\(190\) −5.14204 −0.373043
\(191\) 11.9230 20.6512i 0.862715 1.49427i −0.00658302 0.999978i \(-0.502095\pi\)
0.869298 0.494288i \(-0.164571\pi\)
\(192\) 0 0
\(193\) −2.96728 5.13948i −0.213589 0.369948i 0.739246 0.673436i \(-0.235182\pi\)
−0.952835 + 0.303488i \(0.901849\pi\)
\(194\) −2.73823 + 4.74276i −0.196594 + 0.340510i
\(195\) 0 0
\(196\) −11.6101 + 3.99684i −0.829292 + 0.285489i
\(197\) −15.4682 −1.10206 −0.551032 0.834484i \(-0.685766\pi\)
−0.551032 + 0.834484i \(0.685766\pi\)
\(198\) 0 0
\(199\) 7.74818 + 13.4202i 0.549254 + 0.951336i 0.998326 + 0.0578402i \(0.0184214\pi\)
−0.449072 + 0.893496i \(0.648245\pi\)
\(200\) −8.03736 13.9211i −0.568327 0.984371i
\(201\) 0 0
\(202\) 1.28908 0.0906994
\(203\) −6.97125 8.45735i −0.489286 0.593590i
\(204\) 0 0
\(205\) 8.82870 15.2917i 0.616623 1.06802i
\(206\) 2.40783 + 4.17048i 0.167761 + 0.290571i
\(207\) 0 0
\(208\) 1.54684 2.67920i 0.107254 0.185769i
\(209\) 2.50658 0.173384
\(210\) 0 0
\(211\) −1.54380 −0.106279 −0.0531397 0.998587i \(-0.516923\pi\)
−0.0531397 + 0.998587i \(0.516923\pi\)
\(212\) 8.67347 15.0229i 0.595697 1.03178i
\(213\) 0 0
\(214\) 2.70261 + 4.68105i 0.184746 + 0.319990i
\(215\) 18.4233 31.9101i 1.25646 2.17625i
\(216\) 0 0
\(217\) 3.32215 8.88461i 0.225522 0.603127i
\(218\) −1.05220 −0.0712637
\(219\) 0 0
\(220\) 2.89068 + 5.00680i 0.194889 + 0.337558i
\(221\) 0.149579 + 0.259078i 0.0100617 + 0.0174275i
\(222\) 0 0
\(223\) 5.44342 0.364518 0.182259 0.983251i \(-0.441659\pi\)
0.182259 + 0.983251i \(0.441659\pi\)
\(224\) −4.63783 + 12.4032i −0.309878 + 0.828725i
\(225\) 0 0
\(226\) −3.92389 + 6.79638i −0.261014 + 0.452089i
\(227\) 8.03818 + 13.9225i 0.533513 + 0.924072i 0.999234 + 0.0391399i \(0.0124618\pi\)
−0.465721 + 0.884932i \(0.654205\pi\)
\(228\) 0 0
\(229\) 4.98420 8.63289i 0.329365 0.570477i −0.653021 0.757340i \(-0.726499\pi\)
0.982386 + 0.186863i \(0.0598319\pi\)
\(230\) 4.53678 0.299146
\(231\) 0 0
\(232\) −7.71155 −0.506288
\(233\) 8.27045 14.3248i 0.541815 0.938451i −0.456985 0.889474i \(-0.651071\pi\)
0.998800 0.0489765i \(-0.0155959\pi\)
\(234\) 0 0
\(235\) −18.7824 32.5321i −1.22523 2.12216i
\(236\) 1.58955 2.75319i 0.103471 0.179217i
\(237\) 0 0
\(238\) −0.208602 0.253072i −0.0135217 0.0164042i
\(239\) 22.0239 1.42461 0.712303 0.701872i \(-0.247652\pi\)
0.712303 + 0.701872i \(0.247652\pi\)
\(240\) 0 0
\(241\) −8.36004 14.4800i −0.538517 0.932739i −0.998984 0.0450623i \(-0.985651\pi\)
0.460467 0.887677i \(-0.347682\pi\)
\(242\) −2.52975 4.38166i −0.162619 0.281664i
\(243\) 0 0
\(244\) −18.9516 −1.21325
\(245\) 19.5067 + 16.9591i 1.24624 + 1.08348i
\(246\) 0 0
\(247\) −1.68035 + 2.91045i −0.106918 + 0.185187i
\(248\) −3.33696 5.77978i −0.211897 0.367017i
\(249\) 0 0
\(250\) −3.32803 + 5.76432i −0.210483 + 0.364568i
\(251\) −8.53099 −0.538471 −0.269236 0.963074i \(-0.586771\pi\)
−0.269236 + 0.963074i \(0.586771\pi\)
\(252\) 0 0
\(253\) −2.21153 −0.139038
\(254\) −0.314743 + 0.545151i −0.0197488 + 0.0342058i
\(255\) 0 0
\(256\) 0.123861 + 0.214533i 0.00774131 + 0.0134083i
\(257\) 8.55986 14.8261i 0.533950 0.924828i −0.465264 0.885172i \(-0.654041\pi\)
0.999213 0.0396557i \(-0.0126261\pi\)
\(258\) 0 0
\(259\) −12.3464 + 2.06567i −0.767167 + 0.128354i
\(260\) −7.75135 −0.480718
\(261\) 0 0
\(262\) −3.72617 6.45392i −0.230204 0.398725i
\(263\) −10.2763 17.7991i −0.633666 1.09754i −0.986796 0.161967i \(-0.948216\pi\)
0.353130 0.935574i \(-0.385117\pi\)
\(264\) 0 0
\(265\) −36.5170 −2.24322
\(266\) 1.29038 3.45094i 0.0791183 0.211591i
\(267\) 0 0
\(268\) 0.902816 1.56372i 0.0551483 0.0955196i
\(269\) 9.92267 + 17.1866i 0.604996 + 1.04788i 0.992052 + 0.125827i \(0.0401585\pi\)
−0.387057 + 0.922056i \(0.626508\pi\)
\(270\) 0 0
\(271\) 5.32056 9.21548i 0.323201 0.559801i −0.657946 0.753065i \(-0.728574\pi\)
0.981147 + 0.193265i \(0.0619077\pi\)
\(272\) 0.646243 0.0391842
\(273\) 0 0
\(274\) 0.242228 0.0146335
\(275\) 3.85373 6.67485i 0.232388 0.402509i
\(276\) 0 0
\(277\) 12.4407 + 21.5479i 0.747487 + 1.29469i 0.949024 + 0.315205i \(0.102073\pi\)
−0.201536 + 0.979481i \(0.564593\pi\)
\(278\) 2.44705 4.23841i 0.146764 0.254203i
\(279\) 0 0
\(280\) 17.9373 3.00109i 1.07196 0.179349i
\(281\) 13.6747 0.815762 0.407881 0.913035i \(-0.366268\pi\)
0.407881 + 0.913035i \(0.366268\pi\)
\(282\) 0 0
\(283\) −3.16089 5.47483i −0.187896 0.325445i 0.756653 0.653817i \(-0.226833\pi\)
−0.944548 + 0.328372i \(0.893500\pi\)
\(284\) −4.33734 7.51249i −0.257374 0.445784i
\(285\) 0 0
\(286\) −0.529660 −0.0313194
\(287\) 8.04710 + 9.76255i 0.475005 + 0.576265i
\(288\) 0 0
\(289\) 8.46875 14.6683i 0.498162 0.862842i
\(290\) 3.79257 + 6.56893i 0.222708 + 0.385741i
\(291\) 0 0
\(292\) 1.60547 2.78076i 0.0939533 0.162732i
\(293\) 2.63016 0.153655 0.0768277 0.997044i \(-0.475521\pi\)
0.0768277 + 0.997044i \(0.475521\pi\)
\(294\) 0 0
\(295\) −6.69233 −0.389642
\(296\) −4.40382 + 7.62764i −0.255967 + 0.443348i
\(297\) 0 0
\(298\) 5.21256 + 9.02841i 0.301955 + 0.523002i
\(299\) 1.48255 2.56786i 0.0857384 0.148503i
\(300\) 0 0
\(301\) 16.7923 + 20.3721i 0.967894 + 1.17423i
\(302\) −0.743000 −0.0427548
\(303\) 0 0
\(304\) 3.62990 + 6.28717i 0.208189 + 0.360594i
\(305\) 19.9475 + 34.5501i 1.14219 + 1.97833i
\(306\) 0 0
\(307\) −2.79496 −0.159517 −0.0797583 0.996814i \(-0.525415\pi\)
−0.0797583 + 0.996814i \(0.525415\pi\)
\(308\) −4.08558 + 0.683556i −0.232797 + 0.0389492i
\(309\) 0 0
\(310\) −3.28226 + 5.68504i −0.186420 + 0.322889i
\(311\) 7.55013 + 13.0772i 0.428129 + 0.741541i 0.996707 0.0810885i \(-0.0258396\pi\)
−0.568578 + 0.822629i \(0.692506\pi\)
\(312\) 0 0
\(313\) 12.7392 22.0650i 0.720064 1.24719i −0.240910 0.970548i \(-0.577446\pi\)
0.960974 0.276640i \(-0.0892209\pi\)
\(314\) 8.27090 0.466754
\(315\) 0 0
\(316\) 3.15587 0.177531
\(317\) −16.2605 + 28.1639i −0.913278 + 1.58184i −0.103875 + 0.994590i \(0.533124\pi\)
−0.809403 + 0.587253i \(0.800209\pi\)
\(318\) 0 0
\(319\) −1.84875 3.20214i −0.103510 0.179285i
\(320\) −4.96372 + 8.59741i −0.277480 + 0.480610i
\(321\) 0 0
\(322\) −1.13849 + 3.04473i −0.0634456 + 0.169676i
\(323\) −0.702021 −0.0390615
\(324\) 0 0
\(325\) 5.16688 + 8.94931i 0.286607 + 0.496418i
\(326\) 1.65687 + 2.86978i 0.0917654 + 0.158942i
\(327\) 0 0
\(328\) 8.90165 0.491511
\(329\) 26.5464 4.44147i 1.46355 0.244866i
\(330\) 0 0
\(331\) −9.04741 + 15.6706i −0.497291 + 0.861333i −0.999995 0.00312545i \(-0.999005\pi\)
0.502704 + 0.864458i \(0.332338\pi\)
\(332\) −10.8081 18.7201i −0.593170 1.02740i
\(333\) 0 0
\(334\) −4.37132 + 7.57135i −0.239188 + 0.414286i
\(335\) −3.80103 −0.207672
\(336\) 0 0
\(337\) 25.0173 1.36278 0.681389 0.731921i \(-0.261376\pi\)
0.681389 + 0.731921i \(0.261376\pi\)
\(338\) −2.86807 + 4.96765i −0.156003 + 0.270204i
\(339\) 0 0
\(340\) −0.809596 1.40226i −0.0439065 0.0760483i
\(341\) 1.59999 2.77127i 0.0866446 0.150073i
\(342\) 0 0
\(343\) −16.2768 + 8.83553i −0.878863 + 0.477074i
\(344\) 18.5756 1.00153
\(345\) 0 0
\(346\) −0.963682 1.66915i −0.0518078 0.0897338i
\(347\) −5.37444 9.30881i −0.288515 0.499723i 0.684940 0.728599i \(-0.259828\pi\)
−0.973456 + 0.228876i \(0.926495\pi\)
\(348\) 0 0
\(349\) 3.28602 0.175896 0.0879482 0.996125i \(-0.471969\pi\)
0.0879482 + 0.996125i \(0.471969\pi\)
\(350\) −7.20574 8.74183i −0.385163 0.467270i
\(351\) 0 0
\(352\) −2.23365 + 3.86879i −0.119054 + 0.206207i
\(353\) −8.40960 14.5658i −0.447598 0.775262i 0.550631 0.834748i \(-0.314387\pi\)
−0.998229 + 0.0594866i \(0.981054\pi\)
\(354\) 0 0
\(355\) −9.13051 + 15.8145i −0.484597 + 0.839347i
\(356\) −4.22287 −0.223812
\(357\) 0 0
\(358\) 3.63728 0.192236
\(359\) 11.8921 20.5978i 0.627642 1.08711i −0.360382 0.932805i \(-0.617354\pi\)
0.988024 0.154303i \(-0.0493131\pi\)
\(360\) 0 0
\(361\) 5.55680 + 9.62466i 0.292463 + 0.506561i
\(362\) 2.79088 4.83395i 0.146686 0.254067i
\(363\) 0 0
\(364\) 1.94518 5.20210i 0.101955 0.272664i
\(365\) −6.75936 −0.353801
\(366\) 0 0
\(367\) 0.344992 + 0.597544i 0.0180084 + 0.0311915i 0.874889 0.484323i \(-0.160934\pi\)
−0.856881 + 0.515515i \(0.827601\pi\)
\(368\) −3.20263 5.54712i −0.166949 0.289164i
\(369\) 0 0
\(370\) 8.66327 0.450382
\(371\) 9.16383 24.5074i 0.475762 1.27236i
\(372\) 0 0
\(373\) 1.88006 3.25636i 0.0973457 0.168608i −0.813239 0.581929i \(-0.802298\pi\)
0.910585 + 0.413321i \(0.135631\pi\)
\(374\) −0.0553208 0.0958184i −0.00286057 0.00495465i
\(375\) 0 0
\(376\) 9.46882 16.4005i 0.488317 0.845790i
\(377\) 4.95744 0.255321
\(378\) 0 0
\(379\) 32.8735 1.68860 0.844300 0.535872i \(-0.180017\pi\)
0.844300 + 0.535872i \(0.180017\pi\)
\(380\) 9.09489 15.7528i 0.466558 0.808102i
\(381\) 0 0
\(382\) −5.91222 10.2403i −0.302495 0.523937i
\(383\) 0.536335 0.928960i 0.0274055 0.0474676i −0.851997 0.523546i \(-0.824609\pi\)
0.879403 + 0.476078i \(0.157942\pi\)
\(384\) 0 0
\(385\) 5.54643 + 6.72880i 0.282672 + 0.342932i
\(386\) −2.94276 −0.149782
\(387\) 0 0
\(388\) −9.68640 16.7773i −0.491752 0.851740i
\(389\) 11.8718 + 20.5626i 0.601925 + 1.04256i 0.992529 + 0.122006i \(0.0389326\pi\)
−0.390605 + 0.920559i \(0.627734\pi\)
\(390\) 0 0
\(391\) 0.619387 0.0313237
\(392\) −2.48722 + 12.7913i −0.125624 + 0.646056i
\(393\) 0 0
\(394\) −3.83510 + 6.64258i −0.193209 + 0.334648i
\(395\) −3.32170 5.75336i −0.167133 0.289483i
\(396\) 0 0
\(397\) −0.0160489 + 0.0277975i −0.000805471 + 0.00139512i −0.866428 0.499302i \(-0.833590\pi\)
0.865622 + 0.500697i \(0.166923\pi\)
\(398\) 7.68415 0.385172
\(399\) 0 0
\(400\) 22.3231 1.11616
\(401\) −12.2628 + 21.2398i −0.612374 + 1.06066i 0.378465 + 0.925616i \(0.376452\pi\)
−0.990839 + 0.135048i \(0.956881\pi\)
\(402\) 0 0
\(403\) 2.14519 + 3.71558i 0.106860 + 0.185086i
\(404\) −2.28004 + 3.94914i −0.113436 + 0.196477i
\(405\) 0 0
\(406\) −5.36029 + 0.896827i −0.266027 + 0.0445088i
\(407\) −4.22306 −0.209329
\(408\) 0 0
\(409\) −13.3948 23.2006i −0.662333 1.14719i −0.980001 0.198992i \(-0.936233\pi\)
0.317669 0.948202i \(-0.397100\pi\)
\(410\) −4.37787 7.58269i −0.216208 0.374483i
\(411\) 0 0
\(412\) −17.0352 −0.839263
\(413\) 1.67942 4.49137i 0.0826388 0.221006i
\(414\) 0 0
\(415\) −22.7520 + 39.4077i −1.11685 + 1.93445i
\(416\) −2.99476 5.18708i −0.146830 0.254317i
\(417\) 0 0
\(418\) 0.621466 1.07641i 0.0303969 0.0526490i
\(419\) 21.0525 1.02848 0.514240 0.857646i \(-0.328074\pi\)
0.514240 + 0.857646i \(0.328074\pi\)
\(420\) 0 0
\(421\) 14.8907 0.725727 0.362863 0.931842i \(-0.381799\pi\)
0.362863 + 0.931842i \(0.381799\pi\)
\(422\) −0.382760 + 0.662959i −0.0186325 + 0.0322724i
\(423\) 0 0
\(424\) −9.20469 15.9430i −0.447019 0.774260i
\(425\) −1.07932 + 1.86944i −0.0523547 + 0.0906809i
\(426\) 0 0
\(427\) −28.1931 + 4.71698i −1.36436 + 0.228270i
\(428\) −19.1207 −0.924236
\(429\) 0 0
\(430\) −9.13554 15.8232i −0.440555 0.763064i
\(431\) −7.95192 13.7731i −0.383031 0.663428i 0.608463 0.793582i \(-0.291786\pi\)
−0.991494 + 0.130154i \(0.958453\pi\)
\(432\) 0 0
\(433\) −16.3658 −0.786490 −0.393245 0.919434i \(-0.628648\pi\)
−0.393245 + 0.919434i \(0.628648\pi\)
\(434\) −2.99169 3.62944i −0.143605 0.174219i
\(435\) 0 0
\(436\) 1.86105 3.22344i 0.0891282 0.154375i
\(437\) 3.47905 + 6.02590i 0.166426 + 0.288258i
\(438\) 0 0
\(439\) 7.77236 13.4621i 0.370954 0.642512i −0.618758 0.785582i \(-0.712364\pi\)
0.989713 + 0.143070i \(0.0456973\pi\)
\(440\) 6.13543 0.292495
\(441\) 0 0
\(442\) 0.148343 0.00705594
\(443\) −0.895027 + 1.55023i −0.0425240 + 0.0736537i −0.886504 0.462721i \(-0.846873\pi\)
0.843980 + 0.536375i \(0.180207\pi\)
\(444\) 0 0
\(445\) 4.44477 + 7.69857i 0.210702 + 0.364947i
\(446\) 1.34961 2.33759i 0.0639058 0.110688i
\(447\) 0 0
\(448\) −4.52428 5.48875i −0.213752 0.259319i
\(449\) 13.5666 0.640250 0.320125 0.947375i \(-0.396275\pi\)
0.320125 + 0.947375i \(0.396275\pi\)
\(450\) 0 0
\(451\) 2.13407 + 3.69631i 0.100489 + 0.174053i
\(452\) −13.8806 24.0419i −0.652890 1.13084i
\(453\) 0 0
\(454\) 7.97176 0.374133
\(455\) −11.5312 + 1.92927i −0.540589 + 0.0904457i
\(456\) 0 0
\(457\) −1.28459 + 2.22497i −0.0600905 + 0.104080i −0.894506 0.447057i \(-0.852472\pi\)
0.834415 + 0.551136i \(0.185806\pi\)
\(458\) −2.47151 4.28078i −0.115486 0.200028i
\(459\) 0 0
\(460\) −8.02434 + 13.8986i −0.374137 + 0.648024i
\(461\) −36.1869 −1.68539 −0.842695 0.538391i \(-0.819033\pi\)
−0.842695 + 0.538391i \(0.819033\pi\)
\(462\) 0 0
\(463\) −16.3845 −0.761451 −0.380726 0.924688i \(-0.624326\pi\)
−0.380726 + 0.924688i \(0.624326\pi\)
\(464\) 5.35455 9.27436i 0.248579 0.430551i
\(465\) 0 0
\(466\) −4.10105 7.10323i −0.189978 0.329051i
\(467\) −4.35022 + 7.53480i −0.201304 + 0.348669i −0.948949 0.315430i \(-0.897851\pi\)
0.747645 + 0.664099i \(0.231185\pi\)
\(468\) 0 0
\(469\) 0.953856 2.55095i 0.0440450 0.117792i
\(470\) −18.6272 −0.859209
\(471\) 0 0
\(472\) −1.68691 2.92181i −0.0776462 0.134487i
\(473\) 4.45328 + 7.71330i 0.204762 + 0.354658i
\(474\) 0 0
\(475\) −24.2498 −1.11266
\(476\) 1.14425 0.191445i 0.0524468 0.00877485i
\(477\) 0 0
\(478\) 5.46047 9.45782i 0.249756 0.432591i
\(479\) 8.88370 + 15.3870i 0.405907 + 0.703051i 0.994427 0.105432i \(-0.0336224\pi\)
−0.588520 + 0.808483i \(0.700289\pi\)
\(480\) 0 0
\(481\) 2.83103 4.90349i 0.129084 0.223580i
\(482\) −8.29095 −0.377643
\(483\) 0 0
\(484\) 17.8978 0.813536
\(485\) −20.3908 + 35.3179i −0.925898 + 1.60370i
\(486\) 0 0
\(487\) 8.32763 + 14.4239i 0.377361 + 0.653608i 0.990677 0.136229i \(-0.0434983\pi\)
−0.613316 + 0.789837i \(0.710165\pi\)
\(488\) −10.0562 + 17.4178i −0.455222 + 0.788467i
\(489\) 0 0
\(490\) 12.1192 4.17210i 0.547490 0.188476i
\(491\) 6.42042 0.289749 0.144875 0.989450i \(-0.453722\pi\)
0.144875 + 0.989450i \(0.453722\pi\)
\(492\) 0 0
\(493\) 0.517784 + 0.896827i 0.0233198 + 0.0403911i
\(494\) 0.833230 + 1.44320i 0.0374888 + 0.0649325i
\(495\) 0 0
\(496\) 9.26814 0.416152
\(497\) −8.32220 10.0963i −0.373302 0.452881i
\(498\) 0 0
\(499\) −5.57296 + 9.65264i −0.249480 + 0.432112i −0.963382 0.268134i \(-0.913593\pi\)
0.713902 + 0.700246i \(0.246926\pi\)
\(500\) −11.7728 20.3911i −0.526495 0.911916i
\(501\) 0 0
\(502\) −2.11512 + 3.66350i −0.0944026 + 0.163510i
\(503\) −17.7223 −0.790200 −0.395100 0.918638i \(-0.629290\pi\)
−0.395100 + 0.918638i \(0.629290\pi\)
\(504\) 0 0
\(505\) 9.59939 0.427167
\(506\) −0.548314 + 0.949708i −0.0243755 + 0.0422197i
\(507\) 0 0
\(508\) −1.11339 1.92845i −0.0493988 0.0855612i
\(509\) −15.5411 + 26.9180i −0.688848 + 1.19312i 0.283362 + 0.959013i \(0.408550\pi\)
−0.972211 + 0.234107i \(0.924783\pi\)
\(510\) 0 0
\(511\) 1.69624 4.53635i 0.0750372 0.200676i
\(512\) −22.5634 −0.997169
\(513\) 0 0
\(514\) −4.24456 7.35180i −0.187220 0.324274i
\(515\) 17.9303 + 31.0563i 0.790105 + 1.36850i
\(516\) 0 0
\(517\) 9.08016 0.399345
\(518\) −2.17402 + 5.81411i −0.0955210 + 0.255457i
\(519\) 0 0
\(520\) −4.11304 + 7.12399i −0.180369 + 0.312408i
\(521\) −2.37986 4.12203i −0.104263 0.180590i 0.809174 0.587570i \(-0.199915\pi\)
−0.913437 + 0.406980i \(0.866582\pi\)
\(522\) 0 0
\(523\) 20.1258 34.8588i 0.880038 1.52427i 0.0287402 0.999587i \(-0.490850\pi\)
0.851298 0.524683i \(-0.175816\pi\)
\(524\) 26.3624 1.15165
\(525\) 0 0
\(526\) −10.1914 −0.444367
\(527\) −0.448113 + 0.776154i −0.0195201 + 0.0338098i
\(528\) 0 0
\(529\) 8.43046 + 14.6020i 0.366542 + 0.634869i
\(530\) −9.05381 + 15.6817i −0.393272 + 0.681168i
\(531\) 0 0
\(532\) 8.28972 + 10.0569i 0.359405 + 0.436022i
\(533\) −5.72250 −0.247869
\(534\) 0 0
\(535\) 20.1255 + 34.8584i 0.870101 + 1.50706i
\(536\) −0.958109 1.65949i −0.0413840 0.0716792i
\(537\) 0 0
\(538\) 9.84067 0.424261
\(539\) −5.90771 + 2.03376i −0.254463 + 0.0876003i
\(540\) 0 0
\(541\) 12.0547 20.8794i 0.518273 0.897675i −0.481502 0.876445i \(-0.659908\pi\)
0.999775 0.0212301i \(-0.00675826\pi\)
\(542\) −2.63830 4.56966i −0.113325 0.196284i
\(543\) 0 0
\(544\) 0.625580 1.08354i 0.0268215 0.0464563i
\(545\) −7.83538 −0.335631
\(546\) 0 0
\(547\) 12.3550 0.528263 0.264131 0.964487i \(-0.414915\pi\)
0.264131 + 0.964487i \(0.414915\pi\)
\(548\) −0.428436 + 0.742073i −0.0183019 + 0.0316998i
\(549\) 0 0
\(550\) −1.91094 3.30985i −0.0814828 0.141132i
\(551\) −5.81671 + 10.0748i −0.247800 + 0.429203i
\(552\) 0 0
\(553\) 4.69478 0.785481i 0.199642 0.0334020i
\(554\) 12.3379 0.524186
\(555\) 0 0
\(556\) 8.65633 + 14.9932i 0.367110 + 0.635853i
\(557\) 4.03845 + 6.99479i 0.171114 + 0.296379i 0.938810 0.344436i \(-0.111930\pi\)
−0.767695 + 0.640815i \(0.778597\pi\)
\(558\) 0 0
\(559\) −11.9415 −0.505070
\(560\) −8.84559 + 23.6563i −0.373794 + 0.999661i
\(561\) 0 0
\(562\) 3.39041 5.87237i 0.143016 0.247711i
\(563\) −22.6064 39.1554i −0.952744 1.65020i −0.739448 0.673214i \(-0.764913\pi\)
−0.213296 0.976988i \(-0.568420\pi\)
\(564\) 0 0
\(565\) −29.2200 + 50.6106i −1.22930 + 2.12920i
\(566\) −3.13477 −0.131764
\(567\) 0 0
\(568\) −9.20596 −0.386274
\(569\) −11.2149 + 19.4248i −0.470155 + 0.814332i −0.999418 0.0341263i \(-0.989135\pi\)
0.529263 + 0.848458i \(0.322468\pi\)
\(570\) 0 0
\(571\) 10.9134 + 18.9026i 0.456713 + 0.791050i 0.998785 0.0492820i \(-0.0156933\pi\)
−0.542072 + 0.840332i \(0.682360\pi\)
\(572\) 0.936826 1.62263i 0.0391706 0.0678455i
\(573\) 0 0
\(574\) 6.18753 1.03523i 0.258262 0.0432098i
\(575\) 21.3954 0.892251
\(576\) 0 0
\(577\) −16.1022 27.8898i −0.670342 1.16107i −0.977807 0.209508i \(-0.932814\pi\)
0.307465 0.951559i \(-0.400519\pi\)
\(578\) −4.19939 7.27355i −0.174671 0.302540i
\(579\) 0 0
\(580\) −26.8322 −1.11414
\(581\) −20.7378 25.1586i −0.860350 1.04376i
\(582\) 0 0
\(583\) 4.41343 7.64429i 0.182786 0.316594i
\(584\) −1.70380 2.95107i −0.0705039 0.122116i
\(585\) 0 0
\(586\) 0.652105 1.12948i 0.0269382 0.0466584i
\(587\) 19.4461 0.802625 0.401313 0.915941i \(-0.368554\pi\)
0.401313 + 0.915941i \(0.368554\pi\)
\(588\) 0 0
\(589\) −10.0681 −0.414848
\(590\) −1.65926 + 2.87392i −0.0683105 + 0.118317i
\(591\) 0 0
\(592\) −6.11563 10.5926i −0.251351 0.435352i
\(593\) −14.4202 + 24.9766i −0.592168 + 1.02566i 0.401772 + 0.915740i \(0.368394\pi\)
−0.993940 + 0.109925i \(0.964939\pi\)
\(594\) 0 0
\(595\) −1.55340 1.88455i −0.0636831 0.0772589i
\(596\) −36.8784 −1.51060
\(597\) 0 0
\(598\) −0.735152 1.27332i −0.0300626 0.0520699i
\(599\) 23.4994 + 40.7022i 0.960161 + 1.66305i 0.722089 + 0.691800i \(0.243182\pi\)
0.238072 + 0.971247i \(0.423484\pi\)
\(600\) 0 0
\(601\) 15.6169 0.637025 0.318512 0.947919i \(-0.396817\pi\)
0.318512 + 0.947919i \(0.396817\pi\)
\(602\) 12.9119 2.16028i 0.526248 0.0880463i
\(603\) 0 0
\(604\) 1.31417 2.27620i 0.0534727 0.0926174i
\(605\) −18.8383 32.6289i −0.765885 1.32655i
\(606\) 0 0
\(607\) 14.3266 24.8144i 0.581500 1.00719i −0.413802 0.910367i \(-0.635800\pi\)
0.995302 0.0968200i \(-0.0308671\pi\)
\(608\) 14.0554 0.570021
\(609\) 0 0
\(610\) 19.7827 0.800977
\(611\) −6.08711 + 10.5432i −0.246258 + 0.426531i
\(612\) 0 0
\(613\) 14.6734 + 25.4151i 0.592653 + 1.02651i 0.993873 + 0.110524i \(0.0352529\pi\)
−0.401220 + 0.915982i \(0.631414\pi\)
\(614\) −0.692965 + 1.20025i −0.0279658 + 0.0484382i
\(615\) 0 0
\(616\) −1.53967 + 4.11762i −0.0620350 + 0.165904i
\(617\) −4.12801 −0.166188 −0.0830938 0.996542i \(-0.526480\pi\)
−0.0830938 + 0.996542i \(0.526480\pi\)
\(618\) 0 0
\(619\) −11.3565 19.6700i −0.456456 0.790605i 0.542315 0.840175i \(-0.317548\pi\)
−0.998771 + 0.0495708i \(0.984215\pi\)
\(620\) −11.6109 20.1106i −0.466304 0.807662i
\(621\) 0 0
\(622\) 7.48774 0.300231
\(623\) −6.28209 + 1.05105i −0.251686 + 0.0421095i
\(624\) 0 0
\(625\) −3.19498 + 5.53387i −0.127799 + 0.221355i
\(626\) −6.31698 10.9413i −0.252477 0.437304i
\(627\) 0 0
\(628\) −14.6290 + 25.3382i −0.583761 + 1.01110i
\(629\) 1.18276 0.0471597
\(630\) 0 0
\(631\) −38.6411 −1.53828 −0.769138 0.639082i \(-0.779314\pi\)
−0.769138 + 0.639082i \(0.779314\pi\)
\(632\) 1.67458 2.90045i 0.0666110 0.115374i
\(633\) 0 0
\(634\) 8.06304 + 13.9656i 0.320224 + 0.554645i
\(635\) −2.34380 + 4.05958i −0.0930107 + 0.161099i
\(636\) 0 0
\(637\) 1.59893 8.22297i 0.0633520 0.325806i
\(638\) −1.83348 −0.0725881
\(639\) 0 0
\(640\) 20.9427 + 36.2737i 0.827831 + 1.43385i
\(641\) 14.2363 + 24.6580i 0.562301 + 0.973933i 0.997295 + 0.0735002i \(0.0234169\pi\)
−0.434995 + 0.900433i \(0.643250\pi\)
\(642\) 0 0
\(643\) 17.0425 0.672091 0.336045 0.941846i \(-0.390910\pi\)
0.336045 + 0.941846i \(0.390910\pi\)
\(644\) −7.31395 8.87311i −0.288210 0.349650i
\(645\) 0 0
\(646\) −0.174055 + 0.301472i −0.00684810 + 0.0118613i
\(647\) 1.68809 + 2.92386i 0.0663657 + 0.114949i 0.897299 0.441423i \(-0.145526\pi\)
−0.830933 + 0.556372i \(0.812193\pi\)
\(648\) 0 0
\(649\) 0.808833 1.40094i 0.0317495 0.0549917i
\(650\) 5.12419 0.200987
\(651\) 0 0
\(652\) −11.7222 −0.459077
\(653\) 9.17255 15.8873i 0.358950 0.621719i −0.628836 0.777538i \(-0.716468\pi\)
0.987786 + 0.155819i \(0.0498017\pi\)
\(654\) 0 0
\(655\) −27.7477 48.0604i −1.08419 1.87787i
\(656\) −6.18090 + 10.7056i −0.241324 + 0.417985i
\(657\) 0 0
\(658\) 4.67444 12.5011i 0.182229 0.487345i
\(659\) 27.8495 1.08486 0.542432 0.840100i \(-0.317504\pi\)
0.542432 + 0.840100i \(0.317504\pi\)
\(660\) 0 0
\(661\) −19.5071 33.7872i −0.758737 1.31417i −0.943495 0.331387i \(-0.892484\pi\)
0.184758 0.982784i \(-0.440850\pi\)
\(662\) 4.48633 + 7.77054i 0.174366 + 0.302011i
\(663\) 0 0
\(664\) −22.9400 −0.890247
\(665\) 9.60906 25.6981i 0.372624 0.996529i
\(666\) 0 0
\(667\) 5.13203 8.88894i 0.198713 0.344181i
\(668\) −15.4634 26.7834i −0.598296 1.03628i
\(669\) 0 0
\(670\) −0.942405 + 1.63229i −0.0364083 + 0.0630610i
\(671\) −9.64340 −0.372280
\(672\) 0 0
\(673\) −49.2309 −1.89771 −0.948856 0.315711i \(-0.897757\pi\)
−0.948856 + 0.315711i \(0.897757\pi\)
\(674\) 6.20264 10.7433i 0.238917 0.413816i
\(675\) 0 0
\(676\) −10.1457 17.5729i −0.390219 0.675879i
\(677\) 11.6958 20.2577i 0.449505 0.778565i −0.548849 0.835922i \(-0.684934\pi\)
0.998354 + 0.0573564i \(0.0182671\pi\)
\(678\) 0 0
\(679\) −18.5856 22.5476i −0.713250 0.865299i
\(680\) −1.71836 −0.0658961
\(681\) 0 0
\(682\) −0.793387 1.37419i −0.0303803 0.0526203i
\(683\) −15.1632 26.2634i −0.580204 1.00494i −0.995455 0.0952356i \(-0.969640\pi\)
0.415251 0.909707i \(-0.363694\pi\)
\(684\) 0 0
\(685\) 1.80380 0.0689196
\(686\) −0.241286 + 9.18044i −0.00921233 + 0.350511i
\(687\) 0 0
\(688\) −12.8980 + 22.3401i −0.491733 + 0.851707i
\(689\) 5.91731 + 10.2491i 0.225432 + 0.390459i
\(690\) 0 0
\(691\) 2.05665 3.56223i 0.0782387 0.135513i −0.824251 0.566224i \(-0.808404\pi\)
0.902490 + 0.430711i \(0.141737\pi\)
\(692\) 6.81797 0.259180
\(693\) 0 0
\(694\) −5.33003 −0.202325
\(695\) 18.2224 31.5621i 0.691215 1.19722i
\(696\) 0 0
\(697\) −0.597691 1.03523i −0.0226392 0.0392122i
\(698\) 0.814716 1.41113i 0.0308375 0.0534120i
\(699\) 0 0
\(700\) 39.5259 6.61305i 1.49394 0.249950i
\(701\) 29.1835 1.10225 0.551123 0.834424i \(-0.314200\pi\)
0.551123 + 0.834424i \(0.314200\pi\)
\(702\) 0 0
\(703\) 6.64347 + 11.5068i 0.250563 + 0.433988i
\(704\) −1.19983 2.07816i −0.0452202 0.0783236i
\(705\) 0 0
\(706\) −8.34010 −0.313884
\(707\) −2.40894 + 6.44236i −0.0905974 + 0.242290i
\(708\) 0 0
\(709\) 21.2309 36.7729i 0.797342 1.38104i −0.123999 0.992282i \(-0.539572\pi\)
0.921341 0.388755i \(-0.127095\pi\)
\(710\) 4.52753 + 7.84192i 0.169915 + 0.294302i
\(711\) 0 0
\(712\) −2.24075 + 3.88109i −0.0839757 + 0.145450i
\(713\) 8.88298 0.332670
\(714\) 0 0
\(715\) −3.94421 −0.147505
\(716\) −6.43336 + 11.1429i −0.240426 + 0.416430i
\(717\) 0 0
\(718\) −5.89692 10.2138i −0.220071 0.381175i
\(719\) −5.57126 + 9.64970i −0.207773 + 0.359873i −0.951013 0.309152i \(-0.899955\pi\)
0.743240 + 0.669025i \(0.233288\pi\)
\(720\) 0 0
\(721\) −25.3421 + 4.23997i −0.943789 + 0.157905i
\(722\) 5.51088 0.205094
\(723\) 0 0
\(724\) 9.87264 + 17.0999i 0.366914 + 0.635513i
\(725\) 17.8858 + 30.9790i 0.664260 + 1.15053i
\(726\) 0 0
\(727\) 28.6820 1.06376 0.531878 0.846821i \(-0.321487\pi\)
0.531878 + 0.846821i \(0.321487\pi\)
\(728\) −3.74892 4.54810i −0.138944 0.168564i
\(729\) 0 0
\(730\) −1.67588 + 2.90270i −0.0620269 + 0.107434i
\(731\) −1.24724 2.16028i −0.0461307 0.0799007i
\(732\) 0 0
\(733\) 12.5264 21.6964i 0.462674 0.801375i −0.536419 0.843952i \(-0.680223\pi\)
0.999093 + 0.0425768i \(0.0135567\pi\)
\(734\) 0.342141 0.0126287
\(735\) 0 0
\(736\) −12.4009 −0.457104
\(737\) 0.459391 0.795689i 0.0169219 0.0293096i
\(738\) 0 0
\(739\) 13.7608 + 23.8344i 0.506198 + 0.876761i 0.999974 + 0.00717223i \(0.00228301\pi\)
−0.493776 + 0.869589i \(0.664384\pi\)
\(740\) −15.3230 + 26.5402i −0.563284 + 0.975637i
\(741\) 0 0
\(742\) −8.25228 10.0115i −0.302951 0.367533i
\(743\) 14.0122 0.514057 0.257028 0.966404i \(-0.417257\pi\)
0.257028 + 0.966404i \(0.417257\pi\)
\(744\) 0 0
\(745\) 38.8163 + 67.2318i 1.42212 + 2.46318i
\(746\) −0.932261 1.61472i −0.0341325 0.0591192i
\(747\) 0 0
\(748\) 0.391390 0.0143106
\(749\) −28.4447 + 4.75906i −1.03935 + 0.173892i
\(750\) 0 0
\(751\) 26.1297 45.2580i 0.953486 1.65149i 0.215692 0.976461i \(-0.430799\pi\)
0.737795 0.675025i \(-0.235867\pi\)
\(752\) 13.1494 + 22.7755i 0.479511 + 0.830537i
\(753\) 0 0
\(754\) 1.22912 2.12889i 0.0447618 0.0775298i
\(755\) −5.53289 −0.201363
\(756\) 0 0
\(757\) −43.3447 −1.57539 −0.787694 0.616066i \(-0.788725\pi\)
−0.787694 + 0.616066i \(0.788725\pi\)
\(758\) 8.15047 14.1170i 0.296038 0.512753i
\(759\) 0 0
\(760\) −9.65191 16.7176i −0.350112 0.606411i
\(761\) 8.62550 14.9398i 0.312674 0.541568i −0.666266 0.745714i \(-0.732109\pi\)
0.978940 + 0.204146i \(0.0654419\pi\)
\(762\) 0 0
\(763\) 1.96627 5.25850i 0.0711836 0.190370i
\(764\) 41.8285 1.51330
\(765\) 0 0
\(766\) −0.265952 0.460642i −0.00960922 0.0166437i
\(767\) 1.08444 + 1.87831i 0.0391570 + 0.0678218i
\(768\) 0 0
\(769\) 21.3454 0.769734 0.384867 0.922972i \(-0.374247\pi\)
0.384867 + 0.922972i \(0.374247\pi\)
\(770\) 4.26473 0.713530i 0.153690 0.0257138i
\(771\) 0 0
\(772\) 5.20495 9.01523i 0.187330 0.324465i
\(773\) −6.57357 11.3858i −0.236435 0.409517i 0.723254 0.690582i \(-0.242646\pi\)
−0.959689 + 0.281065i \(0.909312\pi\)
\(774\) 0 0
\(775\) −15.4791 + 26.8106i −0.556027 + 0.963066i
\(776\) −20.5593 −0.738036
\(777\) 0 0
\(778\) 11.7737 0.422108
\(779\) 6.71439 11.6297i 0.240568 0.416676i
\(780\) 0 0
\(781\) −2.20702 3.82268i −0.0789735 0.136786i
\(782\) 0.153567 0.265986i 0.00549155 0.00951164i
\(783\) 0 0
\(784\) −13.6565 11.8729i −0.487732 0.424034i
\(785\) 61.5909 2.19827
\(786\) 0 0
\(787\) 14.0650 + 24.3614i 0.501364 + 0.868389i 0.999999 + 0.00157623i \(0.000501728\pi\)
−0.498634 + 0.866812i \(0.666165\pi\)
\(788\) −13.5665 23.4979i −0.483287 0.837077i
\(789\) 0 0
\(790\) −3.29425 −0.117204
\(791\) −26.6332 32.3108i −0.946968 1.14884i
\(792\) 0 0
\(793\) 6.46470 11.1972i 0.229568 0.397624i
\(794\) 0.00795814 + 0.0137839i 0.000282424 + 0.000489172i
\(795\) 0 0
\(796\) −13.5912 + 23.5406i −0.481727 + 0.834376i
\(797\) −25.7365 −0.911635 −0.455817 0.890073i \(-0.650653\pi\)
−0.455817 + 0.890073i \(0.650653\pi\)
\(798\) 0 0
\(799\) −2.54309 −0.0899681
\(800\) 21.6094 37.4285i 0.764007 1.32330i
\(801\) 0 0
\(802\) 6.08073 + 10.5321i 0.214718 + 0.371902i
\(803\) 0.816934 1.41497i 0.0288290 0.0499333i
\(804\) 0 0
\(805\) −8.47799 + 22.6732i −0.298810 + 0.799125i
\(806\) 2.12747 0.0749368
\(807\) 0 0
\(808\) 2.41968 + 4.19100i 0.0851240 + 0.147439i
\(809\) 15.9353 + 27.6007i 0.560254 + 0.970388i 0.997474 + 0.0710338i \(0.0226298\pi\)
−0.437220 + 0.899355i \(0.644037\pi\)
\(810\) 0 0
\(811\) 43.3860 1.52349 0.761744 0.647878i \(-0.224343\pi\)
0.761744 + 0.647878i \(0.224343\pi\)
\(812\) 6.73345 18.0077i 0.236298 0.631945i
\(813\) 0 0
\(814\) −1.04704 + 1.81353i −0.0366987 + 0.0635641i
\(815\) 12.3382 + 21.3704i 0.432188 + 0.748571i
\(816\) 0 0
\(817\) 14.0113 24.2682i 0.490193 0.849039i
\(818\) −13.2842 −0.464470
\(819\) 0 0
\(820\) 30.9731 1.08163
\(821\) 8.19677 14.1972i 0.286069 0.495487i −0.686799 0.726848i \(-0.740985\pi\)
0.972868 + 0.231361i \(0.0743179\pi\)
\(822\) 0 0
\(823\) 13.1890 + 22.8440i 0.459739 + 0.796292i 0.998947 0.0458812i \(-0.0146096\pi\)
−0.539208 + 0.842173i \(0.681276\pi\)
\(824\) −9.03925 + 15.6564i −0.314897 + 0.545418i
\(825\) 0 0
\(826\) −1.51236 1.83476i −0.0526219 0.0638396i
\(827\) 36.7225 1.27697 0.638484 0.769635i \(-0.279562\pi\)
0.638484 + 0.769635i \(0.279562\pi\)
\(828\) 0 0
\(829\) 12.1579 + 21.0581i 0.422261 + 0.731377i 0.996160 0.0875485i \(-0.0279033\pi\)
−0.573899 + 0.818926i \(0.694570\pi\)
\(830\) 11.2820 + 19.5410i 0.391604 + 0.678279i
\(831\) 0 0
\(832\) 3.21734 0.111541
\(833\) 1.65458 0.569599i 0.0573278 0.0197354i
\(834\) 0 0
\(835\) −32.5519 + 56.3815i −1.12650 + 1.95116i
\(836\) 2.19841 + 3.80776i 0.0760337 + 0.131694i
\(837\) 0 0
\(838\) 5.21962 9.04065i 0.180309 0.312304i
\(839\) 25.6810 0.886606 0.443303 0.896372i \(-0.353807\pi\)
0.443303 + 0.896372i \(0.353807\pi\)
\(840\) 0 0
\(841\) −11.8393 −0.408251
\(842\) 3.69190 6.39456i 0.127231 0.220371i
\(843\) 0 0
\(844\) −1.35400 2.34519i −0.0466065 0.0807249i
\(845\) −21.3577 + 36.9926i −0.734726 + 1.27258i
\(846\) 0 0
\(847\) 26.6254 4.45468i 0.914859 0.153065i
\(848\) 25.5653 0.877915
\(849\) 0 0
\(850\) 0.535200 + 0.926994i 0.0183572 + 0.0317956i
\(851\) −5.86148 10.1524i −0.200929 0.348019i
\(852\) 0 0
\(853\) −28.9743 −0.992061 −0.496031 0.868305i \(-0.665210\pi\)
−0.496031 + 0.868305i \(0.665210\pi\)
\(854\) −4.96440 + 13.2766i −0.169878 + 0.454316i
\(855\) 0 0
\(856\) −10.1459 + 17.5732i −0.346780 + 0.600640i
\(857\) 12.6934 + 21.9856i 0.433598 + 0.751015i 0.997180 0.0750458i \(-0.0239103\pi\)
−0.563582 + 0.826060i \(0.690577\pi\)
\(858\) 0 0
\(859\) 2.97891 5.15963i 0.101639 0.176044i −0.810721 0.585433i \(-0.800925\pi\)
0.912360 + 0.409388i \(0.134258\pi\)
\(860\) 64.6333 2.20398
\(861\) 0 0
\(862\) −7.88621 −0.268605
\(863\) 8.19545 14.1949i 0.278977 0.483201i −0.692154 0.721750i \(-0.743338\pi\)
0.971131 + 0.238548i \(0.0766715\pi\)
\(864\) 0 0
\(865\) −7.17624 12.4296i −0.244000 0.422620i
\(866\) −4.05764 + 7.02804i −0.137884 + 0.238822i
\(867\) 0 0
\(868\) 16.4104 2.74562i 0.557005 0.0931923i
\(869\) 1.60584 0.0544744
\(870\) 0 0
\(871\) 0.615929 + 1.06682i 0.0208700 + 0.0361478i
\(872\) −1.97503 3.42086i −0.0668830 0.115845i
\(873\) 0 0
\(874\) 3.45030 0.116708
\(875\) −22.5888 27.4042i −0.763642 0.926432i
\(876\) 0 0
\(877\) −17.6270 + 30.5308i −0.595220 + 1.03095i 0.398295 + 0.917257i \(0.369602\pi\)
−0.993516 + 0.113695i \(0.963731\pi\)
\(878\) −3.85407 6.67544i −0.130068 0.225285i
\(879\) 0 0
\(880\) −4.26017 + 7.37883i −0.143610 + 0.248740i
\(881\) 26.2582 0.884661 0.442331 0.896852i \(-0.354152\pi\)
0.442331 + 0.896852i \(0.354152\pi\)
\(882\) 0 0
\(883\) 10.0087 0.336821 0.168410 0.985717i \(-0.446137\pi\)
0.168410 + 0.985717i \(0.446137\pi\)
\(884\) −0.262378 + 0.454452i −0.00882473 + 0.0152849i
\(885\) 0 0
\(886\) 0.443815 + 0.768711i 0.0149103 + 0.0258253i
\(887\) 7.95282 13.7747i 0.267030 0.462509i −0.701064 0.713099i \(-0.747291\pi\)
0.968093 + 0.250590i \(0.0806245\pi\)
\(888\) 0 0
\(889\) −2.13630 2.59171i −0.0716493 0.0869232i
\(890\) 4.40804 0.147758
\(891\) 0 0
\(892\) 4.77419 + 8.26914i 0.159852 + 0.276871i
\(893\) −14.2844 24.7413i −0.478009 0.827935i
\(894\) 0 0
\(895\) 27.0857 0.905374
\(896\) −29.5996 + 4.95230i −0.988853 + 0.165445i
\(897\) 0 0
\(898\) 3.36364 5.82599i 0.112246 0.194416i
\(899\) 7.42583 + 12.8619i 0.247665 + 0.428969i
\(900\) 0 0
\(901\) −1.23608 + 2.14095i −0.0411797 + 0.0713253i
\(902\) 2.11643 0.0704695
\(903\) 0 0
\(904\) −29.4615 −0.979875
\(905\) 20.7829 35.9970i 0.690846 1.19658i
\(906\) 0 0
\(907\) 8.54624 + 14.8025i 0.283773 + 0.491510i 0.972311 0.233691i \(-0.0750804\pi\)
−0.688538 + 0.725201i \(0.741747\pi\)
\(908\) −14.0999 + 24.4217i −0.467922 + 0.810464i
\(909\) 0 0
\(910\) −2.03047 + 5.43021i −0.0673095 + 0.180010i
\(911\) −29.8869 −0.990199 −0.495099 0.868836i \(-0.664868\pi\)
−0.495099 + 0.868836i \(0.664868\pi\)
\(912\) 0 0
\(913\) −5.49961 9.52561i −0.182011 0.315252i
\(914\) 0.636986 + 1.10329i 0.0210696 + 0.0364937i
\(915\) 0 0
\(916\) 17.4857 0.577744
\(917\) 39.2176 6.56148i 1.29508 0.216679i
\(918\) 0 0
\(919\) 11.8283 20.4873i 0.390181 0.675813i −0.602292 0.798276i \(-0.705746\pi\)
0.992473 + 0.122462i \(0.0390791\pi\)
\(920\) 8.51579 + 14.7498i 0.280757 + 0.486286i
\(921\) 0 0
\(922\) −8.97196 + 15.5399i −0.295476 + 0.511779i
\(923\) 5.91813 0.194798
\(924\) 0 0
\(925\) 40.8559 1.34333
\(926\) −4.06227 + 7.03606i −0.133495 + 0.231219i
\(927\) 0 0
\(928\) −10.3667 17.9557i −0.340304 0.589423i
\(929\) −6.30880 + 10.9272i −0.206985 + 0.358509i −0.950763 0.309918i \(-0.899698\pi\)
0.743778 + 0.668426i \(0.233032\pi\)
\(930\) 0 0
\(931\) 14.8352 + 12.8977i 0.486204 + 0.422705i
\(932\) 29.0146 0.950405
\(933\) 0 0
\(934\) 2.15714 + 3.73627i 0.0705836 + 0.122254i
\(935\) −0.411957 0.713530i −0.0134724 0.0233349i
\(936\) 0 0
\(937\) −26.3440 −0.860622 −0.430311 0.902681i \(-0.641596\pi\)
−0.430311 + 0.902681i \(0.641596\pi\)
\(938\) −0.858974 1.04209i −0.0280465 0.0340254i
\(939\) 0 0
\(940\) 32.9465 57.0651i 1.07460 1.86126i
\(941\) −25.4699 44.1151i −0.830294 1.43811i −0.897805 0.440392i \(-0.854839\pi\)
0.0675118 0.997718i \(-0.478494\pi\)
\(942\) 0 0
\(943\) −5.92404 + 10.2607i −0.192913 + 0.334136i
\(944\) 4.68525 0.152492
\(945\) 0 0
\(946\) 4.41648 0.143592
\(947\) −13.8399 + 23.9714i −0.449737 + 0.778967i −0.998369 0.0570968i \(-0.981816\pi\)
0.548632 + 0.836064i \(0.315149\pi\)
\(948\) 0 0
\(949\) 1.09530 + 1.89712i 0.0355551 + 0.0615832i
\(950\) −6.01236 + 10.4137i −0.195067 + 0.337866i
\(951\) 0 0
\(952\) 0.431217 1.15323i 0.0139758 0.0373764i
\(953\) −27.4017 −0.887628 −0.443814 0.896119i \(-0.646375\pi\)
−0.443814 + 0.896119i \(0.646375\pi\)
\(954\) 0 0
\(955\) −44.0265 76.2561i −1.42466 2.46759i
\(956\) 19.3162 + 33.4567i 0.624731 + 1.08207i
\(957\) 0 0
\(958\) 8.81029 0.284648
\(959\) −0.452657 + 1.21057i −0.0146171 + 0.0390913i
\(960\) 0 0
\(961\) 9.07336 15.7155i 0.292689 0.506952i
\(962\) −1.40382 2.43149i −0.0452610 0.0783943i
\(963\) 0 0
\(964\) 14.6645 25.3996i 0.472310 0.818066i
\(965\) −21.9138 −0.705431
\(966\) 0 0
\(967\) −18.1814 −0.584674 −0.292337 0.956315i \(-0.594433\pi\)
−0.292337 + 0.956315i \(0.594433\pi\)
\(968\) 9.49698 16.4492i 0.305244 0.528699i
\(969\) 0 0
\(970\) 10.1111 + 17.5130i 0.324649 + 0.562309i
\(971\) 19.7416 34.1935i 0.633538 1.09732i −0.353285 0.935516i \(-0.614935\pi\)
0.986823 0.161804i \(-0.0517313\pi\)
\(972\) 0 0
\(973\) 16.6092 + 20.1499i 0.532466 + 0.645975i
\(974\) 8.25881 0.264629
\(975\) 0 0
\(976\) −13.9651 24.1883i −0.447012 0.774248i
\(977\) −5.95782 10.3193i −0.190608 0.330142i 0.754844 0.655904i \(-0.227712\pi\)
−0.945452 + 0.325762i \(0.894379\pi\)
\(978\) 0 0
\(979\) −2.14878 −0.0686752
\(980\) −8.65423 + 44.5069i −0.276449 + 1.42172i
\(981\) 0 0
\(982\) 1.59184 2.75715i 0.0507977 0.0879842i
\(983\) 9.23896 + 16.0024i 0.294677 + 0.510396i 0.974910 0.222601i \(-0.0714546\pi\)
−0.680233 + 0.732996i \(0.738121\pi\)
\(984\) 0 0
\(985\) −28.5588 + 49.4653i −0.909959 + 1.57609i
\(986\) 0.513505 0.0163533
\(987\) 0 0
\(988\) −5.89504 −0.187546
\(989\) −12.3620 + 21.4117i −0.393090 + 0.680851i
\(990\) 0 0
\(991\) −6.34850 10.9959i −0.201667 0.349297i 0.747399 0.664376i \(-0.231302\pi\)
−0.949066 + 0.315079i \(0.897969\pi\)
\(992\) 8.97181 15.5396i 0.284855 0.493384i
\(993\) 0 0
\(994\) −6.39905 + 1.07062i −0.202966 + 0.0339581i
\(995\) 57.2215 1.81405
\(996\) 0 0
\(997\) −20.9767 36.3327i −0.664338 1.15067i −0.979464 0.201617i \(-0.935380\pi\)
0.315127 0.949050i \(-0.397953\pi\)
\(998\) 2.76345 + 4.78644i 0.0874755 + 0.151512i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.e.f.163.3 10
3.2 odd 2 567.2.e.e.163.3 10
7.2 even 3 3969.2.a.z.1.3 5
7.4 even 3 inner 567.2.e.f.487.3 10
7.5 odd 6 3969.2.a.ba.1.3 5
9.2 odd 6 189.2.h.b.37.3 10
9.4 even 3 63.2.g.b.16.3 yes 10
9.5 odd 6 189.2.g.b.100.3 10
9.7 even 3 63.2.h.b.58.3 yes 10
21.2 odd 6 3969.2.a.bc.1.3 5
21.5 even 6 3969.2.a.bb.1.3 5
21.11 odd 6 567.2.e.e.487.3 10
36.7 odd 6 1008.2.q.i.625.3 10
36.11 even 6 3024.2.q.i.2305.1 10
36.23 even 6 3024.2.t.i.289.5 10
36.31 odd 6 1008.2.t.i.961.1 10
63.2 odd 6 1323.2.f.e.442.3 10
63.4 even 3 63.2.h.b.25.3 yes 10
63.5 even 6 1323.2.f.f.883.3 10
63.11 odd 6 189.2.g.b.172.3 10
63.13 odd 6 441.2.g.f.79.3 10
63.16 even 3 441.2.f.e.148.3 10
63.20 even 6 1323.2.h.f.226.3 10
63.23 odd 6 1323.2.f.e.883.3 10
63.25 even 3 63.2.g.b.4.3 10
63.31 odd 6 441.2.h.f.214.3 10
63.32 odd 6 189.2.h.b.46.3 10
63.34 odd 6 441.2.h.f.373.3 10
63.38 even 6 1323.2.g.f.361.3 10
63.40 odd 6 441.2.f.f.295.3 10
63.41 even 6 1323.2.g.f.667.3 10
63.47 even 6 1323.2.f.f.442.3 10
63.52 odd 6 441.2.g.f.67.3 10
63.58 even 3 441.2.f.e.295.3 10
63.59 even 6 1323.2.h.f.802.3 10
63.61 odd 6 441.2.f.f.148.3 10
252.11 even 6 3024.2.t.i.1873.5 10
252.67 odd 6 1008.2.q.i.529.3 10
252.95 even 6 3024.2.q.i.2881.1 10
252.151 odd 6 1008.2.t.i.193.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.g.b.4.3 10 63.25 even 3
63.2.g.b.16.3 yes 10 9.4 even 3
63.2.h.b.25.3 yes 10 63.4 even 3
63.2.h.b.58.3 yes 10 9.7 even 3
189.2.g.b.100.3 10 9.5 odd 6
189.2.g.b.172.3 10 63.11 odd 6
189.2.h.b.37.3 10 9.2 odd 6
189.2.h.b.46.3 10 63.32 odd 6
441.2.f.e.148.3 10 63.16 even 3
441.2.f.e.295.3 10 63.58 even 3
441.2.f.f.148.3 10 63.61 odd 6
441.2.f.f.295.3 10 63.40 odd 6
441.2.g.f.67.3 10 63.52 odd 6
441.2.g.f.79.3 10 63.13 odd 6
441.2.h.f.214.3 10 63.31 odd 6
441.2.h.f.373.3 10 63.34 odd 6
567.2.e.e.163.3 10 3.2 odd 2
567.2.e.e.487.3 10 21.11 odd 6
567.2.e.f.163.3 10 1.1 even 1 trivial
567.2.e.f.487.3 10 7.4 even 3 inner
1008.2.q.i.529.3 10 252.67 odd 6
1008.2.q.i.625.3 10 36.7 odd 6
1008.2.t.i.193.1 10 252.151 odd 6
1008.2.t.i.961.1 10 36.31 odd 6
1323.2.f.e.442.3 10 63.2 odd 6
1323.2.f.e.883.3 10 63.23 odd 6
1323.2.f.f.442.3 10 63.47 even 6
1323.2.f.f.883.3 10 63.5 even 6
1323.2.g.f.361.3 10 63.38 even 6
1323.2.g.f.667.3 10 63.41 even 6
1323.2.h.f.226.3 10 63.20 even 6
1323.2.h.f.802.3 10 63.59 even 6
3024.2.q.i.2305.1 10 36.11 even 6
3024.2.q.i.2881.1 10 252.95 even 6
3024.2.t.i.289.5 10 36.23 even 6
3024.2.t.i.1873.5 10 252.11 even 6
3969.2.a.z.1.3 5 7.2 even 3
3969.2.a.ba.1.3 5 7.5 odd 6
3969.2.a.bb.1.3 5 21.5 even 6
3969.2.a.bc.1.3 5 21.2 odd 6