Properties

Label 3969.2.a.bf.1.2
Level $3969$
Weight $2$
Character 3969.1
Self dual yes
Analytic conductor $31.693$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3969,2,Mod(1,3969)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3969, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3969.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3969 = 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3969.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.6926245622\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.114612039936.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 11x^{6} + 34x^{4} - 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 567)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.52818\) of defining polynomial
Character \(\chi\) \(=\) 3969.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.52818 q^{2} +0.335323 q^{4} +2.82528 q^{5} +2.54392 q^{8} +O(q^{10})\) \(q-1.52818 q^{2} +0.335323 q^{4} +2.82528 q^{5} +2.54392 q^{8} -4.31752 q^{10} -3.63715 q^{11} +5.62908 q^{13} -4.55820 q^{16} +3.20220 q^{17} -4.07088 q^{19} +0.947380 q^{20} +5.55820 q^{22} -4.70318 q^{23} +2.98220 q^{25} -8.60223 q^{26} -4.32626 q^{29} -3.58197 q^{31} +1.87790 q^{32} -4.89353 q^{34} -4.31156 q^{37} +6.22102 q^{38} +7.18728 q^{40} +3.15192 q^{41} -9.19325 q^{43} -1.21962 q^{44} +7.18728 q^{46} +4.84643 q^{47} -4.55733 q^{50} +1.88756 q^{52} -14.1341 q^{53} -10.2760 q^{55} +6.61128 q^{58} +1.50098 q^{59} -13.2051 q^{61} +5.47388 q^{62} +6.24665 q^{64} +15.9037 q^{65} -12.6822 q^{67} +1.07377 q^{68} +2.91413 q^{71} -2.92912 q^{73} +6.58882 q^{74} -1.36506 q^{76} +0.893527 q^{79} -12.8782 q^{80} -4.81668 q^{82} +8.04863 q^{83} +9.04711 q^{85} +14.0489 q^{86} -9.25262 q^{88} +5.65727 q^{89} -1.57708 q^{92} -7.40620 q^{94} -11.5014 q^{95} -5.13578 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 6 q^{4} - 14 q^{10} - 6 q^{13} + 6 q^{16} - 24 q^{19} + 2 q^{22} - 20 q^{31} - 4 q^{37} - 36 q^{40} + 10 q^{43} - 36 q^{46} - 34 q^{52} - 4 q^{55} - 22 q^{58} - 36 q^{61} + 38 q^{64} - 18 q^{67} - 32 q^{73} - 58 q^{76} - 32 q^{79} + 2 q^{82} + 30 q^{85} - 72 q^{88} - 54 q^{94} - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.52818 −1.08058 −0.540292 0.841478i \(-0.681686\pi\)
−0.540292 + 0.841478i \(0.681686\pi\)
\(3\) 0 0
\(4\) 0.335323 0.167661
\(5\) 2.82528 1.26350 0.631752 0.775171i \(-0.282336\pi\)
0.631752 + 0.775171i \(0.282336\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 2.54392 0.899412
\(9\) 0 0
\(10\) −4.31752 −1.36532
\(11\) −3.63715 −1.09664 −0.548321 0.836268i \(-0.684733\pi\)
−0.548321 + 0.836268i \(0.684733\pi\)
\(12\) 0 0
\(13\) 5.62908 1.56123 0.780613 0.625015i \(-0.214907\pi\)
0.780613 + 0.625015i \(0.214907\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.55820 −1.13955
\(17\) 3.20220 0.776648 0.388324 0.921523i \(-0.373054\pi\)
0.388324 + 0.921523i \(0.373054\pi\)
\(18\) 0 0
\(19\) −4.07088 −0.933923 −0.466962 0.884278i \(-0.654651\pi\)
−0.466962 + 0.884278i \(0.654651\pi\)
\(20\) 0.947380 0.211841
\(21\) 0 0
\(22\) 5.55820 1.18501
\(23\) −4.70318 −0.980680 −0.490340 0.871531i \(-0.663127\pi\)
−0.490340 + 0.871531i \(0.663127\pi\)
\(24\) 0 0
\(25\) 2.98220 0.596440
\(26\) −8.60223 −1.68704
\(27\) 0 0
\(28\) 0 0
\(29\) −4.32626 −0.803366 −0.401683 0.915779i \(-0.631575\pi\)
−0.401683 + 0.915779i \(0.631575\pi\)
\(30\) 0 0
\(31\) −3.58197 −0.643341 −0.321670 0.946852i \(-0.604244\pi\)
−0.321670 + 0.946852i \(0.604244\pi\)
\(32\) 1.87790 0.331969
\(33\) 0 0
\(34\) −4.89353 −0.839233
\(35\) 0 0
\(36\) 0 0
\(37\) −4.31156 −0.708815 −0.354408 0.935091i \(-0.615318\pi\)
−0.354408 + 0.935091i \(0.615318\pi\)
\(38\) 6.22102 1.00918
\(39\) 0 0
\(40\) 7.18728 1.13641
\(41\) 3.15192 0.492246 0.246123 0.969239i \(-0.420843\pi\)
0.246123 + 0.969239i \(0.420843\pi\)
\(42\) 0 0
\(43\) −9.19325 −1.40196 −0.700979 0.713182i \(-0.747253\pi\)
−0.700979 + 0.713182i \(0.747253\pi\)
\(44\) −1.21962 −0.183864
\(45\) 0 0
\(46\) 7.18728 1.05971
\(47\) 4.84643 0.706924 0.353462 0.935449i \(-0.385004\pi\)
0.353462 + 0.935449i \(0.385004\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −4.55733 −0.644504
\(51\) 0 0
\(52\) 1.88756 0.261757
\(53\) −14.1341 −1.94147 −0.970736 0.240147i \(-0.922804\pi\)
−0.970736 + 0.240147i \(0.922804\pi\)
\(54\) 0 0
\(55\) −10.2760 −1.38561
\(56\) 0 0
\(57\) 0 0
\(58\) 6.61128 0.868104
\(59\) 1.50098 0.195411 0.0977053 0.995215i \(-0.468850\pi\)
0.0977053 + 0.995215i \(0.468850\pi\)
\(60\) 0 0
\(61\) −13.2051 −1.69074 −0.845369 0.534183i \(-0.820619\pi\)
−0.845369 + 0.534183i \(0.820619\pi\)
\(62\) 5.47388 0.695184
\(63\) 0 0
\(64\) 6.24665 0.780831
\(65\) 15.9037 1.97261
\(66\) 0 0
\(67\) −12.6822 −1.54937 −0.774686 0.632346i \(-0.782092\pi\)
−0.774686 + 0.632346i \(0.782092\pi\)
\(68\) 1.07377 0.130214
\(69\) 0 0
\(70\) 0 0
\(71\) 2.91413 0.345844 0.172922 0.984936i \(-0.444679\pi\)
0.172922 + 0.984936i \(0.444679\pi\)
\(72\) 0 0
\(73\) −2.92912 −0.342828 −0.171414 0.985199i \(-0.554834\pi\)
−0.171414 + 0.985199i \(0.554834\pi\)
\(74\) 6.58882 0.765935
\(75\) 0 0
\(76\) −1.36506 −0.156583
\(77\) 0 0
\(78\) 0 0
\(79\) 0.893527 0.100530 0.0502648 0.998736i \(-0.483993\pi\)
0.0502648 + 0.998736i \(0.483993\pi\)
\(80\) −12.8782 −1.43983
\(81\) 0 0
\(82\) −4.81668 −0.531914
\(83\) 8.04863 0.883452 0.441726 0.897150i \(-0.354366\pi\)
0.441726 + 0.897150i \(0.354366\pi\)
\(84\) 0 0
\(85\) 9.04711 0.981297
\(86\) 14.0489 1.51493
\(87\) 0 0
\(88\) −9.25262 −0.986332
\(89\) 5.65727 0.599669 0.299835 0.953991i \(-0.403069\pi\)
0.299835 + 0.953991i \(0.403069\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.57708 −0.164422
\(93\) 0 0
\(94\) −7.40620 −0.763891
\(95\) −11.5014 −1.18001
\(96\) 0 0
\(97\) −5.13578 −0.521460 −0.260730 0.965412i \(-0.583963\pi\)
−0.260730 + 0.965412i \(0.583963\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 2.52446 0.251193 0.125597 0.992081i \(-0.459915\pi\)
0.125597 + 0.992081i \(0.459915\pi\)
\(102\) 0 0
\(103\) −9.84642 −0.970196 −0.485098 0.874460i \(-0.661216\pi\)
−0.485098 + 0.874460i \(0.661216\pi\)
\(104\) 14.3199 1.40418
\(105\) 0 0
\(106\) 21.5995 2.09792
\(107\) −2.70252 −0.261262 −0.130631 0.991431i \(-0.541700\pi\)
−0.130631 + 0.991431i \(0.541700\pi\)
\(108\) 0 0
\(109\) −9.05747 −0.867548 −0.433774 0.901022i \(-0.642818\pi\)
−0.433774 + 0.901022i \(0.642818\pi\)
\(110\) 15.7035 1.49727
\(111\) 0 0
\(112\) 0 0
\(113\) −0.465776 −0.0438165 −0.0219082 0.999760i \(-0.506974\pi\)
−0.0219082 + 0.999760i \(0.506974\pi\)
\(114\) 0 0
\(115\) −13.2878 −1.23909
\(116\) −1.45069 −0.134693
\(117\) 0 0
\(118\) −2.29376 −0.211158
\(119\) 0 0
\(120\) 0 0
\(121\) 2.22885 0.202623
\(122\) 20.1797 1.82698
\(123\) 0 0
\(124\) −1.20112 −0.107863
\(125\) −5.70084 −0.509899
\(126\) 0 0
\(127\) −15.7574 −1.39825 −0.699123 0.715002i \(-0.746426\pi\)
−0.699123 + 0.715002i \(0.746426\pi\)
\(128\) −13.3018 −1.17572
\(129\) 0 0
\(130\) −24.3037 −2.13157
\(131\) 12.1479 1.06137 0.530685 0.847569i \(-0.321935\pi\)
0.530685 + 0.847569i \(0.321935\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 19.3806 1.67423
\(135\) 0 0
\(136\) 8.14614 0.698526
\(137\) −2.16337 −0.184829 −0.0924146 0.995721i \(-0.529459\pi\)
−0.0924146 + 0.995721i \(0.529459\pi\)
\(138\) 0 0
\(139\) 21.4514 1.81949 0.909743 0.415173i \(-0.136279\pi\)
0.909743 + 0.415173i \(0.136279\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.45331 −0.373713
\(143\) −20.4738 −1.71211
\(144\) 0 0
\(145\) −12.2229 −1.01506
\(146\) 4.47622 0.370454
\(147\) 0 0
\(148\) −1.44576 −0.118841
\(149\) 11.0972 0.909121 0.454561 0.890716i \(-0.349796\pi\)
0.454561 + 0.890716i \(0.349796\pi\)
\(150\) 0 0
\(151\) 2.08710 0.169846 0.0849228 0.996388i \(-0.472936\pi\)
0.0849228 + 0.996388i \(0.472936\pi\)
\(152\) −10.3560 −0.839981
\(153\) 0 0
\(154\) 0 0
\(155\) −10.1201 −0.812863
\(156\) 0 0
\(157\) 21.6154 1.72509 0.862547 0.505978i \(-0.168868\pi\)
0.862547 + 0.505978i \(0.168868\pi\)
\(158\) −1.36547 −0.108631
\(159\) 0 0
\(160\) 5.30559 0.419444
\(161\) 0 0
\(162\) 0 0
\(163\) −9.38243 −0.734889 −0.367444 0.930045i \(-0.619767\pi\)
−0.367444 + 0.930045i \(0.619767\pi\)
\(164\) 1.05691 0.0825307
\(165\) 0 0
\(166\) −12.2997 −0.954644
\(167\) −17.4047 −1.34682 −0.673408 0.739271i \(-0.735170\pi\)
−0.673408 + 0.739271i \(0.735170\pi\)
\(168\) 0 0
\(169\) 18.6865 1.43743
\(170\) −13.8256 −1.06037
\(171\) 0 0
\(172\) −3.08271 −0.235054
\(173\) 21.5476 1.63823 0.819116 0.573628i \(-0.194465\pi\)
0.819116 + 0.573628i \(0.194465\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 16.5789 1.24968
\(177\) 0 0
\(178\) −8.64530 −0.647993
\(179\) 5.65727 0.422844 0.211422 0.977395i \(-0.432191\pi\)
0.211422 + 0.977395i \(0.432191\pi\)
\(180\) 0 0
\(181\) −1.12427 −0.0835664 −0.0417832 0.999127i \(-0.513304\pi\)
−0.0417832 + 0.999127i \(0.513304\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −11.9645 −0.882035
\(185\) −12.1813 −0.895591
\(186\) 0 0
\(187\) −11.6469 −0.851704
\(188\) 1.62512 0.118524
\(189\) 0 0
\(190\) 17.5761 1.27510
\(191\) 3.93900 0.285016 0.142508 0.989794i \(-0.454483\pi\)
0.142508 + 0.989794i \(0.454483\pi\)
\(192\) 0 0
\(193\) 18.0868 1.30191 0.650957 0.759114i \(-0.274368\pi\)
0.650957 + 0.759114i \(0.274368\pi\)
\(194\) 7.84838 0.563481
\(195\) 0 0
\(196\) 0 0
\(197\) 25.4842 1.81567 0.907836 0.419326i \(-0.137734\pi\)
0.907836 + 0.419326i \(0.137734\pi\)
\(198\) 0 0
\(199\) −12.6291 −0.895252 −0.447626 0.894221i \(-0.647730\pi\)
−0.447626 + 0.894221i \(0.647730\pi\)
\(200\) 7.58648 0.536445
\(201\) 0 0
\(202\) −3.85782 −0.271436
\(203\) 0 0
\(204\) 0 0
\(205\) 8.90504 0.621955
\(206\) 15.0471 1.04838
\(207\) 0 0
\(208\) −25.6585 −1.77910
\(209\) 14.8064 1.02418
\(210\) 0 0
\(211\) 2.31156 0.159134 0.0795670 0.996830i \(-0.474646\pi\)
0.0795670 + 0.996830i \(0.474646\pi\)
\(212\) −4.73950 −0.325510
\(213\) 0 0
\(214\) 4.12992 0.282316
\(215\) −25.9735 −1.77138
\(216\) 0 0
\(217\) 0 0
\(218\) 13.8414 0.937458
\(219\) 0 0
\(220\) −3.44576 −0.232313
\(221\) 18.0254 1.21252
\(222\) 0 0
\(223\) −9.29962 −0.622749 −0.311374 0.950287i \(-0.600789\pi\)
−0.311374 + 0.950287i \(0.600789\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0.711787 0.0473474
\(227\) 1.92818 0.127978 0.0639890 0.997951i \(-0.479618\pi\)
0.0639890 + 0.997951i \(0.479618\pi\)
\(228\) 0 0
\(229\) −3.34118 −0.220792 −0.110396 0.993888i \(-0.535212\pi\)
−0.110396 + 0.993888i \(0.535212\pi\)
\(230\) 20.3061 1.33894
\(231\) 0 0
\(232\) −11.0057 −0.722556
\(233\) 21.1515 1.38568 0.692842 0.721090i \(-0.256358\pi\)
0.692842 + 0.721090i \(0.256358\pi\)
\(234\) 0 0
\(235\) 13.6925 0.893201
\(236\) 0.503312 0.0327628
\(237\) 0 0
\(238\) 0 0
\(239\) −24.1151 −1.55987 −0.779937 0.625858i \(-0.784749\pi\)
−0.779937 + 0.625858i \(0.784749\pi\)
\(240\) 0 0
\(241\) −9.23439 −0.594840 −0.297420 0.954747i \(-0.596126\pi\)
−0.297420 + 0.954747i \(0.596126\pi\)
\(242\) −3.40608 −0.218951
\(243\) 0 0
\(244\) −4.42796 −0.283471
\(245\) 0 0
\(246\) 0 0
\(247\) −22.9153 −1.45807
\(248\) −9.11225 −0.578628
\(249\) 0 0
\(250\) 8.71189 0.550989
\(251\) 18.5790 1.17270 0.586349 0.810058i \(-0.300565\pi\)
0.586349 + 0.810058i \(0.300565\pi\)
\(252\) 0 0
\(253\) 17.1062 1.07545
\(254\) 24.0801 1.51092
\(255\) 0 0
\(256\) 7.83416 0.489635
\(257\) −10.2197 −0.637490 −0.318745 0.947841i \(-0.603261\pi\)
−0.318745 + 0.947841i \(0.603261\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 5.33288 0.330731
\(261\) 0 0
\(262\) −18.5642 −1.14690
\(263\) −9.13775 −0.563458 −0.281729 0.959494i \(-0.590908\pi\)
−0.281729 + 0.959494i \(0.590908\pi\)
\(264\) 0 0
\(265\) −39.9329 −2.45306
\(266\) 0 0
\(267\) 0 0
\(268\) −4.25262 −0.259770
\(269\) −22.9213 −1.39753 −0.698767 0.715349i \(-0.746268\pi\)
−0.698767 + 0.715349i \(0.746268\pi\)
\(270\) 0 0
\(271\) 9.31563 0.565884 0.282942 0.959137i \(-0.408690\pi\)
0.282942 + 0.959137i \(0.408690\pi\)
\(272\) −14.5963 −0.885030
\(273\) 0 0
\(274\) 3.30601 0.199723
\(275\) −10.8467 −0.654081
\(276\) 0 0
\(277\) 0.183318 0.0110145 0.00550725 0.999985i \(-0.498247\pi\)
0.00550725 + 0.999985i \(0.498247\pi\)
\(278\) −32.7815 −1.96611
\(279\) 0 0
\(280\) 0 0
\(281\) −16.2019 −0.966527 −0.483263 0.875475i \(-0.660549\pi\)
−0.483263 + 0.875475i \(0.660549\pi\)
\(282\) 0 0
\(283\) −20.6984 −1.23039 −0.615195 0.788375i \(-0.710923\pi\)
−0.615195 + 0.788375i \(0.710923\pi\)
\(284\) 0.977175 0.0579847
\(285\) 0 0
\(286\) 31.2876 1.85007
\(287\) 0 0
\(288\) 0 0
\(289\) −6.74591 −0.396818
\(290\) 18.6787 1.09685
\(291\) 0 0
\(292\) −0.982202 −0.0574790
\(293\) −16.0234 −0.936097 −0.468049 0.883703i \(-0.655043\pi\)
−0.468049 + 0.883703i \(0.655043\pi\)
\(294\) 0 0
\(295\) 4.24068 0.246902
\(296\) −10.9683 −0.637517
\(297\) 0 0
\(298\) −16.9585 −0.982382
\(299\) −26.4746 −1.53106
\(300\) 0 0
\(301\) 0 0
\(302\) −3.18945 −0.183532
\(303\) 0 0
\(304\) 18.5559 1.06425
\(305\) −37.3080 −2.13625
\(306\) 0 0
\(307\) 5.32307 0.303804 0.151902 0.988396i \(-0.451460\pi\)
0.151902 + 0.988396i \(0.451460\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 15.4652 0.878367
\(311\) −18.4259 −1.04484 −0.522420 0.852689i \(-0.674970\pi\)
−0.522420 + 0.852689i \(0.674970\pi\)
\(312\) 0 0
\(313\) −4.64688 −0.262657 −0.131329 0.991339i \(-0.541924\pi\)
−0.131329 + 0.991339i \(0.541924\pi\)
\(314\) −33.0321 −1.86411
\(315\) 0 0
\(316\) 0.299620 0.0168549
\(317\) −10.4801 −0.588623 −0.294311 0.955710i \(-0.595090\pi\)
−0.294311 + 0.955710i \(0.595090\pi\)
\(318\) 0 0
\(319\) 15.7352 0.881004
\(320\) 17.6485 0.986582
\(321\) 0 0
\(322\) 0 0
\(323\) −13.0358 −0.725329
\(324\) 0 0
\(325\) 16.7871 0.931178
\(326\) 14.3380 0.794109
\(327\) 0 0
\(328\) 8.01822 0.442732
\(329\) 0 0
\(330\) 0 0
\(331\) 12.8535 0.706494 0.353247 0.935530i \(-0.385077\pi\)
0.353247 + 0.935530i \(0.385077\pi\)
\(332\) 2.69889 0.148121
\(333\) 0 0
\(334\) 26.5975 1.45535
\(335\) −35.8306 −1.95764
\(336\) 0 0
\(337\) 7.29218 0.397230 0.198615 0.980078i \(-0.436356\pi\)
0.198615 + 0.980078i \(0.436356\pi\)
\(338\) −28.5563 −1.55326
\(339\) 0 0
\(340\) 3.03370 0.164526
\(341\) 13.0282 0.705514
\(342\) 0 0
\(343\) 0 0
\(344\) −23.3869 −1.26094
\(345\) 0 0
\(346\) −32.9285 −1.77025
\(347\) 17.5388 0.941534 0.470767 0.882258i \(-0.343977\pi\)
0.470767 + 0.882258i \(0.343977\pi\)
\(348\) 0 0
\(349\) −21.0160 −1.12496 −0.562481 0.826810i \(-0.690153\pi\)
−0.562481 + 0.826810i \(0.690153\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −6.83020 −0.364051
\(353\) −5.05338 −0.268965 −0.134482 0.990916i \(-0.542937\pi\)
−0.134482 + 0.990916i \(0.542937\pi\)
\(354\) 0 0
\(355\) 8.23324 0.436975
\(356\) 1.89701 0.100541
\(357\) 0 0
\(358\) −8.64530 −0.456918
\(359\) −14.4761 −0.764020 −0.382010 0.924158i \(-0.624768\pi\)
−0.382010 + 0.924158i \(0.624768\pi\)
\(360\) 0 0
\(361\) −2.42796 −0.127788
\(362\) 1.71808 0.0903005
\(363\) 0 0
\(364\) 0 0
\(365\) −8.27559 −0.433164
\(366\) 0 0
\(367\) −14.9228 −0.778966 −0.389483 0.921034i \(-0.627346\pi\)
−0.389483 + 0.921034i \(0.627346\pi\)
\(368\) 21.4380 1.11754
\(369\) 0 0
\(370\) 18.6152 0.967761
\(371\) 0 0
\(372\) 0 0
\(373\) 7.82107 0.404960 0.202480 0.979286i \(-0.435100\pi\)
0.202480 + 0.979286i \(0.435100\pi\)
\(374\) 17.7985 0.920338
\(375\) 0 0
\(376\) 12.3289 0.635816
\(377\) −24.3528 −1.25424
\(378\) 0 0
\(379\) 11.6097 0.596350 0.298175 0.954511i \(-0.403622\pi\)
0.298175 + 0.954511i \(0.403622\pi\)
\(380\) −3.85667 −0.197843
\(381\) 0 0
\(382\) −6.01948 −0.307984
\(383\) −25.0764 −1.28134 −0.640672 0.767814i \(-0.721344\pi\)
−0.640672 + 0.767814i \(0.721344\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −27.6398 −1.40683
\(387\) 0 0
\(388\) −1.72215 −0.0874287
\(389\) 23.4993 1.19146 0.595732 0.803184i \(-0.296862\pi\)
0.595732 + 0.803184i \(0.296862\pi\)
\(390\) 0 0
\(391\) −15.0605 −0.761643
\(392\) 0 0
\(393\) 0 0
\(394\) −38.9443 −1.96198
\(395\) 2.52446 0.127020
\(396\) 0 0
\(397\) 19.7234 0.989889 0.494945 0.868924i \(-0.335188\pi\)
0.494945 + 0.868924i \(0.335188\pi\)
\(398\) 19.2995 0.967395
\(399\) 0 0
\(400\) −13.5935 −0.679674
\(401\) 14.3797 0.718086 0.359043 0.933321i \(-0.383103\pi\)
0.359043 + 0.933321i \(0.383103\pi\)
\(402\) 0 0
\(403\) −20.1632 −1.00440
\(404\) 0.846510 0.0421154
\(405\) 0 0
\(406\) 0 0
\(407\) 15.6818 0.777317
\(408\) 0 0
\(409\) 11.5759 0.572391 0.286196 0.958171i \(-0.407609\pi\)
0.286196 + 0.958171i \(0.407609\pi\)
\(410\) −13.6085 −0.672074
\(411\) 0 0
\(412\) −3.30173 −0.162664
\(413\) 0 0
\(414\) 0 0
\(415\) 22.7396 1.11624
\(416\) 10.5708 0.518278
\(417\) 0 0
\(418\) −22.6268 −1.10671
\(419\) −34.1721 −1.66942 −0.834708 0.550693i \(-0.814364\pi\)
−0.834708 + 0.550693i \(0.814364\pi\)
\(420\) 0 0
\(421\) −10.2213 −0.498156 −0.249078 0.968483i \(-0.580128\pi\)
−0.249078 + 0.968483i \(0.580128\pi\)
\(422\) −3.53247 −0.171958
\(423\) 0 0
\(424\) −35.9561 −1.74618
\(425\) 9.54961 0.463224
\(426\) 0 0
\(427\) 0 0
\(428\) −0.906215 −0.0438036
\(429\) 0 0
\(430\) 39.6921 1.91412
\(431\) −0.0761051 −0.00366585 −0.00183293 0.999998i \(-0.500583\pi\)
−0.00183293 + 0.999998i \(0.500583\pi\)
\(432\) 0 0
\(433\) 29.2697 1.40661 0.703305 0.710888i \(-0.251707\pi\)
0.703305 + 0.710888i \(0.251707\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3.03717 −0.145454
\(437\) 19.1461 0.915880
\(438\) 0 0
\(439\) 4.34526 0.207388 0.103694 0.994609i \(-0.466934\pi\)
0.103694 + 0.994609i \(0.466934\pi\)
\(440\) −26.1412 −1.24623
\(441\) 0 0
\(442\) −27.5461 −1.31023
\(443\) −20.5544 −0.976567 −0.488284 0.872685i \(-0.662377\pi\)
−0.488284 + 0.872685i \(0.662377\pi\)
\(444\) 0 0
\(445\) 15.9834 0.757684
\(446\) 14.2115 0.672932
\(447\) 0 0
\(448\) 0 0
\(449\) −12.4720 −0.588588 −0.294294 0.955715i \(-0.595085\pi\)
−0.294294 + 0.955715i \(0.595085\pi\)
\(450\) 0 0
\(451\) −11.4640 −0.539818
\(452\) −0.156185 −0.00734633
\(453\) 0 0
\(454\) −2.94661 −0.138291
\(455\) 0 0
\(456\) 0 0
\(457\) −30.9348 −1.44707 −0.723534 0.690289i \(-0.757483\pi\)
−0.723534 + 0.690289i \(0.757483\pi\)
\(458\) 5.10592 0.238584
\(459\) 0 0
\(460\) −4.45570 −0.207748
\(461\) −8.02281 −0.373660 −0.186830 0.982392i \(-0.559821\pi\)
−0.186830 + 0.982392i \(0.559821\pi\)
\(462\) 0 0
\(463\) −16.8223 −0.781800 −0.390900 0.920433i \(-0.627836\pi\)
−0.390900 + 0.920433i \(0.627836\pi\)
\(464\) 19.7200 0.915476
\(465\) 0 0
\(466\) −32.3233 −1.49735
\(467\) −0.960797 −0.0444604 −0.0222302 0.999753i \(-0.507077\pi\)
−0.0222302 + 0.999753i \(0.507077\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −20.9246 −0.965179
\(471\) 0 0
\(472\) 3.81837 0.175755
\(473\) 33.4372 1.53745
\(474\) 0 0
\(475\) −12.1402 −0.557029
\(476\) 0 0
\(477\) 0 0
\(478\) 36.8521 1.68557
\(479\) −24.1290 −1.10248 −0.551242 0.834346i \(-0.685846\pi\)
−0.551242 + 0.834346i \(0.685846\pi\)
\(480\) 0 0
\(481\) −24.2701 −1.10662
\(482\) 14.1118 0.642774
\(483\) 0 0
\(484\) 0.747384 0.0339720
\(485\) −14.5100 −0.658866
\(486\) 0 0
\(487\) 14.7989 0.670601 0.335301 0.942111i \(-0.391162\pi\)
0.335301 + 0.942111i \(0.391162\pi\)
\(488\) −33.5927 −1.52067
\(489\) 0 0
\(490\) 0 0
\(491\) 6.30383 0.284488 0.142244 0.989832i \(-0.454568\pi\)
0.142244 + 0.989832i \(0.454568\pi\)
\(492\) 0 0
\(493\) −13.8535 −0.623932
\(494\) 35.0186 1.57556
\(495\) 0 0
\(496\) 16.3274 0.733120
\(497\) 0 0
\(498\) 0 0
\(499\) −28.5971 −1.28018 −0.640092 0.768298i \(-0.721104\pi\)
−0.640092 + 0.768298i \(0.721104\pi\)
\(500\) −1.91162 −0.0854903
\(501\) 0 0
\(502\) −28.3921 −1.26720
\(503\) 35.4133 1.57900 0.789500 0.613750i \(-0.210340\pi\)
0.789500 + 0.613750i \(0.210340\pi\)
\(504\) 0 0
\(505\) 7.13231 0.317384
\(506\) −26.1412 −1.16212
\(507\) 0 0
\(508\) −5.28382 −0.234432
\(509\) −32.4883 −1.44002 −0.720010 0.693964i \(-0.755863\pi\)
−0.720010 + 0.693964i \(0.755863\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 14.6316 0.646630
\(513\) 0 0
\(514\) 15.6176 0.688861
\(515\) −27.8189 −1.22585
\(516\) 0 0
\(517\) −17.6272 −0.775243
\(518\) 0 0
\(519\) 0 0
\(520\) 40.4578 1.77419
\(521\) 32.9818 1.44496 0.722479 0.691393i \(-0.243003\pi\)
0.722479 + 0.691393i \(0.243003\pi\)
\(522\) 0 0
\(523\) −14.2627 −0.623662 −0.311831 0.950138i \(-0.600942\pi\)
−0.311831 + 0.950138i \(0.600942\pi\)
\(524\) 4.07348 0.177951
\(525\) 0 0
\(526\) 13.9641 0.608863
\(527\) −11.4702 −0.499649
\(528\) 0 0
\(529\) −0.880118 −0.0382660
\(530\) 61.0245 2.65073
\(531\) 0 0
\(532\) 0 0
\(533\) 17.7424 0.768508
\(534\) 0 0
\(535\) −7.63537 −0.330106
\(536\) −32.2624 −1.39352
\(537\) 0 0
\(538\) 35.0277 1.51015
\(539\) 0 0
\(540\) 0 0
\(541\) −15.9821 −0.687124 −0.343562 0.939130i \(-0.611634\pi\)
−0.343562 + 0.939130i \(0.611634\pi\)
\(542\) −14.2359 −0.611485
\(543\) 0 0
\(544\) 6.01341 0.257823
\(545\) −25.5899 −1.09615
\(546\) 0 0
\(547\) −32.0570 −1.37066 −0.685330 0.728233i \(-0.740342\pi\)
−0.685330 + 0.728233i \(0.740342\pi\)
\(548\) −0.725427 −0.0309887
\(549\) 0 0
\(550\) 16.5757 0.706790
\(551\) 17.6117 0.750282
\(552\) 0 0
\(553\) 0 0
\(554\) −0.280142 −0.0119021
\(555\) 0 0
\(556\) 7.19315 0.305057
\(557\) 39.2947 1.66497 0.832486 0.554046i \(-0.186917\pi\)
0.832486 + 0.554046i \(0.186917\pi\)
\(558\) 0 0
\(559\) −51.7496 −2.18877
\(560\) 0 0
\(561\) 0 0
\(562\) 24.7594 1.04441
\(563\) 34.5063 1.45427 0.727134 0.686495i \(-0.240852\pi\)
0.727134 + 0.686495i \(0.240852\pi\)
\(564\) 0 0
\(565\) −1.31595 −0.0553623
\(566\) 31.6308 1.32954
\(567\) 0 0
\(568\) 7.41332 0.311056
\(569\) 4.28406 0.179597 0.0897985 0.995960i \(-0.471378\pi\)
0.0897985 + 0.995960i \(0.471378\pi\)
\(570\) 0 0
\(571\) 25.1596 1.05289 0.526447 0.850208i \(-0.323524\pi\)
0.526447 + 0.850208i \(0.323524\pi\)
\(572\) −6.86533 −0.287054
\(573\) 0 0
\(574\) 0 0
\(575\) −14.0258 −0.584917
\(576\) 0 0
\(577\) 44.2563 1.84241 0.921206 0.389075i \(-0.127205\pi\)
0.921206 + 0.389075i \(0.127205\pi\)
\(578\) 10.3089 0.428795
\(579\) 0 0
\(580\) −4.09861 −0.170186
\(581\) 0 0
\(582\) 0 0
\(583\) 51.4080 2.12910
\(584\) −7.45146 −0.308343
\(585\) 0 0
\(586\) 24.4866 1.01153
\(587\) −13.0046 −0.536757 −0.268378 0.963314i \(-0.586488\pi\)
−0.268378 + 0.963314i \(0.586488\pi\)
\(588\) 0 0
\(589\) 14.5818 0.600831
\(590\) −6.48051 −0.266798
\(591\) 0 0
\(592\) 19.6530 0.807731
\(593\) −28.2328 −1.15938 −0.579691 0.814837i \(-0.696827\pi\)
−0.579691 + 0.814837i \(0.696827\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.72116 0.152425
\(597\) 0 0
\(598\) 40.4578 1.65444
\(599\) −4.99536 −0.204105 −0.102052 0.994779i \(-0.532541\pi\)
−0.102052 + 0.994779i \(0.532541\pi\)
\(600\) 0 0
\(601\) −8.15787 −0.332766 −0.166383 0.986061i \(-0.553209\pi\)
−0.166383 + 0.986061i \(0.553209\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.699851 0.0284765
\(605\) 6.29712 0.256014
\(606\) 0 0
\(607\) −16.7277 −0.678956 −0.339478 0.940614i \(-0.610250\pi\)
−0.339478 + 0.940614i \(0.610250\pi\)
\(608\) −7.64469 −0.310033
\(609\) 0 0
\(610\) 57.0133 2.30840
\(611\) 27.2809 1.10367
\(612\) 0 0
\(613\) −16.5876 −0.669968 −0.334984 0.942224i \(-0.608731\pi\)
−0.334984 + 0.942224i \(0.608731\pi\)
\(614\) −8.13459 −0.328285
\(615\) 0 0
\(616\) 0 0
\(617\) −23.7085 −0.954470 −0.477235 0.878776i \(-0.658361\pi\)
−0.477235 + 0.878776i \(0.658361\pi\)
\(618\) 0 0
\(619\) 7.82412 0.314478 0.157239 0.987561i \(-0.449741\pi\)
0.157239 + 0.987561i \(0.449741\pi\)
\(620\) −3.39349 −0.136286
\(621\) 0 0
\(622\) 28.1581 1.12904
\(623\) 0 0
\(624\) 0 0
\(625\) −31.0175 −1.24070
\(626\) 7.10125 0.283823
\(627\) 0 0
\(628\) 7.24812 0.289231
\(629\) −13.8065 −0.550500
\(630\) 0 0
\(631\) −2.54669 −0.101382 −0.0506911 0.998714i \(-0.516142\pi\)
−0.0506911 + 0.998714i \(0.516142\pi\)
\(632\) 2.27306 0.0904175
\(633\) 0 0
\(634\) 16.0155 0.636056
\(635\) −44.5191 −1.76669
\(636\) 0 0
\(637\) 0 0
\(638\) −24.0462 −0.951999
\(639\) 0 0
\(640\) −37.5812 −1.48553
\(641\) 10.2854 0.406248 0.203124 0.979153i \(-0.434891\pi\)
0.203124 + 0.979153i \(0.434891\pi\)
\(642\) 0 0
\(643\) 4.92126 0.194076 0.0970378 0.995281i \(-0.469063\pi\)
0.0970378 + 0.995281i \(0.469063\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 19.9209 0.783779
\(647\) −8.78336 −0.345310 −0.172655 0.984982i \(-0.555235\pi\)
−0.172655 + 0.984982i \(0.555235\pi\)
\(648\) 0 0
\(649\) −5.45928 −0.214295
\(650\) −25.6536 −1.00622
\(651\) 0 0
\(652\) −3.14614 −0.123212
\(653\) 1.77459 0.0694453 0.0347226 0.999397i \(-0.488945\pi\)
0.0347226 + 0.999397i \(0.488945\pi\)
\(654\) 0 0
\(655\) 34.3213 1.34104
\(656\) −14.3671 −0.560940
\(657\) 0 0
\(658\) 0 0
\(659\) 2.34367 0.0912966 0.0456483 0.998958i \(-0.485465\pi\)
0.0456483 + 0.998958i \(0.485465\pi\)
\(660\) 0 0
\(661\) 22.9094 0.891074 0.445537 0.895264i \(-0.353013\pi\)
0.445537 + 0.895264i \(0.353013\pi\)
\(662\) −19.6425 −0.763426
\(663\) 0 0
\(664\) 20.4751 0.794587
\(665\) 0 0
\(666\) 0 0
\(667\) 20.3472 0.787845
\(668\) −5.83619 −0.225809
\(669\) 0 0
\(670\) 54.7555 2.11539
\(671\) 48.0288 1.85413
\(672\) 0 0
\(673\) −29.7349 −1.14620 −0.573098 0.819487i \(-0.694259\pi\)
−0.573098 + 0.819487i \(0.694259\pi\)
\(674\) −11.1437 −0.429241
\(675\) 0 0
\(676\) 6.26602 0.241001
\(677\) −25.4960 −0.979891 −0.489946 0.871753i \(-0.662983\pi\)
−0.489946 + 0.871753i \(0.662983\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 23.0151 0.882590
\(681\) 0 0
\(682\) −19.9093 −0.762367
\(683\) 11.3859 0.435668 0.217834 0.975986i \(-0.430101\pi\)
0.217834 + 0.975986i \(0.430101\pi\)
\(684\) 0 0
\(685\) −6.11212 −0.233532
\(686\) 0 0
\(687\) 0 0
\(688\) 41.9047 1.59760
\(689\) −79.5622 −3.03108
\(690\) 0 0
\(691\) 32.2523 1.22694 0.613468 0.789720i \(-0.289774\pi\)
0.613468 + 0.789720i \(0.289774\pi\)
\(692\) 7.22539 0.274668
\(693\) 0 0
\(694\) −26.8024 −1.01741
\(695\) 60.6062 2.29893
\(696\) 0 0
\(697\) 10.0931 0.382302
\(698\) 32.1162 1.21561
\(699\) 0 0
\(700\) 0 0
\(701\) 15.6291 0.590302 0.295151 0.955451i \(-0.404630\pi\)
0.295151 + 0.955451i \(0.404630\pi\)
\(702\) 0 0
\(703\) 17.5518 0.661979
\(704\) −22.7200 −0.856292
\(705\) 0 0
\(706\) 7.72246 0.290639
\(707\) 0 0
\(708\) 0 0
\(709\) −11.8165 −0.443777 −0.221888 0.975072i \(-0.571222\pi\)
−0.221888 + 0.975072i \(0.571222\pi\)
\(710\) −12.5818 −0.472188
\(711\) 0 0
\(712\) 14.3916 0.539349
\(713\) 16.8466 0.630912
\(714\) 0 0
\(715\) −57.8442 −2.16325
\(716\) 1.89701 0.0708946
\(717\) 0 0
\(718\) 22.1221 0.825588
\(719\) 50.7233 1.89166 0.945830 0.324664i \(-0.105251\pi\)
0.945830 + 0.324664i \(0.105251\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.71036 0.138085
\(723\) 0 0
\(724\) −0.376994 −0.0140109
\(725\) −12.9018 −0.479160
\(726\) 0 0
\(727\) −2.26602 −0.0840422 −0.0420211 0.999117i \(-0.513380\pi\)
−0.0420211 + 0.999117i \(0.513380\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 12.6466 0.468070
\(731\) −29.4386 −1.08883
\(732\) 0 0
\(733\) 33.6524 1.24298 0.621490 0.783422i \(-0.286528\pi\)
0.621490 + 0.783422i \(0.286528\pi\)
\(734\) 22.8047 0.841738
\(735\) 0 0
\(736\) −8.83209 −0.325555
\(737\) 46.1269 1.69911
\(738\) 0 0
\(739\) 19.6037 0.721135 0.360568 0.932733i \(-0.382583\pi\)
0.360568 + 0.932733i \(0.382583\pi\)
\(740\) −4.08468 −0.150156
\(741\) 0 0
\(742\) 0 0
\(743\) 48.8390 1.79173 0.895865 0.444327i \(-0.146557\pi\)
0.895865 + 0.444327i \(0.146557\pi\)
\(744\) 0 0
\(745\) 31.3528 1.14868
\(746\) −11.9520 −0.437593
\(747\) 0 0
\(748\) −3.90546 −0.142798
\(749\) 0 0
\(750\) 0 0
\(751\) 15.8254 0.577476 0.288738 0.957408i \(-0.406764\pi\)
0.288738 + 0.957408i \(0.406764\pi\)
\(752\) −22.0910 −0.805576
\(753\) 0 0
\(754\) 37.2154 1.35531
\(755\) 5.89663 0.214600
\(756\) 0 0
\(757\) −2.18728 −0.0794982 −0.0397491 0.999210i \(-0.512656\pi\)
−0.0397491 + 0.999210i \(0.512656\pi\)
\(758\) −17.7417 −0.644407
\(759\) 0 0
\(760\) −29.2585 −1.06132
\(761\) 27.7562 1.00616 0.503081 0.864240i \(-0.332200\pi\)
0.503081 + 0.864240i \(0.332200\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 1.32084 0.0477861
\(765\) 0 0
\(766\) 38.3212 1.38460
\(767\) 8.44912 0.305080
\(768\) 0 0
\(769\) −10.0206 −0.361352 −0.180676 0.983543i \(-0.557829\pi\)
−0.180676 + 0.983543i \(0.557829\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 6.06491 0.218281
\(773\) 43.5192 1.56528 0.782639 0.622476i \(-0.213873\pi\)
0.782639 + 0.622476i \(0.213873\pi\)
\(774\) 0 0
\(775\) −10.6822 −0.383714
\(776\) −13.0650 −0.469007
\(777\) 0 0
\(778\) −35.9111 −1.28748
\(779\) −12.8311 −0.459720
\(780\) 0 0
\(781\) −10.5991 −0.379267
\(782\) 23.0151 0.823019
\(783\) 0 0
\(784\) 0 0
\(785\) 61.0694 2.17966
\(786\) 0 0
\(787\) 5.83638 0.208044 0.104022 0.994575i \(-0.466829\pi\)
0.104022 + 0.994575i \(0.466829\pi\)
\(788\) 8.54542 0.304418
\(789\) 0 0
\(790\) −3.85782 −0.137255
\(791\) 0 0
\(792\) 0 0
\(793\) −74.3325 −2.63962
\(794\) −30.1408 −1.06966
\(795\) 0 0
\(796\) −4.23482 −0.150099
\(797\) −36.5800 −1.29573 −0.647865 0.761755i \(-0.724338\pi\)
−0.647865 + 0.761755i \(0.724338\pi\)
\(798\) 0 0
\(799\) 15.5192 0.549031
\(800\) 5.60027 0.198000
\(801\) 0 0
\(802\) −21.9747 −0.775952
\(803\) 10.6537 0.375959
\(804\) 0 0
\(805\) 0 0
\(806\) 30.8129 1.08534
\(807\) 0 0
\(808\) 6.42203 0.225926
\(809\) −22.0499 −0.775232 −0.387616 0.921821i \(-0.626701\pi\)
−0.387616 + 0.921821i \(0.626701\pi\)
\(810\) 0 0
\(811\) 12.6451 0.444029 0.222015 0.975043i \(-0.428737\pi\)
0.222015 + 0.975043i \(0.428737\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −23.9645 −0.839956
\(815\) −26.5080 −0.928534
\(816\) 0 0
\(817\) 37.4246 1.30932
\(818\) −17.6900 −0.618517
\(819\) 0 0
\(820\) 2.98606 0.104278
\(821\) −31.0958 −1.08525 −0.542625 0.839975i \(-0.682570\pi\)
−0.542625 + 0.839975i \(0.682570\pi\)
\(822\) 0 0
\(823\) −48.9638 −1.70677 −0.853385 0.521281i \(-0.825454\pi\)
−0.853385 + 0.521281i \(0.825454\pi\)
\(824\) −25.0485 −0.872606
\(825\) 0 0
\(826\) 0 0
\(827\) −36.3827 −1.26515 −0.632575 0.774499i \(-0.718002\pi\)
−0.632575 + 0.774499i \(0.718002\pi\)
\(828\) 0 0
\(829\) −45.7405 −1.58863 −0.794316 0.607505i \(-0.792171\pi\)
−0.794316 + 0.607505i \(0.792171\pi\)
\(830\) −34.7502 −1.20620
\(831\) 0 0
\(832\) 35.1629 1.21905
\(833\) 0 0
\(834\) 0 0
\(835\) −49.1731 −1.70171
\(836\) 4.96492 0.171715
\(837\) 0 0
\(838\) 52.2210 1.80394
\(839\) 25.5348 0.881559 0.440779 0.897615i \(-0.354702\pi\)
0.440779 + 0.897615i \(0.354702\pi\)
\(840\) 0 0
\(841\) −10.2835 −0.354604
\(842\) 15.6200 0.538299
\(843\) 0 0
\(844\) 0.775117 0.0266806
\(845\) 52.7947 1.81619
\(846\) 0 0
\(847\) 0 0
\(848\) 64.4263 2.21241
\(849\) 0 0
\(850\) −14.5935 −0.500552
\(851\) 20.2780 0.695121
\(852\) 0 0
\(853\) 1.84673 0.0632310 0.0316155 0.999500i \(-0.489935\pi\)
0.0316155 + 0.999500i \(0.489935\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −6.87499 −0.234982
\(857\) 22.4848 0.768066 0.384033 0.923319i \(-0.374535\pi\)
0.384033 + 0.923319i \(0.374535\pi\)
\(858\) 0 0
\(859\) 1.14761 0.0391561 0.0195781 0.999808i \(-0.493768\pi\)
0.0195781 + 0.999808i \(0.493768\pi\)
\(860\) −8.70951 −0.296992
\(861\) 0 0
\(862\) 0.116302 0.00396126
\(863\) 1.79527 0.0611117 0.0305558 0.999533i \(-0.490272\pi\)
0.0305558 + 0.999533i \(0.490272\pi\)
\(864\) 0 0
\(865\) 60.8779 2.06991
\(866\) −44.7292 −1.51996
\(867\) 0 0
\(868\) 0 0
\(869\) −3.24989 −0.110245
\(870\) 0 0
\(871\) −71.3889 −2.41892
\(872\) −23.0415 −0.780283
\(873\) 0 0
\(874\) −29.2585 −0.989685
\(875\) 0 0
\(876\) 0 0
\(877\) 8.57997 0.289725 0.144862 0.989452i \(-0.453726\pi\)
0.144862 + 0.989452i \(0.453726\pi\)
\(878\) −6.64032 −0.224100
\(879\) 0 0
\(880\) 46.8399 1.57897
\(881\) 16.5346 0.557066 0.278533 0.960427i \(-0.410152\pi\)
0.278533 + 0.960427i \(0.410152\pi\)
\(882\) 0 0
\(883\) −27.4948 −0.925273 −0.462636 0.886548i \(-0.653096\pi\)
−0.462636 + 0.886548i \(0.653096\pi\)
\(884\) 6.04434 0.203293
\(885\) 0 0
\(886\) 31.4107 1.05526
\(887\) 43.4419 1.45864 0.729318 0.684175i \(-0.239837\pi\)
0.729318 + 0.684175i \(0.239837\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −24.4254 −0.818741
\(891\) 0 0
\(892\) −3.11837 −0.104411
\(893\) −19.7292 −0.660213
\(894\) 0 0
\(895\) 15.9834 0.534265
\(896\) 0 0
\(897\) 0 0
\(898\) 19.0594 0.636019
\(899\) 15.4965 0.516838
\(900\) 0 0
\(901\) −45.2603 −1.50784
\(902\) 17.5190 0.583319
\(903\) 0 0
\(904\) −1.18490 −0.0394091
\(905\) −3.17638 −0.105586
\(906\) 0 0
\(907\) 11.2952 0.375052 0.187526 0.982260i \(-0.439953\pi\)
0.187526 + 0.982260i \(0.439953\pi\)
\(908\) 0.646564 0.0214570
\(909\) 0 0
\(910\) 0 0
\(911\) 10.0338 0.332435 0.166217 0.986089i \(-0.446845\pi\)
0.166217 + 0.986089i \(0.446845\pi\)
\(912\) 0 0
\(913\) −29.2741 −0.968830
\(914\) 47.2738 1.56368
\(915\) 0 0
\(916\) −1.12038 −0.0370182
\(917\) 0 0
\(918\) 0 0
\(919\) −0.357934 −0.0118072 −0.00590358 0.999983i \(-0.501879\pi\)
−0.00590358 + 0.999983i \(0.501879\pi\)
\(920\) −33.8031 −1.11445
\(921\) 0 0
\(922\) 12.2603 0.403770
\(923\) 16.4039 0.539941
\(924\) 0 0
\(925\) −12.8579 −0.422766
\(926\) 25.7075 0.844801
\(927\) 0 0
\(928\) −8.12427 −0.266692
\(929\) −33.5264 −1.09997 −0.549983 0.835176i \(-0.685366\pi\)
−0.549983 + 0.835176i \(0.685366\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 7.09259 0.232326
\(933\) 0 0
\(934\) 1.46827 0.0480432
\(935\) −32.9057 −1.07613
\(936\) 0 0
\(937\) −12.8772 −0.420680 −0.210340 0.977628i \(-0.567457\pi\)
−0.210340 + 0.977628i \(0.567457\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 4.59141 0.149755
\(941\) 32.0984 1.04638 0.523189 0.852217i \(-0.324742\pi\)
0.523189 + 0.852217i \(0.324742\pi\)
\(942\) 0 0
\(943\) −14.8240 −0.482736
\(944\) −6.84176 −0.222680
\(945\) 0 0
\(946\) −51.0980 −1.66134
\(947\) −16.7986 −0.545880 −0.272940 0.962031i \(-0.587996\pi\)
−0.272940 + 0.962031i \(0.587996\pi\)
\(948\) 0 0
\(949\) −16.4883 −0.535232
\(950\) 18.5523 0.601917
\(951\) 0 0
\(952\) 0 0
\(953\) 2.69574 0.0873237 0.0436619 0.999046i \(-0.486098\pi\)
0.0436619 + 0.999046i \(0.486098\pi\)
\(954\) 0 0
\(955\) 11.1288 0.360118
\(956\) −8.08633 −0.261531
\(957\) 0 0
\(958\) 36.8734 1.19133
\(959\) 0 0
\(960\) 0 0
\(961\) −18.1695 −0.586112
\(962\) 37.0890 1.19580
\(963\) 0 0
\(964\) −3.09650 −0.0997316
\(965\) 51.1002 1.64497
\(966\) 0 0
\(967\) 13.6775 0.439837 0.219919 0.975518i \(-0.429421\pi\)
0.219919 + 0.975518i \(0.429421\pi\)
\(968\) 5.67002 0.182241
\(969\) 0 0
\(970\) 22.1739 0.711960
\(971\) 42.6266 1.36795 0.683977 0.729504i \(-0.260249\pi\)
0.683977 + 0.729504i \(0.260249\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −22.6153 −0.724641
\(975\) 0 0
\(976\) 60.1915 1.92668
\(977\) −5.05683 −0.161782 −0.0808911 0.996723i \(-0.525777\pi\)
−0.0808911 + 0.996723i \(0.525777\pi\)
\(978\) 0 0
\(979\) −20.5763 −0.657622
\(980\) 0 0
\(981\) 0 0
\(982\) −9.63336 −0.307413
\(983\) 33.2884 1.06174 0.530868 0.847455i \(-0.321866\pi\)
0.530868 + 0.847455i \(0.321866\pi\)
\(984\) 0 0
\(985\) 71.9999 2.29411
\(986\) 21.1707 0.674211
\(987\) 0 0
\(988\) −7.68402 −0.244461
\(989\) 43.2375 1.37487
\(990\) 0 0
\(991\) 32.0879 1.01931 0.509653 0.860380i \(-0.329774\pi\)
0.509653 + 0.860380i \(0.329774\pi\)
\(992\) −6.72658 −0.213569
\(993\) 0 0
\(994\) 0 0
\(995\) −35.6807 −1.13115
\(996\) 0 0
\(997\) 43.2566 1.36995 0.684975 0.728567i \(-0.259813\pi\)
0.684975 + 0.728567i \(0.259813\pi\)
\(998\) 43.7015 1.38335
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3969.2.a.bf.1.2 8
3.2 odd 2 inner 3969.2.a.bf.1.7 8
7.3 odd 6 567.2.e.g.163.7 yes 16
7.5 odd 6 567.2.e.g.487.7 yes 16
7.6 odd 2 3969.2.a.bg.1.2 8
21.5 even 6 567.2.e.g.487.2 yes 16
21.17 even 6 567.2.e.g.163.2 16
21.20 even 2 3969.2.a.bg.1.7 8
63.5 even 6 567.2.h.l.298.7 16
63.31 odd 6 567.2.g.l.541.7 16
63.38 even 6 567.2.h.l.352.7 16
63.40 odd 6 567.2.h.l.298.2 16
63.47 even 6 567.2.g.l.109.2 16
63.52 odd 6 567.2.h.l.352.2 16
63.59 even 6 567.2.g.l.541.2 16
63.61 odd 6 567.2.g.l.109.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.2 16 21.17 even 6
567.2.e.g.163.7 yes 16 7.3 odd 6
567.2.e.g.487.2 yes 16 21.5 even 6
567.2.e.g.487.7 yes 16 7.5 odd 6
567.2.g.l.109.2 16 63.47 even 6
567.2.g.l.109.7 16 63.61 odd 6
567.2.g.l.541.2 16 63.59 even 6
567.2.g.l.541.7 16 63.31 odd 6
567.2.h.l.298.2 16 63.40 odd 6
567.2.h.l.298.7 16 63.5 even 6
567.2.h.l.352.2 16 63.52 odd 6
567.2.h.l.352.7 16 63.38 even 6
3969.2.a.bf.1.2 8 1.1 even 1 trivial
3969.2.a.bf.1.7 8 3.2 odd 2 inner
3969.2.a.bg.1.2 8 7.6 odd 2
3969.2.a.bg.1.7 8 21.20 even 2