Properties

Label 567.2.g.l.109.7
Level $567$
Weight $2$
Character 567.109
Analytic conductor $4.528$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(109,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 14x^{12} - 39x^{10} + 77x^{8} - 156x^{6} + 224x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.7
Root \(1.41264 - 0.0667052i\) of defining polynomial
Character \(\chi\) \(=\) 567.109
Dual form 567.2.g.l.541.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.764088 - 1.32344i) q^{2} +(-0.167661 - 0.290398i) q^{4} -2.82528 q^{5} +(0.955663 - 2.46713i) q^{7} +2.54392 q^{8} +(-2.15876 + 3.73909i) q^{10} -3.63715 q^{11} +(2.81454 - 4.87493i) q^{13} +(-2.53488 - 3.14986i) q^{14} +(2.27910 - 3.94752i) q^{16} +(1.60110 - 2.77319i) q^{17} +(-2.03544 - 3.52548i) q^{19} +(0.473690 + 0.820455i) q^{20} +(-2.77910 + 4.81355i) q^{22} -4.70318 q^{23} +2.98220 q^{25} +(-4.30111 - 7.44975i) q^{26} +(-0.876676 + 0.136119i) q^{28} +(2.16313 + 3.74665i) q^{29} +(-1.79099 - 3.10208i) q^{31} +(-0.938949 - 1.62631i) q^{32} +(-2.44676 - 4.23792i) q^{34} +(-2.70001 + 6.97032i) q^{35} +(2.15578 + 3.73392i) q^{37} -6.22102 q^{38} -7.18728 q^{40} +(1.57596 - 2.72964i) q^{41} +(4.59663 + 7.96159i) q^{43} +(0.609809 + 1.05622i) q^{44} +(-3.59364 + 6.22437i) q^{46} +(2.42321 - 4.19713i) q^{47} +(-5.17342 - 4.71548i) q^{49} +(2.27866 - 3.94676i) q^{50} -1.88756 q^{52} +(7.06707 - 12.2405i) q^{53} +10.2760 q^{55} +(2.43113 - 6.27617i) q^{56} +6.61128 q^{58} +(0.750489 + 1.29988i) q^{59} +(-6.60254 + 11.4359i) q^{61} -5.47388 q^{62} +6.24665 q^{64} +(-7.95186 + 13.7730i) q^{65} +(6.34108 + 10.9831i) q^{67} -1.07377 q^{68} +(7.16175 + 8.89924i) q^{70} +2.91413 q^{71} +(-1.46456 + 2.53670i) q^{73} +6.58882 q^{74} +(-0.682529 + 1.18217i) q^{76} +(-3.47589 + 8.97330i) q^{77} +(-0.446763 + 0.773817i) q^{79} +(-6.43910 + 11.1528i) q^{80} +(-2.40834 - 4.17137i) q^{82} +(4.02432 + 6.97032i) q^{83} +(-4.52356 + 7.83503i) q^{85} +14.0489 q^{86} -9.25262 q^{88} +(2.82863 + 4.89934i) q^{89} +(-9.33731 - 11.6026i) q^{91} +(0.788541 + 1.36579i) q^{92} +(-3.70310 - 6.41396i) q^{94} +(5.75068 + 9.96047i) q^{95} +(-2.56789 - 4.44772i) q^{97} +(-10.1936 + 3.24366i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} - 14 q^{10} - 6 q^{13} - 6 q^{16} - 24 q^{19} - 2 q^{22} - 26 q^{28} - 20 q^{31} + 4 q^{37} + 72 q^{40} - 10 q^{43} + 36 q^{46} + 4 q^{49} + 68 q^{52} + 8 q^{55} - 44 q^{58} - 36 q^{61} + 76 q^{64}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.764088 1.32344i 0.540292 0.935813i −0.458595 0.888645i \(-0.651647\pi\)
0.998887 0.0471677i \(-0.0150195\pi\)
\(3\) 0 0
\(4\) −0.167661 0.290398i −0.0838307 0.145199i
\(5\) −2.82528 −1.26350 −0.631752 0.775171i \(-0.717664\pi\)
−0.631752 + 0.775171i \(0.717664\pi\)
\(6\) 0 0
\(7\) 0.955663 2.46713i 0.361207 0.932486i
\(8\) 2.54392 0.899412
\(9\) 0 0
\(10\) −2.15876 + 3.73909i −0.682661 + 1.18240i
\(11\) −3.63715 −1.09664 −0.548321 0.836268i \(-0.684733\pi\)
−0.548321 + 0.836268i \(0.684733\pi\)
\(12\) 0 0
\(13\) 2.81454 4.87493i 0.780613 1.35206i −0.150972 0.988538i \(-0.548240\pi\)
0.931585 0.363523i \(-0.118426\pi\)
\(14\) −2.53488 3.14986i −0.677475 0.841836i
\(15\) 0 0
\(16\) 2.27910 3.94752i 0.569776 0.986880i
\(17\) 1.60110 2.77319i 0.388324 0.672597i −0.603900 0.797060i \(-0.706388\pi\)
0.992224 + 0.124463i \(0.0397209\pi\)
\(18\) 0 0
\(19\) −2.03544 3.52548i −0.466962 0.808801i 0.532326 0.846539i \(-0.321318\pi\)
−0.999288 + 0.0377382i \(0.987985\pi\)
\(20\) 0.473690 + 0.820455i 0.105920 + 0.183459i
\(21\) 0 0
\(22\) −2.77910 + 4.81355i −0.592507 + 1.02625i
\(23\) −4.70318 −0.980680 −0.490340 0.871531i \(-0.663127\pi\)
−0.490340 + 0.871531i \(0.663127\pi\)
\(24\) 0 0
\(25\) 2.98220 0.596440
\(26\) −4.30111 7.44975i −0.843518 1.46102i
\(27\) 0 0
\(28\) −0.876676 + 0.136119i −0.165676 + 0.0257241i
\(29\) 2.16313 + 3.74665i 0.401683 + 0.695735i 0.993929 0.110022i \(-0.0350921\pi\)
−0.592246 + 0.805757i \(0.701759\pi\)
\(30\) 0 0
\(31\) −1.79099 3.10208i −0.321670 0.557150i 0.659162 0.752001i \(-0.270911\pi\)
−0.980833 + 0.194851i \(0.937578\pi\)
\(32\) −0.938949 1.62631i −0.165984 0.287493i
\(33\) 0 0
\(34\) −2.44676 4.23792i −0.419616 0.726797i
\(35\) −2.70001 + 6.97032i −0.456386 + 1.17820i
\(36\) 0 0
\(37\) 2.15578 + 3.73392i 0.354408 + 0.613852i 0.987016 0.160619i \(-0.0513492\pi\)
−0.632609 + 0.774472i \(0.718016\pi\)
\(38\) −6.22102 −1.00918
\(39\) 0 0
\(40\) −7.18728 −1.13641
\(41\) 1.57596 2.72964i 0.246123 0.426298i −0.716324 0.697768i \(-0.754177\pi\)
0.962447 + 0.271470i \(0.0875099\pi\)
\(42\) 0 0
\(43\) 4.59663 + 7.96159i 0.700979 + 1.21413i 0.968123 + 0.250475i \(0.0805867\pi\)
−0.267144 + 0.963657i \(0.586080\pi\)
\(44\) 0.609809 + 1.05622i 0.0919322 + 0.159231i
\(45\) 0 0
\(46\) −3.59364 + 6.22437i −0.529854 + 0.917733i
\(47\) 2.42321 4.19713i 0.353462 0.612215i −0.633391 0.773832i \(-0.718338\pi\)
0.986854 + 0.161617i \(0.0516710\pi\)
\(48\) 0 0
\(49\) −5.17342 4.71548i −0.739060 0.673640i
\(50\) 2.27866 3.94676i 0.322252 0.558157i
\(51\) 0 0
\(52\) −1.88756 −0.261757
\(53\) 7.06707 12.2405i 0.970736 1.68136i 0.277395 0.960756i \(-0.410529\pi\)
0.693342 0.720609i \(-0.256138\pi\)
\(54\) 0 0
\(55\) 10.2760 1.38561
\(56\) 2.43113 6.27617i 0.324873 0.838689i
\(57\) 0 0
\(58\) 6.61128 0.868104
\(59\) 0.750489 + 1.29988i 0.0977053 + 0.169231i 0.910734 0.412992i \(-0.135516\pi\)
−0.813029 + 0.582223i \(0.802183\pi\)
\(60\) 0 0
\(61\) −6.60254 + 11.4359i −0.845369 + 1.46422i 0.0399317 + 0.999202i \(0.487286\pi\)
−0.885301 + 0.465019i \(0.846047\pi\)
\(62\) −5.47388 −0.695184
\(63\) 0 0
\(64\) 6.24665 0.780831
\(65\) −7.95186 + 13.7730i −0.986307 + 1.70833i
\(66\) 0 0
\(67\) 6.34108 + 10.9831i 0.774686 + 1.34180i 0.934971 + 0.354725i \(0.115425\pi\)
−0.160285 + 0.987071i \(0.551241\pi\)
\(68\) −1.07377 −0.130214
\(69\) 0 0
\(70\) 7.16175 + 8.89924i 0.855992 + 1.06366i
\(71\) 2.91413 0.345844 0.172922 0.984936i \(-0.444679\pi\)
0.172922 + 0.984936i \(0.444679\pi\)
\(72\) 0 0
\(73\) −1.46456 + 2.53670i −0.171414 + 0.296898i −0.938914 0.344151i \(-0.888167\pi\)
0.767500 + 0.641048i \(0.221500\pi\)
\(74\) 6.58882 0.765935
\(75\) 0 0
\(76\) −0.682529 + 1.18217i −0.0782914 + 0.135605i
\(77\) −3.47589 + 8.97330i −0.396114 + 1.02260i
\(78\) 0 0
\(79\) −0.446763 + 0.773817i −0.0502648 + 0.0870612i −0.890063 0.455837i \(-0.849340\pi\)
0.839798 + 0.542899i \(0.182673\pi\)
\(80\) −6.43910 + 11.1528i −0.719913 + 1.24693i
\(81\) 0 0
\(82\) −2.40834 4.17137i −0.265957 0.460651i
\(83\) 4.02432 + 6.97032i 0.441726 + 0.765092i 0.997818 0.0660291i \(-0.0210330\pi\)
−0.556092 + 0.831121i \(0.687700\pi\)
\(84\) 0 0
\(85\) −4.52356 + 7.83503i −0.490648 + 0.849828i
\(86\) 14.0489 1.51493
\(87\) 0 0
\(88\) −9.25262 −0.986332
\(89\) 2.82863 + 4.89934i 0.299835 + 0.519329i 0.976098 0.217331i \(-0.0697352\pi\)
−0.676263 + 0.736660i \(0.736402\pi\)
\(90\) 0 0
\(91\) −9.33731 11.6026i −0.978816 1.21628i
\(92\) 0.788541 + 1.36579i 0.0822111 + 0.142394i
\(93\) 0 0
\(94\) −3.70310 6.41396i −0.381946 0.661549i
\(95\) 5.75068 + 9.96047i 0.590007 + 1.02192i
\(96\) 0 0
\(97\) −2.56789 4.44772i −0.260730 0.451598i 0.705706 0.708505i \(-0.250630\pi\)
−0.966436 + 0.256907i \(0.917297\pi\)
\(98\) −10.1936 + 3.24366i −1.02971 + 0.327660i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) −2.52446 −0.251193 −0.125597 0.992081i \(-0.540085\pi\)
−0.125597 + 0.992081i \(0.540085\pi\)
\(102\) 0 0
\(103\) 9.84642 0.970196 0.485098 0.874460i \(-0.338784\pi\)
0.485098 + 0.874460i \(0.338784\pi\)
\(104\) 7.15997 12.4014i 0.702092 1.21606i
\(105\) 0 0
\(106\) −10.7997 18.7057i −1.04896 1.81686i
\(107\) 1.35126 + 2.34045i 0.130631 + 0.226260i 0.923920 0.382586i \(-0.124966\pi\)
−0.793289 + 0.608845i \(0.791633\pi\)
\(108\) 0 0
\(109\) 4.52873 7.84400i 0.433774 0.751319i −0.563421 0.826170i \(-0.690515\pi\)
0.997195 + 0.0748515i \(0.0238483\pi\)
\(110\) 7.85174 13.5996i 0.748634 1.29667i
\(111\) 0 0
\(112\) −7.56098 9.39533i −0.714445 0.887775i
\(113\) 0.232888 0.403374i 0.0219082 0.0379462i −0.854863 0.518853i \(-0.826359\pi\)
0.876772 + 0.480907i \(0.159692\pi\)
\(114\) 0 0
\(115\) 13.2878 1.23909
\(116\) 0.725346 1.25634i 0.0673467 0.116648i
\(117\) 0 0
\(118\) 2.29376 0.211158
\(119\) −5.31169 6.60035i −0.486922 0.605053i
\(120\) 0 0
\(121\) 2.22885 0.202623
\(122\) 10.0898 + 17.4761i 0.913492 + 1.58221i
\(123\) 0 0
\(124\) −0.600558 + 1.04020i −0.0539317 + 0.0934125i
\(125\) 5.70084 0.509899
\(126\) 0 0
\(127\) −15.7574 −1.39825 −0.699123 0.715002i \(-0.746426\pi\)
−0.699123 + 0.715002i \(0.746426\pi\)
\(128\) 6.65089 11.5197i 0.587861 1.01821i
\(129\) 0 0
\(130\) 12.1518 + 21.0476i 1.06579 + 1.84600i
\(131\) −12.1479 −1.06137 −0.530685 0.847569i \(-0.678065\pi\)
−0.530685 + 0.847569i \(0.678065\pi\)
\(132\) 0 0
\(133\) −10.6430 + 1.65251i −0.922865 + 0.143291i
\(134\) 19.3806 1.67423
\(135\) 0 0
\(136\) 4.07307 7.05477i 0.349263 0.604941i
\(137\) −2.16337 −0.184829 −0.0924146 0.995721i \(-0.529459\pi\)
−0.0924146 + 0.995721i \(0.529459\pi\)
\(138\) 0 0
\(139\) 10.7257 18.5775i 0.909743 1.57572i 0.0953212 0.995447i \(-0.469612\pi\)
0.814421 0.580274i \(-0.197054\pi\)
\(140\) 2.47685 0.384575i 0.209332 0.0325025i
\(141\) 0 0
\(142\) 2.22665 3.85668i 0.186857 0.323645i
\(143\) −10.2369 + 17.7308i −0.856053 + 1.48273i
\(144\) 0 0
\(145\) −6.11144 10.5853i −0.507528 0.879063i
\(146\) 2.23811 + 3.87652i 0.185227 + 0.320823i
\(147\) 0 0
\(148\) 0.722881 1.25207i 0.0594205 0.102919i
\(149\) 11.0972 0.909121 0.454561 0.890716i \(-0.349796\pi\)
0.454561 + 0.890716i \(0.349796\pi\)
\(150\) 0 0
\(151\) 2.08710 0.169846 0.0849228 0.996388i \(-0.472936\pi\)
0.0849228 + 0.996388i \(0.472936\pi\)
\(152\) −5.17799 8.96855i −0.419991 0.727445i
\(153\) 0 0
\(154\) 9.21974 + 11.4565i 0.742948 + 0.923193i
\(155\) 5.06003 + 8.76423i 0.406432 + 0.703960i
\(156\) 0 0
\(157\) 10.8077 + 18.7194i 0.862547 + 1.49397i 0.869463 + 0.493998i \(0.164465\pi\)
−0.00691621 + 0.999976i \(0.502202\pi\)
\(158\) 0.682733 + 1.18253i 0.0543153 + 0.0940769i
\(159\) 0 0
\(160\) 2.65279 + 4.59477i 0.209722 + 0.363249i
\(161\) −4.49465 + 11.6033i −0.354228 + 0.914471i
\(162\) 0 0
\(163\) 4.69122 + 8.12543i 0.367444 + 0.636432i 0.989165 0.146807i \(-0.0468995\pi\)
−0.621721 + 0.783239i \(0.713566\pi\)
\(164\) −1.05691 −0.0825307
\(165\) 0 0
\(166\) 12.2997 0.954644
\(167\) −8.70235 + 15.0729i −0.673408 + 1.16638i 0.303523 + 0.952824i \(0.401837\pi\)
−0.976931 + 0.213553i \(0.931496\pi\)
\(168\) 0 0
\(169\) −9.34327 16.1830i −0.718713 1.24485i
\(170\) 6.91279 + 11.9733i 0.530187 + 0.918310i
\(171\) 0 0
\(172\) 1.54135 2.66970i 0.117527 0.203563i
\(173\) 10.7738 18.6607i 0.819116 1.41875i −0.0872187 0.996189i \(-0.527798\pi\)
0.906334 0.422561i \(-0.138869\pi\)
\(174\) 0 0
\(175\) 2.84998 7.35747i 0.215438 0.556172i
\(176\) −8.28943 + 14.3577i −0.624840 + 1.08225i
\(177\) 0 0
\(178\) 8.64530 0.647993
\(179\) −2.82863 + 4.89934i −0.211422 + 0.366194i −0.952160 0.305601i \(-0.901143\pi\)
0.740738 + 0.671794i \(0.234476\pi\)
\(180\) 0 0
\(181\) 1.12427 0.0835664 0.0417832 0.999127i \(-0.486696\pi\)
0.0417832 + 0.999127i \(0.486696\pi\)
\(182\) −22.4899 + 3.49194i −1.66706 + 0.258840i
\(183\) 0 0
\(184\) −11.9645 −0.882035
\(185\) −6.09067 10.5494i −0.447795 0.775604i
\(186\) 0 0
\(187\) −5.82344 + 10.0865i −0.425852 + 0.737597i
\(188\) −1.62512 −0.118524
\(189\) 0 0
\(190\) 17.5761 1.27510
\(191\) −1.96950 + 3.41127i −0.142508 + 0.246831i −0.928440 0.371481i \(-0.878850\pi\)
0.785932 + 0.618312i \(0.212183\pi\)
\(192\) 0 0
\(193\) −9.04339 15.6636i −0.650957 1.12749i −0.982891 0.184189i \(-0.941034\pi\)
0.331933 0.943303i \(-0.392299\pi\)
\(194\) −7.84838 −0.563481
\(195\) 0 0
\(196\) −0.501983 + 2.29295i −0.0358560 + 0.163782i
\(197\) 25.4842 1.81567 0.907836 0.419326i \(-0.137734\pi\)
0.907836 + 0.419326i \(0.137734\pi\)
\(198\) 0 0
\(199\) −6.31454 + 10.9371i −0.447626 + 0.775311i −0.998231 0.0594551i \(-0.981064\pi\)
0.550605 + 0.834766i \(0.314397\pi\)
\(200\) 7.58648 0.536445
\(201\) 0 0
\(202\) −1.92891 + 3.34097i −0.135718 + 0.235070i
\(203\) 11.3107 1.75618i 0.793854 0.123260i
\(204\) 0 0
\(205\) −4.45252 + 7.71199i −0.310977 + 0.538629i
\(206\) 7.52353 13.0311i 0.524189 0.907922i
\(207\) 0 0
\(208\) −12.8292 22.2209i −0.889548 1.54074i
\(209\) 7.40319 + 12.8227i 0.512089 + 0.886965i
\(210\) 0 0
\(211\) −1.15578 + 2.00187i −0.0795670 + 0.137814i −0.903063 0.429508i \(-0.858687\pi\)
0.823496 + 0.567322i \(0.192020\pi\)
\(212\) −4.73950 −0.325510
\(213\) 0 0
\(214\) 4.12992 0.282316
\(215\) −12.9868 22.4937i −0.885689 1.53406i
\(216\) 0 0
\(217\) −9.36479 + 1.45405i −0.635724 + 0.0987071i
\(218\) −6.92070 11.9870i −0.468729 0.811863i
\(219\) 0 0
\(220\) −1.72288 2.98412i −0.116157 0.201189i
\(221\) −9.01272 15.6105i −0.606261 1.05008i
\(222\) 0 0
\(223\) −4.64981 8.05371i −0.311374 0.539316i 0.667286 0.744802i \(-0.267456\pi\)
−0.978660 + 0.205486i \(0.934123\pi\)
\(224\) −4.90963 + 0.762304i −0.328038 + 0.0509336i
\(225\) 0 0
\(226\) −0.355894 0.616426i −0.0236737 0.0410040i
\(227\) −1.92818 −0.127978 −0.0639890 0.997951i \(-0.520382\pi\)
−0.0639890 + 0.997951i \(0.520382\pi\)
\(228\) 0 0
\(229\) 3.34118 0.220792 0.110396 0.993888i \(-0.464788\pi\)
0.110396 + 0.993888i \(0.464788\pi\)
\(230\) 10.1530 17.5856i 0.669472 1.15956i
\(231\) 0 0
\(232\) 5.50283 + 9.53117i 0.361278 + 0.625752i
\(233\) −10.5758 18.3178i −0.692842 1.20004i −0.970903 0.239474i \(-0.923025\pi\)
0.278061 0.960563i \(-0.410308\pi\)
\(234\) 0 0
\(235\) −6.84626 + 11.8581i −0.446601 + 0.773535i
\(236\) 0.251656 0.435881i 0.0163814 0.0283734i
\(237\) 0 0
\(238\) −12.7938 + 1.98645i −0.829296 + 0.128763i
\(239\) 12.0575 20.8843i 0.779937 1.35089i −0.152041 0.988374i \(-0.548584\pi\)
0.931978 0.362516i \(-0.118082\pi\)
\(240\) 0 0
\(241\) 9.23439 0.594840 0.297420 0.954747i \(-0.403874\pi\)
0.297420 + 0.954747i \(0.403874\pi\)
\(242\) 1.70304 2.94975i 0.109475 0.189617i
\(243\) 0 0
\(244\) 4.42796 0.283471
\(245\) 14.6163 + 13.3225i 0.933804 + 0.851146i
\(246\) 0 0
\(247\) −22.9153 −1.45807
\(248\) −4.55612 7.89144i −0.289314 0.501107i
\(249\) 0 0
\(250\) 4.35595 7.54472i 0.275494 0.477170i
\(251\) −18.5790 −1.17270 −0.586349 0.810058i \(-0.699435\pi\)
−0.586349 + 0.810058i \(0.699435\pi\)
\(252\) 0 0
\(253\) 17.1062 1.07545
\(254\) −12.0401 + 20.8540i −0.755461 + 1.30850i
\(255\) 0 0
\(256\) −3.91708 6.78458i −0.244818 0.424037i
\(257\) 10.2197 0.637490 0.318745 0.947841i \(-0.396739\pi\)
0.318745 + 0.947841i \(0.396739\pi\)
\(258\) 0 0
\(259\) 11.2722 1.75021i 0.700423 0.108753i
\(260\) 5.33288 0.330731
\(261\) 0 0
\(262\) −9.28209 + 16.0770i −0.573449 + 0.993243i
\(263\) −9.13775 −0.563458 −0.281729 0.959494i \(-0.590908\pi\)
−0.281729 + 0.959494i \(0.590908\pi\)
\(264\) 0 0
\(265\) −19.9664 + 34.5829i −1.22653 + 2.12441i
\(266\) −5.94519 + 15.3480i −0.364523 + 0.941048i
\(267\) 0 0
\(268\) 2.12631 3.68287i 0.129885 0.224967i
\(269\) −11.4606 + 19.8504i −0.698767 + 1.21030i 0.270127 + 0.962825i \(0.412934\pi\)
−0.968894 + 0.247475i \(0.920399\pi\)
\(270\) 0 0
\(271\) 4.65781 + 8.06757i 0.282942 + 0.490070i 0.972108 0.234533i \(-0.0753562\pi\)
−0.689166 + 0.724604i \(0.742023\pi\)
\(272\) −7.29814 12.6408i −0.442515 0.766458i
\(273\) 0 0
\(274\) −1.65301 + 2.86309i −0.0998617 + 0.172966i
\(275\) −10.8467 −0.654081
\(276\) 0 0
\(277\) 0.183318 0.0110145 0.00550725 0.999985i \(-0.498247\pi\)
0.00550725 + 0.999985i \(0.498247\pi\)
\(278\) −16.3908 28.3896i −0.983053 1.70270i
\(279\) 0 0
\(280\) −6.86862 + 17.7319i −0.410479 + 1.05969i
\(281\) 8.10097 + 14.0313i 0.483263 + 0.837037i 0.999815 0.0192190i \(-0.00611799\pi\)
−0.516552 + 0.856256i \(0.672785\pi\)
\(282\) 0 0
\(283\) −10.3492 17.9253i −0.615195 1.06555i −0.990350 0.138588i \(-0.955744\pi\)
0.375155 0.926962i \(-0.377590\pi\)
\(284\) −0.488588 0.846258i −0.0289923 0.0502162i
\(285\) 0 0
\(286\) 15.6438 + 27.0958i 0.925037 + 1.60221i
\(287\) −5.22828 6.49670i −0.308615 0.383488i
\(288\) 0 0
\(289\) 3.37296 + 5.84213i 0.198409 + 0.343655i
\(290\) −18.6787 −1.09685
\(291\) 0 0
\(292\) 0.982202 0.0574790
\(293\) −8.01170 + 13.8767i −0.468049 + 0.810684i −0.999333 0.0365093i \(-0.988376\pi\)
0.531285 + 0.847193i \(0.321709\pi\)
\(294\) 0 0
\(295\) −2.12034 3.67254i −0.123451 0.213823i
\(296\) 5.48413 + 9.49879i 0.318758 + 0.552106i
\(297\) 0 0
\(298\) 8.47927 14.6865i 0.491191 0.850768i
\(299\) −13.2373 + 22.9276i −0.765532 + 1.32594i
\(300\) 0 0
\(301\) 24.0351 3.73186i 1.38536 0.215101i
\(302\) 1.59473 2.76215i 0.0917662 0.158944i
\(303\) 0 0
\(304\) −18.5559 −1.06425
\(305\) 18.6540 32.3097i 1.06813 1.85005i
\(306\) 0 0
\(307\) −5.32307 −0.303804 −0.151902 0.988396i \(-0.548540\pi\)
−0.151902 + 0.988396i \(0.548540\pi\)
\(308\) 3.18860 0.495086i 0.181687 0.0282101i
\(309\) 0 0
\(310\) 15.4652 0.878367
\(311\) −9.21297 15.9573i −0.522420 0.904857i −0.999660 0.0260843i \(-0.991696\pi\)
0.477240 0.878773i \(-0.341637\pi\)
\(312\) 0 0
\(313\) −2.32344 + 4.02432i −0.131329 + 0.227468i −0.924189 0.381936i \(-0.875258\pi\)
0.792860 + 0.609403i \(0.208591\pi\)
\(314\) 33.0321 1.86411
\(315\) 0 0
\(316\) 0.299620 0.0168549
\(317\) 5.24006 9.07606i 0.294311 0.509762i −0.680513 0.732736i \(-0.738243\pi\)
0.974824 + 0.222974i \(0.0715764\pi\)
\(318\) 0 0
\(319\) −7.86762 13.6271i −0.440502 0.762972i
\(320\) −17.6485 −0.986582
\(321\) 0 0
\(322\) 11.9220 + 14.8144i 0.664387 + 0.825572i
\(323\) −13.0358 −0.725329
\(324\) 0 0
\(325\) 8.39353 14.5380i 0.465589 0.806424i
\(326\) 14.3380 0.794109
\(327\) 0 0
\(328\) 4.00911 6.94398i 0.221366 0.383417i
\(329\) −8.03907 9.98942i −0.443209 0.550734i
\(330\) 0 0
\(331\) −6.42677 + 11.1315i −0.353247 + 0.611842i −0.986816 0.161844i \(-0.948256\pi\)
0.633569 + 0.773686i \(0.281589\pi\)
\(332\) 1.34944 2.33731i 0.0740604 0.128276i
\(333\) 0 0
\(334\) 13.2987 + 23.0341i 0.727674 + 1.26037i
\(335\) −17.9153 31.0302i −0.978818 1.69536i
\(336\) 0 0
\(337\) −3.64609 + 6.31521i −0.198615 + 0.344012i −0.948080 0.318033i \(-0.896978\pi\)
0.749464 + 0.662045i \(0.230311\pi\)
\(338\) −28.5563 −1.55326
\(339\) 0 0
\(340\) 3.03370 0.164526
\(341\) 6.51408 + 11.2827i 0.352757 + 0.610993i
\(342\) 0 0
\(343\) −16.5777 + 8.25707i −0.895113 + 0.445840i
\(344\) 11.6935 + 20.2537i 0.630469 + 1.09200i
\(345\) 0 0
\(346\) −16.4642 28.5169i −0.885123 1.53308i
\(347\) −8.76942 15.1891i −0.470767 0.815392i 0.528674 0.848825i \(-0.322689\pi\)
−0.999441 + 0.0334327i \(0.989356\pi\)
\(348\) 0 0
\(349\) −10.5080 18.2004i −0.562481 0.974245i −0.997279 0.0737172i \(-0.976514\pi\)
0.434799 0.900528i \(-0.356820\pi\)
\(350\) −7.55953 9.39353i −0.404074 0.502105i
\(351\) 0 0
\(352\) 3.41510 + 5.91512i 0.182025 + 0.315277i
\(353\) 5.05338 0.268965 0.134482 0.990916i \(-0.457063\pi\)
0.134482 + 0.990916i \(0.457063\pi\)
\(354\) 0 0
\(355\) −8.23324 −0.436975
\(356\) 0.948505 1.64286i 0.0502707 0.0870713i
\(357\) 0 0
\(358\) 4.32265 + 7.48705i 0.228459 + 0.395703i
\(359\) 7.23806 + 12.5367i 0.382010 + 0.661661i 0.991349 0.131249i \(-0.0418986\pi\)
−0.609339 + 0.792910i \(0.708565\pi\)
\(360\) 0 0
\(361\) 1.21398 2.10268i 0.0638938 0.110667i
\(362\) 0.859042 1.48791i 0.0451503 0.0782026i
\(363\) 0 0
\(364\) −1.80387 + 4.65684i −0.0945484 + 0.244085i
\(365\) 4.13780 7.16687i 0.216582 0.375131i
\(366\) 0 0
\(367\) 14.9228 0.778966 0.389483 0.921034i \(-0.372654\pi\)
0.389483 + 0.921034i \(0.372654\pi\)
\(368\) −10.7190 + 18.5659i −0.558768 + 0.967814i
\(369\) 0 0
\(370\) −18.6152 −0.967761
\(371\) −23.4452 29.1332i −1.21721 1.51252i
\(372\) 0 0
\(373\) 7.82107 0.404960 0.202480 0.979286i \(-0.435100\pi\)
0.202480 + 0.979286i \(0.435100\pi\)
\(374\) 8.89924 + 15.4139i 0.460169 + 0.797036i
\(375\) 0 0
\(376\) 6.16447 10.6772i 0.317908 0.550633i
\(377\) 24.3528 1.25424
\(378\) 0 0
\(379\) 11.6097 0.596350 0.298175 0.954511i \(-0.403622\pi\)
0.298175 + 0.954511i \(0.403622\pi\)
\(380\) 1.92833 3.33997i 0.0989214 0.171337i
\(381\) 0 0
\(382\) 3.00974 + 5.21303i 0.153992 + 0.266722i
\(383\) 25.0764 1.28134 0.640672 0.767814i \(-0.278656\pi\)
0.640672 + 0.767814i \(0.278656\pi\)
\(384\) 0 0
\(385\) 9.82035 25.3521i 0.500491 1.29206i
\(386\) −27.6398 −1.40683
\(387\) 0 0
\(388\) −0.861073 + 1.49142i −0.0437143 + 0.0757155i
\(389\) 23.4993 1.19146 0.595732 0.803184i \(-0.296862\pi\)
0.595732 + 0.803184i \(0.296862\pi\)
\(390\) 0 0
\(391\) −7.53026 + 13.0428i −0.380822 + 0.659602i
\(392\) −13.1608 11.9958i −0.664719 0.605880i
\(393\) 0 0
\(394\) 19.4721 33.7267i 0.980992 1.69913i
\(395\) 1.26223 2.18625i 0.0635098 0.110002i
\(396\) 0 0
\(397\) 9.86170 + 17.0810i 0.494945 + 0.857269i 0.999983 0.00582755i \(-0.00185498\pi\)
−0.505038 + 0.863097i \(0.668522\pi\)
\(398\) 9.64973 + 16.7138i 0.483697 + 0.837788i
\(399\) 0 0
\(400\) 6.79674 11.7723i 0.339837 0.588615i
\(401\) 14.3797 0.718086 0.359043 0.933321i \(-0.383103\pi\)
0.359043 + 0.933321i \(0.383103\pi\)
\(402\) 0 0
\(403\) −20.1632 −1.00440
\(404\) 0.423255 + 0.733099i 0.0210577 + 0.0364730i
\(405\) 0 0
\(406\) 6.31816 16.3109i 0.313565 0.809495i
\(407\) −7.84089 13.5808i −0.388658 0.673176i
\(408\) 0 0
\(409\) 5.78795 + 10.0250i 0.286196 + 0.495705i 0.972898 0.231233i \(-0.0742759\pi\)
−0.686703 + 0.726938i \(0.740943\pi\)
\(410\) 6.80424 + 11.7853i 0.336037 + 0.582034i
\(411\) 0 0
\(412\) −1.65086 2.85938i −0.0813322 0.140872i
\(413\) 3.92419 0.609299i 0.193097 0.0299816i
\(414\) 0 0
\(415\) −11.3698 19.6931i −0.558122 0.966696i
\(416\) −10.5708 −0.518278
\(417\) 0 0
\(418\) 22.6268 1.10671
\(419\) −17.0860 + 29.5939i −0.834708 + 1.44576i 0.0595598 + 0.998225i \(0.481030\pi\)
−0.894268 + 0.447532i \(0.852303\pi\)
\(420\) 0 0
\(421\) 5.11065 + 8.85191i 0.249078 + 0.431416i 0.963270 0.268534i \(-0.0865391\pi\)
−0.714192 + 0.699950i \(0.753206\pi\)
\(422\) 1.76623 + 3.05920i 0.0859789 + 0.148920i
\(423\) 0 0
\(424\) 17.9781 31.1389i 0.873092 1.51224i
\(425\) 4.77480 8.27020i 0.231612 0.401164i
\(426\) 0 0
\(427\) 21.9041 + 27.2182i 1.06001 + 1.31718i
\(428\) 0.453108 0.784806i 0.0219018 0.0379350i
\(429\) 0 0
\(430\) −39.6921 −1.91412
\(431\) 0.0380526 0.0659090i 0.00183293 0.00317472i −0.865107 0.501587i \(-0.832750\pi\)
0.866940 + 0.498412i \(0.166083\pi\)
\(432\) 0 0
\(433\) −29.2697 −1.40661 −0.703305 0.710888i \(-0.748293\pi\)
−0.703305 + 0.710888i \(0.748293\pi\)
\(434\) −5.23118 + 13.5048i −0.251105 + 0.648249i
\(435\) 0 0
\(436\) −3.03717 −0.145454
\(437\) 9.57303 + 16.5810i 0.457940 + 0.793175i
\(438\) 0 0
\(439\) 2.17263 3.76310i 0.103694 0.179603i −0.809510 0.587106i \(-0.800267\pi\)
0.913204 + 0.407503i \(0.133600\pi\)
\(440\) 26.1412 1.24623
\(441\) 0 0
\(442\) −27.5461 −1.31023
\(443\) 10.2772 17.8006i 0.488284 0.845732i −0.511625 0.859209i \(-0.670956\pi\)
0.999909 + 0.0134764i \(0.00428979\pi\)
\(444\) 0 0
\(445\) −7.99168 13.8420i −0.378842 0.656173i
\(446\) −14.2115 −0.672932
\(447\) 0 0
\(448\) 5.96969 15.4113i 0.282041 0.728114i
\(449\) −12.4720 −0.588588 −0.294294 0.955715i \(-0.595085\pi\)
−0.294294 + 0.955715i \(0.595085\pi\)
\(450\) 0 0
\(451\) −5.73199 + 9.92810i −0.269909 + 0.467496i
\(452\) −0.156185 −0.00734633
\(453\) 0 0
\(454\) −1.47330 + 2.55183i −0.0691455 + 0.119764i
\(455\) 26.3805 + 32.7806i 1.23674 + 1.53678i
\(456\) 0 0
\(457\) 15.4674 26.7903i 0.723534 1.25320i −0.236041 0.971743i \(-0.575850\pi\)
0.959575 0.281454i \(-0.0908168\pi\)
\(458\) 2.55296 4.42186i 0.119292 0.206620i
\(459\) 0 0
\(460\) −2.22785 3.85875i −0.103874 0.179915i
\(461\) −4.01141 6.94796i −0.186830 0.323599i 0.757362 0.652995i \(-0.226488\pi\)
−0.944192 + 0.329397i \(0.893155\pi\)
\(462\) 0 0
\(463\) 8.41117 14.5686i 0.390900 0.677059i −0.601668 0.798746i \(-0.705497\pi\)
0.992569 + 0.121687i \(0.0388305\pi\)
\(464\) 19.7200 0.915476
\(465\) 0 0
\(466\) −32.3233 −1.49735
\(467\) −0.480399 0.832075i −0.0222302 0.0385038i 0.854696 0.519128i \(-0.173743\pi\)
−0.876926 + 0.480625i \(0.840410\pi\)
\(468\) 0 0
\(469\) 33.1566 5.14813i 1.53103 0.237719i
\(470\) 10.4623 + 18.1212i 0.482589 + 0.835869i
\(471\) 0 0
\(472\) 1.90918 + 3.30680i 0.0878773 + 0.152208i
\(473\) −16.7186 28.9575i −0.768723 1.33147i
\(474\) 0 0
\(475\) −6.07009 10.5137i −0.278515 0.482402i
\(476\) −1.02616 + 2.64913i −0.0470341 + 0.121423i
\(477\) 0 0
\(478\) −18.4260 31.9148i −0.842787 1.45975i
\(479\) 24.1290 1.10248 0.551242 0.834346i \(-0.314154\pi\)
0.551242 + 0.834346i \(0.314154\pi\)
\(480\) 0 0
\(481\) 24.2701 1.10662
\(482\) 7.05589 12.2212i 0.321387 0.556659i
\(483\) 0 0
\(484\) −0.373692 0.647253i −0.0169860 0.0294206i
\(485\) 7.25501 + 12.5661i 0.329433 + 0.570595i
\(486\) 0 0
\(487\) −7.39944 + 12.8162i −0.335301 + 0.580758i −0.983543 0.180677i \(-0.942171\pi\)
0.648242 + 0.761435i \(0.275505\pi\)
\(488\) −16.7963 + 29.0921i −0.760335 + 1.31694i
\(489\) 0 0
\(490\) 28.7998 9.16426i 1.30104 0.413999i
\(491\) −3.15192 + 5.45928i −0.142244 + 0.246374i −0.928341 0.371729i \(-0.878765\pi\)
0.786097 + 0.618103i \(0.212098\pi\)
\(492\) 0 0
\(493\) 13.8535 0.623932
\(494\) −17.5093 + 30.3270i −0.787781 + 1.36448i
\(495\) 0 0
\(496\) −16.3274 −0.733120
\(497\) 2.78493 7.18953i 0.124921 0.322495i
\(498\) 0 0
\(499\) −28.5971 −1.28018 −0.640092 0.768298i \(-0.721104\pi\)
−0.640092 + 0.768298i \(0.721104\pi\)
\(500\) −0.955811 1.65551i −0.0427452 0.0740368i
\(501\) 0 0
\(502\) −14.1960 + 24.5882i −0.633600 + 1.09743i
\(503\) −35.4133 −1.57900 −0.789500 0.613750i \(-0.789660\pi\)
−0.789500 + 0.613750i \(0.789660\pi\)
\(504\) 0 0
\(505\) 7.13231 0.317384
\(506\) 13.0706 22.6390i 0.581060 1.00642i
\(507\) 0 0
\(508\) 2.64191 + 4.57592i 0.117216 + 0.203024i
\(509\) 32.4883 1.44002 0.720010 0.693964i \(-0.244137\pi\)
0.720010 + 0.693964i \(0.244137\pi\)
\(510\) 0 0
\(511\) 4.85872 + 6.03748i 0.214937 + 0.267083i
\(512\) 14.6316 0.646630
\(513\) 0 0
\(514\) 7.80878 13.5252i 0.344431 0.596571i
\(515\) −27.8189 −1.22585
\(516\) 0 0
\(517\) −8.81359 + 15.2656i −0.387621 + 0.671380i
\(518\) 6.29669 16.2554i 0.276661 0.714223i
\(519\) 0 0
\(520\) −20.2289 + 35.0375i −0.887096 + 1.53650i
\(521\) 16.4909 28.5631i 0.722479 1.25137i −0.237524 0.971382i \(-0.576336\pi\)
0.960003 0.279989i \(-0.0903308\pi\)
\(522\) 0 0
\(523\) −7.13133 12.3518i −0.311831 0.540108i 0.666928 0.745123i \(-0.267609\pi\)
−0.978759 + 0.205015i \(0.934276\pi\)
\(524\) 2.03674 + 3.52773i 0.0889753 + 0.154110i
\(525\) 0 0
\(526\) −6.98204 + 12.0933i −0.304432 + 0.527291i
\(527\) −11.4702 −0.499649
\(528\) 0 0
\(529\) −0.880118 −0.0382660
\(530\) 30.5122 + 52.8487i 1.32537 + 2.29560i
\(531\) 0 0
\(532\) 2.26431 + 2.81364i 0.0981701 + 0.121987i
\(533\) −8.87119 15.3654i −0.384254 0.665547i
\(534\) 0 0
\(535\) −3.81768 6.61242i −0.165053 0.285880i
\(536\) 16.1312 + 27.9401i 0.696762 + 1.20683i
\(537\) 0 0
\(538\) 17.5139 + 30.3349i 0.755076 + 1.30783i
\(539\) 18.8165 + 17.1509i 0.810484 + 0.738742i
\(540\) 0 0
\(541\) 7.99105 + 13.8409i 0.343562 + 0.595067i 0.985091 0.172032i \(-0.0550331\pi\)
−0.641529 + 0.767098i \(0.721700\pi\)
\(542\) 14.2359 0.611485
\(543\) 0 0
\(544\) −6.01341 −0.257823
\(545\) −12.7949 + 22.1615i −0.548075 + 0.949294i
\(546\) 0 0
\(547\) 16.0285 + 27.7622i 0.685330 + 1.18703i 0.973333 + 0.229397i \(0.0736754\pi\)
−0.288003 + 0.957630i \(0.592991\pi\)
\(548\) 0.362714 + 0.628238i 0.0154944 + 0.0268370i
\(549\) 0 0
\(550\) −8.28784 + 14.3550i −0.353395 + 0.612098i
\(551\) 8.80583 15.2521i 0.375141 0.649763i
\(552\) 0 0
\(553\) 1.48215 + 1.84173i 0.0630274 + 0.0783183i
\(554\) 0.140071 0.242610i 0.00595105 0.0103075i
\(555\) 0 0
\(556\) −7.19315 −0.305057
\(557\) −19.6474 + 34.0302i −0.832486 + 1.44191i 0.0635754 + 0.997977i \(0.479750\pi\)
−0.896061 + 0.443931i \(0.853584\pi\)
\(558\) 0 0
\(559\) 51.7496 2.18877
\(560\) 21.3619 + 26.5444i 0.902704 + 1.12171i
\(561\) 0 0
\(562\) 24.7594 1.04441
\(563\) 17.2532 + 29.8834i 0.727134 + 1.25943i 0.958089 + 0.286469i \(0.0924816\pi\)
−0.230955 + 0.972964i \(0.574185\pi\)
\(564\) 0 0
\(565\) −0.657973 + 1.13964i −0.0276811 + 0.0479451i
\(566\) −31.6308 −1.32954
\(567\) 0 0
\(568\) 7.41332 0.311056
\(569\) −2.14203 + 3.71010i −0.0897985 + 0.155536i −0.907426 0.420212i \(-0.861956\pi\)
0.817627 + 0.575748i \(0.195289\pi\)
\(570\) 0 0
\(571\) −12.5798 21.7888i −0.526447 0.911833i −0.999525 0.0308128i \(-0.990190\pi\)
0.473078 0.881021i \(-0.343143\pi\)
\(572\) 6.86533 0.287054
\(573\) 0 0
\(574\) −12.5929 + 1.95526i −0.525616 + 0.0816109i
\(575\) −14.0258 −0.584917
\(576\) 0 0
\(577\) 22.1281 38.3271i 0.921206 1.59558i 0.123655 0.992325i \(-0.460539\pi\)
0.797552 0.603251i \(-0.206128\pi\)
\(578\) 10.3089 0.428795
\(579\) 0 0
\(580\) −2.04930 + 3.54950i −0.0850928 + 0.147385i
\(581\) 21.0425 3.26722i 0.872992 0.135547i
\(582\) 0 0
\(583\) −25.7040 + 44.5206i −1.06455 + 1.84385i
\(584\) −3.72573 + 6.45315i −0.154172 + 0.267033i
\(585\) 0 0
\(586\) 12.2433 + 21.2060i 0.505766 + 0.876012i
\(587\) −6.50229 11.2623i −0.268378 0.464845i 0.700065 0.714079i \(-0.253154\pi\)
−0.968443 + 0.249234i \(0.919821\pi\)
\(588\) 0 0
\(589\) −7.29088 + 12.6282i −0.300415 + 0.520335i
\(590\) −6.48051 −0.266798
\(591\) 0 0
\(592\) 19.6530 0.807731
\(593\) −14.1164 24.4503i −0.579691 1.00405i −0.995515 0.0946086i \(-0.969840\pi\)
0.415824 0.909445i \(-0.363493\pi\)
\(594\) 0 0
\(595\) 15.0070 + 18.6478i 0.615227 + 0.764486i
\(596\) −1.86058 3.22262i −0.0762123 0.132004i
\(597\) 0 0
\(598\) 20.2289 + 35.0375i 0.827221 + 1.43279i
\(599\) 2.49768 + 4.32611i 0.102052 + 0.176760i 0.912530 0.409010i \(-0.134126\pi\)
−0.810478 + 0.585769i \(0.800792\pi\)
\(600\) 0 0
\(601\) −4.07893 7.06492i −0.166383 0.288184i 0.770762 0.637123i \(-0.219876\pi\)
−0.937146 + 0.348939i \(0.886542\pi\)
\(602\) 13.4260 34.6604i 0.547204 1.41265i
\(603\) 0 0
\(604\) −0.349925 0.606089i −0.0142383 0.0246614i
\(605\) −6.29712 −0.256014
\(606\) 0 0
\(607\) 16.7277 0.678956 0.339478 0.940614i \(-0.389750\pi\)
0.339478 + 0.940614i \(0.389750\pi\)
\(608\) −3.82235 + 6.62050i −0.155017 + 0.268497i
\(609\) 0 0
\(610\) −28.5066 49.3749i −1.15420 1.99913i
\(611\) −13.6405 23.6260i −0.551834 0.955805i
\(612\) 0 0
\(613\) 8.29381 14.3653i 0.334984 0.580209i −0.648498 0.761216i \(-0.724602\pi\)
0.983482 + 0.181007i \(0.0579358\pi\)
\(614\) −4.06729 + 7.04476i −0.164143 + 0.284303i
\(615\) 0 0
\(616\) −8.84238 + 22.8274i −0.356270 + 0.919741i
\(617\) 11.8543 20.5322i 0.477235 0.826595i −0.522425 0.852685i \(-0.674972\pi\)
0.999660 + 0.0260905i \(0.00830580\pi\)
\(618\) 0 0
\(619\) −7.82412 −0.314478 −0.157239 0.987561i \(-0.550259\pi\)
−0.157239 + 0.987561i \(0.550259\pi\)
\(620\) 1.69674 2.93885i 0.0681429 0.118027i
\(621\) 0 0
\(622\) −28.1581 −1.12904
\(623\) 14.7905 2.29648i 0.592569 0.0920066i
\(624\) 0 0
\(625\) −31.0175 −1.24070
\(626\) 3.55063 + 6.14986i 0.141912 + 0.245798i
\(627\) 0 0
\(628\) 3.62406 6.27706i 0.144616 0.250482i
\(629\) 13.8065 0.550500
\(630\) 0 0
\(631\) −2.54669 −0.101382 −0.0506911 0.998714i \(-0.516142\pi\)
−0.0506911 + 0.998714i \(0.516142\pi\)
\(632\) −1.13653 + 1.96853i −0.0452088 + 0.0783039i
\(633\) 0 0
\(634\) −8.00774 13.8698i −0.318028 0.550841i
\(635\) 44.5191 1.76669
\(636\) 0 0
\(637\) −37.5484 + 11.9481i −1.48772 + 0.473402i
\(638\) −24.0462 −0.951999
\(639\) 0 0
\(640\) −18.7906 + 32.5463i −0.742764 + 1.28651i
\(641\) 10.2854 0.406248 0.203124 0.979153i \(-0.434891\pi\)
0.203124 + 0.979153i \(0.434891\pi\)
\(642\) 0 0
\(643\) 2.46063 4.26194i 0.0970378 0.168074i −0.813419 0.581678i \(-0.802397\pi\)
0.910457 + 0.413603i \(0.135730\pi\)
\(644\) 4.12316 0.640193i 0.162475 0.0252271i
\(645\) 0 0
\(646\) −9.96047 + 17.2520i −0.391890 + 0.678773i
\(647\) −4.39168 + 7.60661i −0.172655 + 0.299047i −0.939347 0.342968i \(-0.888568\pi\)
0.766692 + 0.642015i \(0.221901\pi\)
\(648\) 0 0
\(649\) −2.72964 4.72787i −0.107148 0.185585i
\(650\) −12.8268 22.2166i −0.503108 0.871409i
\(651\) 0 0
\(652\) 1.57307 2.72464i 0.0616062 0.106705i
\(653\) 1.77459 0.0694453 0.0347226 0.999397i \(-0.488945\pi\)
0.0347226 + 0.999397i \(0.488945\pi\)
\(654\) 0 0
\(655\) 34.3213 1.34104
\(656\) −7.18354 12.4423i −0.280470 0.485788i
\(657\) 0 0
\(658\) −19.3630 + 3.00643i −0.754846 + 0.117203i
\(659\) −1.17184 2.02968i −0.0456483 0.0790652i 0.842298 0.539011i \(-0.181202\pi\)
−0.887947 + 0.459946i \(0.847869\pi\)
\(660\) 0 0
\(661\) 11.4547 + 19.8401i 0.445537 + 0.771692i 0.998089 0.0617856i \(-0.0196795\pi\)
−0.552553 + 0.833478i \(0.686346\pi\)
\(662\) 9.82124 + 17.0109i 0.381713 + 0.661147i
\(663\) 0 0
\(664\) 10.2375 + 17.7319i 0.397293 + 0.688133i
\(665\) 30.0694 4.66880i 1.16604 0.181048i
\(666\) 0 0
\(667\) −10.1736 17.6212i −0.393922 0.682294i
\(668\) 5.83619 0.225809
\(669\) 0 0
\(670\) −54.7555 −2.11539
\(671\) 24.0144 41.5942i 0.927067 1.60573i
\(672\) 0 0
\(673\) 14.8675 + 25.7512i 0.573098 + 0.992636i 0.996245 + 0.0865746i \(0.0275921\pi\)
−0.423147 + 0.906061i \(0.639075\pi\)
\(674\) 5.57187 + 9.65076i 0.214620 + 0.371733i
\(675\) 0 0
\(676\) −3.13301 + 5.42654i −0.120500 + 0.208713i
\(677\) −12.7480 + 22.0802i −0.489946 + 0.848611i −0.999933 0.0115711i \(-0.996317\pi\)
0.509987 + 0.860182i \(0.329650\pi\)
\(678\) 0 0
\(679\) −13.4271 + 2.08479i −0.515286 + 0.0800070i
\(680\) −11.5076 + 19.9317i −0.441295 + 0.764345i
\(681\) 0 0
\(682\) 19.9093 0.762367
\(683\) −5.69293 + 9.86044i −0.217834 + 0.377299i −0.954145 0.299343i \(-0.903232\pi\)
0.736312 + 0.676643i \(0.236566\pi\)
\(684\) 0 0
\(685\) 6.11212 0.233532
\(686\) −1.73911 + 28.2487i −0.0663997 + 1.07854i
\(687\) 0 0
\(688\) 41.9047 1.59760
\(689\) −39.7811 68.9029i −1.51554 2.62499i
\(690\) 0 0
\(691\) 16.1261 27.9313i 0.613468 1.06256i −0.377184 0.926138i \(-0.623107\pi\)
0.990651 0.136419i \(-0.0435592\pi\)
\(692\) −7.22539 −0.274668
\(693\) 0 0
\(694\) −26.8024 −1.01741
\(695\) −30.3031 + 52.4865i −1.14946 + 1.99093i
\(696\) 0 0
\(697\) −5.04653 8.74085i −0.191151 0.331083i
\(698\) −32.1162 −1.21561
\(699\) 0 0
\(700\) −2.61442 + 0.405935i −0.0988160 + 0.0153429i
\(701\) 15.6291 0.590302 0.295151 0.955451i \(-0.404630\pi\)
0.295151 + 0.955451i \(0.404630\pi\)
\(702\) 0 0
\(703\) 8.77591 15.2003i 0.330990 0.573291i
\(704\) −22.7200 −0.856292
\(705\) 0 0
\(706\) 3.86123 6.68785i 0.145319 0.251700i
\(707\) −2.41253 + 6.22817i −0.0907327 + 0.234234i
\(708\) 0 0
\(709\) 5.90824 10.2334i 0.221888 0.384322i −0.733493 0.679697i \(-0.762111\pi\)
0.955381 + 0.295375i \(0.0954446\pi\)
\(710\) −6.29092 + 10.8962i −0.236094 + 0.408927i
\(711\) 0 0
\(712\) 7.19582 + 12.4635i 0.269675 + 0.467090i
\(713\) 8.42332 + 14.5896i 0.315456 + 0.546386i
\(714\) 0 0
\(715\) 28.9221 50.0946i 1.08163 1.87343i
\(716\) 1.89701 0.0708946
\(717\) 0 0
\(718\) 22.1221 0.825588
\(719\) 25.3616 + 43.9276i 0.945830 + 1.63822i 0.754082 + 0.656781i \(0.228082\pi\)
0.191748 + 0.981444i \(0.438584\pi\)
\(720\) 0 0
\(721\) 9.40985 24.2923i 0.350441 0.904694i
\(722\) −1.85518 3.21326i −0.0690426 0.119585i
\(723\) 0 0
\(724\) −0.188497 0.326486i −0.00700543 0.0121338i
\(725\) 6.45088 + 11.1733i 0.239580 + 0.414964i
\(726\) 0 0
\(727\) −1.13301 1.96243i −0.0420211 0.0727827i 0.844250 0.535950i \(-0.180046\pi\)
−0.886271 + 0.463167i \(0.846713\pi\)
\(728\) −23.7534 29.5161i −0.880358 1.09394i
\(729\) 0 0
\(730\) −6.32328 10.9522i −0.234035 0.405361i
\(731\) 29.4386 1.08883
\(732\) 0 0
\(733\) −33.6524 −1.24298 −0.621490 0.783422i \(-0.713472\pi\)
−0.621490 + 0.783422i \(0.713472\pi\)
\(734\) 11.4024 19.7495i 0.420869 0.728966i
\(735\) 0 0
\(736\) 4.41605 + 7.64882i 0.162778 + 0.281939i
\(737\) −23.0634 39.9471i −0.849553 1.47147i
\(738\) 0 0
\(739\) −9.80187 + 16.9773i −0.360568 + 0.624521i −0.988054 0.154106i \(-0.950750\pi\)
0.627487 + 0.778627i \(0.284084\pi\)
\(740\) −2.04234 + 3.53744i −0.0750780 + 0.130039i
\(741\) 0 0
\(742\) −56.4701 + 8.76797i −2.07308 + 0.321882i
\(743\) −24.4195 + 42.2958i −0.895865 + 1.55168i −0.0631343 + 0.998005i \(0.520110\pi\)
−0.832731 + 0.553678i \(0.813224\pi\)
\(744\) 0 0
\(745\) −31.3528 −1.14868
\(746\) 5.97599 10.3507i 0.218796 0.378967i
\(747\) 0 0
\(748\) 3.90546 0.142798
\(749\) 7.06553 1.09705i 0.258169 0.0400852i
\(750\) 0 0
\(751\) 15.8254 0.577476 0.288738 0.957408i \(-0.406764\pi\)
0.288738 + 0.957408i \(0.406764\pi\)
\(752\) −11.0455 19.1314i −0.402788 0.697650i
\(753\) 0 0
\(754\) 18.6077 32.2295i 0.677653 1.17373i
\(755\) −5.89663 −0.214600
\(756\) 0 0
\(757\) −2.18728 −0.0794982 −0.0397491 0.999210i \(-0.512656\pi\)
−0.0397491 + 0.999210i \(0.512656\pi\)
\(758\) 8.87084 15.3647i 0.322203 0.558073i
\(759\) 0 0
\(760\) 14.6293 + 25.3386i 0.530660 + 0.919129i
\(761\) −27.7562 −1.00616 −0.503081 0.864240i \(-0.667800\pi\)
−0.503081 + 0.864240i \(0.667800\pi\)
\(762\) 0 0
\(763\) −15.0242 18.6692i −0.543912 0.675869i
\(764\) 1.32084 0.0477861
\(765\) 0 0
\(766\) 19.1606 33.1871i 0.692300 1.19910i
\(767\) 8.44912 0.305080
\(768\) 0 0
\(769\) −5.01030 + 8.67810i −0.180676 + 0.312940i −0.942111 0.335301i \(-0.891162\pi\)
0.761435 + 0.648242i \(0.224495\pi\)
\(770\) −26.0483 32.3679i −0.938717 1.16646i
\(771\) 0 0
\(772\) −3.03245 + 5.25236i −0.109140 + 0.189037i
\(773\) 21.7596 37.6887i 0.782639 1.35557i −0.147761 0.989023i \(-0.547207\pi\)
0.930400 0.366547i \(-0.119460\pi\)
\(774\) 0 0
\(775\) −5.34108 9.25102i −0.191857 0.332306i
\(776\) −6.53251 11.3146i −0.234504 0.406172i
\(777\) 0 0
\(778\) 17.9556 31.0999i 0.643738 1.11499i
\(779\) −12.8311 −0.459720
\(780\) 0 0
\(781\) −10.5991 −0.379267
\(782\) 11.5076 + 19.9317i 0.411510 + 0.712756i
\(783\) 0 0
\(784\) −30.4052 + 9.67512i −1.08590 + 0.345540i
\(785\) −30.5347 52.8877i −1.08983 1.88764i
\(786\) 0 0
\(787\) 2.91819 + 5.05445i 0.104022 + 0.180172i 0.913338 0.407202i \(-0.133495\pi\)
−0.809316 + 0.587373i \(0.800162\pi\)
\(788\) −4.27271 7.40055i −0.152209 0.263634i
\(789\) 0 0
\(790\) −1.92891 3.34097i −0.0686276 0.118867i
\(791\) −0.772611 0.960053i −0.0274709 0.0341355i
\(792\) 0 0
\(793\) 37.1662 + 64.3738i 1.31981 + 2.28598i
\(794\) 30.1408 1.06966
\(795\) 0 0
\(796\) 4.23482 0.150099
\(797\) −18.2900 + 31.6792i −0.647865 + 1.12214i 0.335766 + 0.941945i \(0.391005\pi\)
−0.983632 + 0.180191i \(0.942329\pi\)
\(798\) 0 0
\(799\) −7.75962 13.4401i −0.274516 0.475475i
\(800\) −2.80014 4.84998i −0.0989998 0.171473i
\(801\) 0 0
\(802\) 10.9873 19.0306i 0.387976 0.671994i
\(803\) 5.32683 9.22634i 0.187980 0.325590i
\(804\) 0 0
\(805\) 12.6986 32.7826i 0.447568 1.15544i
\(806\) −15.4065 + 26.6848i −0.542670 + 0.939931i
\(807\) 0 0
\(808\) −6.42203 −0.225926
\(809\) 11.0249 19.0957i 0.387616 0.671370i −0.604513 0.796596i \(-0.706632\pi\)
0.992128 + 0.125225i \(0.0399654\pi\)
\(810\) 0 0
\(811\) −12.6451 −0.444029 −0.222015 0.975043i \(-0.571263\pi\)
−0.222015 + 0.975043i \(0.571263\pi\)
\(812\) −2.40635 2.99015i −0.0844464 0.104934i
\(813\) 0 0
\(814\) −23.9645 −0.839956
\(815\) −13.2540 22.9566i −0.464267 0.804134i
\(816\) 0 0
\(817\) 18.7123 32.4107i 0.654660 1.13391i
\(818\) 17.6900 0.618517
\(819\) 0 0
\(820\) 2.98606 0.104278
\(821\) 15.5479 26.9298i 0.542625 0.939855i −0.456127 0.889915i \(-0.650764\pi\)
0.998752 0.0499401i \(-0.0159030\pi\)
\(822\) 0 0
\(823\) 24.4819 + 42.4039i 0.853385 + 1.47811i 0.878135 + 0.478412i \(0.158788\pi\)
−0.0247505 + 0.999694i \(0.507879\pi\)
\(824\) 25.0485 0.872606
\(825\) 0 0
\(826\) 2.19206 5.65899i 0.0762715 0.196901i
\(827\) −36.3827 −1.26515 −0.632575 0.774499i \(-0.718002\pi\)
−0.632575 + 0.774499i \(0.718002\pi\)
\(828\) 0 0
\(829\) −22.8702 + 39.6124i −0.794316 + 1.37580i 0.128957 + 0.991650i \(0.458837\pi\)
−0.923273 + 0.384145i \(0.874496\pi\)
\(830\) −34.7502 −1.20620
\(831\) 0 0
\(832\) 17.5814 30.4520i 0.609527 1.05573i
\(833\) −21.3601 + 6.79690i −0.740082 + 0.235499i
\(834\) 0 0
\(835\) 24.5866 42.5852i 0.850853 1.47372i
\(836\) 2.48246 4.29974i 0.0858576 0.148710i
\(837\) 0 0
\(838\) 26.1105 + 45.2247i 0.901972 + 1.56226i
\(839\) 12.7674 + 22.1138i 0.440779 + 0.763452i 0.997747 0.0670815i \(-0.0213688\pi\)
−0.556968 + 0.830534i \(0.688035\pi\)
\(840\) 0 0
\(841\) 5.14175 8.90578i 0.177302 0.307096i
\(842\) 15.6200 0.538299
\(843\) 0 0
\(844\) 0.775117 0.0266806
\(845\) 26.3974 + 45.7216i 0.908097 + 1.57287i
\(846\) 0 0
\(847\) 2.13003 5.49885i 0.0731886 0.188943i
\(848\) −32.2131 55.7948i −1.10620 1.91600i
\(849\) 0 0
\(850\) −7.29674 12.6383i −0.250276 0.433491i
\(851\) −10.1390 17.5613i −0.347561 0.601993i
\(852\) 0 0
\(853\) 0.923367 + 1.59932i 0.0316155 + 0.0547596i 0.881400 0.472370i \(-0.156601\pi\)
−0.849785 + 0.527130i \(0.823268\pi\)
\(854\) 52.7583 8.19164i 1.80535 0.280312i
\(855\) 0 0
\(856\) 3.43749 + 5.95391i 0.117491 + 0.203501i
\(857\) −22.4848 −0.768066 −0.384033 0.923319i \(-0.625465\pi\)
−0.384033 + 0.923319i \(0.625465\pi\)
\(858\) 0 0
\(859\) −1.14761 −0.0391561 −0.0195781 0.999808i \(-0.506232\pi\)
−0.0195781 + 0.999808i \(0.506232\pi\)
\(860\) −4.35475 + 7.54265i −0.148496 + 0.257202i
\(861\) 0 0
\(862\) −0.0581510 0.100721i −0.00198063 0.00343055i
\(863\) −0.897635 1.55475i −0.0305558 0.0529243i 0.850343 0.526229i \(-0.176394\pi\)
−0.880899 + 0.473304i \(0.843061\pi\)
\(864\) 0 0
\(865\) −30.4390 + 52.7218i −1.03496 + 1.79260i
\(866\) −22.3646 + 38.7366i −0.759980 + 1.31632i
\(867\) 0 0
\(868\) 1.99237 + 2.47573i 0.0676253 + 0.0840317i
\(869\) 1.62494 2.81449i 0.0551225 0.0954749i
\(870\) 0 0
\(871\) 71.3889 2.41892
\(872\) 11.5207 19.9545i 0.390141 0.675745i
\(873\) 0 0
\(874\) 29.2585 0.989685
\(875\) 5.44808 14.0647i 0.184179 0.475474i
\(876\) 0 0
\(877\) 8.57997 0.289725 0.144862 0.989452i \(-0.453726\pi\)
0.144862 + 0.989452i \(0.453726\pi\)
\(878\) −3.32016 5.75069i −0.112050 0.194076i
\(879\) 0 0
\(880\) 23.4200 40.5646i 0.789487 1.36743i
\(881\) −16.5346 −0.557066 −0.278533 0.960427i \(-0.589848\pi\)
−0.278533 + 0.960427i \(0.589848\pi\)
\(882\) 0 0
\(883\) −27.4948 −0.925273 −0.462636 0.886548i \(-0.653096\pi\)
−0.462636 + 0.886548i \(0.653096\pi\)
\(884\) −3.02217 + 5.23455i −0.101647 + 0.176057i
\(885\) 0 0
\(886\) −15.7053 27.2025i −0.527631 0.913885i
\(887\) −43.4419 −1.45864 −0.729318 0.684175i \(-0.760163\pi\)
−0.729318 + 0.684175i \(0.760163\pi\)
\(888\) 0 0
\(889\) −15.0588 + 38.8755i −0.505055 + 1.30384i
\(890\) −24.4254 −0.818741
\(891\) 0 0
\(892\) −1.55919 + 2.70059i −0.0522054 + 0.0904225i
\(893\) −19.7292 −0.660213
\(894\) 0 0
\(895\) 7.99168 13.8420i 0.267132 0.462687i
\(896\) −22.0645 27.4175i −0.737123 0.915954i
\(897\) 0 0
\(898\) −9.52968 + 16.5059i −0.318010 + 0.550809i
\(899\) 7.74826 13.4204i 0.258419 0.447595i
\(900\) 0 0
\(901\) −22.6302 39.1966i −0.753920 1.30583i
\(902\) 8.75949 + 15.1719i 0.291659 + 0.505169i
\(903\) 0 0
\(904\) 0.592448 1.02615i 0.0197045 0.0341292i
\(905\) −3.17638 −0.105586
\(906\) 0 0
\(907\) 11.2952 0.375052 0.187526 0.982260i \(-0.439953\pi\)
0.187526 + 0.982260i \(0.439953\pi\)
\(908\) 0.323282 + 0.559941i 0.0107285 + 0.0185823i
\(909\) 0 0
\(910\) 63.5402 9.86571i 2.10634 0.327045i
\(911\) −5.01690 8.68953i −0.166217 0.287897i 0.770870 0.636993i \(-0.219822\pi\)
−0.937087 + 0.349096i \(0.886489\pi\)
\(912\) 0 0
\(913\) −14.6370 25.3521i −0.484415 0.839032i
\(914\) −23.6369 40.9403i −0.781839 1.35418i
\(915\) 0 0
\(916\) −0.560188 0.970273i −0.0185091 0.0320587i
\(917\) −11.6093 + 29.9705i −0.383373 + 0.989712i
\(918\) 0 0
\(919\) 0.178967 + 0.309980i 0.00590358 + 0.0102253i 0.868962 0.494879i \(-0.164787\pi\)
−0.863059 + 0.505104i \(0.831454\pi\)
\(920\) 33.8031 1.11445
\(921\) 0 0
\(922\) −12.2603 −0.403770
\(923\) 8.20195 14.2062i 0.269970 0.467602i
\(924\) 0 0
\(925\) 6.42897 + 11.1353i 0.211383 + 0.366126i
\(926\) −12.8537 22.2633i −0.422400 0.731619i
\(927\) 0 0
\(928\) 4.06214 7.03583i 0.133346 0.230962i
\(929\) −16.7632 + 29.0347i −0.549983 + 0.952599i 0.448292 + 0.893887i \(0.352033\pi\)
−0.998275 + 0.0587116i \(0.981301\pi\)
\(930\) 0 0
\(931\) −6.09417 + 27.8369i −0.199728 + 0.912316i
\(932\) −3.54630 + 6.14236i −0.116163 + 0.201200i
\(933\) 0 0
\(934\) −1.46827 −0.0480432
\(935\) 16.4528 28.4972i 0.538065 0.931957i
\(936\) 0 0
\(937\) 12.8772 0.420680 0.210340 0.977628i \(-0.432543\pi\)
0.210340 + 0.977628i \(0.432543\pi\)
\(938\) 18.5213 47.8143i 0.604742 1.56119i
\(939\) 0 0
\(940\) 4.59141 0.149755
\(941\) 16.0492 + 27.7980i 0.523189 + 0.906190i 0.999636 + 0.0269868i \(0.00859120\pi\)
−0.476447 + 0.879203i \(0.658075\pi\)
\(942\) 0 0
\(943\) −7.41201 + 12.8380i −0.241368 + 0.418062i
\(944\) 6.84176 0.222680
\(945\) 0 0
\(946\) −51.0980 −1.66134
\(947\) 8.39928 14.5480i 0.272940 0.472746i −0.696673 0.717389i \(-0.745337\pi\)
0.969613 + 0.244642i \(0.0786706\pi\)
\(948\) 0 0
\(949\) 8.24414 + 14.2793i 0.267616 + 0.463524i
\(950\) −18.5523 −0.601917
\(951\) 0 0
\(952\) −13.5125 16.7908i −0.437943 0.544192i
\(953\) 2.69574 0.0873237 0.0436619 0.999046i \(-0.486098\pi\)
0.0436619 + 0.999046i \(0.486098\pi\)
\(954\) 0 0
\(955\) 5.56438 9.63780i 0.180059 0.311872i
\(956\) −8.08633 −0.261531
\(957\) 0 0
\(958\) 18.4367 31.9333i 0.595663 1.03172i
\(959\) −2.06745 + 5.33731i −0.0667615 + 0.172351i
\(960\) 0 0
\(961\) 9.08474 15.7352i 0.293056 0.507588i
\(962\) 18.5445 32.1200i 0.597898 1.03559i
\(963\) 0 0
\(964\) −1.54825 2.68165i −0.0498658 0.0863701i
\(965\) 25.5501 + 44.2541i 0.822487 + 1.42459i
\(966\) 0 0
\(967\) −6.83873 + 11.8450i −0.219919 + 0.380910i −0.954783 0.297304i \(-0.903913\pi\)
0.734864 + 0.678214i \(0.237246\pi\)
\(968\) 5.67002 0.182241
\(969\) 0 0
\(970\) 22.1739 0.711960
\(971\) 21.3133 + 36.9157i 0.683977 + 1.18468i 0.973757 + 0.227589i \(0.0730843\pi\)
−0.289781 + 0.957093i \(0.593582\pi\)
\(972\) 0 0
\(973\) −35.5828 44.2155i −1.14073 1.41748i
\(974\) 11.3077 + 19.5854i 0.362321 + 0.627558i
\(975\) 0 0
\(976\) 30.0957 + 52.1273i 0.963341 + 1.66856i
\(977\) 2.52841 + 4.37934i 0.0808911 + 0.140108i 0.903633 0.428308i \(-0.140890\pi\)
−0.822742 + 0.568415i \(0.807557\pi\)
\(978\) 0 0
\(979\) −10.2882 17.8196i −0.328811 0.569517i
\(980\) 1.41824 6.47823i 0.0453041 0.206940i
\(981\) 0 0
\(982\) 4.81668 + 8.34274i 0.153707 + 0.266227i
\(983\) −33.2884 −1.06174 −0.530868 0.847455i \(-0.678134\pi\)
−0.530868 + 0.847455i \(0.678134\pi\)
\(984\) 0 0
\(985\) −71.9999 −2.29411
\(986\) 10.5853 18.3343i 0.337105 0.583884i
\(987\) 0 0
\(988\) 3.84201 + 6.65455i 0.122231 + 0.211710i
\(989\) −21.6188 37.4448i −0.687436 1.19067i
\(990\) 0 0
\(991\) −16.0440 + 27.7890i −0.509653 + 0.882746i 0.490284 + 0.871563i \(0.336893\pi\)
−0.999937 + 0.0111829i \(0.996440\pi\)
\(992\) −3.36329 + 5.82539i −0.106785 + 0.184956i
\(993\) 0 0
\(994\) −7.38698 9.17912i −0.234301 0.291144i
\(995\) 17.8403 30.9004i 0.565577 0.979608i
\(996\) 0 0
\(997\) −43.2566 −1.36995 −0.684975 0.728567i \(-0.740187\pi\)
−0.684975 + 0.728567i \(0.740187\pi\)
\(998\) −21.8507 + 37.8466i −0.691673 + 1.19801i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.l.109.7 16
3.2 odd 2 inner 567.2.g.l.109.2 16
7.2 even 3 567.2.h.l.352.2 16
9.2 odd 6 567.2.h.l.298.7 16
9.4 even 3 567.2.e.g.487.7 yes 16
9.5 odd 6 567.2.e.g.487.2 yes 16
9.7 even 3 567.2.h.l.298.2 16
21.2 odd 6 567.2.h.l.352.7 16
63.2 odd 6 inner 567.2.g.l.541.2 16
63.4 even 3 3969.2.a.bg.1.2 8
63.16 even 3 inner 567.2.g.l.541.7 16
63.23 odd 6 567.2.e.g.163.2 16
63.31 odd 6 3969.2.a.bf.1.2 8
63.32 odd 6 3969.2.a.bg.1.7 8
63.58 even 3 567.2.e.g.163.7 yes 16
63.59 even 6 3969.2.a.bf.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.2 16 63.23 odd 6
567.2.e.g.163.7 yes 16 63.58 even 3
567.2.e.g.487.2 yes 16 9.5 odd 6
567.2.e.g.487.7 yes 16 9.4 even 3
567.2.g.l.109.2 16 3.2 odd 2 inner
567.2.g.l.109.7 16 1.1 even 1 trivial
567.2.g.l.541.2 16 63.2 odd 6 inner
567.2.g.l.541.7 16 63.16 even 3 inner
567.2.h.l.298.2 16 9.7 even 3
567.2.h.l.298.7 16 9.2 odd 6
567.2.h.l.352.2 16 7.2 even 3
567.2.h.l.352.7 16 21.2 odd 6
3969.2.a.bf.1.2 8 63.31 odd 6
3969.2.a.bf.1.7 8 63.59 even 6
3969.2.a.bg.1.2 8 63.4 even 3
3969.2.a.bg.1.7 8 63.32 odd 6