Properties

Label 3969.2.a.o.1.2
Level $3969$
Weight $2$
Character 3969.1
Self dual yes
Analytic conductor $31.693$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3969,2,Mod(1,3969)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3969, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3969.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3969 = 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3969.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.6926245622\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 567)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.523976\) of defining polynomial
Character \(\chi\) \(=\) 3969.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.523976 q^{2} -1.72545 q^{4} -2.20147 q^{5} +1.95205 q^{8} +1.15352 q^{10} -5.20147 q^{11} -3.15352 q^{13} +2.42807 q^{16} -3.24943 q^{17} -7.45090 q^{19} +3.79853 q^{20} +2.72545 q^{22} -4.40294 q^{23} -0.153520 q^{25} +1.65237 q^{26} +1.15352 q^{29} -2.00000 q^{31} -5.17635 q^{32} +1.70262 q^{34} +5.00000 q^{37} +3.90409 q^{38} -4.29738 q^{40} -11.4509 q^{41} +9.29738 q^{43} +8.97487 q^{44} +2.30704 q^{46} -1.04795 q^{47} +0.0804406 q^{50} +5.44124 q^{52} +0.249425 q^{53} +11.4509 q^{55} -0.604417 q^{58} -8.09591 q^{59} -8.60442 q^{61} +1.04795 q^{62} -2.14386 q^{64} +6.94239 q^{65} -7.60442 q^{67} +5.60672 q^{68} -9.60442 q^{71} -0.846480 q^{73} -2.61988 q^{74} +12.8561 q^{76} -7.60442 q^{79} -5.34533 q^{80} +6.00000 q^{82} +11.4509 q^{83} +7.15352 q^{85} -4.87161 q^{86} -10.1535 q^{88} +9.24943 q^{89} +7.59706 q^{92} +0.549103 q^{94} +16.4029 q^{95} +3.45090 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} + 3 q^{5} + 9 q^{8} - 3 q^{10} - 6 q^{11} - 3 q^{13} + 12 q^{16} + 3 q^{17} + 21 q^{20} - 3 q^{22} + 6 q^{23} + 6 q^{25} - 27 q^{26} - 3 q^{29} - 6 q^{31} + 18 q^{32} + 21 q^{34} + 15 q^{37}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.523976 −0.370507 −0.185254 0.982691i \(-0.559311\pi\)
−0.185254 + 0.982691i \(0.559311\pi\)
\(3\) 0 0
\(4\) −1.72545 −0.862724
\(5\) −2.20147 −0.984528 −0.492264 0.870446i \(-0.663831\pi\)
−0.492264 + 0.870446i \(0.663831\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.95205 0.690153
\(9\) 0 0
\(10\) 1.15352 0.364775
\(11\) −5.20147 −1.56830 −0.784151 0.620569i \(-0.786901\pi\)
−0.784151 + 0.620569i \(0.786901\pi\)
\(12\) 0 0
\(13\) −3.15352 −0.874629 −0.437314 0.899309i \(-0.644070\pi\)
−0.437314 + 0.899309i \(0.644070\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 2.42807 0.607018
\(17\) −3.24943 −0.788101 −0.394051 0.919089i \(-0.628927\pi\)
−0.394051 + 0.919089i \(0.628927\pi\)
\(18\) 0 0
\(19\) −7.45090 −1.70935 −0.854677 0.519161i \(-0.826245\pi\)
−0.854677 + 0.519161i \(0.826245\pi\)
\(20\) 3.79853 0.849377
\(21\) 0 0
\(22\) 2.72545 0.581068
\(23\) −4.40294 −0.918077 −0.459039 0.888416i \(-0.651806\pi\)
−0.459039 + 0.888416i \(0.651806\pi\)
\(24\) 0 0
\(25\) −0.153520 −0.0307039
\(26\) 1.65237 0.324056
\(27\) 0 0
\(28\) 0 0
\(29\) 1.15352 0.214203 0.107102 0.994248i \(-0.465843\pi\)
0.107102 + 0.994248i \(0.465843\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) −5.17635 −0.915057
\(33\) 0 0
\(34\) 1.70262 0.291997
\(35\) 0 0
\(36\) 0 0
\(37\) 5.00000 0.821995 0.410997 0.911636i \(-0.365181\pi\)
0.410997 + 0.911636i \(0.365181\pi\)
\(38\) 3.90409 0.633328
\(39\) 0 0
\(40\) −4.29738 −0.679475
\(41\) −11.4509 −1.78833 −0.894165 0.447738i \(-0.852230\pi\)
−0.894165 + 0.447738i \(0.852230\pi\)
\(42\) 0 0
\(43\) 9.29738 1.41784 0.708918 0.705290i \(-0.249183\pi\)
0.708918 + 0.705290i \(0.249183\pi\)
\(44\) 8.97487 1.35301
\(45\) 0 0
\(46\) 2.30704 0.340154
\(47\) −1.04795 −0.152860 −0.0764298 0.997075i \(-0.524352\pi\)
−0.0764298 + 0.997075i \(0.524352\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.0804406 0.0113760
\(51\) 0 0
\(52\) 5.44124 0.754564
\(53\) 0.249425 0.0342612 0.0171306 0.999853i \(-0.494547\pi\)
0.0171306 + 0.999853i \(0.494547\pi\)
\(54\) 0 0
\(55\) 11.4509 1.54404
\(56\) 0 0
\(57\) 0 0
\(58\) −0.604417 −0.0793638
\(59\) −8.09591 −1.05400 −0.526999 0.849866i \(-0.676683\pi\)
−0.526999 + 0.849866i \(0.676683\pi\)
\(60\) 0 0
\(61\) −8.60442 −1.10168 −0.550841 0.834610i \(-0.685693\pi\)
−0.550841 + 0.834610i \(0.685693\pi\)
\(62\) 1.04795 0.133090
\(63\) 0 0
\(64\) −2.14386 −0.267982
\(65\) 6.94239 0.861097
\(66\) 0 0
\(67\) −7.60442 −0.929027 −0.464514 0.885566i \(-0.653771\pi\)
−0.464514 + 0.885566i \(0.653771\pi\)
\(68\) 5.60672 0.679914
\(69\) 0 0
\(70\) 0 0
\(71\) −9.60442 −1.13983 −0.569917 0.821702i \(-0.693025\pi\)
−0.569917 + 0.821702i \(0.693025\pi\)
\(72\) 0 0
\(73\) −0.846480 −0.0990730 −0.0495365 0.998772i \(-0.515774\pi\)
−0.0495365 + 0.998772i \(0.515774\pi\)
\(74\) −2.61988 −0.304555
\(75\) 0 0
\(76\) 12.8561 1.47470
\(77\) 0 0
\(78\) 0 0
\(79\) −7.60442 −0.855564 −0.427782 0.903882i \(-0.640705\pi\)
−0.427782 + 0.903882i \(0.640705\pi\)
\(80\) −5.34533 −0.597626
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 11.4509 1.25690 0.628450 0.777850i \(-0.283690\pi\)
0.628450 + 0.777850i \(0.283690\pi\)
\(84\) 0 0
\(85\) 7.15352 0.775908
\(86\) −4.87161 −0.525319
\(87\) 0 0
\(88\) −10.1535 −1.08237
\(89\) 9.24943 0.980437 0.490219 0.871600i \(-0.336917\pi\)
0.490219 + 0.871600i \(0.336917\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 7.59706 0.792048
\(93\) 0 0
\(94\) 0.549103 0.0566356
\(95\) 16.4029 1.68291
\(96\) 0 0
\(97\) 3.45090 0.350386 0.175193 0.984534i \(-0.443945\pi\)
0.175193 + 0.984534i \(0.443945\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.264890 0.0264890
\(101\) −16.4029 −1.63215 −0.816077 0.577943i \(-0.803856\pi\)
−0.816077 + 0.577943i \(0.803856\pi\)
\(102\) 0 0
\(103\) 1.14386 0.112708 0.0563539 0.998411i \(-0.482053\pi\)
0.0563539 + 0.998411i \(0.482053\pi\)
\(104\) −6.15582 −0.603628
\(105\) 0 0
\(106\) −0.130693 −0.0126940
\(107\) −9.10557 −0.880268 −0.440134 0.897932i \(-0.645069\pi\)
−0.440134 + 0.897932i \(0.645069\pi\)
\(108\) 0 0
\(109\) −13.7483 −1.31685 −0.658423 0.752648i \(-0.728776\pi\)
−0.658423 + 0.752648i \(0.728776\pi\)
\(110\) −6.00000 −0.572078
\(111\) 0 0
\(112\) 0 0
\(113\) −19.9018 −1.87220 −0.936102 0.351729i \(-0.885594\pi\)
−0.936102 + 0.351729i \(0.885594\pi\)
\(114\) 0 0
\(115\) 9.69296 0.903873
\(116\) −1.99034 −0.184798
\(117\) 0 0
\(118\) 4.24206 0.390514
\(119\) 0 0
\(120\) 0 0
\(121\) 16.0553 1.45957
\(122\) 4.50851 0.408181
\(123\) 0 0
\(124\) 3.45090 0.309900
\(125\) 11.3453 1.01476
\(126\) 0 0
\(127\) 9.29738 0.825009 0.412504 0.910956i \(-0.364654\pi\)
0.412504 + 0.910956i \(0.364654\pi\)
\(128\) 11.4760 1.01435
\(129\) 0 0
\(130\) −3.63765 −0.319043
\(131\) 7.54680 0.659367 0.329684 0.944091i \(-0.393058\pi\)
0.329684 + 0.944091i \(0.393058\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 3.98454 0.344211
\(135\) 0 0
\(136\) −6.34303 −0.543910
\(137\) 1.40294 0.119862 0.0599308 0.998203i \(-0.480912\pi\)
0.0599308 + 0.998203i \(0.480912\pi\)
\(138\) 0 0
\(139\) 15.4509 1.31053 0.655264 0.755400i \(-0.272557\pi\)
0.655264 + 0.755400i \(0.272557\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 5.03249 0.422317
\(143\) 16.4029 1.37168
\(144\) 0 0
\(145\) −2.53944 −0.210889
\(146\) 0.443536 0.0367073
\(147\) 0 0
\(148\) −8.62724 −0.709155
\(149\) −13.4029 −1.09801 −0.549006 0.835818i \(-0.684994\pi\)
−0.549006 + 0.835818i \(0.684994\pi\)
\(150\) 0 0
\(151\) 11.6044 0.944354 0.472177 0.881504i \(-0.343468\pi\)
0.472177 + 0.881504i \(0.343468\pi\)
\(152\) −14.5445 −1.17972
\(153\) 0 0
\(154\) 0 0
\(155\) 4.40294 0.353653
\(156\) 0 0
\(157\) 24.3624 1.94433 0.972164 0.234302i \(-0.0752806\pi\)
0.972164 + 0.234302i \(0.0752806\pi\)
\(158\) 3.98454 0.316993
\(159\) 0 0
\(160\) 11.3956 0.900900
\(161\) 0 0
\(162\) 0 0
\(163\) 5.60442 0.438972 0.219486 0.975616i \(-0.429562\pi\)
0.219486 + 0.975616i \(0.429562\pi\)
\(164\) 19.7579 1.54284
\(165\) 0 0
\(166\) −6.00000 −0.465690
\(167\) −23.4509 −1.81468 −0.907342 0.420392i \(-0.861892\pi\)
−0.907342 + 0.420392i \(0.861892\pi\)
\(168\) 0 0
\(169\) −3.05531 −0.235024
\(170\) −3.74828 −0.287480
\(171\) 0 0
\(172\) −16.0421 −1.22320
\(173\) −22.5085 −1.71129 −0.855645 0.517563i \(-0.826839\pi\)
−0.855645 + 0.517563i \(0.826839\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −12.6295 −0.951988
\(177\) 0 0
\(178\) −4.84648 −0.363259
\(179\) −6.49885 −0.485747 −0.242873 0.970058i \(-0.578090\pi\)
−0.242873 + 0.970058i \(0.578090\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −8.59476 −0.633614
\(185\) −11.0074 −0.809277
\(186\) 0 0
\(187\) 16.9018 1.23598
\(188\) 1.80819 0.131876
\(189\) 0 0
\(190\) −8.59476 −0.623529
\(191\) 13.5085 0.977442 0.488721 0.872440i \(-0.337464\pi\)
0.488721 + 0.872440i \(0.337464\pi\)
\(192\) 0 0
\(193\) 17.7483 1.27755 0.638774 0.769394i \(-0.279442\pi\)
0.638774 + 0.769394i \(0.279442\pi\)
\(194\) −1.80819 −0.129820
\(195\) 0 0
\(196\) 0 0
\(197\) 16.2088 1.15483 0.577416 0.816450i \(-0.304061\pi\)
0.577416 + 0.816450i \(0.304061\pi\)
\(198\) 0 0
\(199\) 7.14386 0.506415 0.253207 0.967412i \(-0.418515\pi\)
0.253207 + 0.967412i \(0.418515\pi\)
\(200\) −0.299677 −0.0211904
\(201\) 0 0
\(202\) 8.59476 0.604725
\(203\) 0 0
\(204\) 0 0
\(205\) 25.2088 1.76066
\(206\) −0.599355 −0.0417590
\(207\) 0 0
\(208\) −7.65697 −0.530915
\(209\) 38.7556 2.68078
\(210\) 0 0
\(211\) 3.29738 0.227001 0.113500 0.993538i \(-0.463794\pi\)
0.113500 + 0.993538i \(0.463794\pi\)
\(212\) −0.430370 −0.0295580
\(213\) 0 0
\(214\) 4.77110 0.326146
\(215\) −20.4679 −1.39590
\(216\) 0 0
\(217\) 0 0
\(218\) 7.20377 0.487901
\(219\) 0 0
\(220\) −19.7579 −1.33208
\(221\) 10.2471 0.689296
\(222\) 0 0
\(223\) 23.2088 1.55418 0.777089 0.629390i \(-0.216695\pi\)
0.777089 + 0.629390i \(0.216695\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 10.4281 0.693665
\(227\) 11.6620 0.774036 0.387018 0.922072i \(-0.373505\pi\)
0.387018 + 0.922072i \(0.373505\pi\)
\(228\) 0 0
\(229\) −1.39558 −0.0922227 −0.0461114 0.998936i \(-0.514683\pi\)
−0.0461114 + 0.998936i \(0.514683\pi\)
\(230\) −5.07888 −0.334892
\(231\) 0 0
\(232\) 2.25172 0.147833
\(233\) 8.75057 0.573269 0.286635 0.958040i \(-0.407463\pi\)
0.286635 + 0.958040i \(0.407463\pi\)
\(234\) 0 0
\(235\) 2.30704 0.150495
\(236\) 13.9691 0.909309
\(237\) 0 0
\(238\) 0 0
\(239\) 4.70262 0.304187 0.152094 0.988366i \(-0.451398\pi\)
0.152094 + 0.988366i \(0.451398\pi\)
\(240\) 0 0
\(241\) 4.60442 0.296597 0.148298 0.988943i \(-0.452620\pi\)
0.148298 + 0.988943i \(0.452620\pi\)
\(242\) −8.41261 −0.540783
\(243\) 0 0
\(244\) 14.8465 0.950449
\(245\) 0 0
\(246\) 0 0
\(247\) 23.4966 1.49505
\(248\) −3.90409 −0.247910
\(249\) 0 0
\(250\) −5.94469 −0.375975
\(251\) −3.14386 −0.198439 −0.0992193 0.995066i \(-0.531635\pi\)
−0.0992193 + 0.995066i \(0.531635\pi\)
\(252\) 0 0
\(253\) 22.9018 1.43982
\(254\) −4.87161 −0.305672
\(255\) 0 0
\(256\) −1.72545 −0.107841
\(257\) 20.1512 1.25700 0.628499 0.777810i \(-0.283670\pi\)
0.628499 + 0.777810i \(0.283670\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −11.9787 −0.742889
\(261\) 0 0
\(262\) −3.95435 −0.244300
\(263\) −17.2015 −1.06069 −0.530344 0.847782i \(-0.677937\pi\)
−0.530344 + 0.847782i \(0.677937\pi\)
\(264\) 0 0
\(265\) −0.549103 −0.0337311
\(266\) 0 0
\(267\) 0 0
\(268\) 13.1210 0.801495
\(269\) 2.75057 0.167706 0.0838528 0.996478i \(-0.473277\pi\)
0.0838528 + 0.996478i \(0.473277\pi\)
\(270\) 0 0
\(271\) 12.8561 0.780955 0.390477 0.920612i \(-0.372310\pi\)
0.390477 + 0.920612i \(0.372310\pi\)
\(272\) −7.88983 −0.478391
\(273\) 0 0
\(274\) −0.735110 −0.0444096
\(275\) 0.798528 0.0481530
\(276\) 0 0
\(277\) −16.7483 −1.00631 −0.503153 0.864197i \(-0.667827\pi\)
−0.503153 + 0.864197i \(0.667827\pi\)
\(278\) −8.09591 −0.485560
\(279\) 0 0
\(280\) 0 0
\(281\) −5.30704 −0.316591 −0.158296 0.987392i \(-0.550600\pi\)
−0.158296 + 0.987392i \(0.550600\pi\)
\(282\) 0 0
\(283\) −12.3527 −0.734291 −0.367146 0.930163i \(-0.619665\pi\)
−0.367146 + 0.930163i \(0.619665\pi\)
\(284\) 16.5719 0.983363
\(285\) 0 0
\(286\) −8.59476 −0.508219
\(287\) 0 0
\(288\) 0 0
\(289\) −6.44124 −0.378896
\(290\) 1.33061 0.0781360
\(291\) 0 0
\(292\) 1.46056 0.0854727
\(293\) 10.2974 0.601579 0.300790 0.953691i \(-0.402750\pi\)
0.300790 + 0.953691i \(0.402750\pi\)
\(294\) 0 0
\(295\) 17.8229 1.03769
\(296\) 9.76024 0.567302
\(297\) 0 0
\(298\) 7.02283 0.406821
\(299\) 13.8848 0.802977
\(300\) 0 0
\(301\) 0 0
\(302\) −6.08044 −0.349890
\(303\) 0 0
\(304\) −18.0913 −1.03761
\(305\) 18.9424 1.08464
\(306\) 0 0
\(307\) 0.307039 0.0175236 0.00876182 0.999962i \(-0.497211\pi\)
0.00876182 + 0.999962i \(0.497211\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2.30704 −0.131031
\(311\) 1.04795 0.0594240 0.0297120 0.999559i \(-0.490541\pi\)
0.0297120 + 0.999559i \(0.490541\pi\)
\(312\) 0 0
\(313\) −32.0553 −1.81187 −0.905937 0.423413i \(-0.860832\pi\)
−0.905937 + 0.423413i \(0.860832\pi\)
\(314\) −12.7653 −0.720387
\(315\) 0 0
\(316\) 13.1210 0.738116
\(317\) 6.44354 0.361905 0.180953 0.983492i \(-0.442082\pi\)
0.180953 + 0.983492i \(0.442082\pi\)
\(318\) 0 0
\(319\) −6.00000 −0.335936
\(320\) 4.71964 0.263836
\(321\) 0 0
\(322\) 0 0
\(323\) 24.2111 1.34714
\(324\) 0 0
\(325\) 0.484127 0.0268545
\(326\) −2.93658 −0.162642
\(327\) 0 0
\(328\) −22.3527 −1.23422
\(329\) 0 0
\(330\) 0 0
\(331\) −20.6141 −1.13305 −0.566526 0.824044i \(-0.691713\pi\)
−0.566526 + 0.824044i \(0.691713\pi\)
\(332\) −19.7579 −1.08436
\(333\) 0 0
\(334\) 12.2877 0.672354
\(335\) 16.7409 0.914654
\(336\) 0 0
\(337\) 26.4606 1.44140 0.720699 0.693248i \(-0.243821\pi\)
0.720699 + 0.693248i \(0.243821\pi\)
\(338\) 1.60091 0.0870782
\(339\) 0 0
\(340\) −12.3430 −0.669395
\(341\) 10.4029 0.563351
\(342\) 0 0
\(343\) 0 0
\(344\) 18.1489 0.978524
\(345\) 0 0
\(346\) 11.7939 0.634046
\(347\) 4.49149 0.241116 0.120558 0.992706i \(-0.461532\pi\)
0.120558 + 0.992706i \(0.461532\pi\)
\(348\) 0 0
\(349\) −3.75794 −0.201158 −0.100579 0.994929i \(-0.532069\pi\)
−0.100579 + 0.994929i \(0.532069\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 26.9246 1.43509
\(353\) −19.2591 −1.02506 −0.512529 0.858670i \(-0.671291\pi\)
−0.512529 + 0.858670i \(0.671291\pi\)
\(354\) 0 0
\(355\) 21.1439 1.12220
\(356\) −15.9594 −0.845847
\(357\) 0 0
\(358\) 3.40524 0.179973
\(359\) −9.10557 −0.480573 −0.240287 0.970702i \(-0.577241\pi\)
−0.240287 + 0.970702i \(0.577241\pi\)
\(360\) 0 0
\(361\) 36.5159 1.92189
\(362\) 1.04795 0.0550792
\(363\) 0 0
\(364\) 0 0
\(365\) 1.86350 0.0975402
\(366\) 0 0
\(367\) −4.59476 −0.239844 −0.119922 0.992783i \(-0.538264\pi\)
−0.119922 + 0.992783i \(0.538264\pi\)
\(368\) −10.6907 −0.557289
\(369\) 0 0
\(370\) 5.76760 0.299843
\(371\) 0 0
\(372\) 0 0
\(373\) −21.3624 −1.10610 −0.553050 0.833148i \(-0.686536\pi\)
−0.553050 + 0.833148i \(0.686536\pi\)
\(374\) −8.85614 −0.457940
\(375\) 0 0
\(376\) −2.04565 −0.105497
\(377\) −3.63765 −0.187348
\(378\) 0 0
\(379\) −35.1203 −1.80401 −0.902004 0.431728i \(-0.857904\pi\)
−0.902004 + 0.431728i \(0.857904\pi\)
\(380\) −28.3024 −1.45188
\(381\) 0 0
\(382\) −7.07814 −0.362149
\(383\) 3.19411 0.163211 0.0816057 0.996665i \(-0.473995\pi\)
0.0816057 + 0.996665i \(0.473995\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −9.29968 −0.473341
\(387\) 0 0
\(388\) −5.95435 −0.302286
\(389\) −14.8059 −0.750688 −0.375344 0.926886i \(-0.622475\pi\)
−0.375344 + 0.926886i \(0.622475\pi\)
\(390\) 0 0
\(391\) 14.3070 0.723538
\(392\) 0 0
\(393\) 0 0
\(394\) −8.49305 −0.427873
\(395\) 16.7409 0.842327
\(396\) 0 0
\(397\) −26.8921 −1.34968 −0.674839 0.737965i \(-0.735787\pi\)
−0.674839 + 0.737965i \(0.735787\pi\)
\(398\) −3.74321 −0.187630
\(399\) 0 0
\(400\) −0.372756 −0.0186378
\(401\) −19.4029 −0.968937 −0.484468 0.874809i \(-0.660987\pi\)
−0.484468 + 0.874809i \(0.660987\pi\)
\(402\) 0 0
\(403\) 6.30704 0.314176
\(404\) 28.3024 1.40810
\(405\) 0 0
\(406\) 0 0
\(407\) −26.0074 −1.28914
\(408\) 0 0
\(409\) 9.39558 0.464582 0.232291 0.972646i \(-0.425378\pi\)
0.232291 + 0.972646i \(0.425378\pi\)
\(410\) −13.2088 −0.652338
\(411\) 0 0
\(412\) −1.97367 −0.0972357
\(413\) 0 0
\(414\) 0 0
\(415\) −25.2088 −1.23745
\(416\) 16.3237 0.800336
\(417\) 0 0
\(418\) −20.3070 −0.993250
\(419\) −24.6597 −1.20471 −0.602353 0.798230i \(-0.705770\pi\)
−0.602353 + 0.798230i \(0.705770\pi\)
\(420\) 0 0
\(421\) −14.2088 −0.692496 −0.346248 0.938143i \(-0.612544\pi\)
−0.346248 + 0.938143i \(0.612544\pi\)
\(422\) −1.72775 −0.0841055
\(423\) 0 0
\(424\) 0.486890 0.0236455
\(425\) 0.498850 0.0241978
\(426\) 0 0
\(427\) 0 0
\(428\) 15.7112 0.759429
\(429\) 0 0
\(430\) 10.7247 0.517191
\(431\) 12.9977 0.626077 0.313039 0.949740i \(-0.398653\pi\)
0.313039 + 0.949740i \(0.398653\pi\)
\(432\) 0 0
\(433\) 0.911456 0.0438018 0.0219009 0.999760i \(-0.493028\pi\)
0.0219009 + 0.999760i \(0.493028\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 23.7219 1.13608
\(437\) 32.8059 1.56932
\(438\) 0 0
\(439\) 10.5491 0.503481 0.251741 0.967795i \(-0.418997\pi\)
0.251741 + 0.967795i \(0.418997\pi\)
\(440\) 22.3527 1.06562
\(441\) 0 0
\(442\) −5.36925 −0.255389
\(443\) 17.4006 0.826730 0.413365 0.910566i \(-0.364353\pi\)
0.413365 + 0.910566i \(0.364353\pi\)
\(444\) 0 0
\(445\) −20.3624 −0.965268
\(446\) −12.1609 −0.575834
\(447\) 0 0
\(448\) 0 0
\(449\) −0.748275 −0.0353133 −0.0176566 0.999844i \(-0.505621\pi\)
−0.0176566 + 0.999844i \(0.505621\pi\)
\(450\) 0 0
\(451\) 59.5615 2.80464
\(452\) 34.3395 1.61520
\(453\) 0 0
\(454\) −6.11063 −0.286786
\(455\) 0 0
\(456\) 0 0
\(457\) −1.00000 −0.0467780 −0.0233890 0.999726i \(-0.507446\pi\)
−0.0233890 + 0.999726i \(0.507446\pi\)
\(458\) 0.731253 0.0341692
\(459\) 0 0
\(460\) −16.7247 −0.779793
\(461\) −38.0457 −1.77196 −0.885981 0.463721i \(-0.846514\pi\)
−0.885981 + 0.463721i \(0.846514\pi\)
\(462\) 0 0
\(463\) −25.8921 −1.20331 −0.601655 0.798756i \(-0.705492\pi\)
−0.601655 + 0.798756i \(0.705492\pi\)
\(464\) 2.80083 0.130025
\(465\) 0 0
\(466\) −4.58509 −0.212400
\(467\) 17.0627 0.789566 0.394783 0.918774i \(-0.370820\pi\)
0.394783 + 0.918774i \(0.370820\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −1.20883 −0.0557594
\(471\) 0 0
\(472\) −15.8036 −0.727419
\(473\) −48.3601 −2.22360
\(474\) 0 0
\(475\) 1.14386 0.0524838
\(476\) 0 0
\(477\) 0 0
\(478\) −2.46406 −0.112704
\(479\) 2.80589 0.128204 0.0641022 0.997943i \(-0.479582\pi\)
0.0641022 + 0.997943i \(0.479582\pi\)
\(480\) 0 0
\(481\) −15.7676 −0.718941
\(482\) −2.41261 −0.109891
\(483\) 0 0
\(484\) −27.7026 −1.25921
\(485\) −7.59706 −0.344965
\(486\) 0 0
\(487\) −6.50621 −0.294825 −0.147412 0.989075i \(-0.547094\pi\)
−0.147412 + 0.989075i \(0.547094\pi\)
\(488\) −16.7962 −0.760330
\(489\) 0 0
\(490\) 0 0
\(491\) −4.61408 −0.208230 −0.104115 0.994565i \(-0.533201\pi\)
−0.104115 + 0.994565i \(0.533201\pi\)
\(492\) 0 0
\(493\) −3.74828 −0.168814
\(494\) −12.3116 −0.553927
\(495\) 0 0
\(496\) −4.85614 −0.218047
\(497\) 0 0
\(498\) 0 0
\(499\) −35.4966 −1.58904 −0.794522 0.607235i \(-0.792278\pi\)
−0.794522 + 0.607235i \(0.792278\pi\)
\(500\) −19.5758 −0.875456
\(501\) 0 0
\(502\) 1.64731 0.0735229
\(503\) −18.9211 −0.843651 −0.421825 0.906677i \(-0.638611\pi\)
−0.421825 + 0.906677i \(0.638611\pi\)
\(504\) 0 0
\(505\) 36.1106 1.60690
\(506\) −12.0000 −0.533465
\(507\) 0 0
\(508\) −16.0421 −0.711755
\(509\) −14.8059 −0.656260 −0.328130 0.944633i \(-0.606418\pi\)
−0.328130 + 0.944633i \(0.606418\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.0480 −0.974391
\(513\) 0 0
\(514\) −10.5588 −0.465727
\(515\) −2.51817 −0.110964
\(516\) 0 0
\(517\) 5.45090 0.239730
\(518\) 0 0
\(519\) 0 0
\(520\) 13.5519 0.594289
\(521\) −12.7100 −0.556834 −0.278417 0.960460i \(-0.589810\pi\)
−0.278417 + 0.960460i \(0.589810\pi\)
\(522\) 0 0
\(523\) −0.352692 −0.0154222 −0.00771108 0.999970i \(-0.502455\pi\)
−0.00771108 + 0.999970i \(0.502455\pi\)
\(524\) −13.0216 −0.568852
\(525\) 0 0
\(526\) 9.01317 0.392993
\(527\) 6.49885 0.283094
\(528\) 0 0
\(529\) −3.61408 −0.157134
\(530\) 0.287717 0.0124976
\(531\) 0 0
\(532\) 0 0
\(533\) 36.1106 1.56412
\(534\) 0 0
\(535\) 20.0457 0.866649
\(536\) −14.8442 −0.641171
\(537\) 0 0
\(538\) −1.44124 −0.0621361
\(539\) 0 0
\(540\) 0 0
\(541\) −22.6930 −0.975647 −0.487823 0.872942i \(-0.662209\pi\)
−0.487823 + 0.872942i \(0.662209\pi\)
\(542\) −6.73631 −0.289349
\(543\) 0 0
\(544\) 16.8201 0.721158
\(545\) 30.2664 1.29647
\(546\) 0 0
\(547\) −1.49379 −0.0638698 −0.0319349 0.999490i \(-0.510167\pi\)
−0.0319349 + 0.999490i \(0.510167\pi\)
\(548\) −2.42071 −0.103408
\(549\) 0 0
\(550\) −0.418410 −0.0178410
\(551\) −8.59476 −0.366149
\(552\) 0 0
\(553\) 0 0
\(554\) 8.77570 0.372844
\(555\) 0 0
\(556\) −26.6597 −1.13062
\(557\) 8.50115 0.360205 0.180103 0.983648i \(-0.442357\pi\)
0.180103 + 0.983648i \(0.442357\pi\)
\(558\) 0 0
\(559\) −29.3195 −1.24008
\(560\) 0 0
\(561\) 0 0
\(562\) 2.78076 0.117299
\(563\) 23.4006 0.986220 0.493110 0.869967i \(-0.335860\pi\)
0.493110 + 0.869967i \(0.335860\pi\)
\(564\) 0 0
\(565\) 43.8133 1.84324
\(566\) 6.47252 0.272060
\(567\) 0 0
\(568\) −18.7483 −0.786660
\(569\) 8.11293 0.340112 0.170056 0.985434i \(-0.445605\pi\)
0.170056 + 0.985434i \(0.445605\pi\)
\(570\) 0 0
\(571\) 16.5948 0.694469 0.347234 0.937778i \(-0.387121\pi\)
0.347234 + 0.937778i \(0.387121\pi\)
\(572\) −28.3024 −1.18338
\(573\) 0 0
\(574\) 0 0
\(575\) 0.675938 0.0281886
\(576\) 0 0
\(577\) 10.8921 0.453445 0.226723 0.973959i \(-0.427199\pi\)
0.226723 + 0.973959i \(0.427199\pi\)
\(578\) 3.37506 0.140384
\(579\) 0 0
\(580\) 4.38168 0.181939
\(581\) 0 0
\(582\) 0 0
\(583\) −1.29738 −0.0537319
\(584\) −1.65237 −0.0683755
\(585\) 0 0
\(586\) −5.39558 −0.222889
\(587\) −43.3195 −1.78799 −0.893993 0.448081i \(-0.852107\pi\)
−0.893993 + 0.448081i \(0.852107\pi\)
\(588\) 0 0
\(589\) 14.9018 0.614018
\(590\) −9.33879 −0.384472
\(591\) 0 0
\(592\) 12.1404 0.498965
\(593\) 28.4583 1.16864 0.584320 0.811523i \(-0.301361\pi\)
0.584320 + 0.811523i \(0.301361\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 23.1261 0.947282
\(597\) 0 0
\(598\) −7.27529 −0.297509
\(599\) 29.7003 1.21352 0.606761 0.794884i \(-0.292468\pi\)
0.606761 + 0.794884i \(0.292468\pi\)
\(600\) 0 0
\(601\) −37.5062 −1.52991 −0.764955 0.644084i \(-0.777239\pi\)
−0.764955 + 0.644084i \(0.777239\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −20.0228 −0.814717
\(605\) −35.3453 −1.43699
\(606\) 0 0
\(607\) −2.65973 −0.107955 −0.0539776 0.998542i \(-0.517190\pi\)
−0.0539776 + 0.998542i \(0.517190\pi\)
\(608\) 38.5684 1.56416
\(609\) 0 0
\(610\) −9.92536 −0.401866
\(611\) 3.30474 0.133695
\(612\) 0 0
\(613\) −41.6694 −1.68301 −0.841505 0.540249i \(-0.818330\pi\)
−0.841505 + 0.540249i \(0.818330\pi\)
\(614\) −0.160881 −0.00649264
\(615\) 0 0
\(616\) 0 0
\(617\) 43.5519 1.75333 0.876666 0.481099i \(-0.159762\pi\)
0.876666 + 0.481099i \(0.159762\pi\)
\(618\) 0 0
\(619\) 14.0650 0.565319 0.282660 0.959220i \(-0.408783\pi\)
0.282660 + 0.959220i \(0.408783\pi\)
\(620\) −7.59706 −0.305105
\(621\) 0 0
\(622\) −0.549103 −0.0220170
\(623\) 0 0
\(624\) 0 0
\(625\) −24.2088 −0.968353
\(626\) 16.7962 0.671312
\(627\) 0 0
\(628\) −42.0360 −1.67742
\(629\) −16.2471 −0.647815
\(630\) 0 0
\(631\) −0.594756 −0.0236769 −0.0118384 0.999930i \(-0.503768\pi\)
−0.0118384 + 0.999930i \(0.503768\pi\)
\(632\) −14.8442 −0.590470
\(633\) 0 0
\(634\) −3.37626 −0.134088
\(635\) −20.4679 −0.812245
\(636\) 0 0
\(637\) 0 0
\(638\) 3.14386 0.124467
\(639\) 0 0
\(640\) −25.2641 −0.998653
\(641\) 7.69066 0.303763 0.151881 0.988399i \(-0.451467\pi\)
0.151881 + 0.988399i \(0.451467\pi\)
\(642\) 0 0
\(643\) −49.8229 −1.96482 −0.982412 0.186727i \(-0.940212\pi\)
−0.982412 + 0.186727i \(0.940212\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −12.6861 −0.499126
\(647\) 28.2761 1.11165 0.555824 0.831300i \(-0.312403\pi\)
0.555824 + 0.831300i \(0.312403\pi\)
\(648\) 0 0
\(649\) 42.1106 1.65299
\(650\) −0.253671 −0.00994980
\(651\) 0 0
\(652\) −9.67013 −0.378712
\(653\) 9.55416 0.373883 0.186942 0.982371i \(-0.440142\pi\)
0.186942 + 0.982371i \(0.440142\pi\)
\(654\) 0 0
\(655\) −16.6141 −0.649166
\(656\) −27.8036 −1.08555
\(657\) 0 0
\(658\) 0 0
\(659\) −48.1992 −1.87757 −0.938787 0.344499i \(-0.888049\pi\)
−0.938787 + 0.344499i \(0.888049\pi\)
\(660\) 0 0
\(661\) −2.05531 −0.0799425 −0.0399712 0.999201i \(-0.512727\pi\)
−0.0399712 + 0.999201i \(0.512727\pi\)
\(662\) 10.8013 0.419804
\(663\) 0 0
\(664\) 22.3527 0.867453
\(665\) 0 0
\(666\) 0 0
\(667\) −5.07888 −0.196655
\(668\) 40.4633 1.56557
\(669\) 0 0
\(670\) −8.77184 −0.338886
\(671\) 44.7556 1.72777
\(672\) 0 0
\(673\) 3.79117 0.146139 0.0730694 0.997327i \(-0.476721\pi\)
0.0730694 + 0.997327i \(0.476721\pi\)
\(674\) −13.8647 −0.534049
\(675\) 0 0
\(676\) 5.27179 0.202761
\(677\) 22.5136 0.865267 0.432633 0.901570i \(-0.357584\pi\)
0.432633 + 0.901570i \(0.357584\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 13.9640 0.535495
\(681\) 0 0
\(682\) −5.45090 −0.208726
\(683\) 15.3933 0.589008 0.294504 0.955650i \(-0.404846\pi\)
0.294504 + 0.955650i \(0.404846\pi\)
\(684\) 0 0
\(685\) −3.08854 −0.118007
\(686\) 0 0
\(687\) 0 0
\(688\) 22.5747 0.860652
\(689\) −0.786567 −0.0299658
\(690\) 0 0
\(691\) 23.2088 0.882906 0.441453 0.897284i \(-0.354463\pi\)
0.441453 + 0.897284i \(0.354463\pi\)
\(692\) 38.8373 1.47637
\(693\) 0 0
\(694\) −2.35343 −0.0893351
\(695\) −34.0147 −1.29025
\(696\) 0 0
\(697\) 37.2088 1.40939
\(698\) 1.96907 0.0745304
\(699\) 0 0
\(700\) 0 0
\(701\) −15.0000 −0.566542 −0.283271 0.959040i \(-0.591420\pi\)
−0.283271 + 0.959040i \(0.591420\pi\)
\(702\) 0 0
\(703\) −37.2545 −1.40508
\(704\) 11.1512 0.420277
\(705\) 0 0
\(706\) 10.0913 0.379791
\(707\) 0 0
\(708\) 0 0
\(709\) −31.0000 −1.16423 −0.582115 0.813107i \(-0.697775\pi\)
−0.582115 + 0.813107i \(0.697775\pi\)
\(710\) −11.0789 −0.415783
\(711\) 0 0
\(712\) 18.0553 0.676652
\(713\) 8.80589 0.329783
\(714\) 0 0
\(715\) −36.1106 −1.35046
\(716\) 11.2134 0.419066
\(717\) 0 0
\(718\) 4.77110 0.178056
\(719\) −18.2111 −0.679161 −0.339580 0.940577i \(-0.610285\pi\)
−0.339580 + 0.940577i \(0.610285\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −19.1335 −0.712073
\(723\) 0 0
\(724\) 3.45090 0.128252
\(725\) −0.177088 −0.00657688
\(726\) 0 0
\(727\) −8.83682 −0.327739 −0.163870 0.986482i \(-0.552398\pi\)
−0.163870 + 0.986482i \(0.552398\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −0.976432 −0.0361394
\(731\) −30.2111 −1.11740
\(732\) 0 0
\(733\) 44.6404 1.64883 0.824416 0.565985i \(-0.191504\pi\)
0.824416 + 0.565985i \(0.191504\pi\)
\(734\) 2.40754 0.0888641
\(735\) 0 0
\(736\) 22.7912 0.840094
\(737\) 39.5542 1.45700
\(738\) 0 0
\(739\) 11.6044 0.426875 0.213438 0.976957i \(-0.431534\pi\)
0.213438 + 0.976957i \(0.431534\pi\)
\(740\) 18.9926 0.698183
\(741\) 0 0
\(742\) 0 0
\(743\) −26.7939 −0.982974 −0.491487 0.870885i \(-0.663546\pi\)
−0.491487 + 0.870885i \(0.663546\pi\)
\(744\) 0 0
\(745\) 29.5062 1.08102
\(746\) 11.1934 0.409818
\(747\) 0 0
\(748\) −29.1632 −1.06631
\(749\) 0 0
\(750\) 0 0
\(751\) −18.2185 −0.664802 −0.332401 0.943138i \(-0.607859\pi\)
−0.332401 + 0.943138i \(0.607859\pi\)
\(752\) −2.54450 −0.0927885
\(753\) 0 0
\(754\) 1.90604 0.0694139
\(755\) −25.5468 −0.929743
\(756\) 0 0
\(757\) 12.9018 0.468924 0.234462 0.972125i \(-0.424667\pi\)
0.234462 + 0.972125i \(0.424667\pi\)
\(758\) 18.4022 0.668398
\(759\) 0 0
\(760\) 32.0193 1.16146
\(761\) 18.2162 0.660337 0.330168 0.943922i \(-0.392894\pi\)
0.330168 + 0.943922i \(0.392894\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −23.3082 −0.843263
\(765\) 0 0
\(766\) −1.67364 −0.0604710
\(767\) 25.5306 0.921856
\(768\) 0 0
\(769\) −38.6044 −1.39211 −0.696055 0.717988i \(-0.745063\pi\)
−0.696055 + 0.717988i \(0.745063\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −30.6237 −1.10217
\(773\) 33.9594 1.22144 0.610718 0.791849i \(-0.290881\pi\)
0.610718 + 0.791849i \(0.290881\pi\)
\(774\) 0 0
\(775\) 0.307039 0.0110292
\(776\) 6.73631 0.241820
\(777\) 0 0
\(778\) 7.75794 0.278136
\(779\) 85.3195 3.05689
\(780\) 0 0
\(781\) 49.9571 1.78761
\(782\) −7.49655 −0.268076
\(783\) 0 0
\(784\) 0 0
\(785\) −53.6330 −1.91425
\(786\) 0 0
\(787\) 6.85614 0.244395 0.122198 0.992506i \(-0.461006\pi\)
0.122198 + 0.992506i \(0.461006\pi\)
\(788\) −27.9675 −0.996301
\(789\) 0 0
\(790\) −8.77184 −0.312088
\(791\) 0 0
\(792\) 0 0
\(793\) 27.1342 0.963564
\(794\) 14.0908 0.500065
\(795\) 0 0
\(796\) −12.3264 −0.436896
\(797\) 26.6501 0.943994 0.471997 0.881600i \(-0.343533\pi\)
0.471997 + 0.881600i \(0.343533\pi\)
\(798\) 0 0
\(799\) 3.40524 0.120469
\(800\) 0.794670 0.0280958
\(801\) 0 0
\(802\) 10.1667 0.358998
\(803\) 4.40294 0.155377
\(804\) 0 0
\(805\) 0 0
\(806\) −3.30474 −0.116404
\(807\) 0 0
\(808\) −32.0193 −1.12644
\(809\) 45.7100 1.60708 0.803539 0.595252i \(-0.202948\pi\)
0.803539 + 0.595252i \(0.202948\pi\)
\(810\) 0 0
\(811\) −33.2088 −1.16612 −0.583060 0.812429i \(-0.698145\pi\)
−0.583060 + 0.812429i \(0.698145\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 13.6272 0.477635
\(815\) −12.3380 −0.432180
\(816\) 0 0
\(817\) −69.2738 −2.42358
\(818\) −4.92306 −0.172131
\(819\) 0 0
\(820\) −43.4966 −1.51897
\(821\) −0.304740 −0.0106355 −0.00531774 0.999986i \(-0.501693\pi\)
−0.00531774 + 0.999986i \(0.501693\pi\)
\(822\) 0 0
\(823\) 46.4177 1.61802 0.809009 0.587796i \(-0.200004\pi\)
0.809009 + 0.587796i \(0.200004\pi\)
\(824\) 2.23287 0.0777856
\(825\) 0 0
\(826\) 0 0
\(827\) 40.8133 1.41922 0.709608 0.704597i \(-0.248872\pi\)
0.709608 + 0.704597i \(0.248872\pi\)
\(828\) 0 0
\(829\) 7.40524 0.257195 0.128597 0.991697i \(-0.458953\pi\)
0.128597 + 0.991697i \(0.458953\pi\)
\(830\) 13.2088 0.458485
\(831\) 0 0
\(832\) 6.76070 0.234385
\(833\) 0 0
\(834\) 0 0
\(835\) 51.6265 1.78661
\(836\) −66.8709 −2.31278
\(837\) 0 0
\(838\) 12.9211 0.446353
\(839\) 18.3720 0.634272 0.317136 0.948380i \(-0.397279\pi\)
0.317136 + 0.948380i \(0.397279\pi\)
\(840\) 0 0
\(841\) −27.6694 −0.954117
\(842\) 7.44509 0.256575
\(843\) 0 0
\(844\) −5.68946 −0.195839
\(845\) 6.72619 0.231388
\(846\) 0 0
\(847\) 0 0
\(848\) 0.605622 0.0207971
\(849\) 0 0
\(850\) −0.261386 −0.00896546
\(851\) −22.0147 −0.754655
\(852\) 0 0
\(853\) −37.5615 −1.28608 −0.643041 0.765832i \(-0.722328\pi\)
−0.643041 + 0.765832i \(0.722328\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −17.7745 −0.607520
\(857\) −2.15122 −0.0734843 −0.0367421 0.999325i \(-0.511698\pi\)
−0.0367421 + 0.999325i \(0.511698\pi\)
\(858\) 0 0
\(859\) −14.2877 −0.487491 −0.243745 0.969839i \(-0.578376\pi\)
−0.243745 + 0.969839i \(0.578376\pi\)
\(860\) 35.3163 1.20428
\(861\) 0 0
\(862\) −6.81049 −0.231966
\(863\) −27.6810 −0.942272 −0.471136 0.882061i \(-0.656156\pi\)
−0.471136 + 0.882061i \(0.656156\pi\)
\(864\) 0 0
\(865\) 49.5519 1.68481
\(866\) −0.477581 −0.0162289
\(867\) 0 0
\(868\) 0 0
\(869\) 39.5542 1.34178
\(870\) 0 0
\(871\) 23.9807 0.812554
\(872\) −26.8373 −0.908825
\(873\) 0 0
\(874\) −17.1895 −0.581444
\(875\) 0 0
\(876\) 0 0
\(877\) −19.0000 −0.641584 −0.320792 0.947150i \(-0.603949\pi\)
−0.320792 + 0.947150i \(0.603949\pi\)
\(878\) −5.52748 −0.186543
\(879\) 0 0
\(880\) 27.8036 0.937259
\(881\) −4.06498 −0.136953 −0.0684763 0.997653i \(-0.521814\pi\)
−0.0684763 + 0.997653i \(0.521814\pi\)
\(882\) 0 0
\(883\) −20.5255 −0.690739 −0.345370 0.938467i \(-0.612246\pi\)
−0.345370 + 0.938467i \(0.612246\pi\)
\(884\) −17.6809 −0.594673
\(885\) 0 0
\(886\) −9.11753 −0.306309
\(887\) 10.1152 0.339636 0.169818 0.985475i \(-0.445682\pi\)
0.169818 + 0.985475i \(0.445682\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 10.6694 0.357639
\(891\) 0 0
\(892\) −40.0457 −1.34083
\(893\) 7.80819 0.261291
\(894\) 0 0
\(895\) 14.3070 0.478232
\(896\) 0 0
\(897\) 0 0
\(898\) 0.392079 0.0130838
\(899\) −2.30704 −0.0769441
\(900\) 0 0
\(901\) −0.810488 −0.0270013
\(902\) −31.2088 −1.03914
\(903\) 0 0
\(904\) −38.8492 −1.29211
\(905\) 4.40294 0.146359
\(906\) 0 0
\(907\) 22.3956 0.743633 0.371817 0.928306i \(-0.378735\pi\)
0.371817 + 0.928306i \(0.378735\pi\)
\(908\) −20.1222 −0.667780
\(909\) 0 0
\(910\) 0 0
\(911\) −33.8036 −1.11996 −0.559981 0.828505i \(-0.689192\pi\)
−0.559981 + 0.828505i \(0.689192\pi\)
\(912\) 0 0
\(913\) −59.5615 −1.97120
\(914\) 0.523976 0.0173316
\(915\) 0 0
\(916\) 2.40801 0.0795628
\(917\) 0 0
\(918\) 0 0
\(919\) 35.6044 1.17448 0.587241 0.809412i \(-0.300214\pi\)
0.587241 + 0.809412i \(0.300214\pi\)
\(920\) 18.9211 0.623811
\(921\) 0 0
\(922\) 19.9350 0.656525
\(923\) 30.2877 0.996932
\(924\) 0 0
\(925\) −0.767598 −0.0252385
\(926\) 13.5669 0.445835
\(927\) 0 0
\(928\) −5.97102 −0.196008
\(929\) 32.4126 1.06342 0.531712 0.846926i \(-0.321549\pi\)
0.531712 + 0.846926i \(0.321549\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −15.0987 −0.494573
\(933\) 0 0
\(934\) −8.94044 −0.292540
\(935\) −37.2088 −1.21686
\(936\) 0 0
\(937\) 4.34303 0.141881 0.0709403 0.997481i \(-0.477400\pi\)
0.0709403 + 0.997481i \(0.477400\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −3.98068 −0.129835
\(941\) 31.9401 1.04122 0.520609 0.853796i \(-0.325705\pi\)
0.520609 + 0.853796i \(0.325705\pi\)
\(942\) 0 0
\(943\) 50.4177 1.64183
\(944\) −19.6574 −0.639795
\(945\) 0 0
\(946\) 25.3395 0.823859
\(947\) −40.5136 −1.31651 −0.658257 0.752793i \(-0.728706\pi\)
−0.658257 + 0.752793i \(0.728706\pi\)
\(948\) 0 0
\(949\) 2.66939 0.0866522
\(950\) −0.599355 −0.0194456
\(951\) 0 0
\(952\) 0 0
\(953\) 9.74828 0.315778 0.157889 0.987457i \(-0.449531\pi\)
0.157889 + 0.987457i \(0.449531\pi\)
\(954\) 0 0
\(955\) −29.7386 −0.962319
\(956\) −8.11413 −0.262430
\(957\) 0 0
\(958\) −1.47022 −0.0475006
\(959\) 0 0
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 8.26185 0.266373
\(963\) 0 0
\(964\) −7.94469 −0.255881
\(965\) −39.0723 −1.25778
\(966\) 0 0
\(967\) 29.6930 0.954861 0.477431 0.878669i \(-0.341568\pi\)
0.477431 + 0.878669i \(0.341568\pi\)
\(968\) 31.3407 1.00733
\(969\) 0 0
\(970\) 3.98068 0.127812
\(971\) −31.9954 −1.02678 −0.513391 0.858155i \(-0.671611\pi\)
−0.513391 + 0.858155i \(0.671611\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 3.40910 0.109235
\(975\) 0 0
\(976\) −20.8921 −0.668741
\(977\) 1.80819 0.0578491 0.0289245 0.999582i \(-0.490792\pi\)
0.0289245 + 0.999582i \(0.490792\pi\)
\(978\) 0 0
\(979\) −48.1106 −1.53762
\(980\) 0 0
\(981\) 0 0
\(982\) 2.41767 0.0771509
\(983\) −43.5468 −1.38893 −0.694464 0.719528i \(-0.744358\pi\)
−0.694464 + 0.719528i \(0.744358\pi\)
\(984\) 0 0
\(985\) −35.6833 −1.13696
\(986\) 1.96401 0.0625468
\(987\) 0 0
\(988\) −40.5421 −1.28982
\(989\) −40.9358 −1.30168
\(990\) 0 0
\(991\) −33.1010 −1.05149 −0.525743 0.850643i \(-0.676213\pi\)
−0.525743 + 0.850643i \(0.676213\pi\)
\(992\) 10.3527 0.328698
\(993\) 0 0
\(994\) 0 0
\(995\) −15.7270 −0.498580
\(996\) 0 0
\(997\) 0.539441 0.0170843 0.00854214 0.999964i \(-0.497281\pi\)
0.00854214 + 0.999964i \(0.497281\pi\)
\(998\) 18.5994 0.588752
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3969.2.a.o.1.2 3
3.2 odd 2 3969.2.a.n.1.2 3
7.6 odd 2 567.2.a.e.1.2 3
21.20 even 2 567.2.a.f.1.2 yes 3
28.27 even 2 9072.2.a.bu.1.3 3
63.13 odd 6 567.2.f.m.379.2 6
63.20 even 6 567.2.f.l.190.2 6
63.34 odd 6 567.2.f.m.190.2 6
63.41 even 6 567.2.f.l.379.2 6
84.83 odd 2 9072.2.a.cb.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.a.e.1.2 3 7.6 odd 2
567.2.a.f.1.2 yes 3 21.20 even 2
567.2.f.l.190.2 6 63.20 even 6
567.2.f.l.379.2 6 63.41 even 6
567.2.f.m.190.2 6 63.34 odd 6
567.2.f.m.379.2 6 63.13 odd 6
3969.2.a.n.1.2 3 3.2 odd 2
3969.2.a.o.1.2 3 1.1 even 1 trivial
9072.2.a.bu.1.3 3 28.27 even 2
9072.2.a.cb.1.1 3 84.83 odd 2