Properties

Label 567.2.a.e.1.2
Level $567$
Weight $2$
Character 567.1
Self dual yes
Analytic conductor $4.528$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(1,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.523976\) of defining polynomial
Character \(\chi\) \(=\) 567.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.523976 q^{2} -1.72545 q^{4} +2.20147 q^{5} +1.00000 q^{7} +1.95205 q^{8} +O(q^{10})\) \(q-0.523976 q^{2} -1.72545 q^{4} +2.20147 q^{5} +1.00000 q^{7} +1.95205 q^{8} -1.15352 q^{10} -5.20147 q^{11} +3.15352 q^{13} -0.523976 q^{14} +2.42807 q^{16} +3.24943 q^{17} +7.45090 q^{19} -3.79853 q^{20} +2.72545 q^{22} -4.40294 q^{23} -0.153520 q^{25} -1.65237 q^{26} -1.72545 q^{28} +1.15352 q^{29} +2.00000 q^{31} -5.17635 q^{32} -1.70262 q^{34} +2.20147 q^{35} +5.00000 q^{37} -3.90409 q^{38} +4.29738 q^{40} +11.4509 q^{41} +9.29738 q^{43} +8.97487 q^{44} +2.30704 q^{46} +1.04795 q^{47} +1.00000 q^{49} +0.0804406 q^{50} -5.44124 q^{52} +0.249425 q^{53} -11.4509 q^{55} +1.95205 q^{56} -0.604417 q^{58} +8.09591 q^{59} +8.60442 q^{61} -1.04795 q^{62} -2.14386 q^{64} +6.94239 q^{65} -7.60442 q^{67} -5.60672 q^{68} -1.15352 q^{70} -9.60442 q^{71} +0.846480 q^{73} -2.61988 q^{74} -12.8561 q^{76} -5.20147 q^{77} -7.60442 q^{79} +5.34533 q^{80} -6.00000 q^{82} -11.4509 q^{83} +7.15352 q^{85} -4.87161 q^{86} -10.1535 q^{88} -9.24943 q^{89} +3.15352 q^{91} +7.59706 q^{92} -0.549103 q^{94} +16.4029 q^{95} -3.45090 q^{97} -0.523976 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} - 3 q^{5} + 3 q^{7} + 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 6 q^{4} - 3 q^{5} + 3 q^{7} + 9 q^{8} + 3 q^{10} - 6 q^{11} + 3 q^{13} + 12 q^{16} - 3 q^{17} - 21 q^{20} - 3 q^{22} + 6 q^{23} + 6 q^{25} + 27 q^{26} + 6 q^{28} - 3 q^{29} + 6 q^{31} + 18 q^{32} - 21 q^{34} - 3 q^{35} + 15 q^{37} - 18 q^{38} - 3 q^{40} + 12 q^{41} + 12 q^{43} + 3 q^{44} - 6 q^{46} + 3 q^{49} - 27 q^{50} + 9 q^{52} - 12 q^{53} - 12 q^{55} + 9 q^{56} + 27 q^{58} + 18 q^{59} - 3 q^{61} + 3 q^{64} + 21 q^{65} + 6 q^{67} - 39 q^{68} + 3 q^{70} + 9 q^{73} - 48 q^{76} - 6 q^{77} + 6 q^{79} - 3 q^{80} - 18 q^{82} - 12 q^{83} + 15 q^{85} - 45 q^{86} - 24 q^{88} - 15 q^{89} + 3 q^{91} + 42 q^{92} - 24 q^{94} + 30 q^{95} + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.523976 −0.370507 −0.185254 0.982691i \(-0.559311\pi\)
−0.185254 + 0.982691i \(0.559311\pi\)
\(3\) 0 0
\(4\) −1.72545 −0.862724
\(5\) 2.20147 0.984528 0.492264 0.870446i \(-0.336169\pi\)
0.492264 + 0.870446i \(0.336169\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 1.95205 0.690153
\(9\) 0 0
\(10\) −1.15352 −0.364775
\(11\) −5.20147 −1.56830 −0.784151 0.620569i \(-0.786901\pi\)
−0.784151 + 0.620569i \(0.786901\pi\)
\(12\) 0 0
\(13\) 3.15352 0.874629 0.437314 0.899309i \(-0.355930\pi\)
0.437314 + 0.899309i \(0.355930\pi\)
\(14\) −0.523976 −0.140039
\(15\) 0 0
\(16\) 2.42807 0.607018
\(17\) 3.24943 0.788101 0.394051 0.919089i \(-0.371073\pi\)
0.394051 + 0.919089i \(0.371073\pi\)
\(18\) 0 0
\(19\) 7.45090 1.70935 0.854677 0.519161i \(-0.173755\pi\)
0.854677 + 0.519161i \(0.173755\pi\)
\(20\) −3.79853 −0.849377
\(21\) 0 0
\(22\) 2.72545 0.581068
\(23\) −4.40294 −0.918077 −0.459039 0.888416i \(-0.651806\pi\)
−0.459039 + 0.888416i \(0.651806\pi\)
\(24\) 0 0
\(25\) −0.153520 −0.0307039
\(26\) −1.65237 −0.324056
\(27\) 0 0
\(28\) −1.72545 −0.326079
\(29\) 1.15352 0.214203 0.107102 0.994248i \(-0.465843\pi\)
0.107102 + 0.994248i \(0.465843\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) −5.17635 −0.915057
\(33\) 0 0
\(34\) −1.70262 −0.291997
\(35\) 2.20147 0.372117
\(36\) 0 0
\(37\) 5.00000 0.821995 0.410997 0.911636i \(-0.365181\pi\)
0.410997 + 0.911636i \(0.365181\pi\)
\(38\) −3.90409 −0.633328
\(39\) 0 0
\(40\) 4.29738 0.679475
\(41\) 11.4509 1.78833 0.894165 0.447738i \(-0.147770\pi\)
0.894165 + 0.447738i \(0.147770\pi\)
\(42\) 0 0
\(43\) 9.29738 1.41784 0.708918 0.705290i \(-0.249183\pi\)
0.708918 + 0.705290i \(0.249183\pi\)
\(44\) 8.97487 1.35301
\(45\) 0 0
\(46\) 2.30704 0.340154
\(47\) 1.04795 0.152860 0.0764298 0.997075i \(-0.475648\pi\)
0.0764298 + 0.997075i \(0.475648\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0.0804406 0.0113760
\(51\) 0 0
\(52\) −5.44124 −0.754564
\(53\) 0.249425 0.0342612 0.0171306 0.999853i \(-0.494547\pi\)
0.0171306 + 0.999853i \(0.494547\pi\)
\(54\) 0 0
\(55\) −11.4509 −1.54404
\(56\) 1.95205 0.260853
\(57\) 0 0
\(58\) −0.604417 −0.0793638
\(59\) 8.09591 1.05400 0.526999 0.849866i \(-0.323317\pi\)
0.526999 + 0.849866i \(0.323317\pi\)
\(60\) 0 0
\(61\) 8.60442 1.10168 0.550841 0.834610i \(-0.314307\pi\)
0.550841 + 0.834610i \(0.314307\pi\)
\(62\) −1.04795 −0.133090
\(63\) 0 0
\(64\) −2.14386 −0.267982
\(65\) 6.94239 0.861097
\(66\) 0 0
\(67\) −7.60442 −0.929027 −0.464514 0.885566i \(-0.653771\pi\)
−0.464514 + 0.885566i \(0.653771\pi\)
\(68\) −5.60672 −0.679914
\(69\) 0 0
\(70\) −1.15352 −0.137872
\(71\) −9.60442 −1.13983 −0.569917 0.821702i \(-0.693025\pi\)
−0.569917 + 0.821702i \(0.693025\pi\)
\(72\) 0 0
\(73\) 0.846480 0.0990730 0.0495365 0.998772i \(-0.484226\pi\)
0.0495365 + 0.998772i \(0.484226\pi\)
\(74\) −2.61988 −0.304555
\(75\) 0 0
\(76\) −12.8561 −1.47470
\(77\) −5.20147 −0.592763
\(78\) 0 0
\(79\) −7.60442 −0.855564 −0.427782 0.903882i \(-0.640705\pi\)
−0.427782 + 0.903882i \(0.640705\pi\)
\(80\) 5.34533 0.597626
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) −11.4509 −1.25690 −0.628450 0.777850i \(-0.716310\pi\)
−0.628450 + 0.777850i \(0.716310\pi\)
\(84\) 0 0
\(85\) 7.15352 0.775908
\(86\) −4.87161 −0.525319
\(87\) 0 0
\(88\) −10.1535 −1.08237
\(89\) −9.24943 −0.980437 −0.490219 0.871600i \(-0.663083\pi\)
−0.490219 + 0.871600i \(0.663083\pi\)
\(90\) 0 0
\(91\) 3.15352 0.330579
\(92\) 7.59706 0.792048
\(93\) 0 0
\(94\) −0.549103 −0.0566356
\(95\) 16.4029 1.68291
\(96\) 0 0
\(97\) −3.45090 −0.350386 −0.175193 0.984534i \(-0.556055\pi\)
−0.175193 + 0.984534i \(0.556055\pi\)
\(98\) −0.523976 −0.0529296
\(99\) 0 0
\(100\) 0.264890 0.0264890
\(101\) 16.4029 1.63215 0.816077 0.577943i \(-0.196144\pi\)
0.816077 + 0.577943i \(0.196144\pi\)
\(102\) 0 0
\(103\) −1.14386 −0.112708 −0.0563539 0.998411i \(-0.517947\pi\)
−0.0563539 + 0.998411i \(0.517947\pi\)
\(104\) 6.15582 0.603628
\(105\) 0 0
\(106\) −0.130693 −0.0126940
\(107\) −9.10557 −0.880268 −0.440134 0.897932i \(-0.645069\pi\)
−0.440134 + 0.897932i \(0.645069\pi\)
\(108\) 0 0
\(109\) −13.7483 −1.31685 −0.658423 0.752648i \(-0.728776\pi\)
−0.658423 + 0.752648i \(0.728776\pi\)
\(110\) 6.00000 0.572078
\(111\) 0 0
\(112\) 2.42807 0.229431
\(113\) −19.9018 −1.87220 −0.936102 0.351729i \(-0.885594\pi\)
−0.936102 + 0.351729i \(0.885594\pi\)
\(114\) 0 0
\(115\) −9.69296 −0.903873
\(116\) −1.99034 −0.184798
\(117\) 0 0
\(118\) −4.24206 −0.390514
\(119\) 3.24943 0.297874
\(120\) 0 0
\(121\) 16.0553 1.45957
\(122\) −4.50851 −0.408181
\(123\) 0 0
\(124\) −3.45090 −0.309900
\(125\) −11.3453 −1.01476
\(126\) 0 0
\(127\) 9.29738 0.825009 0.412504 0.910956i \(-0.364654\pi\)
0.412504 + 0.910956i \(0.364654\pi\)
\(128\) 11.4760 1.01435
\(129\) 0 0
\(130\) −3.63765 −0.319043
\(131\) −7.54680 −0.659367 −0.329684 0.944091i \(-0.606942\pi\)
−0.329684 + 0.944091i \(0.606942\pi\)
\(132\) 0 0
\(133\) 7.45090 0.646075
\(134\) 3.98454 0.344211
\(135\) 0 0
\(136\) 6.34303 0.543910
\(137\) 1.40294 0.119862 0.0599308 0.998203i \(-0.480912\pi\)
0.0599308 + 0.998203i \(0.480912\pi\)
\(138\) 0 0
\(139\) −15.4509 −1.31053 −0.655264 0.755400i \(-0.727443\pi\)
−0.655264 + 0.755400i \(0.727443\pi\)
\(140\) −3.79853 −0.321034
\(141\) 0 0
\(142\) 5.03249 0.422317
\(143\) −16.4029 −1.37168
\(144\) 0 0
\(145\) 2.53944 0.210889
\(146\) −0.443536 −0.0367073
\(147\) 0 0
\(148\) −8.62724 −0.709155
\(149\) −13.4029 −1.09801 −0.549006 0.835818i \(-0.684994\pi\)
−0.549006 + 0.835818i \(0.684994\pi\)
\(150\) 0 0
\(151\) 11.6044 0.944354 0.472177 0.881504i \(-0.343468\pi\)
0.472177 + 0.881504i \(0.343468\pi\)
\(152\) 14.5445 1.17972
\(153\) 0 0
\(154\) 2.72545 0.219623
\(155\) 4.40294 0.353653
\(156\) 0 0
\(157\) −24.3624 −1.94433 −0.972164 0.234302i \(-0.924719\pi\)
−0.972164 + 0.234302i \(0.924719\pi\)
\(158\) 3.98454 0.316993
\(159\) 0 0
\(160\) −11.3956 −0.900900
\(161\) −4.40294 −0.347001
\(162\) 0 0
\(163\) 5.60442 0.438972 0.219486 0.975616i \(-0.429562\pi\)
0.219486 + 0.975616i \(0.429562\pi\)
\(164\) −19.7579 −1.54284
\(165\) 0 0
\(166\) 6.00000 0.465690
\(167\) 23.4509 1.81468 0.907342 0.420392i \(-0.138108\pi\)
0.907342 + 0.420392i \(0.138108\pi\)
\(168\) 0 0
\(169\) −3.05531 −0.235024
\(170\) −3.74828 −0.287480
\(171\) 0 0
\(172\) −16.0421 −1.22320
\(173\) 22.5085 1.71129 0.855645 0.517563i \(-0.173161\pi\)
0.855645 + 0.517563i \(0.173161\pi\)
\(174\) 0 0
\(175\) −0.153520 −0.0116050
\(176\) −12.6295 −0.951988
\(177\) 0 0
\(178\) 4.84648 0.363259
\(179\) −6.49885 −0.485747 −0.242873 0.970058i \(-0.578090\pi\)
−0.242873 + 0.970058i \(0.578090\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) −1.65237 −0.122482
\(183\) 0 0
\(184\) −8.59476 −0.633614
\(185\) 11.0074 0.809277
\(186\) 0 0
\(187\) −16.9018 −1.23598
\(188\) −1.80819 −0.131876
\(189\) 0 0
\(190\) −8.59476 −0.623529
\(191\) 13.5085 0.977442 0.488721 0.872440i \(-0.337464\pi\)
0.488721 + 0.872440i \(0.337464\pi\)
\(192\) 0 0
\(193\) 17.7483 1.27755 0.638774 0.769394i \(-0.279442\pi\)
0.638774 + 0.769394i \(0.279442\pi\)
\(194\) 1.80819 0.129820
\(195\) 0 0
\(196\) −1.72545 −0.123246
\(197\) 16.2088 1.15483 0.577416 0.816450i \(-0.304061\pi\)
0.577416 + 0.816450i \(0.304061\pi\)
\(198\) 0 0
\(199\) −7.14386 −0.506415 −0.253207 0.967412i \(-0.581485\pi\)
−0.253207 + 0.967412i \(0.581485\pi\)
\(200\) −0.299677 −0.0211904
\(201\) 0 0
\(202\) −8.59476 −0.604725
\(203\) 1.15352 0.0809612
\(204\) 0 0
\(205\) 25.2088 1.76066
\(206\) 0.599355 0.0417590
\(207\) 0 0
\(208\) 7.65697 0.530915
\(209\) −38.7556 −2.68078
\(210\) 0 0
\(211\) 3.29738 0.227001 0.113500 0.993538i \(-0.463794\pi\)
0.113500 + 0.993538i \(0.463794\pi\)
\(212\) −0.430370 −0.0295580
\(213\) 0 0
\(214\) 4.77110 0.326146
\(215\) 20.4679 1.39590
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) 7.20377 0.487901
\(219\) 0 0
\(220\) 19.7579 1.33208
\(221\) 10.2471 0.689296
\(222\) 0 0
\(223\) −23.2088 −1.55418 −0.777089 0.629390i \(-0.783305\pi\)
−0.777089 + 0.629390i \(0.783305\pi\)
\(224\) −5.17635 −0.345859
\(225\) 0 0
\(226\) 10.4281 0.693665
\(227\) −11.6620 −0.774036 −0.387018 0.922072i \(-0.626495\pi\)
−0.387018 + 0.922072i \(0.626495\pi\)
\(228\) 0 0
\(229\) 1.39558 0.0922227 0.0461114 0.998936i \(-0.485317\pi\)
0.0461114 + 0.998936i \(0.485317\pi\)
\(230\) 5.07888 0.334892
\(231\) 0 0
\(232\) 2.25172 0.147833
\(233\) 8.75057 0.573269 0.286635 0.958040i \(-0.407463\pi\)
0.286635 + 0.958040i \(0.407463\pi\)
\(234\) 0 0
\(235\) 2.30704 0.150495
\(236\) −13.9691 −0.909309
\(237\) 0 0
\(238\) −1.70262 −0.110365
\(239\) 4.70262 0.304187 0.152094 0.988366i \(-0.451398\pi\)
0.152094 + 0.988366i \(0.451398\pi\)
\(240\) 0 0
\(241\) −4.60442 −0.296597 −0.148298 0.988943i \(-0.547380\pi\)
−0.148298 + 0.988943i \(0.547380\pi\)
\(242\) −8.41261 −0.540783
\(243\) 0 0
\(244\) −14.8465 −0.950449
\(245\) 2.20147 0.140647
\(246\) 0 0
\(247\) 23.4966 1.49505
\(248\) 3.90409 0.247910
\(249\) 0 0
\(250\) 5.94469 0.375975
\(251\) 3.14386 0.198439 0.0992193 0.995066i \(-0.468365\pi\)
0.0992193 + 0.995066i \(0.468365\pi\)
\(252\) 0 0
\(253\) 22.9018 1.43982
\(254\) −4.87161 −0.305672
\(255\) 0 0
\(256\) −1.72545 −0.107841
\(257\) −20.1512 −1.25700 −0.628499 0.777810i \(-0.716330\pi\)
−0.628499 + 0.777810i \(0.716330\pi\)
\(258\) 0 0
\(259\) 5.00000 0.310685
\(260\) −11.9787 −0.742889
\(261\) 0 0
\(262\) 3.95435 0.244300
\(263\) −17.2015 −1.06069 −0.530344 0.847782i \(-0.677937\pi\)
−0.530344 + 0.847782i \(0.677937\pi\)
\(264\) 0 0
\(265\) 0.549103 0.0337311
\(266\) −3.90409 −0.239375
\(267\) 0 0
\(268\) 13.1210 0.801495
\(269\) −2.75057 −0.167706 −0.0838528 0.996478i \(-0.526723\pi\)
−0.0838528 + 0.996478i \(0.526723\pi\)
\(270\) 0 0
\(271\) −12.8561 −0.780955 −0.390477 0.920612i \(-0.627690\pi\)
−0.390477 + 0.920612i \(0.627690\pi\)
\(272\) 7.88983 0.478391
\(273\) 0 0
\(274\) −0.735110 −0.0444096
\(275\) 0.798528 0.0481530
\(276\) 0 0
\(277\) −16.7483 −1.00631 −0.503153 0.864197i \(-0.667827\pi\)
−0.503153 + 0.864197i \(0.667827\pi\)
\(278\) 8.09591 0.485560
\(279\) 0 0
\(280\) 4.29738 0.256817
\(281\) −5.30704 −0.316591 −0.158296 0.987392i \(-0.550600\pi\)
−0.158296 + 0.987392i \(0.550600\pi\)
\(282\) 0 0
\(283\) 12.3527 0.734291 0.367146 0.930163i \(-0.380335\pi\)
0.367146 + 0.930163i \(0.380335\pi\)
\(284\) 16.5719 0.983363
\(285\) 0 0
\(286\) 8.59476 0.508219
\(287\) 11.4509 0.675925
\(288\) 0 0
\(289\) −6.44124 −0.378896
\(290\) −1.33061 −0.0781360
\(291\) 0 0
\(292\) −1.46056 −0.0854727
\(293\) −10.2974 −0.601579 −0.300790 0.953691i \(-0.597250\pi\)
−0.300790 + 0.953691i \(0.597250\pi\)
\(294\) 0 0
\(295\) 17.8229 1.03769
\(296\) 9.76024 0.567302
\(297\) 0 0
\(298\) 7.02283 0.406821
\(299\) −13.8848 −0.802977
\(300\) 0 0
\(301\) 9.29738 0.535892
\(302\) −6.08044 −0.349890
\(303\) 0 0
\(304\) 18.0913 1.03761
\(305\) 18.9424 1.08464
\(306\) 0 0
\(307\) −0.307039 −0.0175236 −0.00876182 0.999962i \(-0.502789\pi\)
−0.00876182 + 0.999962i \(0.502789\pi\)
\(308\) 8.97487 0.511391
\(309\) 0 0
\(310\) −2.30704 −0.131031
\(311\) −1.04795 −0.0594240 −0.0297120 0.999559i \(-0.509459\pi\)
−0.0297120 + 0.999559i \(0.509459\pi\)
\(312\) 0 0
\(313\) 32.0553 1.81187 0.905937 0.423413i \(-0.139168\pi\)
0.905937 + 0.423413i \(0.139168\pi\)
\(314\) 12.7653 0.720387
\(315\) 0 0
\(316\) 13.1210 0.738116
\(317\) 6.44354 0.361905 0.180953 0.983492i \(-0.442082\pi\)
0.180953 + 0.983492i \(0.442082\pi\)
\(318\) 0 0
\(319\) −6.00000 −0.335936
\(320\) −4.71964 −0.263836
\(321\) 0 0
\(322\) 2.30704 0.128566
\(323\) 24.2111 1.34714
\(324\) 0 0
\(325\) −0.484127 −0.0268545
\(326\) −2.93658 −0.162642
\(327\) 0 0
\(328\) 22.3527 1.23422
\(329\) 1.04795 0.0577755
\(330\) 0 0
\(331\) −20.6141 −1.13305 −0.566526 0.824044i \(-0.691713\pi\)
−0.566526 + 0.824044i \(0.691713\pi\)
\(332\) 19.7579 1.08436
\(333\) 0 0
\(334\) −12.2877 −0.672354
\(335\) −16.7409 −0.914654
\(336\) 0 0
\(337\) 26.4606 1.44140 0.720699 0.693248i \(-0.243821\pi\)
0.720699 + 0.693248i \(0.243821\pi\)
\(338\) 1.60091 0.0870782
\(339\) 0 0
\(340\) −12.3430 −0.669395
\(341\) −10.4029 −0.563351
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 18.1489 0.978524
\(345\) 0 0
\(346\) −11.7939 −0.634046
\(347\) 4.49149 0.241116 0.120558 0.992706i \(-0.461532\pi\)
0.120558 + 0.992706i \(0.461532\pi\)
\(348\) 0 0
\(349\) 3.75794 0.201158 0.100579 0.994929i \(-0.467931\pi\)
0.100579 + 0.994929i \(0.467931\pi\)
\(350\) 0.0804406 0.00429973
\(351\) 0 0
\(352\) 26.9246 1.43509
\(353\) 19.2591 1.02506 0.512529 0.858670i \(-0.328709\pi\)
0.512529 + 0.858670i \(0.328709\pi\)
\(354\) 0 0
\(355\) −21.1439 −1.12220
\(356\) 15.9594 0.845847
\(357\) 0 0
\(358\) 3.40524 0.179973
\(359\) −9.10557 −0.480573 −0.240287 0.970702i \(-0.577241\pi\)
−0.240287 + 0.970702i \(0.577241\pi\)
\(360\) 0 0
\(361\) 36.5159 1.92189
\(362\) −1.04795 −0.0550792
\(363\) 0 0
\(364\) −5.44124 −0.285198
\(365\) 1.86350 0.0975402
\(366\) 0 0
\(367\) 4.59476 0.239844 0.119922 0.992783i \(-0.461736\pi\)
0.119922 + 0.992783i \(0.461736\pi\)
\(368\) −10.6907 −0.557289
\(369\) 0 0
\(370\) −5.76760 −0.299843
\(371\) 0.249425 0.0129495
\(372\) 0 0
\(373\) −21.3624 −1.10610 −0.553050 0.833148i \(-0.686536\pi\)
−0.553050 + 0.833148i \(0.686536\pi\)
\(374\) 8.85614 0.457940
\(375\) 0 0
\(376\) 2.04565 0.105497
\(377\) 3.63765 0.187348
\(378\) 0 0
\(379\) −35.1203 −1.80401 −0.902004 0.431728i \(-0.857904\pi\)
−0.902004 + 0.431728i \(0.857904\pi\)
\(380\) −28.3024 −1.45188
\(381\) 0 0
\(382\) −7.07814 −0.362149
\(383\) −3.19411 −0.163211 −0.0816057 0.996665i \(-0.526005\pi\)
−0.0816057 + 0.996665i \(0.526005\pi\)
\(384\) 0 0
\(385\) −11.4509 −0.583592
\(386\) −9.29968 −0.473341
\(387\) 0 0
\(388\) 5.95435 0.302286
\(389\) −14.8059 −0.750688 −0.375344 0.926886i \(-0.622475\pi\)
−0.375344 + 0.926886i \(0.622475\pi\)
\(390\) 0 0
\(391\) −14.3070 −0.723538
\(392\) 1.95205 0.0985933
\(393\) 0 0
\(394\) −8.49305 −0.427873
\(395\) −16.7409 −0.842327
\(396\) 0 0
\(397\) 26.8921 1.34968 0.674839 0.737965i \(-0.264213\pi\)
0.674839 + 0.737965i \(0.264213\pi\)
\(398\) 3.74321 0.187630
\(399\) 0 0
\(400\) −0.372756 −0.0186378
\(401\) −19.4029 −0.968937 −0.484468 0.874809i \(-0.660987\pi\)
−0.484468 + 0.874809i \(0.660987\pi\)
\(402\) 0 0
\(403\) 6.30704 0.314176
\(404\) −28.3024 −1.40810
\(405\) 0 0
\(406\) −0.604417 −0.0299967
\(407\) −26.0074 −1.28914
\(408\) 0 0
\(409\) −9.39558 −0.464582 −0.232291 0.972646i \(-0.574622\pi\)
−0.232291 + 0.972646i \(0.574622\pi\)
\(410\) −13.2088 −0.652338
\(411\) 0 0
\(412\) 1.97367 0.0972357
\(413\) 8.09591 0.398373
\(414\) 0 0
\(415\) −25.2088 −1.23745
\(416\) −16.3237 −0.800336
\(417\) 0 0
\(418\) 20.3070 0.993250
\(419\) 24.6597 1.20471 0.602353 0.798230i \(-0.294230\pi\)
0.602353 + 0.798230i \(0.294230\pi\)
\(420\) 0 0
\(421\) −14.2088 −0.692496 −0.346248 0.938143i \(-0.612544\pi\)
−0.346248 + 0.938143i \(0.612544\pi\)
\(422\) −1.72775 −0.0841055
\(423\) 0 0
\(424\) 0.486890 0.0236455
\(425\) −0.498850 −0.0241978
\(426\) 0 0
\(427\) 8.60442 0.416397
\(428\) 15.7112 0.759429
\(429\) 0 0
\(430\) −10.7247 −0.517191
\(431\) 12.9977 0.626077 0.313039 0.949740i \(-0.398653\pi\)
0.313039 + 0.949740i \(0.398653\pi\)
\(432\) 0 0
\(433\) −0.911456 −0.0438018 −0.0219009 0.999760i \(-0.506972\pi\)
−0.0219009 + 0.999760i \(0.506972\pi\)
\(434\) −1.04795 −0.0503033
\(435\) 0 0
\(436\) 23.7219 1.13608
\(437\) −32.8059 −1.56932
\(438\) 0 0
\(439\) −10.5491 −0.503481 −0.251741 0.967795i \(-0.581003\pi\)
−0.251741 + 0.967795i \(0.581003\pi\)
\(440\) −22.3527 −1.06562
\(441\) 0 0
\(442\) −5.36925 −0.255389
\(443\) 17.4006 0.826730 0.413365 0.910566i \(-0.364353\pi\)
0.413365 + 0.910566i \(0.364353\pi\)
\(444\) 0 0
\(445\) −20.3624 −0.965268
\(446\) 12.1609 0.575834
\(447\) 0 0
\(448\) −2.14386 −0.101288
\(449\) −0.748275 −0.0353133 −0.0176566 0.999844i \(-0.505621\pi\)
−0.0176566 + 0.999844i \(0.505621\pi\)
\(450\) 0 0
\(451\) −59.5615 −2.80464
\(452\) 34.3395 1.61520
\(453\) 0 0
\(454\) 6.11063 0.286786
\(455\) 6.94239 0.325464
\(456\) 0 0
\(457\) −1.00000 −0.0467780 −0.0233890 0.999726i \(-0.507446\pi\)
−0.0233890 + 0.999726i \(0.507446\pi\)
\(458\) −0.731253 −0.0341692
\(459\) 0 0
\(460\) 16.7247 0.779793
\(461\) 38.0457 1.77196 0.885981 0.463721i \(-0.153486\pi\)
0.885981 + 0.463721i \(0.153486\pi\)
\(462\) 0 0
\(463\) −25.8921 −1.20331 −0.601655 0.798756i \(-0.705492\pi\)
−0.601655 + 0.798756i \(0.705492\pi\)
\(464\) 2.80083 0.130025
\(465\) 0 0
\(466\) −4.58509 −0.212400
\(467\) −17.0627 −0.789566 −0.394783 0.918774i \(-0.629180\pi\)
−0.394783 + 0.918774i \(0.629180\pi\)
\(468\) 0 0
\(469\) −7.60442 −0.351139
\(470\) −1.20883 −0.0557594
\(471\) 0 0
\(472\) 15.8036 0.727419
\(473\) −48.3601 −2.22360
\(474\) 0 0
\(475\) −1.14386 −0.0524838
\(476\) −5.60672 −0.256983
\(477\) 0 0
\(478\) −2.46406 −0.112704
\(479\) −2.80589 −0.128204 −0.0641022 0.997943i \(-0.520418\pi\)
−0.0641022 + 0.997943i \(0.520418\pi\)
\(480\) 0 0
\(481\) 15.7676 0.718941
\(482\) 2.41261 0.109891
\(483\) 0 0
\(484\) −27.7026 −1.25921
\(485\) −7.59706 −0.344965
\(486\) 0 0
\(487\) −6.50621 −0.294825 −0.147412 0.989075i \(-0.547094\pi\)
−0.147412 + 0.989075i \(0.547094\pi\)
\(488\) 16.7962 0.760330
\(489\) 0 0
\(490\) −1.15352 −0.0521107
\(491\) −4.61408 −0.208230 −0.104115 0.994565i \(-0.533201\pi\)
−0.104115 + 0.994565i \(0.533201\pi\)
\(492\) 0 0
\(493\) 3.74828 0.168814
\(494\) −12.3116 −0.553927
\(495\) 0 0
\(496\) 4.85614 0.218047
\(497\) −9.60442 −0.430817
\(498\) 0 0
\(499\) −35.4966 −1.58904 −0.794522 0.607235i \(-0.792278\pi\)
−0.794522 + 0.607235i \(0.792278\pi\)
\(500\) 19.5758 0.875456
\(501\) 0 0
\(502\) −1.64731 −0.0735229
\(503\) 18.9211 0.843651 0.421825 0.906677i \(-0.361389\pi\)
0.421825 + 0.906677i \(0.361389\pi\)
\(504\) 0 0
\(505\) 36.1106 1.60690
\(506\) −12.0000 −0.533465
\(507\) 0 0
\(508\) −16.0421 −0.711755
\(509\) 14.8059 0.656260 0.328130 0.944633i \(-0.393582\pi\)
0.328130 + 0.944633i \(0.393582\pi\)
\(510\) 0 0
\(511\) 0.846480 0.0374461
\(512\) −22.0480 −0.974391
\(513\) 0 0
\(514\) 10.5588 0.465727
\(515\) −2.51817 −0.110964
\(516\) 0 0
\(517\) −5.45090 −0.239730
\(518\) −2.61988 −0.115111
\(519\) 0 0
\(520\) 13.5519 0.594289
\(521\) 12.7100 0.556834 0.278417 0.960460i \(-0.410190\pi\)
0.278417 + 0.960460i \(0.410190\pi\)
\(522\) 0 0
\(523\) 0.352692 0.0154222 0.00771108 0.999970i \(-0.497545\pi\)
0.00771108 + 0.999970i \(0.497545\pi\)
\(524\) 13.0216 0.568852
\(525\) 0 0
\(526\) 9.01317 0.392993
\(527\) 6.49885 0.283094
\(528\) 0 0
\(529\) −3.61408 −0.157134
\(530\) −0.287717 −0.0124976
\(531\) 0 0
\(532\) −12.8561 −0.557384
\(533\) 36.1106 1.56412
\(534\) 0 0
\(535\) −20.0457 −0.866649
\(536\) −14.8442 −0.641171
\(537\) 0 0
\(538\) 1.44124 0.0621361
\(539\) −5.20147 −0.224043
\(540\) 0 0
\(541\) −22.6930 −0.975647 −0.487823 0.872942i \(-0.662209\pi\)
−0.487823 + 0.872942i \(0.662209\pi\)
\(542\) 6.73631 0.289349
\(543\) 0 0
\(544\) −16.8201 −0.721158
\(545\) −30.2664 −1.29647
\(546\) 0 0
\(547\) −1.49379 −0.0638698 −0.0319349 0.999490i \(-0.510167\pi\)
−0.0319349 + 0.999490i \(0.510167\pi\)
\(548\) −2.42071 −0.103408
\(549\) 0 0
\(550\) −0.418410 −0.0178410
\(551\) 8.59476 0.366149
\(552\) 0 0
\(553\) −7.60442 −0.323373
\(554\) 8.77570 0.372844
\(555\) 0 0
\(556\) 26.6597 1.13062
\(557\) 8.50115 0.360205 0.180103 0.983648i \(-0.442357\pi\)
0.180103 + 0.983648i \(0.442357\pi\)
\(558\) 0 0
\(559\) 29.3195 1.24008
\(560\) 5.34533 0.225881
\(561\) 0 0
\(562\) 2.78076 0.117299
\(563\) −23.4006 −0.986220 −0.493110 0.869967i \(-0.664140\pi\)
−0.493110 + 0.869967i \(0.664140\pi\)
\(564\) 0 0
\(565\) −43.8133 −1.84324
\(566\) −6.47252 −0.272060
\(567\) 0 0
\(568\) −18.7483 −0.786660
\(569\) 8.11293 0.340112 0.170056 0.985434i \(-0.445605\pi\)
0.170056 + 0.985434i \(0.445605\pi\)
\(570\) 0 0
\(571\) 16.5948 0.694469 0.347234 0.937778i \(-0.387121\pi\)
0.347234 + 0.937778i \(0.387121\pi\)
\(572\) 28.3024 1.18338
\(573\) 0 0
\(574\) −6.00000 −0.250435
\(575\) 0.675938 0.0281886
\(576\) 0 0
\(577\) −10.8921 −0.453445 −0.226723 0.973959i \(-0.572801\pi\)
−0.226723 + 0.973959i \(0.572801\pi\)
\(578\) 3.37506 0.140384
\(579\) 0 0
\(580\) −4.38168 −0.181939
\(581\) −11.4509 −0.475063
\(582\) 0 0
\(583\) −1.29738 −0.0537319
\(584\) 1.65237 0.0683755
\(585\) 0 0
\(586\) 5.39558 0.222889
\(587\) 43.3195 1.78799 0.893993 0.448081i \(-0.147893\pi\)
0.893993 + 0.448081i \(0.147893\pi\)
\(588\) 0 0
\(589\) 14.9018 0.614018
\(590\) −9.33879 −0.384472
\(591\) 0 0
\(592\) 12.1404 0.498965
\(593\) −28.4583 −1.16864 −0.584320 0.811523i \(-0.698639\pi\)
−0.584320 + 0.811523i \(0.698639\pi\)
\(594\) 0 0
\(595\) 7.15352 0.293266
\(596\) 23.1261 0.947282
\(597\) 0 0
\(598\) 7.27529 0.297509
\(599\) 29.7003 1.21352 0.606761 0.794884i \(-0.292468\pi\)
0.606761 + 0.794884i \(0.292468\pi\)
\(600\) 0 0
\(601\) 37.5062 1.52991 0.764955 0.644084i \(-0.222761\pi\)
0.764955 + 0.644084i \(0.222761\pi\)
\(602\) −4.87161 −0.198552
\(603\) 0 0
\(604\) −20.0228 −0.814717
\(605\) 35.3453 1.43699
\(606\) 0 0
\(607\) 2.65973 0.107955 0.0539776 0.998542i \(-0.482810\pi\)
0.0539776 + 0.998542i \(0.482810\pi\)
\(608\) −38.5684 −1.56416
\(609\) 0 0
\(610\) −9.92536 −0.401866
\(611\) 3.30474 0.133695
\(612\) 0 0
\(613\) −41.6694 −1.68301 −0.841505 0.540249i \(-0.818330\pi\)
−0.841505 + 0.540249i \(0.818330\pi\)
\(614\) 0.160881 0.00649264
\(615\) 0 0
\(616\) −10.1535 −0.409097
\(617\) 43.5519 1.75333 0.876666 0.481099i \(-0.159762\pi\)
0.876666 + 0.481099i \(0.159762\pi\)
\(618\) 0 0
\(619\) −14.0650 −0.565319 −0.282660 0.959220i \(-0.591217\pi\)
−0.282660 + 0.959220i \(0.591217\pi\)
\(620\) −7.59706 −0.305105
\(621\) 0 0
\(622\) 0.549103 0.0220170
\(623\) −9.24943 −0.370570
\(624\) 0 0
\(625\) −24.2088 −0.968353
\(626\) −16.7962 −0.671312
\(627\) 0 0
\(628\) 42.0360 1.67742
\(629\) 16.2471 0.647815
\(630\) 0 0
\(631\) −0.594756 −0.0236769 −0.0118384 0.999930i \(-0.503768\pi\)
−0.0118384 + 0.999930i \(0.503768\pi\)
\(632\) −14.8442 −0.590470
\(633\) 0 0
\(634\) −3.37626 −0.134088
\(635\) 20.4679 0.812245
\(636\) 0 0
\(637\) 3.15352 0.124947
\(638\) 3.14386 0.124467
\(639\) 0 0
\(640\) 25.2641 0.998653
\(641\) 7.69066 0.303763 0.151881 0.988399i \(-0.451467\pi\)
0.151881 + 0.988399i \(0.451467\pi\)
\(642\) 0 0
\(643\) 49.8229 1.96482 0.982412 0.186727i \(-0.0597878\pi\)
0.982412 + 0.186727i \(0.0597878\pi\)
\(644\) 7.59706 0.299366
\(645\) 0 0
\(646\) −12.6861 −0.499126
\(647\) −28.2761 −1.11165 −0.555824 0.831300i \(-0.687597\pi\)
−0.555824 + 0.831300i \(0.687597\pi\)
\(648\) 0 0
\(649\) −42.1106 −1.65299
\(650\) 0.253671 0.00994980
\(651\) 0 0
\(652\) −9.67013 −0.378712
\(653\) 9.55416 0.373883 0.186942 0.982371i \(-0.440142\pi\)
0.186942 + 0.982371i \(0.440142\pi\)
\(654\) 0 0
\(655\) −16.6141 −0.649166
\(656\) 27.8036 1.08555
\(657\) 0 0
\(658\) −0.549103 −0.0214062
\(659\) −48.1992 −1.87757 −0.938787 0.344499i \(-0.888049\pi\)
−0.938787 + 0.344499i \(0.888049\pi\)
\(660\) 0 0
\(661\) 2.05531 0.0799425 0.0399712 0.999201i \(-0.487273\pi\)
0.0399712 + 0.999201i \(0.487273\pi\)
\(662\) 10.8013 0.419804
\(663\) 0 0
\(664\) −22.3527 −0.867453
\(665\) 16.4029 0.636079
\(666\) 0 0
\(667\) −5.07888 −0.196655
\(668\) −40.4633 −1.56557
\(669\) 0 0
\(670\) 8.77184 0.338886
\(671\) −44.7556 −1.72777
\(672\) 0 0
\(673\) 3.79117 0.146139 0.0730694 0.997327i \(-0.476721\pi\)
0.0730694 + 0.997327i \(0.476721\pi\)
\(674\) −13.8647 −0.534049
\(675\) 0 0
\(676\) 5.27179 0.202761
\(677\) −22.5136 −0.865267 −0.432633 0.901570i \(-0.642416\pi\)
−0.432633 + 0.901570i \(0.642416\pi\)
\(678\) 0 0
\(679\) −3.45090 −0.132433
\(680\) 13.9640 0.535495
\(681\) 0 0
\(682\) 5.45090 0.208726
\(683\) 15.3933 0.589008 0.294504 0.955650i \(-0.404846\pi\)
0.294504 + 0.955650i \(0.404846\pi\)
\(684\) 0 0
\(685\) 3.08854 0.118007
\(686\) −0.523976 −0.0200055
\(687\) 0 0
\(688\) 22.5747 0.860652
\(689\) 0.786567 0.0299658
\(690\) 0 0
\(691\) −23.2088 −0.882906 −0.441453 0.897284i \(-0.645537\pi\)
−0.441453 + 0.897284i \(0.645537\pi\)
\(692\) −38.8373 −1.47637
\(693\) 0 0
\(694\) −2.35343 −0.0893351
\(695\) −34.0147 −1.29025
\(696\) 0 0
\(697\) 37.2088 1.40939
\(698\) −1.96907 −0.0745304
\(699\) 0 0
\(700\) 0.264890 0.0100119
\(701\) −15.0000 −0.566542 −0.283271 0.959040i \(-0.591420\pi\)
−0.283271 + 0.959040i \(0.591420\pi\)
\(702\) 0 0
\(703\) 37.2545 1.40508
\(704\) 11.1512 0.420277
\(705\) 0 0
\(706\) −10.0913 −0.379791
\(707\) 16.4029 0.616896
\(708\) 0 0
\(709\) −31.0000 −1.16423 −0.582115 0.813107i \(-0.697775\pi\)
−0.582115 + 0.813107i \(0.697775\pi\)
\(710\) 11.0789 0.415783
\(711\) 0 0
\(712\) −18.0553 −0.676652
\(713\) −8.80589 −0.329783
\(714\) 0 0
\(715\) −36.1106 −1.35046
\(716\) 11.2134 0.419066
\(717\) 0 0
\(718\) 4.77110 0.178056
\(719\) 18.2111 0.679161 0.339580 0.940577i \(-0.389715\pi\)
0.339580 + 0.940577i \(0.389715\pi\)
\(720\) 0 0
\(721\) −1.14386 −0.0425995
\(722\) −19.1335 −0.712073
\(723\) 0 0
\(724\) −3.45090 −0.128252
\(725\) −0.177088 −0.00657688
\(726\) 0 0
\(727\) 8.83682 0.327739 0.163870 0.986482i \(-0.447602\pi\)
0.163870 + 0.986482i \(0.447602\pi\)
\(728\) 6.15582 0.228150
\(729\) 0 0
\(730\) −0.976432 −0.0361394
\(731\) 30.2111 1.11740
\(732\) 0 0
\(733\) −44.6404 −1.64883 −0.824416 0.565985i \(-0.808496\pi\)
−0.824416 + 0.565985i \(0.808496\pi\)
\(734\) −2.40754 −0.0888641
\(735\) 0 0
\(736\) 22.7912 0.840094
\(737\) 39.5542 1.45700
\(738\) 0 0
\(739\) 11.6044 0.426875 0.213438 0.976957i \(-0.431534\pi\)
0.213438 + 0.976957i \(0.431534\pi\)
\(740\) −18.9926 −0.698183
\(741\) 0 0
\(742\) −0.130693 −0.00479789
\(743\) −26.7939 −0.982974 −0.491487 0.870885i \(-0.663546\pi\)
−0.491487 + 0.870885i \(0.663546\pi\)
\(744\) 0 0
\(745\) −29.5062 −1.08102
\(746\) 11.1934 0.409818
\(747\) 0 0
\(748\) 29.1632 1.06631
\(749\) −9.10557 −0.332710
\(750\) 0 0
\(751\) −18.2185 −0.664802 −0.332401 0.943138i \(-0.607859\pi\)
−0.332401 + 0.943138i \(0.607859\pi\)
\(752\) 2.54450 0.0927885
\(753\) 0 0
\(754\) −1.90604 −0.0694139
\(755\) 25.5468 0.929743
\(756\) 0 0
\(757\) 12.9018 0.468924 0.234462 0.972125i \(-0.424667\pi\)
0.234462 + 0.972125i \(0.424667\pi\)
\(758\) 18.4022 0.668398
\(759\) 0 0
\(760\) 32.0193 1.16146
\(761\) −18.2162 −0.660337 −0.330168 0.943922i \(-0.607106\pi\)
−0.330168 + 0.943922i \(0.607106\pi\)
\(762\) 0 0
\(763\) −13.7483 −0.497721
\(764\) −23.3082 −0.843263
\(765\) 0 0
\(766\) 1.67364 0.0604710
\(767\) 25.5306 0.921856
\(768\) 0 0
\(769\) 38.6044 1.39211 0.696055 0.717988i \(-0.254937\pi\)
0.696055 + 0.717988i \(0.254937\pi\)
\(770\) 6.00000 0.216225
\(771\) 0 0
\(772\) −30.6237 −1.10217
\(773\) −33.9594 −1.22144 −0.610718 0.791849i \(-0.709119\pi\)
−0.610718 + 0.791849i \(0.709119\pi\)
\(774\) 0 0
\(775\) −0.307039 −0.0110292
\(776\) −6.73631 −0.241820
\(777\) 0 0
\(778\) 7.75794 0.278136
\(779\) 85.3195 3.05689
\(780\) 0 0
\(781\) 49.9571 1.78761
\(782\) 7.49655 0.268076
\(783\) 0 0
\(784\) 2.42807 0.0867168
\(785\) −53.6330 −1.91425
\(786\) 0 0
\(787\) −6.85614 −0.244395 −0.122198 0.992506i \(-0.538994\pi\)
−0.122198 + 0.992506i \(0.538994\pi\)
\(788\) −27.9675 −0.996301
\(789\) 0 0
\(790\) 8.77184 0.312088
\(791\) −19.9018 −0.707626
\(792\) 0 0
\(793\) 27.1342 0.963564
\(794\) −14.0908 −0.500065
\(795\) 0 0
\(796\) 12.3264 0.436896
\(797\) −26.6501 −0.943994 −0.471997 0.881600i \(-0.656467\pi\)
−0.471997 + 0.881600i \(0.656467\pi\)
\(798\) 0 0
\(799\) 3.40524 0.120469
\(800\) 0.794670 0.0280958
\(801\) 0 0
\(802\) 10.1667 0.358998
\(803\) −4.40294 −0.155377
\(804\) 0 0
\(805\) −9.69296 −0.341632
\(806\) −3.30474 −0.116404
\(807\) 0 0
\(808\) 32.0193 1.12644
\(809\) 45.7100 1.60708 0.803539 0.595252i \(-0.202948\pi\)
0.803539 + 0.595252i \(0.202948\pi\)
\(810\) 0 0
\(811\) 33.2088 1.16612 0.583060 0.812429i \(-0.301855\pi\)
0.583060 + 0.812429i \(0.301855\pi\)
\(812\) −1.99034 −0.0698472
\(813\) 0 0
\(814\) 13.6272 0.477635
\(815\) 12.3380 0.432180
\(816\) 0 0
\(817\) 69.2738 2.42358
\(818\) 4.92306 0.172131
\(819\) 0 0
\(820\) −43.4966 −1.51897
\(821\) −0.304740 −0.0106355 −0.00531774 0.999986i \(-0.501693\pi\)
−0.00531774 + 0.999986i \(0.501693\pi\)
\(822\) 0 0
\(823\) 46.4177 1.61802 0.809009 0.587796i \(-0.200004\pi\)
0.809009 + 0.587796i \(0.200004\pi\)
\(824\) −2.23287 −0.0777856
\(825\) 0 0
\(826\) −4.24206 −0.147600
\(827\) 40.8133 1.41922 0.709608 0.704597i \(-0.248872\pi\)
0.709608 + 0.704597i \(0.248872\pi\)
\(828\) 0 0
\(829\) −7.40524 −0.257195 −0.128597 0.991697i \(-0.541047\pi\)
−0.128597 + 0.991697i \(0.541047\pi\)
\(830\) 13.2088 0.458485
\(831\) 0 0
\(832\) −6.76070 −0.234385
\(833\) 3.24943 0.112586
\(834\) 0 0
\(835\) 51.6265 1.78661
\(836\) 66.8709 2.31278
\(837\) 0 0
\(838\) −12.9211 −0.446353
\(839\) −18.3720 −0.634272 −0.317136 0.948380i \(-0.602721\pi\)
−0.317136 + 0.948380i \(0.602721\pi\)
\(840\) 0 0
\(841\) −27.6694 −0.954117
\(842\) 7.44509 0.256575
\(843\) 0 0
\(844\) −5.68946 −0.195839
\(845\) −6.72619 −0.231388
\(846\) 0 0
\(847\) 16.0553 0.551667
\(848\) 0.605622 0.0207971
\(849\) 0 0
\(850\) 0.261386 0.00896546
\(851\) −22.0147 −0.754655
\(852\) 0 0
\(853\) 37.5615 1.28608 0.643041 0.765832i \(-0.277672\pi\)
0.643041 + 0.765832i \(0.277672\pi\)
\(854\) −4.50851 −0.154278
\(855\) 0 0
\(856\) −17.7745 −0.607520
\(857\) 2.15122 0.0734843 0.0367421 0.999325i \(-0.488302\pi\)
0.0367421 + 0.999325i \(0.488302\pi\)
\(858\) 0 0
\(859\) 14.2877 0.487491 0.243745 0.969839i \(-0.421624\pi\)
0.243745 + 0.969839i \(0.421624\pi\)
\(860\) −35.3163 −1.20428
\(861\) 0 0
\(862\) −6.81049 −0.231966
\(863\) −27.6810 −0.942272 −0.471136 0.882061i \(-0.656156\pi\)
−0.471136 + 0.882061i \(0.656156\pi\)
\(864\) 0 0
\(865\) 49.5519 1.68481
\(866\) 0.477581 0.0162289
\(867\) 0 0
\(868\) −3.45090 −0.117131
\(869\) 39.5542 1.34178
\(870\) 0 0
\(871\) −23.9807 −0.812554
\(872\) −26.8373 −0.908825
\(873\) 0 0
\(874\) 17.1895 0.581444
\(875\) −11.3453 −0.383542
\(876\) 0 0
\(877\) −19.0000 −0.641584 −0.320792 0.947150i \(-0.603949\pi\)
−0.320792 + 0.947150i \(0.603949\pi\)
\(878\) 5.52748 0.186543
\(879\) 0 0
\(880\) −27.8036 −0.937259
\(881\) 4.06498 0.136953 0.0684763 0.997653i \(-0.478186\pi\)
0.0684763 + 0.997653i \(0.478186\pi\)
\(882\) 0 0
\(883\) −20.5255 −0.690739 −0.345370 0.938467i \(-0.612246\pi\)
−0.345370 + 0.938467i \(0.612246\pi\)
\(884\) −17.6809 −0.594673
\(885\) 0 0
\(886\) −9.11753 −0.306309
\(887\) −10.1152 −0.339636 −0.169818 0.985475i \(-0.554318\pi\)
−0.169818 + 0.985475i \(0.554318\pi\)
\(888\) 0 0
\(889\) 9.29738 0.311824
\(890\) 10.6694 0.357639
\(891\) 0 0
\(892\) 40.0457 1.34083
\(893\) 7.80819 0.261291
\(894\) 0 0
\(895\) −14.3070 −0.478232
\(896\) 11.4760 0.383387
\(897\) 0 0
\(898\) 0.392079 0.0130838
\(899\) 2.30704 0.0769441
\(900\) 0 0
\(901\) 0.810488 0.0270013
\(902\) 31.2088 1.03914
\(903\) 0 0
\(904\) −38.8492 −1.29211
\(905\) 4.40294 0.146359
\(906\) 0 0
\(907\) 22.3956 0.743633 0.371817 0.928306i \(-0.378735\pi\)
0.371817 + 0.928306i \(0.378735\pi\)
\(908\) 20.1222 0.667780
\(909\) 0 0
\(910\) −3.63765 −0.120587
\(911\) −33.8036 −1.11996 −0.559981 0.828505i \(-0.689192\pi\)
−0.559981 + 0.828505i \(0.689192\pi\)
\(912\) 0 0
\(913\) 59.5615 1.97120
\(914\) 0.523976 0.0173316
\(915\) 0 0
\(916\) −2.40801 −0.0795628
\(917\) −7.54680 −0.249217
\(918\) 0 0
\(919\) 35.6044 1.17448 0.587241 0.809412i \(-0.300214\pi\)
0.587241 + 0.809412i \(0.300214\pi\)
\(920\) −18.9211 −0.623811
\(921\) 0 0
\(922\) −19.9350 −0.656525
\(923\) −30.2877 −0.996932
\(924\) 0 0
\(925\) −0.767598 −0.0252385
\(926\) 13.5669 0.445835
\(927\) 0 0
\(928\) −5.97102 −0.196008
\(929\) −32.4126 −1.06342 −0.531712 0.846926i \(-0.678451\pi\)
−0.531712 + 0.846926i \(0.678451\pi\)
\(930\) 0 0
\(931\) 7.45090 0.244193
\(932\) −15.0987 −0.494573
\(933\) 0 0
\(934\) 8.94044 0.292540
\(935\) −37.2088 −1.21686
\(936\) 0 0
\(937\) −4.34303 −0.141881 −0.0709403 0.997481i \(-0.522600\pi\)
−0.0709403 + 0.997481i \(0.522600\pi\)
\(938\) 3.98454 0.130100
\(939\) 0 0
\(940\) −3.98068 −0.129835
\(941\) −31.9401 −1.04122 −0.520609 0.853796i \(-0.674295\pi\)
−0.520609 + 0.853796i \(0.674295\pi\)
\(942\) 0 0
\(943\) −50.4177 −1.64183
\(944\) 19.6574 0.639795
\(945\) 0 0
\(946\) 25.3395 0.823859
\(947\) −40.5136 −1.31651 −0.658257 0.752793i \(-0.728706\pi\)
−0.658257 + 0.752793i \(0.728706\pi\)
\(948\) 0 0
\(949\) 2.66939 0.0866522
\(950\) 0.599355 0.0194456
\(951\) 0 0
\(952\) 6.34303 0.205579
\(953\) 9.74828 0.315778 0.157889 0.987457i \(-0.449531\pi\)
0.157889 + 0.987457i \(0.449531\pi\)
\(954\) 0 0
\(955\) 29.7386 0.962319
\(956\) −8.11413 −0.262430
\(957\) 0 0
\(958\) 1.47022 0.0475006
\(959\) 1.40294 0.0453034
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) −8.26185 −0.266373
\(963\) 0 0
\(964\) 7.94469 0.255881
\(965\) 39.0723 1.25778
\(966\) 0 0
\(967\) 29.6930 0.954861 0.477431 0.878669i \(-0.341568\pi\)
0.477431 + 0.878669i \(0.341568\pi\)
\(968\) 31.3407 1.00733
\(969\) 0 0
\(970\) 3.98068 0.127812
\(971\) 31.9954 1.02678 0.513391 0.858155i \(-0.328389\pi\)
0.513391 + 0.858155i \(0.328389\pi\)
\(972\) 0 0
\(973\) −15.4509 −0.495333
\(974\) 3.40910 0.109235
\(975\) 0 0
\(976\) 20.8921 0.668741
\(977\) 1.80819 0.0578491 0.0289245 0.999582i \(-0.490792\pi\)
0.0289245 + 0.999582i \(0.490792\pi\)
\(978\) 0 0
\(979\) 48.1106 1.53762
\(980\) −3.79853 −0.121340
\(981\) 0 0
\(982\) 2.41767 0.0771509
\(983\) 43.5468 1.38893 0.694464 0.719528i \(-0.255642\pi\)
0.694464 + 0.719528i \(0.255642\pi\)
\(984\) 0 0
\(985\) 35.6833 1.13696
\(986\) −1.96401 −0.0625468
\(987\) 0 0
\(988\) −40.5421 −1.28982
\(989\) −40.9358 −1.30168
\(990\) 0 0
\(991\) −33.1010 −1.05149 −0.525743 0.850643i \(-0.676213\pi\)
−0.525743 + 0.850643i \(0.676213\pi\)
\(992\) −10.3527 −0.328698
\(993\) 0 0
\(994\) 5.03249 0.159621
\(995\) −15.7270 −0.498580
\(996\) 0 0
\(997\) −0.539441 −0.0170843 −0.00854214 0.999964i \(-0.502719\pi\)
−0.00854214 + 0.999964i \(0.502719\pi\)
\(998\) 18.5994 0.588752
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.a.e.1.2 3
3.2 odd 2 567.2.a.f.1.2 yes 3
4.3 odd 2 9072.2.a.bu.1.3 3
7.6 odd 2 3969.2.a.o.1.2 3
9.2 odd 6 567.2.f.l.190.2 6
9.4 even 3 567.2.f.m.379.2 6
9.5 odd 6 567.2.f.l.379.2 6
9.7 even 3 567.2.f.m.190.2 6
12.11 even 2 9072.2.a.cb.1.1 3
21.20 even 2 3969.2.a.n.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.a.e.1.2 3 1.1 even 1 trivial
567.2.a.f.1.2 yes 3 3.2 odd 2
567.2.f.l.190.2 6 9.2 odd 6
567.2.f.l.379.2 6 9.5 odd 6
567.2.f.m.190.2 6 9.7 even 3
567.2.f.m.379.2 6 9.4 even 3
3969.2.a.n.1.2 3 21.20 even 2
3969.2.a.o.1.2 3 7.6 odd 2
9072.2.a.bu.1.3 3 4.3 odd 2
9072.2.a.cb.1.1 3 12.11 even 2